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ABSTRACT
We give a O(

√
log n)-approximation algorithm for spars-

est cut, balanced separator, and graph conduc-
tance problems. This improves the O(log n)-approxi-
mation of Leighton and Rao (1988). We use a well-
known semidefinite relaxation with triangle inequality
constraints. Central to our analysis is a geometric the-
orem about projections of point sets in ℜd, whose proof
makes essential use of a phenomenon called measure
concentration.

We also describe an interesting and natural “certifi-
cate” for a graph’s expansion, by embedding an n-node
expander in it with appropriate dilation and congestion.
We call this an expander flow.
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1. INTRODUCTION
Partitioning a graph into two (or more) large pieces

while minimizing the size of the “interface” between
them is a fundamental combinatorial problem. Graph
partitions or separators are central objects of study in
the theory of Markov chains, geometric embeddings and
are a natural algorithmic primitive in numerous set-
tings, including clustering, divide and conquer approaches,
PRAM emulation, VLSI layout, and packet routing in
distributed networks. Since finding optimal separators
is NP-hard, one is forced to settle for approximation
algorithms (see [29]).

Here we give new approximation algorithms for some
of the important problems in this class. In a graph G =
(V, E), for any cut (S, S) where |S| ≤ |V | /2, the edge
expansion of the cut is

��E(S, S)
�� / |S|. In the sparsest

cut problem we wish to determine the cut with the
smallest edge expansion:

α(G) = min
S⊆V,|S|≤|V |/2

��E(S, S)
��

|S| . (1)

A cut (S, S) is c-balanced if both S, S have at least c |V |
vertices. In the c-balanced-separator problem we
wish to determine αc(G), the minimum expansion of c-
balanced cuts. In the graph conductance problem
we wish to determine

Φ(G) = min
S⊆V,|E(S)|≤|E|/2

��E(S, S)
��

|E(S)| , (2)

where E(S) denotes the set of edges incident to nodes
in S. We can reduce each of these problems to constant
degree graphs and moreover for this class, edge expan-
sion and conductance are related by a constant factor.

A weak approximation for graph conductance fol-
lows from the connection —first discovered in context
of Riemannian manifolds [7]—between conductance and
the eigenvalue gap of the Laplacian: 2Φ(G) ≥ λ ≥
Φ(G)2/2 [3, 2, 19]. The approximation factor is 1/Φ(G),
and hence Ω(n) in the worst case, however for constant
φ(G) it is an excellent bound. This connection between
eigenvalues and expansion has had enormous influence
in a variety of fields (see e.g. [8]).

Leighton and Rao [20] designed the first true approxi-
mation by giving O(log n)-approximations for sparsest
cut and graph conductance and O(log n)-pseudo-
approximations for c-balanced separator. They used
a linear programming relaxation of the problem based
on multicommodity flow proposed in [28]. This led to



approximation algorithms for numerous NP-hard prob-
lems, see [29]. However, the integrality gap of the LP is
Ω(log n), and crossing this log n barrier therefore calls
for new techniques.

In this paper we give O(
√

log n)-approximations for
sparsest cut and graph conductance and O(

√
log n)-

pseudo-approximation to c-balanced separator.
Now we give a quick overview of our results. Our

algorithm uses semidefinite programming (SDP). These
are mathematical programs in which each vertex i is
assigned some point vi on the unit sphere in ℜn. In
our case the goal is to find an assignment such that the
average distance between all pairs of points is “large”
whereas the average distance between endpoints of edges
is minimized.

The complexity of finding such embeddings depends
crucially on the notion of distance. Under the stan-
dard Euclidean norm (or even ℓ1 norm) the problem
is NP hard: the optimum cut can be efficiently recov-
ered from the optimum vectors. The notion of distance
that is more tractable (and used in SDPs) is the square
of the Euclidean norm, the so-called ℓ22 norm. With
this distance function, the embedding problem is re-
lated to finding eigenvectors of the adjacency matrix
of the graph and thus yields only weak approximations.
To tighten the relaxation, one can ask that ℓ22 distances
between the vi’s form a metric: every triple i, j, k satis-
fies the triangle inequality, i.e, |vi − vj |2 + |vj − vk|2 ≥
|vi − vk|2. The general SDP framework allows such con-
straints. Furthermore, these constraints correspond ex-
actly to the linear constraints in the Leighton-Rao LP
relaxation and therefore this ℓ22 embedding subsumes
both the eigenvalue as well as the O(log n) linear pro-
gramming bound. The conjectured integrality gap of
the resulting relaxation to the cut problem is O(1) [14],
and is known to be at least 10/9 [32].

Our O(
√

log n)-approximation relies on a new result
about the geometric structure of such embeddings: they
contain Ω(n) sized sets S and T that are well-separated,
in the sense that every pair of points vi ∈ S and vj ∈ T
must be at least ∆ = Ω(1/

√
log n) apart in ℓ22 dis-

tance. (We also present a randomized algorithm to
find such sets.) This result is tight for an n-vertex
hypercube —whose natural embedding into ℜlog n de-
fines an ℓ22 metric— where any two large sets are within
O(1/

√
log n) distance.

Finding such a well-separated subset pair suffices for
a good approximation. Since the sum of the ℓ22 distances
between endpoints of edges is small in the embedding,
the sets S and T cannot have many edges between them,
and this is the basis of finding a small cut. Formally,
finding a good separator involves shrinking S to a point
and performing a breadth first search from it and out-
putting the level with fewest edges (Section 2.1.1).

The algorithm for finding the above-mentioned well-
separated pair S, T is complicated (Section 5) but we
also describe a simpler algorithm (Section 3) that works

for a somewhat smaller separation ∆ = Ω(1/ log2/3 n).
In that case the idea is to partition the vectors with a
randomly oriented hyperplane slice of prescribed thick-
ness. Points that fall inside the slice are discarded.
The sets of points on the two sides of the slice are our
first candidates for S, T . However, they can contain a

few pairs of points vi ∈ S, vj ∈ T whose squared dis-
tance is less than ∆, which we discard. The technically
hard part in the analysis is to prove that not too many
points get discarded. This makes essential use of a phe-
nomenon called measure concentration, a cornerstone of
modern convex geometry [5].
Graph embeddings and expander flows: Our ideas
also imply a new structural result in graph theory: an
embedding of expander graphs in any arbitrary graph
that is more efficient (in terms of maximum edge con-
gestion, which is the number of expander edges routed
though a single graph edge) than any known before.
This result is proved using techniques similar to the
ones used to prove the existence of the ∆-separated sets
(though it is not an immediate corollary and requires
some work). To understand the connection to approx-
imation algorithms, note that any algorithm that ap-
proximates edge expansion α = α(G) must implicitly
certify that every cut has large expansion. One way
to do this is to embed a complete graph into the given
graph with minimum congestion. This can be accom-
plished fractionally by routing a single unit of flow be-
tween each pair of vertices while minimizing the maxi-
mum congestion, µ of any edge. Clearly, every cut must
have expansion at least 1/nµ. (See Section 7.) This
is exactly the certificate used in the Leighton-Rao pa-
per, where it is shown that congestion O(α/n log n) suf-
fices (and this amount of congestion is required on some
graphs.)

