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Abstract

Algorithms in varied fields use the idea of maintaining a distribution
over a certain set and use the multiplicative update rule to iteratively
change these weights. Their analyses are usually very similar and rely
on an exponential potential function.

In this survey we present a simple meta algorithm that unifies these
disparate algorithms and drives them as simple instantiations of the
meta algorithm. We feel that since this meta algorithm and its analysis
are so simple, and its applications so broad, it should be a standard
part of algorithms courses, like “divide and conquer.”

Introduction

Algorithms in varied fields work as follows: a distribution is maintained
on a certain set, and at each step the probability assigned to i is multi-
plied or divided by (1 + eC(i)) where C(i) is some kind of “payoff” for
element i. (Rescaling may be needed to ensure that the new values form a
distribution.) Some examples include: the Ada Boost algorithm in machine
learning [FS97]; algorithms for game playing studied in economics (see refer-
ences later), the Plotkin-Shmoys-Tardos algorithm for packing and covering
LPs [PST91], and its improvements in the case of flow problems by Young,
Garg-Konneman, Fleischer and others [You95, GK98, Fle00]; methods for
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convex optimization like gradient descent, lagrangian multipliers, and sub-
gradient methods, Impagliazzo’s proof of the Yao XOR lemma [Imp95], etc.
The analysis of the running time uses a potential function argument and the
final running time is proportional to 1/€2,

It has been clear to most researchers that these results are very similar.
For example Khandekar’s PhD thesis [Kha04] makes this point about the
varied applications of this idea to convex optimization. The purpose of this
survey is to clarify that these applications are instances of the same (more
general) algorithm. This meta algorithm is a generalization of Littlestone
and Warmuth’s weighted majority algorithm from learning theory [LW94].
(A similar algorithm has been independently rediscovered in many other
fields; see below.) The advantage of deriving the above algorithms from
the same meta algorithm is that this highlights their commonalities as
well as their differences. To give an example, the algorithms of Garg-
Konemann [GK98] were felt to be quite different from those of Plotkin-
Shmoys-Tardos [PST91]. In our framework, they can be seen as a clever
trick for “width reduction” in the PST framework (see Section 3.3).

We feel that our meta algorithm and its analysis are simple and useful
enough that they should be viewed as a basic tool taught to all algorithms
students together with divide-and-conquer, dynamic programming, random
sampling, and the like. Note that the matrix multiplicative weights update
rule may be seen as a “constructive” version of LP duality —equivalently,
von Neumann’s minmax theorem in game theory— and it gives a fairly con-
crete method for competing players to arrive at a solution/equilibrium (see
Section 3.1). This may be an appealing feature in introductory algorithms
courses, since the standard algorithms for LP such as Simplex, ellipsoid, or
Karmarkar lack such a game-theoretic interpretation. Furthermore, it is a
convenient stepping point to many other topics that rarely get mentioned
in algorithms courses, including online algorithms (see the basic scenario
in Section 1.1) and machine learning. Furthermore our proofs seems easier
and cleaner than the entropy-based proofs for the same results in machine
learning.

The current paper is chiefly a survey. It introduces the main algorithm,
gives a few variants (chiefly having to do with the range in which the payoffs
lie), and surveys the most important applications —often with complete
proofs. There are a few small results that appear to be new, such as the
improved lowerbound of Section 4 and the variant of the Garg-Kénemann
algorithm in Section 3.3.



Related work. An algorithm similar in flavor to the Multiplicative Weights
algorithm were proposed in game theory in the early fifties [BVvN50, Bro51,

Rob51].  Following Brown [Bro51], this algorithm was called “Fictitious

Play”: at each step each player observes actions taken by his opponent

in previous stages, updates his beliefs about his opponents’ strategies, and

chooses myopic pure best responses against these beliefs. In the simplest

case, the player simply assumes that the opponent is playing from a station-

ary distribution and sets his current belief of the opponent’s distribution to

be the empirical frequency of the strategies played by the opponent. This

simple idea (which was shown to lead to optimal solutions in the limit in

various cases) led to many subfields of economics, including Arrow-Debreu

General Equilibrium theory and more recently, evolutionary game theory.

Grigoriadis and Khachiyan [GK95] showed how a randomized variant of
“Fictitious Play” can solve two player zero-sum games efficiently. This algo-

rithm is precisely the multiplicative weights algorithm. It can be viewed as

a soft version of fictitious play, when the player gives higher weight to the

strategies which pay off better, and chooses her strategy using these weights

rather than choosing the myopic best response strategy.

In Machine Learning, the earliest form of the multiplicative weights up-
date rule was used by Littlestone in his well-known Winnow algorithm [Lit87,
Lit89]. It is somewhat reminiscent of the older perceptron learning algorithm
of Minsky and Papert [MP69]. The Winnow algorithm was generalized by
Littlestone and Warmuth [LW94] in the form of the Weighted Majority al-
gorithm. More recent learning algorithms in the so-called mazimum entropy
framework are also related. We note that most relevant papers in learning
theory use an analysis that relies on entropy (or its cousin, Kullback-Leibler
divergence) calculations. This analysis is closely related to our analysis, but
we use exponential functions instead of the logarithm used in those paper.
The underlying calculation is the same: whereas we repeatedly use the fact
that e* ~ 1 + x when |z| is small, they use the fact that In(1 + x) ~ z. We
feel that our approach is cleaner.

The multiplicative update rule (and the exponential potential function)
was also discovered in Computational Geometry in the late 1980s [CW89]
and several applications in geometry are described in Chazelle [Cha00] (p. 6,
and p. 124). See also our Section 3.11, which also mentions some more recent
applications to geometric embeddings of finite metric spaces.

The weighted majority algorithm as well as more sophisticated versions
have been independently discovered in operations research and statistical
decision making in the context of the On-line decision problem; see the sur-
veys of Cover [Cov96], Foster and Vohra [FV99], and also Blum [Blu98] who



includes applications of weighted majority to machine learning. A notable
algorithm, which is different from but related to our framework, was devel-
oped by Hannan in the fifties [Han57]. Kalai and Vempala showed how to
derive efficient algorithms via methods similar to Hannan’s [KV03].

Within computer science, several researchers have previously noted the
close relationships between multiplicative update algorithms used in differ-
ent contexts. Young [You95| notes the connection between fast LP algo-
rithms and Raghavan’s method of pessimistic estimators for derandomiza-
tion of randomized rounding algorithms; see our Section 3.4. Klivans and
Servedio [KS03] relate boosting algorithms in learning theory to proofs of
Yao’s XOR Lemma; see our Section 3.5. Garg and Khandekar [GKO04] de-
scribe a common framework for convex optimization problems that contains
Garg-Kénemann and Plotkin-Shmoys-Tardos as subcases.

To the best of our knowledge our framework is the most general and
arguably, the simplest. We readily acknowledge the influence of all previ-
ous papers (especially Young [You95] and Freund-Schapire [FS99]) on the
development of our framework. Disclaimer: We do not claim that every al-
gorithm designed using the multiplicative update idea fits in our framework,
just that most do. Some applications in multiparty settings do not easily fit
into our framework; see Section 3.8 for some examples.

1.1 The weighted majority algorithm

Now we briefly illustrate the weighted majority algorithm in a simple and
concrete setting, which will naturally lead into our generalized meta algo-
rithm.

Imagine the process of picking good times to invest in a stock. For
simplicity, assume that there is a single stock of interest, and its daily price
movement is modeled as a sequence of binary events: up/down. (Below,
this will be generalized to allow non-binary events.) Each morning we try
to predict whether the price will go up or down that day; if our prediction
happens to be wrong we lose a dollar that day.

We make the arbitrary and even adversarial. To balance out this pes-
simistic assumption, we assume that while making our predictions, we are
allowed to watch the predictions of n “experts. ” These experts could be
arbitrarily correlated, and who may or may not know what they are talk-
ing about. The algorithm’s goal is to limit its cumulative losses (i.e., bad
predictions) to roughly the same as the best of these experts. At first sight
this seems an impossible goal, since it is not known until the end of the se-
quence who the best expert was, whereas the algorithm is required to make



predictions all along.

Indeed, the first algorithm one thinks of is to compute each day’s up/down
prediction by going with the majority opinion among the experts that day.
But, this algorithm doesn’t work because a majority of experts may be
consistently wrong on every single day.

The weighted majority algorithm corrects the trivial algorithm. It main-
tains a weighting of the experts. Initially all have equal weight. As time goes
on, some experts are seen as making better predictions than others, and the
algorithm increases their weight proportionately. The algorithm’s predic-
tion of up/down for each day is computed by going with the opinion of the
weighted majority of the experts for that day.

