
Generalizations of the Sethi-Ullman algorithm for register allocation

Andrew W. Appel
Kenneth J. Supowit†

Department of Computer Science
Princeton University
Princeton, NJ 08544

March 31, 1986
revised Sept 24, 1986

ABSTRACT

The Sethi-Ullman algorithm for register allocation finds an optimal ordering of a

computation tree. Two simple generalizations of the algorithm increase its applicability

without significantly increasing its cost.

Keywords: Register allocation, Code generation, Code optimization, Expression

trees

Introduction

Certain computations can be appropriately modelled as computation trees. A computation tree has con-

stant values as its leaves, and the internal nodes are given values inductively as specified arithmetic func-

tions of the values of their children. For example, the computation tree for the expression

(3 + (4 + 3) ×(5 + 6)) is

+

3 ×

+

4 3

+

5 6

On a computer, such a computation tree may be evaluated by keeping the values of previously com-

puted nodes in registers. When the value of a previously computed child node (stored in a register) is
������������������
† The work of this author was supported in part by NSF grant number DMC-8451214 and by a grant from IBM.

- 2 -

used to compute the value of its parent node, then the register associated with the child may be re-used for

another computation.

The Sethi-Ullman algorithm[3] determines an order of computation of the nodes of the tree that uses

the fewest possible registers, subject to these assumptions:

1. The properties of the arithmetic operators are not considered; that is, no arithmetic identities are

used.

2. All registers are equivalent; there are no operations that can produce results only in certain registers.

3. The tree is a binary tree: each internal node has exactly two children.

4. The value of each node will fit in one register.

Their algorithm relies on the observation (which they proved) that once the computation at a subtree

is begun, it is always better to complete that computation before moving to a disjoint subtree. Thus, the

algorithm need only decide, for each node, which of its two children to evaluate first.

Suppose the optimally ordered computation of the left subtree requires n registers, and the computa-

tion of the right subtree requires m registers. To determine the number of registers needed to compute the

parent’s value, there are three cases to consider:

n > m In this case, we first compute the left child, using n registers, but finally freeing all registers

except the one used to hold the value of the left-child node. Then we compute the right child,

using m registers (in addition to the one holding the left-child’s value). The parent may then

be computed; this process has used at any time no more than n registers.

n < m This case is similar to the first case; the right child should be computed first.

n = m Either child may be computed first; then the other child must be computed. This case uses

n + 1 registers, since the computation of the second child must take place while there is also a

register being used to hold the value of the first child.

These cases are considered for each node in a bottom-up fashion. Each node is labelled with a

‘‘Sethi-Ullman number’’ (the number of registers required during its computation), which is equal to the

maximum of the numbers of its children (if these are unequal) or to the number of either child plus one (if

the children have equal numbers). The optimal ordering of the entire tree, and the number of registers

required, is thus determined in O(n) time.

The four conditions listed above can be overly restrictive in real compilers. This paper presents a

generalized algorithm that is still very simple to implement.

- 3 -

Two generalizations

In writing a code generator using the Twig tree-pattern-matching/dynamic-programming code-generator-

generator[2], two generalizations of the model proved to be useful. In this context it is often possible to

match (as machine-instructions) much larger tree-patterns than the simple case of an arithmetic operator

with two children.

The first generalization is to remove the restriction on the degree of the nodes. There are machine

instructions (on the VAX, for example) that compute a value from the values of several other registers

and constants, for example the instruction:

addl3 4(r1)[r2], 8(r3)[r4], r5

computes in register 5 the value of the tree

+

FETCH

+

+

4 r1

×

4 r2

FETCH

+

+

8 r3

×

4 r4

This instruction could be modelled as a 4-ary node:

ADDi4i8

r1 r2 r3 r4

The second generalization is to remove the restriction on the size of the computed result. On many

computers, there are operands (like double-precision floating-point numbers) that require two registers to

hold them. Each node in the tree, then, should be annotated with the number of registers occupied by the

computed value of that node.

A more interesting example of a multiregister value comes from the addressing modes of the VAX.