This paper considers a generalization of this approach,
where we embed not the complete graph but some flow
that is an expander. We show how this idea can be used
to derive a certificate to the effect that the expansion
is Ω(α/

√
log n) (see Section 7). The conjectures pre-

sented in the full version imply that this approach can
be improved to certify that the expansion is Ω(α).

Expander flows also provide a different and possibly
more efficient (though the current writeup ignores effi-
ciency issues besides polynomiality) O(

√
log n)-approxi-

mation algorithm for graph separators that uses multi-
commodity flows combined with eigenvalue computa-
tions. A polynomial bound follows by observing that
embedding a particular graph (the expander flow) with
minimum congestion is a multicommodity flow prob-
lem. The condition that the embedded graph is an ex-
pander can be imposed by exponentially many linear
constraints, one for each cut. A violated (within a con-
stant factor) constraint can be efficiently found by an
eigenvalue conmputation, and thus the linear program
can be solved by the Ellipsoid method. More details ap-
pear in the full version. In fact, the algorithms of this
paper (including the SDP rounding) were discovered in
this setting.

Related Work.
Semidefinite programming and approximation al-

gorithms: Semidefinite programs (SDPs) have numer-
ous applications in optimization. They are solvable in
polynomial time via the ellipsoid method [16], and more
efficient interior point methods are now known [1, 25].
In a seminal paper, Goemans and Williamson [15] used
SDPs to design good approximation algorithms for MAX-
CUT and MAX-k-SAT. Researchers soon extended their



techniques to other problems [18, 17, 14], but lately
progress in this direction has stalled. Especially in the
context of minimization problems, the GW approach of
analysing “random hyperplane” rounding in an edge-
by-edge fashion runs into well-known problems. By
contrast, our main theorem about ℓ22 spaces (and the
“rounding” technique that follows from it) takes a more
global view of the metric space. The ideas may prove
useful for other problems where triangle inequality con-
straints are conjectured to tighten SDP relaxations.
Analysis of random walks: The mixing time of a
random walk on a graph is related to the first nonzero
eigenvalue of the Laplacian, and hence to the conduc-
tance. Of various techniques known for upperbounding
the mixing time, most rely on lowerbounding the con-
ductance. Diaconis and Saloff-Coste [10] describe a very
general idea called the comparison technique, whereby
the conductance of a graph is lowerbounded by embed-
ding a known graph with known conductance into it.
(The embedding need not be constructive; existence
suffices.) Sinclair [30] suggested a similar technique
and also noted that the Leighton-Rao multicommodity
flow can be viewed as a generalization of the Jerrum-
Sinclair [19] canonical path argument. Our results on
expander flows imply that the comparison technique can
be used to always get to within O(

√
log n) of the proper

bound for conductance.
Metric spaces and relaxations of the cut cone:

The cut cone is the cone of all cut semi-metrics, and
is equivalent to the cone of all ℓ1 semi-metrics. Graph
separation problems can often be viewed as the opti-
mization of a linear function over the cut cone (possibly
with some additional constraints imposed). Thus opti-
mization over the cut cone is NP-hard. However, one
could relax the problem and optimize over some other
metric space, embed this metric space in ℓ1 (hopefully,
with low distortion), and then derive an approximation
algorithm. This approach was pioneered in [21] and [4];
see Shmoys [29] for a survey. A major open problem in
this area is to show that ℓ22 metrics (i.e., solutions to the
SDP with triangle inequality constraints) embed into ℓ1
with O(1) distortion. Showing this would prove an in-
tegrality gap of O(1) not only for sparsest cut but
also for a more general version of the problem involving
nonuniform demands between vertex pairs. The current
paper does not address this conjecture. However, James
Lee pointed out to us that our results (specifically, The-
orem 1 which was earlier implicit in our paper and now
explicit thanks to his observation) do represent partial
progress: they give an embedding of ℓ22 metrics into ℓ1 in
which the average edge distorts by at most

√
log n fac-

tor. Furthermore, we do note in the full version of the
paper that for the version of sparsest cut considered
here, the embedding conjecture is overkill. Instead we
present weaker conjectures that are sufficient to prove
an O(1) integrality gap. We mention a related conjec-
ture about ℓ1 spaces that is also of interest.

2. DEFINITIONS AND RESULTS
Throughout the paper we will assume that we are

dealing with constant degree unweighted graphs, since
the general case can be reduced to this case, as is well-
known. Furthermore, graph conductance also re-

duces to sparsest cut on constant degree graphs.

Definition 1 (ℓ22 representation) A vector represen-
tation of a graph is an assignment of a vector to each
node, say vi assigned to node i. It is called an ℓ22-
representation if for all i, j, k:

|vi − vj |2 + |vj − vk|2 ≥ |vi − vk|2 (∆-inequality)
(3)

An ℓ22-representation is called a unit-ℓ22 representation
if all its vectors have unit length.

Remark 1 Equivalently, one can say that the unit-ℓ22-
representation associates a positive semidefinite n × n
matrix M with the graph with diagonal entries 1 and
∀i, j, k, Mij + Mjk − Mik ≤ 1. The vector representa-
tion v1, v2, . . . , vn is the Cholesky factorization of M ,
namely Mij = 〈vi, vj〉.

Every cut (S, S) gives rise to a natural unit-ℓ22 repre-
sentation, namely, one that assigns some unit vector v0

to every vertex in S and −v0 to every vertex in S. Thus
the following SDP is a relaxation for αc(G) (scaled by
cn.)

min
1

4

X
{i,j}∈E

|vi − vj |2 (4)

∀i |vi|2 = 1 (5)

∀i, j, k |vi − vj |2 + |vj − vk|2 ≥ |vi − vk|2 (6)X
i<j

|vi − vj |2 ≥ 4c(1 − c)n2 (7)

This SDP motivates the following definition.

Definition 2 An ℓ22-representation is c-spread if equa-
tion (7) holds.