Weighted majority algorithm

Initialization: Fix an ¢ < % For each expert ¢, associate the weight

wi(l) = 1.
Fort=1,2,...,T:

1. Make the prediction that is the weighted majority of the experts’ pre-
dictions based on the weights wi®, ... w,®. That is, predict “up”
or “down” depending on which prediction has a higher total weight of
experts advising it (breaking ties arbitrarily).

2. For every expert ¢ who predicts wrongly, decrease his weight for the
next round by multiplying it by a factor of (1 — e):

wi = (1 = €)w;® (update rule). (1)

Theorem 1 After T steps, let m;\T) be the number of mistakes of expert i
and m™) be the number of mistakes our algorithm has made. Then we have
the following bound for every i:

2Inn

m® < 201 + e)m; ™ + :
€

In particular, this holds for i which is the best expert, i.e. having the least
(T)
m;\.

Remark: When m;(™) > 21% we see that the number of mistakes made by

(T)

the algorithm is upperbounded by roughly 2(1+€)m;*/, i.e., approximately



two times the number of mistakes made by the best expert. The factor of
2 can be removed by substituting the above deterministic algorithm by a
randomized algorithm that predicts according to the majority opinion with
probability proportional to its weight. (In other words, if the total weight
of the experts saying “up” is 3/4 then the algorithm predicts “up” with
probability 3/4 and “down” with probability 1/4.) Then the number of
mistakes after 1" steps is a random variable and the claimed upperbound
holds for its ezpectation (see Section 2 for more details).

PROOF: A simple induction shows that w;(+t1) = (1 — e)m’i(t>. Let () =
S wi) (“the potential function”). Thus @) = n. Each time we make a
mistake, the weighted majority of experts also made a mistake, so at least
half the total weight decreases by a factor 1 —e. Thus, the potential function
decreases by a factor of at least (1 — €/2):

ot < ¢ @ + %(1 - e)> = oW1 —¢/2).

Thus simple induction gives T+ < n(1—¢/2)™". Finally, since ®;(T+1 >
w;TTY for all 7, the claimed bound follows by comparing the above two ex-
pressions and using the fact that —In(1 — ¢) < e + €2 since € < % a

The beauty of this analysis is that it makes no assumption about the
sequence of events: they could be arbitrarily correlated and could even de-
pend upon our current weighting of the experts. In this sense, this algorithm
delivers more than initially promised, and this lies at the root of why (after
obvious generalization) it can give rise to the diverse algorithms mentioned
earlier. In particular, the scenario where the events are chosen adversarially
resembles a zero-sum game, which we consider later in section 3.1.

2 Our generalization to the Weighted Majority
Algorithm

In the general setting, we still have n experts. The set of events/outcomes
may not be necessarily binary and could even be infinite. To model this, we
dispense with the notion of predictions altogether, and instead suppose that
in each round, every expert recommends a course of action, and our task is
to pick an expert and use his advice. At this point the costs of all actions
recommended by the experts is revealed by nature. We suffer the cost of
the action recommended by the expert we chose.



To motivate the Multiplicative Weights algorithm, consider the naive
strategy that, in each iteration, simply picks an expert at random. The
expected penalty will be that of the “average” expert. Suppose now that
a few experts clearly outperform their competitors. This is easy to spot
as events unfold, and so it is sensible to reward them by increasing their
probability of being picked in the next round (hence the multiplicative weight
update rule).

Intuitively, being in complete ignorance about the experts at the outset,
we select them uniformly at random for advice. This maximum entropy
starting rule reflects our ignorance. As we learn who the hot experts are and
who the duds are, we lower the entropy to reflect our increased knowledge.
The multiplicative weight update is our means of skewing the distribution.

Denote the set of events/outcomes by P. We assume there is a matrix
M such that M(i, j) is the penalty that expert i pays when the outcome is
j € P. We will assume that for each expert ¢ and each event j, M(i,7) is in
the range [—1,1]. This is the only assumption we make on the penalties.

The prediction algorithm will be randomized. In each round, we select
a distribution over the set of experts, and select an expert randomly from
it (and use his advised course of action). At this point, nature chooses an
event from P, and reveals the corresponding penalties of all the experts.
We desire that the expected penalty is not much worse than that of the best
expert in hindsight!.

The expected penalty for outcome j® € P is

S pOMG, ) = S wOM(G, jO) /S i,

which we denote by M(D®, (). By linearity of expectations, the expected
total loss after T rounds is 3 1, M(D®, ;). The following theorem —
completely analogous to Theorem 1— bounds the expected total loss in
terms of the loss of the best fixed expert in hindsight:

Theorem 2 (Main) Lete < . After T rounds, the Multiplicative Weights

!Note that this setting generalizes the binary events setting of the weighted major-
ity algorithm as follows: the penalty matrix M has a row for each of the n experts and
2™ columns, corresponding to the 2™ possible penalty vectors in {0,1}". For a predic-
tion vector (x1,z2,...,2n) € {0,1}" of the n experts, there are only 2 possible events:
those corresponding to the penalty vectors (z1,z2,...,zn) and (1 —z1,1 —x2,...,1 —zy)
depending on whether the outcome is 0 or 1.



Multiplicative Weights Update algorithm

Initialization: Fix an ¢ < % For each expert ¢, associate the weight

wi(l) = 1.
Fort=1,2,...,T:

1. Choose an expert from the distribution D® = {p;®) p, (B . p, Y
where p;(® = w;(® /> w,®, and incur the associated penalty.

2. Based on the outcome j) € P in round ¢, at step t + 1, the weight of
expert ¢ is updated as follows for each i:

(t+1) w; O (1 — M) if M(i,5) >0
w; = - (L
w; (1 +¢)~ME) i M(7,50) < 0

algorithm guarantees that for any expert i, we have

Inn

> MDY i) < (149 M(EGY) + (1 - Y M) + =
t >0 <0

where the subscripts > 0 and < 0 refer to the rounds t where M(i, 7)) is
>0 and < 0 respectively.

ProoOF: We use the following facts, which follow immediately from the
convexity of the exponential function:

(1-—e)*<(1—ex) ifzel0,1]
(I+e) " <(l—ex) ifzel[-1,0]

The proof is along the lines of Theorem 1, using the potential function
o) =3 w;®). Since M(i, i) € [~1, 1], using the facts above we have,

U+ — Z w; D)

= Z U}i(t)(l — E)M(i’j(t)) + Z wi(t)(l + 6)_M(i’j(t))
i: M(4,j(10)>0 i: M(4,j(1)<0

< > w1 —eM(i, jY))

= o"(1 - em(D?, j1))
< ) g—eM(DW ;1)



where we used the fact that p;® = w;® / ®®) by definition. After T rounds,
we have ®(T+1) < 1) e=e X, MDY 2V) Furthermore, for every i,

BTHD > 1, (1) — (1 — ) T20METD) (] 4 )= T oM )

Now we get the desired bound by taking logarithms and using ®) = n, and
simplifying as before.We used the facts that In(2-) < e+¢* and In(1+¢) >
€ — € for e < % O

REMARK: From the proof it is clear that the multiplicative update rule
could also be
w Y = w, M1 — eM(i, V)

regardless of the sign of M(i, 7). Such a rule may be more practical to
implement and is also used in the analysis of some algorithms such as SET
CoVER(c.f. section 3.4).

2.1 Bounded penalties

In many applications of the Multiplicative Weights algorithm, especially for
solving linear programs, the range for the penalties is not [—1, 1], rather,
we have some parameters 0 < ¢ < p such that for any expert i, one of
M(i,j) € [—¢, p] or M(i,7) € [—p,¥] holds for all j € P. We will call p the
width?.

It is simple to apply the Multiplicative Weights algorithm to this situa-
tion: we just scale the penalties down by p, to get them in the range [—1, 1],
and apply the algorithm. The following theorem results immediately:

Theorem 3 (Main) Lete < 5. After T rounds, the Multiplicative Weights
algorithm applied with penalties M (i, j)/p for the experts guarantees that for
any expert i, we have

plnn

S MDY i) < (1463 M0, D)+ (1—e) > MG, ;P) +
t <0

€
>0

where the subscripts > 0 and < 0 refer to the rounds t where M(i,j(t)) 18
> 0 and < 0 respectively.

2The width parameter plays an important role in all previously cited papers. Following
their convention, the width in our setting should be defined as p+ ¢, which is a number in
[p,2p] and thus differs from our definition of width by at most a factor 2. Furthermore,
in previous papers it was usually assumed that ¢ = p but allowing these two to differ can
be useful in some situations.