The operands of an add instruction may be complicated addressing modes that use more than one regis-

ter, as illustrated by this partial grammar:

- 4 -

reg : PLUS(operand,operand)

operand : reg

operand : FETCH(reg)

operand : FETCH(PLUS(reg,CONST))

operand : FETCH(PLUS(PLUS(reg,CONST),MUL(CONST,reg)))

The operand types correspond to register mode, register-deferred mode, displacement-deferred mode, and

displacement-deferred-indexed mode, respectively.

The value of an operand node may require two registers to hold. The last of the operand patterns

above specifies the displacement-deferred-indexed mode; an example of this mode (in assembler syntax)

is

4(r1)[r5]

To incorporate this into an instruction, other operands must be accumulated. In the meantime, the values

of registers 1 and 5 must be held.

The addressing mode works with any pair of registers; in particular, they need not be adjacent. This

turns out to be important; allocation for multi-register values turns out to be much easier when the

multiple-registers may be any subset of the register bank[1].

In this way, we extend the model to include trees with more than two children, and nodes requiring

more than one register to hold the result. However, the generalization includes simpler cases as well. For

example, the pattern

operand: CONST

corresponding to an immediate-mode operand, requires zero registers to hold its value (since it will be

compiled directly into an instruction), and has zero subtrees.

An evaluation algorithm for generalized Sethi-Ullman numbers

We thus define a generalized computation tree as one in which each node has an arbitrary number of chil-

dren and is labelled with a number specifying how many registers are required to hold its value.

For machines that operate on multiregister values that must be kept in adjacent registers (like the

double-precision floating-point numbers on the VAX), it is not always optimal to generate each subtree

contiguously[1]. It may be necessary to partially evaluate one subtree, partially evaluate another subtree,

evaluate more of the first subtree, and so on.

- 5 -

When the registers in a multiregister operation need not be adjacent (as in the index-mode operand

example given above) — or when the cost of a register-register move is trivial — there is always an

optimal solution that evaluates entire subtrees contiguously. Furthermore, in a compiler that is already

structured to generate machine code bottom-up from expression trees, it is convenient to use a simple

bottom-up register-allocation algorithm. Thus, we restrict our attention to algorithms that evaluate sub-

trees contigously, even though they may perform suboptimally in some cases.

We seek an algorithm that minimizes the total number of registers needed, subject to the constraint

that the evaluation of one subtree is completed before the evaluation of a disjoint subtree is begun. As

before, it suffices to order the evaluation of the children of each node.

For each node t, we are given as input the number b t of registers required to hold t’s result. We

compute the number a t of registers required in the evaluation of all of the children of node t.

Assume we are at a given node t with k children, and we have computed for each child i the number

a i . We must find a permutation πmin such that the evaluation of the children in the order

πmin (1) ,πmin (2) , . . . ,πmin (k) takes a minimum number of registers.

The number of registers required for a given permutation π is easily computed; it is given by

R π = max(aπ(1) , bπ(1) + max(aπ(2) , bπ(2) + max(. . . ,bπ(k − 1) + max(aπ(k) , bπ(k))) . . .)

where the rightmost ‘‘ . . . ’’ indicates a sequence of closing parentheses needed to balance the elided

opening parentheses.

This equation is developed by the following reasoning: Subtree π(1) will be evaluated first. This

will require aπ(1) registers. Then the rest of the subtrees must be evaluated while saving the result of sub-

tree π(1) in bπ (1) registers. This will require a number of registers equal to the sum of bπ(1) and the

number of registers required to compute the rest of the children. The number of registers required to

compute the parent is the larger of aπ(1) and the specified sum. Thus, we compute a t as the minimum of

R π over all permutations π.

Finding an optimal permutation turns out to be no more difficult than sorting k numbers. In particu-

lar, we sort the ordered pairs (a i , b i) by their differences a i − b i , thereby obtaining an optimal order-

ing:

THEOREM: Each permutation πmin satisfying

aπmin (1) − bπmin (1) ≥ aπmin (2) − bπmin (2) ≥ . . . ≥ aπmin (k) − bπmin (k)

minimizes R.