Similarly the following is a relaxation for sparsest cut
(up to scaling by n; see Section 6).

min
X

{i,j}∈E

|vi − vj |2 (8)

∀i, j, k |vi − vj |2 + |vj − vk|2 ≥ |vi − vk|2 (9)X
i<j

|vi − vj |2 = 1 (10)

As we mentioned before the SDPs subsume both the
eigenvalue approach and the Leighton-Rao approach [14].
We show that the optimum value of the sparsest cut
SDP is Ω(α(G)n/

√
log n), which shows that the inte-

grality gap is O(
√

log n).

2.1 Main theorem about ℓ22 representations
In general, ℓ22-representations are not well-understood1.
This is not surprising since in ℜd the representation

can have at most 2d distinct vectors [9], so our three-
dimensional intuition is of limited use for graphs with
more than 23 vertices. The technical core of our paper is
a new theorem about unit ℓ22 representations. Note that

1A well-known —but alas, wide-open—conjecture says
that they are closely related to the better-understood
ℓ1 metrics.



we assume the dimension d ≫ log n; this is without loss
of generality since we could always embed the vectors
in a higher dimensional space.

Definition 3 (∆-separated) If v1, v2, . . . , vn ∈ ℜd,
and ∆ ≥ 0, two disjoint sets of vectors S, T are ∆-
separated if for every vi ∈ S, vj ∈ T , |vi − vj |2 ≥ ∆.

Theorem 1 (Main)
For every c > 0, any c-spread unit-ℓ22 representation
with n points contains ∆-separated subsets S, T of size
Ω(n), where ∆ = Ω(1/

√
log n). Furthermore, there is a

randomized polynomial-time algorithm for finding these
subsets S, T .

Remark 2 The natural embedding of the boolean hy-
percube {−1, 1}d (appropriately scaled) shows that this
theorem is tight to within a constant factor. This fol-
lows from the isoperimetric inequality for hypercubes.

2.1.1 Immediate corollary:
√

log n-approximation
Let c′ be the constant in the Ω(n) bound on the sizes

of sets S and T in theorem 1. Let W =
P

{i,j}∈E |vi − vj|2
be the optimum value for the SDP defined by equations
(4)–(7). (Specifically, it is the objective scaled by 4.)
Since the vectors vi’s obtained from solving the SDP
satisfy the hypothesis of Theorem 1, as an immediate
corollary to the theorem we show how to produce a c′-
balanced cut whose expansion is O(

√
log nW/n).

Corollary 2
There is a randomized polynomial-time algorithm that
finds with high probability a cut (Sobs, Sobs) that is c′-
balanced, and has expansion αobs = O(W

√
log n/n).

Proof: We use the algorithm of Theorem 1 to produce
∆-separated subsets S, T for ∆ = g/

√
log n. Let V0 de-

note the vertices whose vectors are in S. Associate with
each edge e = {i, j} a length we = |vi − vj|2. (Thus
W =

P
e∈E we.) In the rest of the proof “distance” in

the graph is measured with respect to this length func-
tion.

Denote by Vs the set of vertices within distance d
of V0 and by Es the set of edges leaving Vs. We do
breadth-first search and find s ≤ ∆/2 that minimizes
|Es| / |Vs|. We output the cut (Vs, Vs); let αobs denote
the expansion of this cut. (We can assume without loss
of generality that |V∆/2| ≤ n/2, since we could switch
S and T otherwise.)

For any s ≤ ∆/2, we have

|Es| ≥ αobs|Vs| ≥ αobsc
′n,

since |V0| = |S| ≥ c′n.
The total length of the edges W =

P
e we, is thus at

least ∆/2 times the minimum number of edges cross-
ing at any point along this length ∆/2 interval. More
formally, the total length of the edges

W =
X

e

we ≥
Z ∆/2

s=0

|Es| ds ≥ ∆
2 · αobsc

′n.

The corollary follows by solving for αobs. 2

3. ∆ = Ω(log−2/3 N)-SEPARATED SETS
We now give an algorithm that given a c-spread ℓ22

representation finds ∆-separated sets of size Ω(n) for

∆ = Θ(1/ log2/3 n). Our correctness proof assumes a
key theorem (Theorem 5) whose proof appears in Sec-
tion 4. The algorithm will be improved in Section 5 to
allow ∆ = Θ(1/

√
log n).

The algorithm is given a c-spread ℓ22-representation.
We select constants c′, σ > 0 depending on c.

set-find:
Input: A c-spread unit vector representation
v1, v2, . . . , vn ∈ ℜd.
Parameters: Desired separation ∆, desired bal-
ance c′, and projection gap, σ.

Pick a random line u passing through the origin,
and let

Su = {vi : 〈vi, u〉 ≥ σ√
d
},

Tu = {vi : 〈vi, u〉 ≤ − σ√
d

}.

If |Su| < 2c′n or |Tu| < 2c′n, HALT , else proceed
as follows. Pick any vi ∈ Su, vj ∈ Tu such that
|vi − vj |2 ≤ ∆, and delete i from Su and j from
Tu. Repeat until no such vi, vj can be found and
output the remaining sets S, T .

Remark 3 The procedure set-find can be seen as a
rounding procedure of sorts. It starts with a “fat” ran-
dom hyperplane cut (cf. Goemans-Williamson [15]) to
identify the sets Su, Tu of vertices that project far apart.
It then prunes these sets to find sets S, T .

Notice that if set-find does not HALT prematurely,
it returns a ∆-separated pair of sets. Thus, we need to
show that in set-find often both Su and Tu are larger
than 2c′n and that no more than c′n points are deleted
from Su and Tu. The first claim is relatively easy, and
we show this in the next subsection. Analysing the dele-
tion process is much harder and forms the bulk of the
paper. We state the formal claims about the process in
the following subsestion, and proved it in Section 4.

3.1 Projection and Su, Tu

We first remind the reader that in ℜd, the projection
of any unit vector on a random direction is distributed
essentially like a Gaussian with expectation 0 and stan-
dard deviation 1/

√
d.

Lemma 3 (Gaussian behavior of projections)
If v is a vector of length ℓ in ℜd and u is a randomly
chosen unit vector then (i) for x ≤ 1, Pr[|〈v, u〉| ≤ xℓ√

d
] ≤

3x. (ii) for x ≤
√

d/4, Pr[|〈v, u〉| ≥ xℓ√
d
] ≤ e−x2/4.

If the projection length in a particular direction u is
tℓ/

√
d, we say that t is the stretch of v in direction u.

(This definition is motivated by the fact that ℓ/
√

d is
the root mean square of the projection length of v in a
random direction.) Lemma 3-(ii) implies that a vector
v has stretch t in a random direction u with probability

at most e−t2/4. We will this use the notion of stretch
and this fact extensively in subsequent sections.



