
A Stratified Semantics of General References
Embeddable in Higher-Order Logic∗

(EXTENDED ABSTRACT)

Amal J. Ahmed† Andrew W. Appel‡ Roberto Virga§

Princeton University

{amal,appel,rvirga }@cs.princeton.edu

Abstract

We demonstrate a semantic model of general references
— that is, mutable memory cells that may contain values
of any (statically-checked) closed type, including other ref-
erences. Our model is in terms of execution sequences on
a von Neumann machine; thus, it can be used in a Proof-
Carrying Code system where the skeptical consumer checks
even the proofs of the typing rules. The model allows us to
prove a frame-axiom introduction rule that allows locality
of specification and reasoning, even in the event of updates
to aliased locations. Our proof is machine-checked in the
Twelf metalogic.

1 Introduction

Proof-carrying code is a framework for proving the
safety of machine-language programs with a machine-
checkable proof. In conventional PCC systems [19, 18],
proofs are written in a logic with a built-in understanding of
a particular type system; that is, each inference rule of the
type system is an axiom of the logic. In foundational PCC,
introduced by Appel and Felty [4], the only axiom besides
the axioms of higher-order logic and arithmetic is the def-
inition of the state-transition relation of the target architec-
ture. The semantics of everything else (safety, types, etc.)
must be modeled in terms of possible state transitions. For
very simple type systems, with immutable references, no
data structure creation, and no recursive types, such models
are easy to construct. Appel and Felty [4] have shown how
to extend this to allocation of immutable values, covariant
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recursive types, function pointers, and quantified types. Ap-
pel and McAllester [5] further extend this to contravariant
recursive types. Our new result is an extension of all the pre-
vious type systems to mutable references, where reference
cells can contain values of any type, including functions and
other references.

Almost [12] all practical programming languages use
mutable references; object-oriented languages (such as
Java) and functional languages (such as ML) permit ref-
erences to contain values of arbitrary (statically-checked)
type. Therefore, general references are essential in our
plans to build PCC systems for practical languages. Our
model can handle the full language of ML or Java refer-
ences, including cyclic data structures, covariant and con-
travariant recursive data types, and gives a detailed seman-
tics for the initialization, allocation and update of data struc-
tures in memory. The foundational PCC consumer need not
know, or trust, the typing rules in advance. This means that
we must provide a machine-checkable proof of these rules;
for this we use a semantic model.

The denotational semantics of general references have
posed a challenge to semanticists for years [8]. Recently,
however, some solutions have emerged [1, 15]. An impor-
tant aspect of our model, which is a mix of denotational and
operational semantics, is that it is immediately useful as a
formalism for proving properties of machine-language pro-
grams. The formalism allows locality of specification and
reasoning, even in the event of memory updates, and even
in the presence of aliasing.

In a typical syntactic theory of references we have judg-
ments of the formΨ,Γ ` x : τ (whereΨ is a mapping from
locations to types). In the Appel-Felty semantics, a type is
a predicate on a set of allocated locationsa, a memorym,
and a root-pointerx, wherea is simply a set of addresses.
It seems natural to generalizea to serve the role ofΨ, thus
extending Appel-Felty to model general references. Unfor-
tunately, this leads to a circularity. The main contribution of
this paper is to eliminate this circularity. Our approach con-



sists of a stratification of the type universe, together with an
interesting use of G¨odel numbering as a way to encode the
resulting hierarchy of types in higher-order logic. Also, our
semantics is based on a possible-worlds model which seems
crucial in modeling the intensionality inherent in ML-style
references.

2 Foundational proofs of safety

We begin by summarizing the foundational PCC ap-
proach to proving the safety of machine-language pro-
grams.

Specifying safety. The first step is to build a model of a
von Neumann machine, such as the Sparc or the Pentium,
and a safety policy. In this model, a machine state comprises
a register bankand amemory, each of which is a function
from integers (addresses) to integers (contents).