In several applications, the following corollaries are useful:

Corollary 4 Let § > 0 be an error parameter. Then with € < min{%, %},

after T = %%(") rounds, we have the following (additive and multiplicative)
bound on the average expected loss: for any expert i,

2 M(Tt)’j %) < 5+(1ie)ZtM¥’j(t))

where the + or — sign depends on whether M(i,j) € [—£, p] or [—p, L] re-
spectively.

PROOF: For concreteness, we will prove the case when M(i,j) € [—¢, p].
The other case is similar. In this case,

(1= M(G,iP) < (146> M(i, %) + 2T
<0 <0

Substituting this bound in the inequality of Theorem 2 and dividing by T
we have

> MDY, V) _ plnn
T A

Choosing € and T as given, we get the required bound. O
REMARKS: (i) Again, we note that bound of Theorem 3 holds even if the
events/outcomes could be picked by an adversary who knows our algorithm’s
current distribution on experts. (ii) In Corollary 4 two subcases need to be
highlighted. When ¢ = 0 —i.e., all penalties are positive—then the running
time is proportional to p/ed. When ¢ = —p, then € < §/4p, and the running
time is proportional to p?/62. This issue is at the root of the difference
between algorithms for general LP and for packing-covering LP problems
(see Section 3.2).

+2el + (1 +¢) (2)

> MG, j )
T

Corollary 5 Let § > 0 be an error parameter. Then with € = mln{ i 2

after T = 16‘)5712“(”) rounds, we have the following (additive) bound on the
average expected loss: for any expert i,

> MDY, 50) L 2 M) (i,5)
T = T

PROOF: For concreteness, we will prove the case when M(i, j) € [—¢, p|. The

other case is similar. As in Corollary 4, we first derive inequality (2). We
t) (®)

have (1 + E)ZtM(Z’] ) < M (” Dy ep, since for any j®, M(i, ;) < p.

Finally, choosing € and T as glven, we get the required bound. O

10



2.2 Gains instead of losses

In some situations, the entries of the matrix M may specify gains instead
of losses. Again, we assume that the gains are in the range [—1,1]. Now
our goal is to gain as much as possible in comparison to the gain of the best
expert. We can get an algorithm for this case simply by considering the
matrix M’ = —M instead of M.

The algorithm that results updates the weight of expert i by a factor of
(1+ &)™) when M(4,5) > 0, and (1 — €)~M@9) when M(i,5) < 0. The
following theorem follows directly from Theorem 2 by simply negating the
quantities:

Theorem 6 After T rounds, for any expert i, we have

MDY, ) > (1-0 S MG§O) + (140 MG, ) -
t >0

<0

3 Applications

Now we describe how apply our meta-algorithm to a host of settings. First
we describe the high-level intuition.

Usually we are interested in trying to find a suitable z € R that satisfies
some set of constraints. Each constraint corresponds to an “expert” in our
earlier scenario, and we will use the Multiplicative Weights algorithm to
update the distribution on experts. Each choice of the vector x corresponds
to a possible “event”. The penalty of the expert on this event is made
proportional to how well the corresponding constraint is satisfied by x. This
might seem counterintuitive, but recall that we reduce an expert’s weight
depending on his penalty, and if an expert’s constraint is well satisfied on
events so far we would like his weight to be smaller, so that the algorithm
focuses on experts whose constraints are poorly satisfied.

In many applications (though not all) the choice of event is also under
our control. Typically we will need to generate the mazimally adversarial
event, i.e. the event x that maximizes the expected penalty, i.e. the weighted
sum of penalties. Then the overall algorithm consists of two subprocedures:
an “oracle” for generating the maximally adversarial event at each step, and
the MW algorithm for updating the weights of the experts.

11



3.1 Solving zero-sum games approximately

We show how our general algorithm above can be used to approximately
solve zero-sum games. (This is a duplication of the results of Freund and
Schapire [FS99], who gave the same algorithm but a different proof of con-
vergence that used KL-divergence. Furthermore, convergence of simple al-
gorithms to zero-sum game equilibria were studied earlier in [Han57].) Let
M be the payoff matrix of a finite 2-player zero-sum game, so that when the
row player plays strategy ¢ and the column player plays strategy j, then the
payoff to the column player is M(i, 7). Assume that M(i,j) € [0,1] for all
i, 7. We wish to approximately compute the game value, which according to
von Neumann’s MinMax theorem is characterized as:

A* = min max M(D, j) = max min M(i, P), (3)
D J P 4

where D (resp., P) varies over all distributions of rows (resp., columns) and
j (resp., i) varies over all columns (resp., rows), and the notation M(D, j)
denotes E;ep[M(i,7)].

Let § > 0 be an error parameter. We wish to approximately solve the
zero-sum game up to additive error of §, namely, find mixed row and column
strategies Dgnal and Prpal such that

N=6< min M(i,Pﬁna]) (4)
max M(Dgpat, j) < A+ 6. (5)
J

We map our general algorithm from Section 2 to this setting by mak-
ing the “experts” correspond to pure strategies of the row player. Thus a
distribution on the experts corresponds to a mixed row strategy. “Events”
correspond to pure strategies of the column player. The penalty paid by an
expert ¢ when an event j happens is M(4, 7). The algorithmic assumption
about the game is that given any distribution D on experts, we have an
efficient way to pick the best event, namely, the pure column strategy j that
maximizes M(D, 7). This quantity is at least A* from the definition above.

The penalties for experts (which are the same as payoffs) lie in [0, 1]. We
use Corollary 5 with the parameters £ = 0 and p = 1, and we set € = §/4.
We run the game for 7' = 161n(n)/6? as specified by Corollary 5.

Let 51, 5@ i) be the event sequence. Note that M(D®), j1)) > \*
since j() is the best column response to distribution D®). Furthermore,
Corollary 5 implies that the expected payoff of the MW algorithm is at

12



most d plus the payoff of the best fixed row strategy. Hence we have

1 . T ..
M(D®, ) M ()
)\* < Zt:l ( )] ) < 5 iin { Zt—l (7'7 J ) } . (6)

- - > M(D,jY)
Trivially this is upperbounded by § + ==l—=—=—= for every row strategy
D. When D = D* (the optimal row strategy) we have M(D, j) < \* for
every j. The inequality (6) becomes:

)\* < t=1
- T

Thus, w is an (additive) d-approximation to A*.

We set Dgya t0 be the distribution D) which has the minimum M(D(t), j(t))
over all t. Let jgna1 be the optimal column player response to Dgpa. We
have, from (6),

_ XL M@0, )

M(Dﬁnalajﬁnal) > T < A* +5

Since for any ¢, j*) maximizes M(D(t),j) over all j, we conclude that Dy
is an approximately optimal mixed row strategy>.

We set Prnal, the final column strategy, to be the distribution which as-
signs to column j prob(a]oility equal to the fraction of times it was used during
[{t:5 =5}

T

the game, namely . From (6), we have, for any row distribution D,

T i(®)
)\*_5 S Zt:lM(D7j ) — M

T (D, Pﬁnal)

which shows that Pgpa) is an approximately optimal mixed column strategy.

3.2 Plotkin, Shmoys, Tardos framework for packing/covering
LPs

Plotkin, Shmoys, and Tardos [PST91] generalized some known flow algo-
rithms to a framework for approximately solving fractional packing and cov-
ering problems. Their algorithm is a quantitative version of the classical

3A1ternatively, we can set Danal = %Zt DO For let jfinal be the optimal col-
umn player response to Dfinai. Then we have M(Dfinal, jfinal) = % >, M(D(t>,jﬁnal) <
L3, MDY, D) <A +6

13



Lagrangean relaxation idea, and applies also to general linear programs. Be-
low, we derive the algorithm for general LPs and then mention the slight
modification that yields better running time for packing-covering LPs. For
convenience we will discuss only covering LPs since packing LPs are treated
similarly. Also, we note that we could derive this algorithm as a special case
of game solving, but for concreteness we describe it explicitly.
The basic problem is to check the feasibility of the following linear pro-
gram:
Az >b, zeP (7)

where A is an m X n matrix, x € R", b € R™ and P is a convex set in R".
Intuitively, the set P represents the “easy” constraints to satisfy, such as
non-negativity, and A represents the “hard” constraints to satisfy. We wish
to design an algorithm that, given an error parameter 6 > 0, either yields
an approximately feasible solution up to error ¢, i.e., an z € P such that
A;x > b; — 6 for some small § > 0, or failing that, proves that the system is
infeasible. Here, A; denotes the i row of A.