Now using part (i) of Lemma 3 and Goemans-Williamson,
it is easy to prove that if the vi’s are c-spread then with
constant probability, Su and Tu are large.

Lemma 4
For every positive c < 1/3, there are c′, σ > 0 such that
the probability (over the choice of u) is at least c/8 that
the sets Su, Tu defined in set-find-(c′, σ) have size at
least 2c′n.

Proof: Goemans-Williamson show that for any two
points x, y on a unit sphere,

Pr[a random hyperplane separates x, y] ≥ .878 |x−y|2
4 .

By definition of c-spread, the sum of the distances be-
tween the points is at least c(1 − c)n2. Therefore the
expected number of pairs that are separated by a ran-
dom hyperplane is at least an2, where a = .878c(1 − c).
By Markov’s bound the probability that the number of
separated pairs is less that an2/2 is at most (1−a)/(1−
a/2) ≤ 1 − a/2.

Since these an2/2 pairs of nodes are split by the hy-
perplane, there must be at least an/2 nodes on the
smaller side.

By Lemma 3-(i), the probability that the projection

of a point on the unit sphere falls within σ/
√

d of the
origin is at most 3σ. By choosing σ appropriately, and
applying the Markov bound, we can ensure that the
probability that more than an/4 points fall within σ/

√
d

is at most a/4. Now by the union bound both Su and Tu

have at least a/4 points with probability at least a/4.
The lemma follows by noting that a/4 > c/8, and

choosing 2c′ = a/4. 2
3.2 Number of deletions

To analyse the number of deletions, we note that any
deleted pair vi ∈ Su, vj ∈ Tu is such that the vector

vi − vj has stretch t = 2σ/
√

∆, since its length was at

most
√

∆ and its projection length was at least 2σ/
√

d.
(Note: From now on, we will often say the pair vi, vj

has a certain stretch when we mean vi − vj .) If ∆ were
(16σ2/ log n) then the analysis would be trivial since
any deleted pair has stretch at least 4

√
log n; this event

occurs with probability less than e−4 log n ≪ 1/n2 by
Lemma 3-(ii). Thus, we expect no pairs to be deleted.
(Aside: This is an alternative version of Leighton-Rao.)

When ∆ = Ω(log−2/3 n), it may be quite likely that
many pairs are deleted. However, we observe that for
a direction u the deleted pairs form a matching Mu.
Moreover, if the procedure fails for a direction u the
matching Mu is of size at least c′n. Thus if the pro-
cedure does not succeed with constant probabilty, we
have large matchings Mu for most directions u where
each matching edge has stretch 2σ/

√
∆. We will show

(Theorem 5) that this is impossible. Now we formalize
the property of the matchings when set-find often fails
to produce a ∆ = 1/t2-separated pair.

Definition 4 ((t, γ, β)-stretched) An ℓ22 set of points
v1, v2, . . . , vn ∈ ℜd are (t, γ, β)-stretched at scale l if for
at least γ fraction of directions u, there is a (partial)
matching Mu with βn disjoint pairs (i1, j1), (i2, j2), . . . ,
such that each im, jm satisfies |vim − vjm |2 ≤ l2 and

〈u, (vim − vjm)〉 ≥ tl/
√

d. (In particular, pair vim , vjm

has stretch at least t in direction u.)

Theorem 5
For any γ, β > 0 there is a C = C(γ, β) such that if

t > C(log n)1/3 then a unit-ℓ22 representation cannot be
(t, γ, β)-stretched for any scale l.

Applying Theorem 5 with l =
√

∆ and t = 2σ/
√

∆

shows that there is some ∆ = O(log−2/3 n), such that
the probability that set-find removes a matching of
size c′n is o(1). We conclude that set-find outputs S, T
of size ≥ c′n with probability Ω(1). This completes our
analysis of set-find.

4. PROOF OF THEOREM 5
The main idea in the proof is to show that if the large

matchings Mu mentioned in Definition 4 exist for most
directions u, then for Ω(1) fraction of directions we can
string together r = Ω(t) pairs from these matchings to

produce a vector whose projection is Ω(rtl/
√

d). Trian-
gle inequality implies that any such vector has squared
length at most rl2, which means that the stretch is is√

rt.
Recall that for almost all directions, no pair of vec-

tors has stretch more than 4
√

log n. Since the stringing
together referred to above is possible for Ω(1) direc-
tions, we conclude that the stretch O(

√
rt) cannot ex-

ceed 4
√

log n, which proves that t can only be O(log1/3 n).

4.1 Matching covers
The definition of (t, γ, β)-stretched pointsets suggests

that for many direction there are many disjoint pairs of
points which are stretched. We will work with a related
notion.

Definition 5 ((ǫ, δ)-matching-covered point set) A
set of points V ⊆ ℜd is (ǫ, δ)-matching-covered at scale
l if for every unit vector u ∈ ℜd, there is a (partial)
matching Mu of V such that every (vi, vj) ∈ Mu satis-
fies |vi − vj |2 ≤ l2 and |〈u, vi − vj〉| ≥ ǫ, and for every
i, µ(u : vi matched in Mu) ≥ δ. We refer to the set of
matchings Mu to be the matching cover of V .

Remark 4 The main difference from Definition 4 is that
every point participates in Mu with constant probability
for a random direction u.

Lemma 6
If a set of n vectors is (t, γ, β)-stretched at some scale
l, then they contain a subset X of Ω(nγβ) vectors that
are (ǫ, δ)-matching covered at scale l, where δ = Ω(βγ),

ǫ ≥ tl/
√

d, and for every pair vi, vj in the matching
cover, |vi − vj |2 ≤ l2.

Proof: Consider the multigraph consisting of the union
of all partial matchings Mu’s as described in Defini-
tion 4. The average node is in Mu for γβ measure
of directions. Remove all nodes that are matched on
fewer than γβ/2 measure of directions (and remove the
corresponding matched edges from the Mu’s). Repeat.
The aggregate measure of directions removed is γβn/2.
Thus at least γβn/2 aggregate measure on directions
remains. This implies that there are at least γβn/4



nodes left, each matched in at least γβ/4 measure of
directions. This is the desired subset X. 2
Notation From now on we restrict attention to the sub-
set X mentioned in Lemma 6. Let H denote the multi-
graph on X formed by taking the union of all match-
ings Mu in the matching cover. For each vi ∈ X, let
Ball(vi, r) denote the set of vj ’s whose distance from vi

in H is at most r.
We sometimes say that “vj is r matching hops from

vi.” Note that since the matching cover consists of edges
of length ≤ l, the triangle inequality for ℓ22 representa-
tions implies that any such vj , vi satisfy |vi − vj |2 ≤ rl2.

Now we define a related object.