The execution of an instruction is modeled as a single
step of the machine. First, we define each instructioni as a
predicate on four arguments(r,m, r′,m′) such that, given a
machine at state(r,m), after execution of instructioni the
machine will be at state(r′,m′), provided that the execution
does not violate the safety policy. For example, if the safety
policy requires that “onlywritable addresses may be up-
dated,” (where the predicatewritable is suitably specified
as part of the safety policy), we can define the instruction
m[rj + c]← ri as:

store(i, j, c) =
λr,m,r′, m′. writable(r(j) + c) ∧ m′(r(j) + c) = r(i)

∧ (∀x 6= (r(j) + c). m′(x) = m(x)) ∧ r′ = r

Next, we specify the step relation(r,m) 7→ (r′,m′) which
formally describes a single instruction execution. It requires
the existence of an instructioni and a register bankr′′ such
that the integer at locationr(PC) (PCis the program counter)
in memorym decodes to instructioni, updating the register
bankr with an incremented program counter producesr′′,
and finally instructioni safely maps(r′′,m) to (r′,m′):

(r,m) 7→ (r′,m′) =
∃r′′, i. decode(m(r(PC)), i)

∧ r′′ = r [PC:= r(PC) + 1] ∧ i(r′′,m, r′,m′)

where f [d :=x] = λi. if i = d then x else f(i). 1

We model a state in which the real machine would have
a next step that violates the safety policy, as a state with
no successor in the step relation. Then, proving that a state
is safe (writtensafe(r,m)) amounts to showing that there
is no path from(r,m) to a state with no successor. To
prove a program safe it suffices to show that a state(r,m)
where the program is loaded in memorym and the program
counterr(PC) points to the first instruction of the program,
is a safe state. We say that a state(r,m) is safe to execute
for k steps, writtensafen(k, r,m), if it cannot get stuck

1For details on how to specify instruction encoding and semantics for
real machine architectures, see Michael and Appel [16].

within k instructions. Then, we showsafe(r,m) by prov-
ing ∀k. safen(k, r,m) by induction onk, the number of
future execution steps.

Proving programs safe. A program is a sequence of ma-
chine instructions at a specific place in memory. At each
point in the program there is a precondition, or invariant,
such that if the registers and memory satisfy the precondi-
tion it is safe to execute the program. The global invariantΓ
maps each location in the program to its local invariant.2 In
foundational PCC (and also in Necula [19]) preconditions
are expressed using types, e.g.,r(1) : τ1 ∧ m(102) : τ5.
A judgmentx : τ in foundational PCC is interpreted as
x :k,m τ , which may be read as “x has typeτ with re-
spect to memorym to approximationk” or “the assumption
that x has typeτ cannot be proved wrong withink steps
of execution”. Program invariants, then, are parametrized
by k, r, andm. Appel and McAllester [5] give a formal
interpretation of the judgmentΓ ` {P}C{Q}, (whereC
is an instruction andP andQ are the pre- and postcondi-
tion, respectively), as a statement about safe future execu-
tion of a program with respect to an induction hypothesisΓ
in a foundational PCC system. Under this interpretation, to
showΓ ` {P}C{Q} it is sufficient to prove two lemmas:
progress and approximate preservation. Progress says that
when the program counter points to addressl, if C is a valid
instruction at addressl and the invariant at addressl holds,
then we can safely executeC:

Lemma 1 (Progress)
decode(m(l), [[C]]) Γ(l) = P Γ(l + 1) = Q

r(PC) = l P (k, r,m) k ≥ 1

∃r′,m′. (r,m) 7→ (r′,m′)

Approximate preservation3 says that if the invariant at
addressl holds, then executing the instruction atl leads to a
state(r′,m′) such that the invariantΓ(r′(PC)) is satisfied in
state(r′,m′) with approximationk−1 (since one execution
step was consumed by the execution ofC):

Lemma 2 (Approximate Preservation)
decode(m(l), [[C]]) Γ(l) = P Γ(l + 1) = Q

r(PC) = l P (k, r,m) k ≥ 1 (r,m) 7→ (r′, m′)

Γ(r′(PC))(k− 1, r′,m′)

3 Semantic models of types

To motivate our upcoming model, we present three
Hoare triples that read from, initialize, and update mem-
ory, respectively, and show type-inference rules required to
prove that each triple holds. In a foundational system these

2In practice, it would suffice forΓ to map only the entry points of basic
blocks to the appropriate invariants.

3We use “approximate” to indicate that unlike regular proofs of preser-
vation, here the induction is on the number offutureexecution stepsk.
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inference rules cannot be added to the logic as axioms; we
discuss the semantic models of types from which they can
be derived as lemmas.