Plotkin, Shmoys and Tardos assume the existence of an oracle which
solves the following feasibility problem:

2z eP: ¢ x>d (8)

where ¢ = ), p;A; and d = p;b; for some distribution pq,p2,...,pm. It is
reasonable to expect such an optimization procedure to exist (indeed, such
is the case for many applications) since here we only need to check the
feasibility of one constraint rather than m.

Using this oracle we can describe the required algorithm using the Mul-
tiplicative Weights algorithm. To map our general framework to this sit-
uation, we have an expert representing each of the m constraints. Events
correspond to vectors x € P. The penalty of the expert corresponding to
constraint ¢ for event x is A;x — b;. We assume that the oracle’s responses x
satisfy A;x — b; € [—p, p] for all ¢, for some parameter p known to our algo-
rithm. Thus the penalties lie in [—p, p]. We run the Multiplicative Weights
Update algorithm for T steps as in Corollary 5 using € = 6/4p. (Note that
T is proportional to p2.) Note that if p1,ps,...,pm is the distribution at
any time, then we call the oracle with ¢ =), p;A; and d =), p;b;.

We have the following cases:

Case 1: The oracle returns a feasible x for (8) in every iteration.
Then from Corollary 5, we have, for any i

St 2 P[4z — bj] <4 Yo [Ai® — by]
T =0t T
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The LHS is > 0 by assumption. Then we let # = >, 2) /T be the final
answer, since the previous line implies that for every row i, A;% > b; —J. So
we have an approximately feasible solution Z.

Case 2: In some iteration, the oracle declares infeasibility of (8).

In this case, we conclude that the original system is infeasible. This is correct
because if there were a feasible solution z, then Az > b, and so taking the
linear combination of the inequalities given by the distribution p1, pa, ..., pm
in the current iteration, we have ZZ piAix > ZZ p;b;, which means that the
oracle incorrectly declared infeasibility.

FrACTIONAL COVERING PROBLEMS: The framework is the same as
above, with the crucial difference that the coefficient matrix A is such that
Ax >0 for all x € P, and b > 0.

The algorithm will exploit this fact by using our earlier Remark that
appeared after Corollary 4. We assume withough loss of generality (by
appropriately scaling the inequalities) that b; = 1 for all rows. Let p be
a number (known to the algorithm in advance) such that for all x € P,
Ajxz € [0,p]. Again, we have an expert corresponding to each of the m
constraints and the events correspond to vectors x € P. However, the
penalty for the expert for constraint ¢ for the event corresponding to vector
x is A;x instead of A;x — b; used above.

The rest of the analysis is unchanged, except the running time is now
proportional to p instead of p.

FracTioNAL PACKING PROBLEMS: Fractional packing problems are es-
sentially the same as fractional covering ones, except that the inequalities
are reversed. We can obtain algorithms to test feasibility of fractional pack-
ing problems in an exactly analogous way, the only difference being, we need
to have the penalty matrix specify gains instead of losses as in section 2.2.

3.3 Approximating Multicommodity Flow Problems

Multicommodity flow problems are represented by packing/covering LPs and
thus can be approximately solved using the PST framework outlined above.
The resulting flow algorithm is outlined below together with a brief analysis.
Unfortunately, the algorithm is not polynomial because its running time is
a polynomial of the edge capacities (as opposed to the logarithm of the
capacities, which is the number of bits needed to represent them) and thus
the algorithm is not even polynomial-time. Garg and Koénemann [GK98]
fixed this problem with a better algorithm whose running time does not
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depend upon the edge capacities.

Here we derive the Garg-Konemann algorithm using our general frame-
work. This will highlight the essential new idea, namely, a reweighting of
penalties to reduce the width parameter. Note that algorithm is not quite
the same as in [GK98] (the termination condition is slightly different) and
neither is the proof.

For illustrative purposes we focus on the mazimum multicommodity flow
problem, in which we are given a set of k source-sink pairs and capacities
ce on edges, and the objective is to maximize the total flow between these
pairs. The LP formulation is as follows:

maxz Ip
P
Ve : pr < ce (9)

poe

Here, f, represents the flow on path p connecting the source-sink pairs for
any of the commodities.

Before presenting the Garg-Kénemann idea we first present the algorithm
one would obtain by applying our packing-covering framework (Section 3.2)
in the obvious way. The LP (9) is a packing LP, thus, we need to apply the
Multiplicative Weights algorithm of Section 2.2.

First, note that by using binary search we can reduce the optimization
problem to feasibility, by iteratively introducing a new constraint that gives
a lower bound on the objective. So assume without loss of generality that
we know the value F°P! of the total flow in the optimum solution. Then we
want to check the feasibility of the system of inequalities, Ve : Zpa o Jp < oce,
where the flows come from the polytope P = {Zp fp = F°P'}. As outlined
in Section 3.2, the obvious algorithm would maintain at each step t a weight
we® for each edge e. The optimization routine needed at each step is to find
the flow in P which minimizes " _w.® dopseIo/ce =20 fp D eep we® /ce.
This is minimized by a flow that is supported on a single path, namely, the
shortest path p® between a source-sink pair in the graph where edge e has
length we?) /ce. Thus an “event” corresponds to this path p® and consists
of passing a flow F°P' on this path. (Note that the final flow will be an
average of the flows in each event, and hence will also have value F°P'.)
Penalties for the experts/edges are defined as in Section 3.2.

Unfortunately the width parameter is p = maxy.p max, Zpa o fo/ce =
Fopt /Cmin Where cpin is the capacity of the minimum capacity edge in the
graph. Thus the algorithm requires T = pln(n)/e? iterations. (As already
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mentioned, this is not polynomial since p depends upon 1/cp;, rather than
the logarithm of this value.) The overall running time is O(FP'Ty,/cmin)
where Ty, < O(mk) is the time needed to compute k shortest paths.

Now we describe the Garg-Koénemann modification. It continues to main-
tain weights w.(®) for every edge e, where initially, w,() = 1 for all e. The
events correspond to paths, as before. However, instead of routing the same
flow F°P! at each time step, the event consists of routing only as much flows
as is allowed by the minimum capacity edge on the path. In other words,
the “event” at time ¢ is a flow of value ¢, on path p®, where Cp) s the
minimum capacity of an edge on the path p). The penalty incurred by
edge e is M(e,p)) = Cplt) /ce. (In other words, a penalty of 1/c, per unit of
flow passing through e.) The width is therefore automatically upper bounded
by 1.

The Multiplicative Weights Update rule in this setting consists of updat-
ing the weights of all edges in path p(* and leaving other weights unchanged
at that step:

Veep®: w ) = w01+ e)cp(t)/ce

The termination rule for the algorithm is to stop when as soon as for some
edge e, z—: > Inm - where f, is the total amount of flow routed by the algo-

62 9
rithm on edge e.

3.3.1 Analysis

We apply Theorem 6. Since we have M(e,p) € [0,1] for all edges e and
paths p, we conclude that for any edge e, we have

In(m)

(10)

p .

T T
> MDY, p") > (1> Me,p") -
t=1 t=1

We now analyze both sides of this inequality. In round ¢, for any edge e,
C
we have M(e, p!)) = ’;—(:) if e € p®, and 0 if e ¢ p. Thus, we have

- f
> Mep) = = (1)
t=1 Ce
where f. is the total amount of flow on e at the end of the algorithm, and
T T S® (@) T we®
Y M@ p) = Y Zeeep o Wel NN e hT
t=1 , =1 > we® — 7 S we®
(12)
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Now, suppose the optimum flow assigns f;pt flow to path p, and let
FoPt =37 f fP" be the total flow. For any set of edge lengths w,/c., the
shortest path p satisfies

opt
/ opt e
D e We > D2oeWe D prse o _ 2 fy ey el Zfopt — [opt

Zeép %: B Zeep %: ZeEp Ce
opt < Co.

The first inequality follows because for any edge e, we have Zp 'Se p
The second inequality follows from the fact that p is the shortest path with
edge lengths given by we/ce. Using this bound in (12), we get that

- (1) () ~ G0 F
> MDY p0) < YIS = (13)
t=1 t=1

where F' = Zthl ¢y is the total amount of flow passed by the algorithm.
Plugging (11) and (13) into (10), we get that

E o (l—e)max{fe}—hl(m).

Fopt — e Ce €

We stop the algorithm as soon as max, {f e} > E ), so that we get

Ce

I Je
> —
opt (1 —2e¢) max { . }

} is the maximum congestion of the flow passed by the

Now, C' := max, {f—z
algorithm. So, the flow scaled down by C respects all capacities. For this

scaled down flow, we have that the total flow is

F
G Z (1 — 2¢)F°Pt,

which shows that the scaled-down flow is within (1 — 2¢) of optimal.