Definition 6 ((ǫ, δ)-cover) A set {w1, w2, . . . , } of vec-
tors in ℜd is an (ǫ, δ)-cover if every |wj | ≤ 1 and for at
least δ fraction of unit vectors u ∈ ℜd, there exists an j
such that 〈u, wj〉 ≥ ǫ.

Remark 5 Since −u is also a random unit vector, the
probability is also ≥ δ that there is a wj that 〈u, wj〉 ≤
−ǫ. This will be important later in Lemma 10.

Remark 6 Whenever we study these covers, we have a
fixed vi ∈ X in mind and the vectors in the cover are
of the form vj − vi. In such a case, we say that vi is
“centrally (ǫ, δ)-covered” by the vj ’s in question.

Note that if vi ∈ X, then the vectors vj − vi for
vj ∈ Ball(vi, 1) form an (ǫ, δ)-cover. (The converse is
not true: taking the union of such (ǫ, δ)-covers may not
always give a matching cover.)

Notation: Let Sr ⊆ X consist of all vi ∈ X such that
the vectors {vj − vi : vj ∈ Ball(vi, r)} form an (ǫr/2, 1−
δ/2)-cover.

Note that thus far there is no reason to believe even
that S1 is nonempty, since we only know that for each
vi ∈ X, the set {vj − vi : vj ∈ Ball(vi, 1)} is an (ǫ, δ)-
cover, whereas in order for vi to be in S1 these vectors
must form an (ǫ/2, 1 − δ/2)-cover.

Thus the main technical step is the following. It as-
sumes that stretch of the edges in the matching cover,
namely, t = ǫ

√
d/l, is larger than some fixed constant.

Lemma 7 (Main)
(i) S1 = X. (ii) There are constants η = η(δ), ρ = ρ(δ)
such that for r ≤ ηt, we have |Sr+1| ≥ ρ |Sr|.

Theorem 5 follows immediately from Lemma 7.

Proof:(Theorem 5) If the hypothesis of Theorem 5 is
true, then Lemma 6 implies the existence of a set X
of Ω(n) vectors vi’s that form an (ǫ, δ)-matching cov-
ered point set using edges of squared length at most l2.
Here ǫ = tl/

√
d. Then Lemma 7 and a simple induction

implies that for r = ηt,

|Sr| ≥ ρr−1 |S| = Ω(ρr−1n) ≫ 1,

where we’re using the fact that r = o(log n). Thus Sr

is nonempty.
Let vi ∈ Sr. Then for at least 1 − δ/2 fraction of di-

rections u, some vj ∈ Ball(vi, r) satisfies |〈vi − vj , u〉| ≥
rǫ/2. However, |vj − vi| ≤ √

rl, so we conclude that the
stretch of vj − vi is

rǫ/2 ×
√

d√
rl

=
√

rt/2 =
√

ηt3/2/2 = Ω(t3/2).

But recall that for any set of n vectors, at most 1/n of
the directions u are such that one of the

�
n
2

�
pairs of vec-

tors has stretch > 4
√

log n. But since Sr is nonempty,
we know that the probability is at least 1 − δ/2 that

some stretch exceeds Ω(t3/2). We conclude that t =

O(log1/3 n). 2
4.2 Proving Lemma 7

We prove Lemma 7 by induction. Recall that it was
unclear even that S1 is nonempty. In fact a phenomenon
called measure concentration implies that S1 = X. We
first introduce this idea.

4.2.1 Measure concentration.
Let Sd−1 denote the surface of the unit ball in ℜd and

let µ(·) denote the standard measure on it. For any set
of points A, we denote by Aγ the γ-neighborhood of A,
namely, the set of all points that have distance at most
γ to some point in A.

Lemma 8 (Concentration of measure)

If A ⊆ Sd−1 is measurable and γ >
2
√

log(1/µ(A))+t√
d

,

where t > 0, then µ(Aγ) ≥ 1 − exp(−t2/2).

Proof: P. Levy’s isoperimetric inequality ([5]) states
that µ(Aγ)/µ(A) is minimized for spherical caps2 The
lemma now follows by a simple calculation using the
standard formula for (d-1)-dimensional volume of spher-
ical caps, which says that the cap of points whose dis-
tance is at least s/

√
d from an equatorial plane is exp(−s2/2).2

The following Lemma is an immediate corollary.

Lemma 9
Let {v1, v2, . . . , } be a finite set of vectors that is an

(ǫ, δ)-cover, and |vi| ≤ ℓ. Then, for any γ >

√
2 log(2/δ)+t√

d
,

the vectors are also a (ǫ − 2ℓγ, δ′)-cover, where δ′ =
1 − exp(−t2/2).

Proof: Let A denote the set of directions u for which
there is an i such that 〈u, vi〉 ≥ ǫ. Since |vi − u|2 =
1 + |vi|2 − 2〈u, vi〉 we also have:

A = Sd−1 ∩
[
i

Ball

�
vi,

q
1 + |vi|2 − 2ǫ

�
,

which also shows that A is measurable. Thus by Lemma 8,
µ(Aγ) ≥ 1 − exp(−t2/2).

We argue that for each direction u in Aγ, there is
a vector vi in the (ǫ, δ) cover with 〈vi, u〉 ≥ ǫ − 2ℓγ
as follows. Let u ∈ A, u′ ∈ Aγ ∩ Sd−1 be such that
|u − u′| ≤ γ.

The projection length of vi on u is |vi| cos θ where θ is
the angle between vi and u. The projection length of vi

on u′ is |vi| cos θ′ where θ′ is the angle between vi and
u′. The angle formed by u and u′ is at most 2γ since
α ≤ 2 sin α, so θ − 2γ ≤ θ′ ≤ θ + 2γ. Since the absolute

2Levy’s isoperimetric inequality is not trivial; see [27]
for a sketch. However, results qualitatively the same —
but with worse constants— as Lemma 8 can be derived
from the more elementary Brunn-Minkowski inequality;
this “approximate isoperimetric inequality” of Ball, de
Arias and Villa also appears in [27].



value of the slope of the cosine function is at most 1,
we can conclude that the differences in projection is at
most 2γ|vi| ≤ 2γℓ. That is, 〈vi, u

′〉 ≥ ǫ − 2γℓ.
Combined with the lower bound on the µ(Aγ), we

conclude that the set of directions u′ such that there is
an i such that 〈u′, vi〉 ≥ ǫ − 2ℓγ has measure at least
1 − exp(−t2/2). 2

We can thus use Lemma 9 to boost δ to almost 1.
However, we choose to do it only sometimes, not always.
This explains the slightly strange hypothesis in the next
Lemma. The proof of Lemma 7 will not use this lemma
per se but will use the argument in it.