3.1 An indexed model

Example 1 (Traversal of heap-allocated data)
Consider the following Hoare triple involving an instruction
that reads a value from a data structure in memory. The
precondition says that this data structure must be a reference
cell containing a value of typeτ , while the postcondition
requires that the value in the destination register has typeτ .

{λk, r,m. r(2) :k,m ref τ}
r3 ←m(r2)
{λk, r,m. r(3) :k,m τ}

Let us prove that the above triple holds with respect to the
global invariantΓ. To simplify the exposition, we will con-
centrate on proving approximate preservation — in our au-
tomated proofs, of course, we also prove progress. The step
relation increments the program counter and the above in-
struction is not a control-flow instruction, sor′(PC) = l+ 1
is easily proved. Since we know from the semantics of the
load instruction thatm′ = m, to prover3 :k−1,m′ τ , we can
use an inference rule similar to theRef Elimination rule be-
low. This rule says that ifx is a pointer to a value of type
τ in memorym with indexk, then the contents of memory
m at addressx are of typeτ with indexk − 1 (since one
execution step is consumed in dereferencing the pointer).

Ref Elimination
x :k,m ref τ
m(x) :k−1,m τ

But where does this inference rule come from? Atype-
specializedPCC system (such as Necula’s [19]) would in-
clude a similar rule as an axiom. In foundational PCC, how-
ever, we build a semantic model of types that allows us to
prove this type inference rule as a lemma. A value is a pair
(m,x) of a memorym and an integerx (usually an ad-
dress that can be thought of as the root-pointer to a data
structure in memory). The domain of types has elements
that are sequences ofk-approximations to the value(m,x),
where(k,m, x) is in a typeτ iff (m,x) is “good enough”
for k steps of execution [5]. Then, a program that executes
j instructions wherej ≤ k also believesthat x has type
τ ; that is,x :k,m τ ⇒ ∀j ≤ k. x :j,m τ . Types can then
be defined as predicates on(k,m, x) so that the judgment
x :k,m τ is just syntactic sugar forτ(k,m, x). We can de-
fine integer and reference types as follows:

int(k,m, x) = true
(ref τ )(k,m, x) = readable(x) ∧ ∀j<k. τ (j,m,m(x))

From the definition ofref above, we can immediately prove
theRef Elimination rule as a lemma.

By defining a variety of types in this way (Appel and
Felty [4] provide an extensive catalog), and using them as
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Figure 1. Pointer Aliasing

building blocks to describe more complicated datatypes, we
can reason about the safety of programs that traverse non-
trivial data structures — just as long as these data structures
arestaticallyallocated.

3.2 A dynamic allocation model

Example 2 (Dynamic heap allocation)
Programs written in a call-by-value pure functional lan-
guage allocate new data structures on the heap but never
update old values. Appel and Felty [4] describe a semantic
model that allows us to reason about the safety of such pro-
grams. Consider the following Hoare triple for an instruc-
tion that creates a new reference cell in memory by writing
to anew, writablememory location, pointed to by register
r5. The situation is depicted in figure 1(a) where all “new”
or unallocated memory cells appear shaded.

{λk, r,m. r(1) :k,m τ1 ∧ r(4) :k,m τ2}
m(r5)← r4

{λk, r,m. r(1) :k,m τ1 ∧m(r(5)) :k,m τ2}

Givenr1 :k,m τ1 and the fact that the store instruction alters
memory (i.e.,m′ 6= m), how can we prover1 :k,m′ τ1?
First, we distinguish between allocated and unallocated lo-
cations by maintaining a seta of allocated addresses. We
expect that the program’s memory allocator module keeps
track of which memory addresses it has allocated using
some data structure in registers and memory. Thus, from
time to time, the seta is computable by some function
a = alloc(r,m). At other times, (for example, part way
through an allocation), it may be thata 6= alloc(r,m).
As a result,a is existentially quantified when it appears in
program invariants.