Running time. In every iteration ¢ of the algorithm, there is some edge
e on the chosen path p() that has minimum capacity. It gets congested by
the flow of value ¢, = ¢, sent in that round. Since we stop the algorithm

( )

as soon as the congestion on any edge is at least , any given edge can

be the minimum capacity edge on the chosen path at most (mé—z)] times
in the entire run of the algorithm. Since there are m edges, the number of
iterations is therefore at most m - (lné—;n)] = O(%Q(m)).

Each iteration involves k shortest path computations. Recall that Ty, is

the time needed for this. Thus, the overall running time is O(mlfzgm Tp)-
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3.4 O(logn)-approximation for many NP-hard problems

For many NP-hard problems, typically integer versions of packing-covering
problems, one can compute a O(logn)-approximation by solving the obvi-
ous LP relaxation and then using Raghavan-Thompson [RT87] randomized
rounding. This yields a randomized algorithm; to obtain a deterministic
algorithm, derandomize it using Raghavan’s [Rag86] method of pessimistic
estimators.

Young [You95] has given an especially clear framework for understand-
ing these algorithms which as a bonus also yields faster, combinatorial algo-
rithms. He observes that one can collapse the three ideas in the algorithm
above —LP solving, randomized rounding, derandomization— into a sin-
gle algorithm that uses the multiplicative update rule, and does not need
to solve the LP relaxation directly. (Young’s paper is titled “Randomized
rounding without solving the linear program.”) At the root of Young’s al-
gorithm is the observation that Raghavan’s pessimistic estimator is also an
exponential potential function? and the approximation algorithm only needs
to drive down this potential function at each step. This is easily achieved
by a multiplicative update rule algorithm.

Below, we illustrate this idea using the canonical problem in this class,
SET COVER. (A similar analysis works for other problems.) Since we have
developed the multiplicative weights framework already, we do not go over
Young’s original intuition involving Chernoff bound arguments and can pro-
ceed directly to the algorithm. In fact, the algorithm can be simplified
so it becomes exactly the classical greedy algorithm, and we obtain a Inn-
approximation, which is best-possible for this problem (assuming reasonable
complexity-theoretic conjectures [Fei98]).

In the SET COVER problem, we are given a universe of n elements, say
U=1{1,2,3,...,n} and a collection C of subsets of U whose union equals
U. We are required to pick the minimum number of sets from C which
cover all of U. Let this minimum number be denoted OPT. The Greedy
Algorithm picks subsets iteratively, each time choosing that set which covers
the maximum number of uncovered elements.

We analyze the Greedy Algorithm in our setup as follows. Since the
elements of the universe represent the constraint that the union of sets picked
by the algorithm must cover each of them, we let “experts” correspond to
elements in the universe, and “events” correspond to the sets C; € C. The
penalty of the expert corresponding to element i for the event corresponding

4Recall that Raghavan’s algorithm is a derandomization of a Chernoff bound argument,

and Chernoff bounds are derived using the exponential generating function e‘~.
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to set C; is M(4,C;) = 1 or 0 depending on whether i € C; or not.

We run the Multiplicative Weights Update algorithm with this setup
with e = 1. The update rule to be used is (see the remark following the
proof of Theorem 2):

wi(t—H) = wi(t)(l —6M(i,Cj))

This update rule implies that elements that have been covered so far have
weight 0 while all the rest have weight 1. The maximally adversarial event
in this case is the set C; which maximizes, given weights w1, wo,...,w, and
the corresponding distribution p; = w;/ Wi

ZPz‘M(@ C)) =Y pi

1€C;

which is simply the set which covers the maximum number of uncovered
elements. Thus, this is the Greedy Set Cover algorithm.

Note that for any distribution pi,p2,...,p, on the elements, we know
that OPT sets cover all the weight, so one set must cover at least 1/OPT
fraction. So for the maximally adversarial event, we have maxc; Ziecj p; >
1/OPT.

Thus, the change in potential for each round is:

@(t-i-l) < q)(t)e—e/OPT — q)(t)e—l/OPT'

The strict inequality holds because we always get a strictly positive penalty.
Thus, the potential drops by a factor of e 1/OPT every time.

We run this as long as some element has not yet been covered. We show
that 7' = [Inn]|OPT iterations suffice, which implies that we have a [Inn]
approximation to OPT. We have

@(T-‘rl) < ‘I)(l)e_T/OPT _ ne—[lnn]OPT/OPT — ne— [Inn] <1

Note that with e = 1, @7+ is exactly the number of elements left uncovered
after T iterations. So we conclude that all elements are covered.

3.5 Learning theory and boosting

Boosting [Sch90] —combining several moderately accurate rules-of-thumb
into a singly highly accurate prediction rule— is a central idea of Al today.
Freund and Schapire’s AdaBoost [FS97] uses the Multiplicative Weights Up-
date Rule and fits in our framework. Here we explain the main idea using
some simplifying assumptions.
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Let X be some set (domain) and suppose we are trying to learn an
unknown function (concept) ¢ : X — {0,1} chosen from a concept class
C. Given a sequence of training examples (z,c(x)) where z is generated
from a fixed but unknown distribution D on the domain X, the learning
algorithm is required to output a hypothesis h : X — {0,1}. The error of
the hypothesis is defined to be E,pl[|h(x) — c¢(x)]].

A strong learning algorithm is one that, for every distribution D and
every €,6 > 0, outputs with probability 1 — § a hypothesis whose error is at
most €. A y-weak learning algorithm for - > 0 is similar, except its error is
as high as 1/2—+. Boosting shows that if a y-weak learning algorithm exists
for a concept class, then a strong learning algorithm exists. (The running
time of the algorithm and the number of samples may depend on +.)

We prove this result in the so-called boosting by sampling framework,
which uses a fixed training set of N examples drawn from the distribution
D. The goal is to make sure that the final hypothesis erroneously classifies
at most € fraction of this training set. Using VC dimension theory —details
omitted— this is sufficient to ensure (with probability 1 — § over the choice
of the sample) that the error of the hypothesis over the entire domain X
(under distribution D) is at most 2e.

The idea in boosting is to repeatedly run the weak learning algorithm on
different distributions defined on the fixed training set. The final hypothesis
has error ¢ under the uniform distribution on the training set. We use the
Multiplicative Weights Update algorithm, but to avoid notational confusion,
we use « instead of € for the multiplicative update factors. The “experts”
correspond to samples in the training set and “events” correspond to the the
set of all hypotheses that can be generated by the weak learning algorithm. If
the event corresponding to the hypothesis h happens, the penalty for expert
x is 1 or 0 depending on whether h(z) = ¢(x) or not. (Notice, we want the
weight of an example to increase if the hypothesis labels it incorrectly.)

In each iteration, the algorithm presents the current distribution D)
on the examples to the weak learning algorithm, and in return obtains a
hypothesis h®) whose error with respect to the distribution D) is not more
than 1/2 — ~, in other words, the expected penalty, M(D®), h(®)), in each
iteration is at least 1/2 4+ «. The algorithm is run for 7' rounds, where T
will be specified shortly. The final hypothesis, hgnal, labels z € X according
to the majority vote among h(M) (), h®(z),..., hT)(z).

Let S be the set of x € X incorrectly labelled by hgpa. The penalty for
each z € S, 3, M(x, h®) is at most T/2 since the majority vote is incorrect
for it. We adapt the proof of Theorem 2 in the following manner. We have,
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as in the proof,

Now

ST > 3 (1 — )= MERD) > 5|1 —a)T/? = [gler(eted)T/2),
zeS

using the fact that (1 — z) > e~ @+*) for z < 1/2. Thus, we conclude
that the error of hgna on the training set under the uniform distribution is
% < e (r=2/2T  Choosing a = v and T = % In ?1/, we get that the error
is < € as desired.

3.6 Hardcore sets and XOR Lemma

A function f:{0,1}" — {0,1} is e-strongly hard for circuits of size S if for
every circuit C' of size at most S,

It is y-weakly hard on the other hand if
PrO(x) = f(2)] < 1-7.

Yao’s XOR Lemma [Yao82] shows that if f is y-weakly hard against
circuits of size S then f : {0,1}"" — {0,1} is € 4+ (1 — )*-strongly hard
for circuits of size Se2y?/8.