- 6 -

PROOF: By induction on k. The claim is immediate for k = 1; assume it for each set of fewer than k

pairs. Assume a 1 − b 1 ≥ a 2 − b 2 ≥ . . . ≥ ak − bk and let π be a permutation on {1, 2, ..., k}. Then

R π = max(aπ(1) , bπ(1) + max(aπ(2) , bπ(2) + max(. . . , bπ(k − 1) + max(aπ(k) , bπ(k))) . . .)

≥ max(ar , br + max(a 1 , b 1 + max(a 2 , b 2 +

max(. . . , br − 1 + max(ar + 1 , br + 1 + max(. . . , bk − 1 + max(ak , bk)) . . .)

(1)

by the inductive hypothesis applied to the k − 1 pairs (a 1 , b 1), (a 2 , b 2), ..., (ar − 1 , br − 1),

(ar + 1 , br + 1), ..., (ak , bk), where r = π(1). Letting

c = max(a 2 , b 2 + max(. . . , br − 1 + max(ar + 1 , br + 1 + max(. . . , bk − 1 + max(ak , bk)) . . .) ,

we prove that

E 1 = max(ar , br + max(a 1 , b 1 + c)) ≥ max(a 1 , b 1 + max(ar , br + c)) = E 2 (2)

by considering cases. Note that c , a i , b i ≥ 0 for all 1 ≤ i ≤ k.

Case 1: ar ≥ br + c.

Then a 1 − b 1 ≥ ar − br ≥ c. Therefore

E 1 = max(ar , br + a 1) and E 2 = max(a 1 , b 1 + ar)

If a 1 ≥ b 1 + ar then

E 2 = a 1 ≤ max(ar , br + a 1) = E 1 .

Otherwise (a 1 < b 1 + ar) we have

E 2 = b 1 + ar ≤ br + a 1 ≤ max(ar , br + a 1) = E 1

(the first inequality follows from a 1 − b 1 ≥ ar − br).

Case 2: ar < br + c.

Then E 2 = max(a 1 , b 1 + br + c). If a 1 ≥ b 1 + br + c then

E 2 = a 1 ≤ max(a 1 , b 1 + c) ≤ max(ar , br + max(a 1 , b 1 + c)) = E 1 .

Otherwise (a 1 < b 1 + br + c) we have

- 7 -

E 2 = b 1 + br + c ≤ br + max(a 1 , b 1 + c) ≤ max(ar , br + max(a 1 , b 1 + c)) = E 1 .

Putting together (1) and (2) gives

R π ≥ max(a 1 , b 1 + max(ar , br + c))

≥ max(a 1 , b 1 + max(a 2 , b 2 + max(. . . , bk − 1 + max(ak , bk)) . . .)

by applying the inductive hypothesis to the pairs (a 2 , b 2), (a 3 , b 3), ..., (ak , bk). �

Spilling Registers

The Sethi-Ullman algorithm also solves the problem of what to do when there are not enough registers.

That is, when the number of registers required (as computed by the bottom-up algorithm) exceeds the

number of registers on the machine, some of the values in registers will have to be "spilled" into memory

locations.

The original algorithm does spilling in the evaluation of any node whose label is greater than r, the

number of registers available. As before, let n be the number of registers required in computing the left

subtree, and m be number required for the right subtree:

m < n≤r Compute the left child first (as in the simple algorithm).

n < m≤r Compute the right child first.

otherwise the computation cannot be done in registers. In this case, evaluate either subtree first; save

its value in memory; evaluate the other subtree; fetch the saved value; and continue the

computation.

This spilling algorithm generalizes nicely. First, the subtrees of a node must be sorted (as described

above, by a i − b i) into a list of nodes n i . Then, after each node on the list is evaluated, enough registers

are saved in memory to enable evaluation of the rest of the list. When all of the nodes n i are evaluated,

the saved values are fetched before doing the operation at the root node.

This requires, of course, that the total of the b i (the number of registers required to hold all the sub-

trees’ values) is not more than r. If this were the case, then there must be some machine operation that

requires more registers then exist on the machine — a highly unlikely architectural feature.

