
so ĉ and c will make the same prediction. We can then apply Theorem 2.1 on a discretized version
of ĉ to show that the sparsified classifier has good generalization with O(log d/�2) samples.

This compressed classifier works correctly for a fixed input x with good probability but not high
probability. To fix this, one can recourse to the “compression with fixed string” model. The fixed
string is a random linear transformation. When applied to unit vector x, it tends to equalize all
coordinates and the guarantee |ĉ>u� c

>
u|  � can hold with high probability. This random linear

transformation can be fixed before seeing the training data. See Section A.2 in supplementary
material for details.

2.2 Example 2: Existing generalization bounds

Our compression framework gives easy and short proof of the generalization bounds of a recent
paper; see appendix for slightly stronger result of Bartlett et al. [2017].

Theorem 2.2. (Neyshabur et al. [2017a]) A deep net with layers A
1
, A

2
, . . . A

d
and output margin

� on a training set S, the generalization error can be bounded by

Õ

0

BB@

vuuthd2maxx2S kxk
Qd

i=1 kAik22
Pd

i=1
kAik2F
kAik22

�2m

1

CCA .

The second part of this expression (
Pd

i=1
kAik2F
kAik22

) is sum of stable ranks of the layers, a natural

measure of their true parameter count. The first part (
Qd

i=1 kAik22) is related to the Lipschitz
constant of the network, namely, the maximum norm of the vector it can produce if the input is a
unit vector. The Lipschitz constant of a matrix operator B is just its spectral norm kBk2. Since the
network applies a sequence of matrix operations interspersed with ReLU, and ReLU is 1-Lipschitz
we conclude that the Lipschitz constant of the full network is at most

Qd
i=1 kAik2.

To prove Theorem 2.2 we use the following lemma to compress the matrix at each layer to a
matrix of smaller rank. Since a matrix of rank r can be expressed as the product of two matrices of
inner dimension r, it has 2hr parameters (instead of the trivial h2). (Furthermore, the parameters
can be discretized via trivial rounding to get a compression with discrete parameters as needed by
Definition 1.)

Lemma 1. For any matrix A 2 Rm⇥n
, let Â be the truncated version of A where singular values

that are smaller than �kAk2 are removed. Then kÂ � Ak2  �kAk2 and Â has rank at most

kAk2F /(�2kAk22).

Proof. Let r be the rank of Â. By construction, the maximum singular value of Â � A is at
most �kAk2. Since the remaining singular values are at least �kAk2, we have kAkF � kÂkF �p
r�kAk2.

For each i replace layer i by its compression using the above lemma, with � =
�(3kxkd

Qd
i=1 kAik2)�1. How much error does this introduce at each layer and how much does

it a↵ect the output after passing through the intermediate layers (and getting magnified by their

Lipschitz constants)? Since A� Âi has spectral norm (i.e., Lipschitz constant) at most �, the error
at the output due to changing layer i in isolation is at most �kxik

Qd
j=1 kAjk2  �/3d.

A simple induction (see Neyshabur et al. [2017a] if needed) can now show the total error incurred
in all layers is bounded by �. The generalization bound follows immediately from Theorem 2.1.
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