The original proofs were difficult but in the 1990s Impagliazzo [Imp95]
suggested a simpler proof that as a byproduct proves an interesting fact
about weakly hard functions: there is a reasonably large subset of inputs
on which the function behaves like a strongly hard function! This subset
is called a hard core set. Klivans and Servedio [KS03] observed that Im-
pagliazzo’s proof is a version of boosting. Phrased in our setting, experts
correspond to inputs. At each step the algorithm maintains a distribution
on experts. Events correspond to circuits of size Se2v2/8 that predict f with
probability at least 1 —« on the current distribution. (We are simplifying
a little; see [KS03] for details.) Recently, the third author has obtained an
alternative, simpler proof of the existence of hard-core sets by directly apply-
ing the MW framework along with a projection trick [Kal07]. This method
obtains the best known parameters in hard-core set constructions directly
without having to recourse to composing two different boosting algorithms
as in [KS03].
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3.7 Connection to Chernoff bounds

Chernoff bounds show that the sum of bounded independent random vari-
ables X1, Xo,...,X, is sharply concentrated about its mean. They are
proved by applying the standard Markov’s inequality to the variable et Xi),
As pointed out in Young [You95], this technique has formal similarities to
the multiplicative update rule. If we imagine the values of X1, Xo,..., X,
being revealed sequentially, then the value of the “potential” e!®=i %) may
be seen as being multiplied by e'Xi at the ith step. Assuming tX; < 1
this multiplication factor is approximately (1 + ¢X;). As Young showed,
this formal similarity can be used to design more efficient approximation
algorithms for integer packing-cover problems where the original algorithms
used randomized rounding (see Section 3.4).

3.8 Multiplicative update rules in network congestion con-
trol

The multiplicative update framework is usefully viewed as a feedback mecha-
nism in several situations; e.g. fictitious play in economics that was discussed
earlier. A similar view is also useful in congestion control in flow networks.
For example, the congestion control in the classic TCP/IP protocol. When-
ever clients detect that their packets are not getting through (implying that
the network is too congested) they respond by drastically decreasing the
rate at which they send packets. Conversely, when they detect that pack-
ets are getting through they increase their send rate. Below we analyze its
convergence properties using our standard analysis.

We note that more advanced network protocols have also been designed,
and sometimes analysed using a wutility framework; see the survey [LPDO02].
This multiparty analysis doesn’t seem to fit into our multiplicative update
framework, though it certainly seems related. Within theoretical computer
science, a distributed flow algorithm of Awerbuch and Leighton [AL94] also
uses a variant of the multiplicative update rule, but its analysis again does
not exactly fit into our framework.

Here our goal is to analyse the convergence rate of the congestion control
rule in TCP/IP: the multiplicative decrease, additive increase rule, which
expects senders to additively increase their send rate until the network gets
congested, and then multiplicatively decrease their send rate by a half. We
show that this algorithm quickly converges to allocating equal bandwidth
for all the senders; in fact, for n senders, convergence within error € occurs
in log(%) steps of multiplicative decrease, additive increase.
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This can be seen as follows. For convenience, let the total bandwidth be
1. Consider the time at which the network is at full capacity, and the senders
reduce their transmit speeds by half. At this point, only 1/2 bandwidth is
used. Observe that the subsequent additive increase part can be done away
with; since all senders increase their transmit speeds at the same rate, all
that is accomplished by the additive increase step after a multiplicative
decrease step is to assign an extra bandwidth of % to every sender so that
the network is again full. Thus, if initially the sender has bandwidth x, then
after T steps of multiplicative decrease, additive increase, the bandwidth for
the sender is given by

1,1y 1 L1 w11 1
a2 Ty, on) ) 2 T an T 2T T oy 2 9T—1

2
T

-1
or n

After T' > log(%) steps, all senders have bandwidth within (1 4 e)%

3.9 Approximately Solving certain Semidefinite Programs

Semidefinite programming (SDP) is a special case of convex programming.
A semidefinite program is derived from a linear program by imposing the
additional constraint that some subset of n? variables form an n x n positive
semidefinite matrix. Since the work of Goemans and Williamson [GW95],
SDP has become an important tool in design of approximation algorithms
for NP-hard optimization problems. Though this yields polynomial-time
algorithms, their practicality is suspect because solving SDPs is a slow pro-
cess. Therefore there is great interest in computing approximate solutions
to SDPs, especially the types that arise in approximation algorithms. Since
the SDPs in question are being used to design approximation algorithms
anyway, it is permissible to compute approximate solutions to these SDPs.

Klein and Lu [KL96] use the multiplicative weights framework to derive a
more efficient 0.878-approximation algorithm for MAX-CUT than the orig-
inal SDP-based method in Goemans-Williamson [GW95]. The main idea in
Klein-Lu is to approximately solve the MAX-CUT SDP. However, their idea
does work very well for other SDPs. The main issue is that the width p (see
3.2) is too high for certain SDPs of interest.

Theh Klein-Lu approach was of limited uses in many cases because it
does not do too well when the additive error € is required to be small. (They
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were interested in the MAX-CUT problem, where this problem does not
arise. The reason in a nutshell is that in a graph with m edges, the maximum
cut has at least m/2 edges, so it suffices to compute the optimum to an
additive error € that is a fixed constant.) We have managed to extend the
multiplicative weights framework to many of these settings to design efficient
algorithms for SDP relaxations of many other problems. The main idea is to
apply the Multiplicative Weights framework in a “nested” fashion: one can
solve a constrained optimization problem by invoking the MW algorithm
on an subset of constraints (the “outer” constraints) in the manner of 3.2,
where the domain is now defined by the rest of the constraints (the “inner”
constraints). The oracle can now be implemented by another application of
the MW algorithm on the inner constraints. Alternatively, we can reduce
the dependence on the width by using the observation that the Lagrangian
relaxation problem on the inner constraints can be solved by the ellipsoid
method. For details of this method, refer to our paper [AHKO05]. For several
families of SDPs we obtain the best running time known.

More recently Arora and Kale [AK07] have designed a new approach for
solving SDPs that involves a variant of the multiplicative update rule at the
matrix level; see Section 5 for details.

3.10 Approximating Graph Separators

A recent application of the multiplicative weights method is a combinatorial
algorithm for approximating the SPARSEST CUT of graphs [AHKO04]. This
fundamental graph partitioning problem seeks the cut in the input graph of
minimum expansion, viz. the number of edges crossing the cut divided by
the size of the smaller side in the cut. This problem arises as a useful sub-
routine in many other algorithms, such as in divide-and-conquer algorithms
for optimization problems on graphs, layout problems, clustering, etc. Fur-
thermore, the expansion of a graph is a very useful way to quantify the
connectivity of a graph and has many important applications in computer
science.

The work of Arora, Rao and Vazirani [ARV] gave the first O(y/logn)
approximation algorithm to the SPARSEST CUT problem. However, their
best algorithm relies on solving an SDP and runs in O(n4‘5) time. They
also gave an alternative algorithm based on the notion of expander flows,
which are multicommodity flows in the graph whose demand graph has high
expansion. However, their algorithm was based on the ellipsoid method,
and was thus quite inefficient. In the paper [AHKO04], we obtained a much
more efficient algorithm for approximating the SPARSEST CUT problem
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to an O(y/Iogn) factor in O(n?) time using the expander flow idea. The
algorithm casts the problem of routing an expander flow in the graph as a
linear program, and then checks the feasibility of the linear program using
the techniques described in Section 3.2. The oracle for this purpose is imple-
mented using a variety of techniques: the multicommodity flow algorithm
of Garg and Kénemann [GK98] (and its subsequent improvement by Fleis-
cher [Fle00]), eigenvalue computations, and graph sparsification algorithms
of Benczur and Karger [BK96] based on random sampling.

3.11 Multiplicative weight algorithms in geometry

The multiplicative weight idea has been used several times in computational
geometry. Chazelle [Cha00] (p. 6) describes the main idea, which is essen-
tially the connection between derandomization of Chernoff bound arguments
and the exponential potential function noted in Section 3.7.

The geometric applications consist of derandomizing the obvious ran-
domized algorithm by using a deterministic construction of some kind of
small set cover or low-discrepancy set. Formally, the analysis is similar to
our analysis of the Set Cover algorithm in Section 3.4. Clarkson used this
idea to give a deterministic algorithm for Linear Programming [Cla88]. Fol-
lowing Clarkson, Bronnimann and Goodrich use similar methods to find Set
Covers for hyper-graphs with small VC dimension [BG94].