Lemma 10
If {w1, w2, . . . , wk} ⊆ ℜd is an (ǫ1, 1 − δ1)-cover and
{w′

1, w
′
2, . . . , w′

l} is an (ǫ2, δ2)-cover then the set�
we − w′

f : 1 ≤ e ≤ k, 1 ≤ f ≤ l
	

is a (ǫ1 + ǫ2, δ2 − δ1)-
cover.

Proof: Let u ∈ ℜd be a random unit vector. The
probability is at least 1−δ1 that there is a we such that
〈u, we〉 ≥ ǫ1. The probability is at least δ2 that there is
a w′

f such that 〈u, w′
f 〉 ≤ −ǫ2. Thus with probability at

least δ2 −δ1, there exist we, w
′
f such that 〈u, we −w′

f 〉 ≥
ǫ1 + ǫ2. 2
4.2.2 Proof of Lemma 7

Let σ = ǫ
√

d, and assume the stretch t = σ/l of the
matching edges is larger than any desired constant.

We set D(σ, δ) = 8
p

2 log(2/δ)/σ, and ρ(δ) = δ/4.
First, we show S1 = X. The hypothesis implies that

every vi ∈ X is centrally (ǫ, δ)-covered by the set of
vj ∈ Ball(vi, 1). We apply Lemma 9 to each of these

(ǫ, δ)-covers with γ = σ/4l
√

d. Note that

γ = σ/4l
√

d >
p

2 log(2/δ)/
√

d +
p

2 log(2/δ)/
√

d,

so we conclude that vi is also (1 − δ/2, ǫ − 2γℓ) covered

by Ball(vi, 1). Since 2γℓ < σ/2
√

d ≤ ǫ/2, we have thus
shown that every vi ∈ X is also in S1.

Assume the induction has worked for r steps and there
is a set Sr ⊆ T satisfying |Sr| ≥ ρr−1 |X| such that every
point vi ∈ Sr is centrally (ǫr, 1 − δ0/2)-covered by the
vectors in Ball(vi, r), where ǫr ≥ 0.5rǫ.

For each vi ∈ Sr consider the set of all vectors vj −vk

where vj ∈ Ball(vi, r) and vk ∈ Ball(vi, 1). Lemma 10
implies that these vectors form an (ǫr + ǫ, δ/2) cover,
but unfortunately this is no longer centered at vi. Thus
we are unable to prove in general that vi ∈ Sr+1.

Instead, we argue differently and use an averaging
argument to say that if Sr is large, so is Sr+1. Let
vi ∈ Sr. For 1 − δ/2 fraction of directions u, there
is a point vj ∈ Ball(vi, r) such that 〈vj − vi, u〉 ≥ ǫr.
Also for δ fraction of directions u, there is a point in
vk ∈ Ball(vi, 1) such that 〈vk − vi, u〉 ≤ −ǫ and vk is
matched to vi in the matching Mu. Thus for a δ/2
fraction of directions u, both events happen and thus
the pair (vj , vk) satisfies 〈vj −vk, u〉 ≥ ǫr +ǫ. Since vj ∈
Ball(vk, r + 1), we “assign” this vector vj − vk to point
vk for direction u, as a step towards building a cover
centered at vk. Now we argue that for many vk’s, the
vectors assigned to it in this way form a (ǫr + ǫ, ρrδ/2)-
cover.

For each point vi ∈ Sr, for δ/2 fraction of the direc-
tions u the process above assigns a vector to a point in X

for direction u according to the matching Mu. Thus on
average for each direction u, at least δ|Sr|/2 vectors get
assigned it by the process. Equivalently, for a random
point in X, the expected measure of directions for which
the point is assigned a vector is at least δ|Sr|/2 |X|. Fur-
thermore, at most one vector is assigned to any point for
a given direction u (since the assignment is governed by
the matching Mu). Therefore at least δ |Sr| /4 |X| frac-
tion of the points in X must be assigned a vector for
δ |Sr| /4 |X| fraction of the directions.

We will define all such points of X to be the set Sr+1

and note that for ρ = δ/4 the size is at least ρ |Sr| as
required. However, we have to show another property
for Sr+1. Thus far, since δ |Sr| /4 |X| = ρr, we have
only shown that each point vk in Sr+1 is centrally (ǫr +
ǫ, δρr)-covered by vj ∈ Ball(vk, r + 1).

We now invoke measure concentration to show that
these centered covers are also centered (ǫr +ǫ/2, 1−δ/2)
covers, so long as r = O(σ/l). Note that the vectors in
the cover have squared length at most rl2 due to the
triangle inequality on the squared lengths. We apply
Lemma 9 with ℓ =

√
rl and

γ = ǫ/4ℓ = σ/4
√

d
√

rl.

Now, we need

γ =
σ

4
√

d
√

rl
>

2
q

log 2
ρr +

q
log( 2

δ
)

√
d

, (11)

to get that vk is centrally (ǫr + ǫ−2γℓ, 1−δ/2) covered.

The condition is satified when r ≤ σ/8l
p

2 log(8/δ),
since ρ = δ/4.

By noting that 2γℓ < ǫ/2, we now observe that each
vk ∈ Sr+1 is ((r+1)ǫ/2, 1−δ/2)-covered by vj ∈ Ball(vk, r+
1) and our induction is complete.

Now we state a corollary of the proof of Lemma 7
which will be useful in Section 5. As in Lemma 7, let
X ⊆ ℜd be a pointset that is (ǫ, δ)-matching-covered
using edges of squared length at most l2.

The Corollary concerns, for some s > 0, a subset
T ⊆ X of size at least |X| /2 containing every vi such
that the set

�
vj − vi : |vi − vj |2 ≤ s

	
is an (ǫ1, 1− δ/2)-

cover. Define T ′ to be the set of vi’s such that the set�
vj − vi : |vi − vj |2 ≤ s + l2

	
is an (ǫ1 + ǫ/2, 1 − δ/2)-

cover. The corollary assumes ǫ
√

d is some constant, say
σ.

Corollary 11 (Cover Composition)
There are constants ρ, f depending only on σ, δ such
that if s + l2 ≤ f , then |T ′| ≥ ρ |X|.

Proof: Straightforward from proof of Lemma 7; left to
the reader. 2
5. ACHIEVING ∆ = Ω(1/

√

log N).
To prove Theorem 1 with ∆ = Ω(1/

√
log n), we start

by invoking set-find with that ∆ as separation param-
eter. If set-find succeeds, we are done. Otherwise, as
before we end up with matchings Mu in most directions
u. Now, however, we cannot necessarily show that this
leads to a contradiction. The bottleneck in our previous
proof lies in the induction of Lemma 7, where the size
of the set Sr decreases geometrically with r. To bypass



that, we describe another algorithm finds a ∆-separated
set. This uses the simple observation that if a point is
well covered than all points that are close to it are also
well covered. Now we formalize this.