- 8 -

Implementation

The generalized algorithm is of particular use with in an automatic code-generator generator system, for

two reasons. Such a system is more likely to have to process nodes of varying degree (not just the binary

tree nodes for which the original algorithm was designed). Secondly, automatically generated code gen-

erators can more easily take advantage of the index modes, which lead to nodes with multiregister values.

The algorithm has been used to improve register-allocation in a code generator produced using the

Twig system. The procedure reorder (written in C) is shown in Figure 1. It computes the optimal order-

ing, and the number of registers required, for the evaluation of the children of a node. The code for spil-

ling into memory locations is not shown.

- 9 -

struct node {int hold;

int maxregs;

int sideEffect;

. . . other fields

};

int reorder(nodes)

struct node *nodes[];

{int i,j; struct node *temp;

for(j=0; nodes[j]!=NULL; j++)

for(i=j; i>0; i--)

if (nodes[i]->maxregs - nodes[i]->hold

> nodes[i-1]->maxregs - nodes[i-1]->hold

&& !(nodes[i]->sideEffect || nodes[i-1]->sideEffect))

{temp=nodes[i]; nodes[i]=nodes[i-1]; nodes[i-1]=temp;}

maxregs=0;

for(i=j-1; i>=0; i--)

{maxregs += nodes[i]->hold;

if (maxregs < nodes[i]->maxregs)

maxregs = nodes[i]->maxregs;

}

return maxregs;

}

Figure 1. The generalized Sethi-Ullman ordering procedure.

The hold field of a node specifies the number of registers needed to hold its computed result. The max-

regs field indicates the number of registers required at some point during the computation of the node.

The sideEffect field is a boolean flag indicating whether the subtree rooted at this node has any side

effects (like assignment statements); if it does, then it is unsafe to move the evaluation of this node from

its original position.

The parameter nodes is a NULL-terminated vector of node pointers. The procedure sorts this list

according to the value maxregs − hold, using an insertion sort; except that it won’t make any exchange

- 10 -

involving a node with side effects.

After the nodes are sorted into the optimal evaluation order, the parent node’s maxregs value is

computed and returned as the procedure’s result.

The register-allocation algorithm works bottom-up on trees, so it fits naturally into a code generator

that traverses trees bottom-up; Twig produces such code generators. It was therefore easy to incorporate

the generalized Sethi-Ullman numbering into the cost-computation part of Twig.

Because of the generality of the reorder procedure, it can be called by the code generator for each

node — even those with no children or one child. (Actually, Twig calls reorder for each pattern it

matches, not for each node.) There is no need for a special case for each kind of node (match). To con-

vert the original code generator — which had no register-allocation optimization — to one which does

generalized Sethi-Ullman allocation, it was necessary to make the following changes: The reorder pro-

cedure was added; About 5 lines of ‘‘glue’’ were added to call reorder, and 20 lines to handle spilling;

and to each pattern in the specification, a token was added specifying the number of registers required to

hold the result. The time taken in reorder is about 1.5% of the total time spent compiling.

Conclusion

Real compilers must deal with expression trees containing nodes of varying degree, and multi-word

values. By generalizing the Sethi-Ullman register allocation scheme, we make it possible to write one

simple procedure that does the tree reordering, rather than many special cases and heuristics spread

throughout the code generator.

Incorporating the generalized algorithm into a compiler (that generates code from trees) adds only a

few tens of lines to the size of the compiler, and just over a percent to its execution time.

References

1. A. V. Aho, S. C. Johnson, and J. D. Ullman, ‘‘Code generation for machines with multiregister operations,’’
Fourth ACM Symp. on Principles of Programming Languages, pp. 21-28, ACM, 1977.

2. A. V. Aho, M. Ganapathi, and S. W. K. Tjiang, ‘‘Code generation using tree matching and dynamic program-
ming,’’ ACM Trans. Prog. Lang. and Systems, vol. (to appear), 1989.

3. R. Sethi and J. D. Ullman, ‘‘The generation of optimal code for arithmetic expressions,’’ J. Assoc. Computing
Machinery, pp. 715-728, ACM, 1970.