Recently, multiplicative weights arguments were also used in context of
geometric embeddings of finite metric spaces. The approximation algorithm
for sparsest cut in Arora et al. [ARV] involves a “Structure Theorem” about
metric spaces of negative type. This theorem says that in an n-point met-
ric space of negative type in which the average interpoint distance is Q(1),
there are two sets S,T of size Q(n) such that the distance between each
i€S,j7€TisQ1/yIogn). Chawla et al. [CGR05] noted that this can be
viewed as an embedding into ¢; that preserves the “average” pair of distance
Q(1) up to v/Iogn factor. They used the multiplicative update idea to con-
struct an embedding (which can be viewed as a probability distribution on
O(logn) ARV-style embeddings) in which every distance of (1) distorts by
at most O(y/logn) factor. Using a similar idea for distance scales other than
1 and combining the resulting embeddings using the ideas of Krauthgamer et
al. [KLMNO4] they obtained an embedding of the negative type metric into
l1 in which every internode distance distorts by at most a factor O(log3/ 4 n).
Recently Arora et al. [ALN] gave a more complicated construction to im-
prove the distortion bound to O(y/log(n)loglogn). As a consequence, they
obtain a O(y/log(n)loglogn)-approximation for non-uniform sparsest cut,
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thus almost matching the O(y/logn) bound for uniform sparsest cut from
[ARV].

3.12 Online convex optimization

Online convex optimization [Zin03] is a very general framework encompass-
ing many of the online problems discussed in the applications setting and
many more. Here “online” means that the algorithm does not know the en-
tire input at the start, and the input is presented to it in pieces over many
rounds. In this section we describe the framework and the central role of
the multiplicative weights method. Roughly speaking the story is that mul-
tiplicative weights method is the right analog in the “online” setting to the
standard “gradient descent” in “offline” optimization. For a much more
detailed treatment of online learning techniques see [CBLO6].

In online convex optimization, in each round ¢ = 1,2,..., the online
player picks a point z; from a convex domain K C R™. A loss function f;
is presented, and the decision maker incurs a loss of fi(x;). The goal of the
online algorithm A is to minimize loss compared to the best fixed offline
strategy. This quantity is called regret in the game theory and machine
learning literature.

T T
Rr(A) = filwe) - nin > fila)
t=1 t=1

Online convex optimization generalizes the standard expert setting by
having the convex set K be the n-dimensional simplex (i.e. the set of all
distributions over n “experts”), and having the payoff functions f; be inner
products with the appropriate column of the payoff matrix, i.e. fi(z) =
x ' j;, where z is the distribution over the experts, and j; (with some abuse
of notation) denotes the column vector of losses for the experts on event
j¢- It also generalizes other online learning problems such as the portfolio
management problem and online routing (see [Haz06] for more discussion
on applications).

Below we describe how to extend the Multiplicative Weights Update al-
gorithm to the online convex optimization framework, for the special case
where the convex set is the n dimensional simplex. Zinkevich [Zin03] gives
algorithms which apply to arbitrary convex sets with similar performance
guarantees (although with worse dependance on the dimension, see [Haz06]
for more details). We remark that recently more efficient algorithms for
online convex optimization were found, which are not based on the Multi-
plicative Weights Update method [HAKOT7].
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In order to apply the algorithm to the online convex optimization setting,
simulate the standard Multiplicative Weights Update algorithm with the
penalties defined as

M(p, ft) vat(pt)

where p; is the point played in round ¢, and V fi(p) is the gradient of the
function f; at point p. Let

= maxmax |V f¢(p)||co
P g g IV fe()
Then the width of this game is p.

Theorem 7 After T rounds of applying the Multiplicative Weights Update
algorithm to the online convex optimization framework, for any distribution

on experts p*
Inn
*thpt Pl <dpy ) — T

PRrROOF: By the Taylor series:
Fl) = @)+ (v~ 2) VI @) + 5o~ 0) P H )

Where ( is a point on the line connecting = and y, V f(x) is the gradient of
f at point z, and V2f(¢) is the Hessian of f at point ¢. If f is convex, then
V2f(¢) > 0 and therefore

f@)—fly) < (z—y) Vfx) (14)

Next, reasoning as in Corollary 4, the inequality (2) with ¢ = p gives, for
any 1,

1 plnn
— M < — 2
TZ: (pe, fr) < Tz TZ: (i, ") + 2¢p

Since the RHS holds for any i, we can replace M(z 4%) on the RHS by
M(p, j*) for any distribution p, in particular, p = p*. Now we have

%Z[ft(pt) - fi(p")] < = Z pe = ")V filpe) from (14)
= T[Z M(pt, fr) — M(p*, ft)]
< p;m + 3ep . M(i, j') € [=p, p]
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Choosing € = IHT" completes the proof.

g

4 Lowerbounds

Can our analysis of the Multiplicative Weights Update algorithm be im-
proved? This section shows that the answer is “No,” at least when the
“width” parameter is not too large. Proving a lowerbound for larger values
of width is an open problem.

Recall that our MW update algorithm specializes to a host of known
algorithms, and therefore lowerbounds known for those specialized settings
(e.g., Littlestone and Warmuth [LW94], Klein and Young [KY99], Freund
and Shapire [FS99]) also carry over to our MW update algorithm. These
lowerbounds show that at least Q(plz#) iterations are required to obtain

an e-approximation. Now we sketch a better Q(”QIE#) lowerbound when
the payoffs can be negative.

We prove the lowerbound in the expert-event prediction framework de-
scribed in Section 2, where the experts are trying to maximize their gain.
Events are revealed sequentially and remain unknown to the algorithm until
revealed. The idea is to use random payoffs; this is similar to Klein and
Young [KY99].

Let M € {+1,—1}"*™ be the payoff matrix where there are n experts
and m events. Define

V(M) = max min M(D, j)
D jelm]

where the minimization is over all distributions D on experts (note here that
we are working with gains instead of losses, as in subsection 2.2). Let Dy,
be the distribution on the experts that achieves this payoff V(M). Note
that by definition of V/(M), for every distribution D on the experts, there

exists an event j for which the expected gain is at most V (M).
The main technical theorem we prove is:

Theorem 8 For anyn € Z*, let p = Q(nl—l/g), m = O(n®>). Let T be any

logn

number < R Then there exists a payoff matrix M € {£1}"*™ for which
V(M) = Q(p) and the following holds:
For every subset of T events, there exists a distribution on the experts

such that the minimal expected payoff over these T events is greater then
V(IM)(1+e).
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Take the M from Theorem 8, scaled by a factor of %, and consider this
new payoff matrix. Since all entries of M were 1 in absolute value before
the scaling, the width is bounded by p = O(%). We note here that the

Multiplicative Weights Update algorithm takes T = O(ﬂ#) rounds to
get a payoff within a factor of (1 4+ €)~! of the payoff achieved by the best
expert: this follows by using Corollary 4 with § = 5 - %V(M) = Q(e) and
using the fact that the best expert achieves an average payoff of at least
35V (M).

The desired lowerbound is a simple corollary of Theorem 8. We show
that if the number of rounds 7' = o(’ﬂi#) then no prediction algorithm
can achieve total payoff within a factor of (1+¢)~! of the payoff achieved by
the best expert. In each round, the adversary picks a new event such that
the payoff for the current distribution on experts is at most %V(M). Thus

after T rounds the algorithm’s gain is at most %V(M)T.

Now consider the submatrix of M _ consisting of the T' columns revealed.
According to Theorem 8, there exists a distribution over the experts, Dy, ,
that achieves an expected gain larger then %V(M) - (1 + €) for each of the
T events. Therefore, the gain of an offline algorithm which uses the fixed
distribution D§; in every iteration is at least %V(M)T(l + ¢€). The gain
of the best expert for these T" events is only larger.

To finish, we prove Theorem 8. The proof shows that a random payoff
matrix M € {+1, —1}"*" satisfies the required properties with high proba-
bility. Each entry of M is a binomial random variable, chosen independently
to be +1 with probabilities % + p, % — p correspondingly.

In order to prove the required property, we prove an upper bound on
V(M) and a lower bound for V(B) for every payoff submatrix B C M of
size n X T'. For both cases we use estimates for the tails of the binomial
distribution. For the upper bound on V (M), let us consider the uniform
distribution on the experts. The payoffs for each event separately are tightly
concentrated, and we use the Chernoff tail estimate to bound the deviations.

Claim 1 With probability at least 1 — o(1), we have V(M) = O(2p(1 +
JER)) and V(M) = Q(p).

ProoF: Consider the uniform distribution on the experts. The expected
gain for any event is p = 2p. Using the Chernoff bounds, we can bound the
probability that any event j produces a total gain much larger the expected
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gain.