Lemma 12 (Covering Close Points)
Suppose v1, v2, . . . ∈ ℜd are vectors such that for some
point v0 ∈ ℜd the vectors v1 − v0, v2 − v0, . . . , form an
(ǫ, δ)-cover. Then for every point v′

0 such that |v0 − v′
0| =

s, the vectors v1 − v′
0, v2 − v′

0, . . . form an (ǫ − ts√
d
, δ −

e−t2/4)-cover.

Proof: If u is a random unit vector, Pru[〈u, v0 − v′
0〉 ≥

ts√
d
] ≤ e−t2/4. 2

Armed with this lemma, we construct l2-separated
sets as follows. Our algorithm is very much like the
inductive step in the proof lemma 7.

For each r, define S′
r to be the set of points v which

is (rǫ/4, 1 − 3δ/4)-covered by points that are within
length ℓr =

√
2r/l of v. Consider the smallest r such

that S′
r+1 has cardinality less than n/2 (we argue below

that such an r exists). We apply Corollary 11 to S′
r, to

get a set of δn/4 points T where each point v ∈ T is
((r/4+1/2)ǫ, 1−δ/2) covered by points that are within
squared Euclidean length ℓ2r + l2 of v. It will follow us-
ing Lemma 12 that all points within length l of T are
in Sr+1, and therefore the Ω(n) sized sets T , S1 − Sr+1

are at least l2-separated.
To argue correctness, we will show that for every r ≤

r0 where r0 is θ(1/l2), Corollary 11 implies |T | ≥ ρn and
Lemma 12 implies that the l-neighborhood of T is con-
tained in S′

r+1. Now for some l which is θ(1/ log1/4 n)
we argue that |S′

r0
| = 0. Recall that v ∈ S′

r0
only if

for most directions it participates in a stretched pair of
points with stretch Ω(

√
r0/l) = Ω(1/l2) = Ω(

√
log n).

In fact, for most directions there are no such stretched
pairs.

To finish we argue that r0 is θ(1/l2). To use Lemma 12
as above, we need to ensure that the loss in projection
ts/

√
d (in our context s = l) is at most ǫ/4, and that

the loss in probability e−t2/4 is at most δ/4. Choosing

t = 2
p

log 4/δ, we see that l must be less than ǫ
√

d/t
which is easily satisfied for sufficiently large n. More-
over, for some contant f , Corollary 11 can be applied
as long as ℓ2r = 2rl2 ≤ f . This implies that the upper
limit for r is θ(1/l2).

Remark 7 Simplifying slightly, here is a concrete algo-
rithm.

For each r, find a set S̃′
r where each point in S̃′

r is
approximately (rǫ/4, 1 − 3δ/4)-covered by points that
are within length

√
2r/l. This can be done by sampling

O(log n) directions. For the first S̃′
r with cardinality less

than |S̃′
1|/2, we take the set S̃′

1 − S̃′
r to be S and take T

to be all the points that are at least l2 from S.
The sets S and T are l2-separated by construction

and the argument above shows that each set is large in
the event set-find usually fails.

6. O(
√

log N) RATIO FOR SPARSEST CUT

Now we describe a rounding technique for the SDP
in (8) –(10) that gives a O(

√
log n)-approximation to

sparsest cut. Note that our results on expander flows
in Section 7 given an alternative O(

√
log n)-approximation

algorithm.
First we see in what sense the SDP in (8) –(10) is a re-

laxation for sparsest cut. For any cut (S, S) consider
a vector representation that places all nodes in S at one
point of the sphere of squared radius (4 |S|

��S��)−1 and

all nodes in |S| at the diametrically opposite point. It is
easy to verify that this solution is feasible and has value��E(S,S)

�� / |S|
��S��. Since

��S�� ∈ [n/2, n], we can treat it
as a scaling factor. We conclude that the optimal value
of the SDP is a lower bound (up to scaling by n) for
sparsest cut.

The next theorem implies that the integrality gap is
O(

√
log n).

Theorem 13
There is a polynomial-time algorithm that, given a fea-
sible SDP solution with value β, produces a cut (S, S)
satisfying

��E(S,S)
�� = O(β |S| n√

log n).

The proof divides into two cases, one of which is sim-
ilar to that of Theorem 1. The other case is dealt with
the following Lemma.

Lemma 14
There is a polynomial-time algorithm for the follow-
ing task. Given any feasible SDP solution with β =P

{i,j}∈E |vi − vj |2, and a node k such that the geomet-

ric ball of squared-radius 1/4n2 around vk contains at
least n/2 vectors, the algorithm finds a cut (S, S) with
expansion at most O(βn).

Proof: Let X be the subset of nodes that correspond
to the vectors in the 1/4n2-geometric ball around vk.
Let d(i, j) = |vi − vj |2 and when {i, j} is an edge e we
write d(e).

To find a small cut, we shrink X to a point and per-
form a breadth first search from it traversing each out-
going edge e in time d(e) (i.e. a bfs in the weighted
graph). Let αobs be the minimum expansion of any cut
induced by this growing boundary. We will show that
αobs = O(βn). First we observe that when this bfs has
grown to include all points within s of X, the number
of points beyond the boundary, N(s), is less than n/2.
Therefore the number of edges crossing this cut is at
least αobsN(s). The total edge weight seen in this pro-
cess is bounded by the sum of the weights of all edges
and so by the lemma’s hypothesis we obtain:Z 1

s>0

αobsN(s) ds ≤ β.

We now show that there
R l

s>0
N(s), which is the to-

tal distance of all vertices to X, is larger than 1/4n,
which implies that αobs ≤ 4nβ. First observe that sinceP

i<j d(i, j) = 1, the triangle inequality implies that

node k also satisfies:
P

j d(k, j) ≥ 1/2n. Let p(j) be the
first point in X on the shortest path from j to k. Then,X
j 6∈X

d(j, X) =
X

j

d(j, k)−
X

j

d(p(j), k) ≥ 1

2n
− n

4n2
=

1

4n
.2



Thus we only need to consider the case where the hy-
pothesis of Lemma 14 does not hold for any k. Namely,
for each node k, less than n/2 vectors lie within a ball
of squared radius less than 1/4n2. That is, the nodes
are well spread out. Under this condition, the ideas
from Corollary 2 and Section 5 can be used to produce
c′-balanced cuts (where c′ is some constant) of expan-
sion O(βn), thus showing that the integrality gap is
O(

√
log n). Now we sketch how this is done.

First, scale all vectors by 2n so that the squared-
length of 1/4n2 becomes 1 and

P
i<j |vi − vj |2 = 4n2.

Now any sphere of radius 2 contains at most 1/2 the
points. Furthermore, averaging shows that at least 9/10
fraction of points lie inside a sphere of radius 40. Thus
Ω(1) fraction of nodes lie in a spherical annulus of inner
radius 1 and outer radius 40. A version of Theorem 1
applies to such representations with constants appropri-
ately modified for the diameters of the ball. As stated,
the Theorem assumed the vector representation of the
graph involves unit vectors, but looking over the proofs
it is clear that the proofs go through (with the constants
not as good) if 9/10 of the vectors have length lower-
bounded and upperbounded by some constant. The rea-
son is that by using the Goemans-Williamson analysis
as before, we conclude that for some c′, σ, the algorithm
set-find-(c′, σ) outputs a c′-balanced cut with proba-
bility Ω(1). Then, the remainder of the proof just uses
an upper bound on the vector length in various places.

7. EXPANDER FLOWS

7.1 Multicommodity flows
A multicommodity flow in an unweighted graph G =

(V, E) is an assignment of a demand fij ≥ 0 to each
node pair i, j such that we can route fij units of flow
from i to j, and can do this simultaneously for all pairs
while minimizing the maximum congestion β on any
edge. Note that every multicommodity flow in G can
be viewed as an embedding of a weighted graph G′ =
(V, fij) on the same vertex set such that the edge {i, j}
is fij fractionally present. Thus, the degree of node i isP

ij fij . If G′ is a constant degree fractional expander

(which therefore has constant conductance as well) then
clearly the expansion of G is Ω(1/β).

In these terms, the Leighton-Rao approach embeds a
Kn where each edge is 1/n fractionally present. They
show that one can do this with congestion β = O(log n/α),
which gives a O(log n) approximate certificate for ex-
pansion. Moreover, they show this is tight in the case
G is itself an expander.

Our original goal was to prove that for any G, there
is a constant degree fractional expander G′ that can be
embedded with β = O(1/α). That is still open, but we
sketch a proof of the following weaker theorem.

Theorem 15
Given any graph G, there is a fractional constant degree
expander that can be embedded in G with congestion
β = O(

√
log n/α(G)).

For simplicity, in the following we will limit ourselves
to certifying c-balanced αc(G), by embedding a frac-
tional graph (V, fij) where every c-balanced cut has

good expansion. We call such a graph a c-balanced ex-
pander.

7.2 Embeddings and Expander flows
Notation Let Fβ be the set of fractional graphs (V, fij)

that can be embedded into G with congestion β. Let V
the set of c-spread unit-ℓ22 representations on n points.
Recall that c-balanced cuts may be viewed as c-spread
unit-ℓ22 representations

Thus to prove that a fractional constant degree c-
balanced expander can be embedded in the graph G
with congestion β = Ω(

√
log n/α) it suffices to prove

that

max
(V,fij )∈Fβ

min
(v1,... ,vn)∈V

X
ij

fij |vi − vj |2 = Ω(n).

By observing that V is a convex set and the payoff
function can be written as a linear function (proof de-
ferred to full paper), von Neumann’s min-max principle
shows that the next statement is equivalent to the pre-
vious one.

min
(v1,... ,vn)∈V

max
(V,fij)∈Fβ

X
ij

fij |vi − vj |2 = Ω(n).

To prove the previous statement, we consider any
choice of v1, v2, . . . , vn. The best such fractional graph
(V, fij) is the solution to a linear program since (v1, . . . , vn)
is fixed. To show that the optimum value of the LP is
Ω(n) we consider its dual. Some manipulations (that
appear in the complete version) show that it suffices
to prove, for every graph H whose every c-balanced cut
has expansion Ω(α), that there exist Ω(n) pairs vi, vj for
which ||vi − vj||2 = Ω(1) while dH(i, j) = O(

√
log n/α).

To prove the existence of such pairs, we follow the
proof of our O(

√
log n) result in Section 5. That proof

could obtain points vi and vj where |vi − vj |2 = Ω(1)
by piecing together matched pairs from Mu’s and from
a ball growing procedure. A max-flow based argument
shows that dH(x, y) = O(1/α) for a constant fraction
of the pairs (x, y) ∈ Mu for any direction u. More-
over, the task accomplished by growing geometric balls
in Lemma 12 can instead be accomplished by growing
by O(1/α) in H. Piecng these pairs together at most
O(

√
log n) steps will find a pair vi, vj with |vi − vj |2 =

Ω(1), and dH(i, j) = O(
√

log n/α). Repeating Ω(n) times
produces the desired result.

8. CONCLUSIONS
At the beginning of this project, we conjectured that

it was possible to route expander flows with congestion
O(1/α). This would imply that the integrality gap of
the SDP would be O(1). In the full version of the paper
we present several conjectures which provide a roadmap
for proving these results. Note that for hypercubes and
related graphs, our rounding algorithm produces cuts
whose value is O(

√
log n) times the SDP value. Thus, a

different rounding algorithm seems necessary.
We note that a conjecture of Goemans and Linial that

ℓ22 metrics can be embedded into ℓ1 with constant dis-
tortion also implies a constant upper bound for the in-
tegrality gap of the SDP. (In fact it proves such a bound
for the SDP for a more general version of sparsest



cut.) As noted, our geometric results may be a starting
point for making some progress on proving that ℓ22 met-
rics can be embedded into ℓ2 with O(

√
log n) distortion.

This would solve the long open question of whether ℓ1
can be embedded into ℓ2 with O(

√
log n) distortion.

Our approximation algorithms are fairly inefficient
(though polynomial time) because they use SDPs or re-
lated convex optimization. Do more efficient (combina-
torial?) algorithms exist, possibly using expander flows?
One loose analogy would be combinatorial versions of
the Leighton-Rao multicommodity flow algorithm (see,
e.g., [26, 12]), which may be useful in practice. Many
practitioners continue to prefer eigenvalue methods over
Leighton-Rao because the geometric meaning of eigen-
values (e.g., the connection to stretched rubberbands
and such) has relevance in their application —computer
vision, for example. Since the SDP relaxation may be
viewed as a higher-dimensional analogue of eigenvalue
computation, it may well turn out to share these proper-
ties of eigenvalues, and hence also their practical appeal.

Extending our ideas to other problems should be pos-
sible though it doesn’t seem to be immediate. The prob-
lems in [29] would be a good list to try, especially min-
imum multicut, for which an O(log k)-approximation
was designed in [13].
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