1 2
Pr | = M(i, §) — > tu| <e tHn
r ”Z]: (i,7) —p>tp| <e

Inm
pn
obtain that with very high probability all events occur a gain of at most
2p(1 +t). The lower bound on V(M) is obtained similarly. O

Plugging in t = O( ) and using the union bound over all m events, we

Let us now proceed to bound V' (B) from below for all submatrices B C
M of size n x T. The idea is again to observe the tail of the binomial
distribution, but this time to bound the deviations from below (and the
deviations will be larger then before since we consider a smaller number of
random variables).

As for the parameters, we fix € later (think of it as O(p)), and let T' =
1;;‘5. We assume T is small enough such that T?logm = o(n) (this is
consistent with the parameters of Theorem 8).

Claim 2 With probability at least 1 — o(1) it holds for all B that V(B) >
2p(1 +€) for some € = w(\/%).

PRrROOF: Consider certain expert k € [n]. Denote by Py the number of
successful predictions of expert k on the events of B (which is equal to
the number of positive entries in row k of B). The expected value of Py
is naturally T (% + p). Using a lower bound on the tail of the binomial
distribution, which essentially matches the Chernoff upper bounds, we have

1
Pr P> (1+v)(5 +p)T| 2 e~ UTV)

. _ logn —— - log(n/2r)
By our choice of T' we have € = VT Take v = €p and set € = \ TR

and the above probability becomes 271—7" Let r = T?logm = o(n) (recall we
assume that m,n are such that 72 logm = o(n)).

Call any expert for which Py > (1 + v)(3 + p)T a good expert. Then
by our choice of €, the probability that a certain expert is good is at least
%T, and every expert has independent performance. The expected number
of good experts is 2r. Because of the tight concentration around the mean,
we can ensure, with high probability, that for every choice of B there are r
good experts. Specifically, the probability that there exists a submatrix B

that does not have at least r good experts is bounded by =% - (Z’?) By our
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choice of r this probability is o(1). So we assume that B has at least r good
experts.

We now lower bound V(B). Let C be the r x T payoff sub-matrix of B
restricted to the r good experts of B. Naturally V(C) < V(B), and hence
it suffices to bound V(C) from below. For this, we use the von Neumann
min-max theorem, which states:

V(C) = mngrrel[ijr}} C(D,j) = ngn Igé?ffc(i’ P) (15)

Here, P is a distribution on the events (i.e. columns) of C, and C(i,P) =
5, i, §)PG).

For the role of P in the equation above, consider the uniform distribution
on the T events of C. For any event of C, the gain incurred by a random
good expert is +1 with probability > % +p+ %u and —1 with probability
< % —p— %1/, since all the experts of C are good, and is independent from
the other experts (according to the construction of M). The expected gain
for any expert is thus at least (2p + v)r. Using the Chernoff bound for each

event j separately, we have:
1 2
Pr|=) C(@,j)—(2 >¢| <e ¢
(150 wen)=d <
Set ¢ = O(y/T2m) = O(\/I) = o(v). This implies that

< G_Q(T logm)

Pr [i > Clid) < @+ )

Taking the union bound over all events, Pr[V(C) < Q(2p + v)] <
TeTlogm) ~ And another union bound over all (";) < m? sub matrices B
of M, the probability that there are r good experts and V(B) > V(C) =
Q2p+v)=Q2p(1+¢€))is 1 —o(1).

In addition, notice that for sufficiently large m:

O — log(n/2r)\ logn\ logm
)

Theorem 8 now follows from Claims 1 and 2.
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5 The Matrix Multiplicative Weights algorithm

In the preceding sections, we considered an online decision making problem
with experts. We refer to that setting as the basic or scalar case. Now
we briefly consider a different online decision making problem with experts,
which is seemingly quite different from the previous one, but has enough
structure that we can obtain an analogous algorithm for it. We move from
loss vectors to loss matrices, and from probability vectors to density ma-
trices. For this reason, we refer to the current setting as the matrixz case.
We call the algorithm presented in this setting the Matriz Multiplicative
Weights algorithm. The original motivation for our interest in this matrix
setting is that it leads to a constructive version of SDP duality, just as the
standard multiplicative weights algorithm can be viewed as a constructive
version of LP duality. In fact the standard algorithm is a special subcase
of the algorithm in this section, namely, when all the matrices involved are
diagonal.

Applications of the matrix multiplicative weights algorithm include solv-
ing SDPs [AKO07], derandomizing constructions of expander graphs, and ob-
taining bounds on the sample complexity for a learning problem in quantum
computing. The details of these applications are beyond the scope of this
survey; please see the third author’s PhD thesis [Kal06] for details. The algo-
rithm given here is from a paper of Arora and Kale [AK07] and a very similar
algorithm was discovered slightly earlier by Warmuth and Kuzmin[WKO06].

We stick with our basic experts scenario but now associate an expert with
every unit vector v in S”~!, the unit sphere in R™. As in the basic case, in
every round, each expert recommends an action, and our task is to pick an
expert v € S*~! and follow his suggested course of action. At this point,
the losses of all actions recommended by the experts are revealed by nature.
These losses are not arbitrary, but they are correlated in the following way.
A loss matriz M € R™ " is revealed, and the loss of an expert v is then
v Mv. We assume that all these losses are either in the range [0, 1] or in
[-1,0]. Again, as in the basic case, this is the only assumption we make
on the way nature chooses the costs; indeed, the costs could even be chosen
adversarially. Equivalently, we assume that all the eigenvalues of the matrix
M are in either in [0, 1] or [—1,0].

This game is repeated over a number of rounds. Let t = 1,2,...,T
denote the current round. In each round ¢, we select a distribution D) over
the set of experts S"~!, and select an expert v randomly from it (and use
his advised course of action). At this point, the losses of all the experts are
revealed by nature in the form of the loss matrix M(Y). The expected cost

33



to the algorithm for choosing the distribution D) is
E,cp® [VTM(t)V] = E,cpo [M(t) . VVT] = M® e E, cpo [VVT].

Here, we use the notation A ¢ B = Zij A;;B;j to denote the scalar

product of two matrices thinking of them as vectors in R™. Define the
matrix P® := E,_p[vv']. Note that P®) is positive semidefinite: this is
because it is a convex combination of the elementary positive semidefinite
matrices vv . Let Tr(A) denote the trace of a matrix A. Then, Tr(P®) =
1, again because for all v, we have Tr(vv') = ||v|> = 1. A matrix P which
is positive semidefinite and has trace 1 is called a density matriz.

We will only be interested in the expected loss to the algorithm, and
all the information required for computing the expected loss for a given
distribution D over S"~! is contained in the associated density matrix.

Thus, in each round ¢, we require our online algorithm to choose a density
matrix P()| rather than a distribution D® over S*~! (the distribution is
implicit in the choice of P(*)). We then observe the loss matrix M(®) revealed
by nature, and suffer the expected loss M(*) e P() | After T rounds, the total
expected loss is ZtT:l M®) o P(®) while the best fixed expert in hindsight
corresponds to the unit vector v which minimizes Zthl v M®v. Since we
minimize this quantity over all unit vectors v, the variational characteriza-
tion of eigenvalues implies that this minimum loss is exactly )\n(Z?:l M®),
Our goal is to design an online algorithm whose total expected loss over the
T rounds is not much more than the loss of the best expert. The following

algorithm uses the notion of matrix exponential, exp(A) :=>72, %

Matrix Multiplicative Weights algorithm

Initialization: Fix an ¢ < % Initialize the weight matrix W) =1T,,.
Fort=1,2,...,T:

. . (t)
1. Use the density matrix P(*) = %

2. Observe the loss matrix M®),

3. Update the weight matrix as follows:

wiHD — exp(—eth:lM(T)).

Figure 1: The Matrix Multiplicative Weights algorithm.
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The following theorem bounds the total expected loss of the Matrix
Multiplicative Weights algorithm (given in Figure 1) in terms of the loss of
the best fixed expert. This theorem is completely analogous to Theorem 2,
and in fact, Theorem 2 can be obtained directly from this theorem in the
case when all matrices involved are diagonal. We omit the proof of this
theorem; again, it is along the lines of the proof of Theorem 2, but needs
an additional inequality from statistical mechanics, the Golden-Thompson
inequality. See [Kal06, AKO07] for details.

Theorem 9 In the given setup, the Matriz Multiplicative Weights algorithm
guarantees that after T rounds, for any expert v, we have

T
(1-0 3 MO ePO 1 (143 MO PO < 3 vTMOy 4+ 27 (16)
€
>0 =<0 t=1

Here, the subscripts “~ 0”7 and “< 07 in the summations are used to refer
to the rounds t when M® =0 and M®) = 0 respectively.
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