We say that astateis a pair(a,m) of an allocseta and a
memorym. A value is now a tuple(k, a,m, x) of an index
k, a state and a root-pointer and types are, as before, pred-
icates on values. Onlyreadable andwritable locations
are added to the allocset. This is accomplished by giving
the program’s allocator module an initial pool that is a sub-
set of(readable ∩ writable). The typesint andref are
defined as,

int(k, a,m,x) = true
(ref τ )(k, a,m, x) = x ∈ a ∧ ∀j < k. τ (j, a,m,m(x))
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Next, we specify that only unallocated locations can be
modified, i.e., from a state(a,m) we can get to a state
(a,m′) if and only if ∀x. x ∈ a⇒ m(x) = m′(x). In this
model, a store instruction never affects existing data struc-
tures; hence, we can prove that existing type judgments are
preserved across memory updates. This model allows us
to prove the followingInitialization Invariance rule as a
lemma. The rule says that when we update an unallocated
location, type judgments made with respect to the old mem-
ory continue to be valid with respect to the new memory:

Initialization Invariance

x :k,a,m τ y /∈ a m′ = m [y :=z]
x :k−1,a,m′ τ

If we rewrite the invariants of our Hoare triple so that type
judgments have the formx :k,a,m τ , using theInitializa-
tion Invariance rule we can prove the following statement:

{λk, r,m. ∃a. r(1) :a,m τ1 ∧ r(5) /∈ a ∧ r(4) :a,m τ2}
m(r5)← r4

{λk, r,m. ∃a. r(1) :k,a,m τ1 ∧m(r(5)) :k,a,m τ2}

3.3 The need for a new model

Example 3 (Mutable data structures)
The model described by Appel and Felty [4] cannot be used
to reason about the safety of programs written in an imper-
ative language. That model prohibits updates to allocated
memory locations — the store instruction in the following
Hoare triple performs such an update:

{λk, r,m. ∃a. r(1) :k,a,m τ1
∧ r(5) :k,a,m ref τ2 ∧ r(4) :k,a,m τ2}

m(r5)← r4

{λk, r,m. ∃a. r(1) :k,a,m τ1 ∧ r(5) :k,a,m ref τ2}

Consider the scenario illustrated by figure 1(b) — the store
instruction updates the location thatr5 points to (thereby
modifying the data structure thatr1 points to), so that we
cannot know ifr1 has typeτ1 with respect to the modified
memorym′. We do not want to rule out situations such
as this one where an aliased location is being updated. The
Update Invariancerule allows us to handle updates even in
the presence of aliasing. This rule says that when we update
anallocatedlocation, type judgments made with respect to
the old memory continue to be valid with respect to the new
memory. This suggests that writing to an allocated location
should be permitted only if the update is type-preserving.

Update Invariance

x :k,a,m τ y :k,a,m ref τ ′ z :k,a,m τ ′ m′ = m [y := z]
x :k−1,a,m′ τ

Allowing updates of aliased locations while guaranteeing
consistency is not an easy task — i.e., proving theUpdate
Invariance rule is nontrivial. For foundational PCC, we

must devise a new semantic model of types that allows us
to prove theUpdate Invariance rule as a lemma. Such a
model and a proof of anUpdate Invariance lemma are the
main contributions of this paper.

An update to an allocated location must be type-
preserving — this means that only values of a certain type
may be written at that location. Hence, we require a model
that, for each allocated location, keeps track of this type. In
the next section we describe why tracking permissible heap
updates is tricky.

4 Modeling permissible heap updates

In the semantics of immutable fields described in sec-
tion 3.2 a type is a predicate on an indexk (an integer), a
memorym (a function from integers to integers), a seta
of allocated addresses (a predicate on integers), and a root-
pointerx (an integer). In our object logic, we write the types
of these logical objects as,

memory = num → num
allocset = num → o
type = num × allocset ×memory × num → o

whereo is the type of propositions (true or false).

4.1 Putting types in the allocset

To allow for the update of existing values we might think
of enhancing the allocseta to become a finite map from
locations to types: for each allocated addressx, we keep
track of the typeτ of updates allowed atx. As before, a
type is a predicate on four arguments(k, a,m, x):

allocset = num fin→ type
type = num × allocset ×memory × num → o

But there is a problem with this specification: notice that
the metalogical type oftype is recursive, and, furthermore,
that it has an inconsistent cardinality: the set of types must
be bigger than itself.

4.2 A hierarchy of types

To better understand the problem, let us take a closer
look at ourdesireddefinition of ref. We sayx :k,a,m ref τ
if locationx is allocated, if the allocseta says that the per-
missible update type for locationx is τ , and if the value in
memory at locationx is of typeτ with indexj for j < k: 4

(ref τ )(k, a,m, x) = (x, τ ) ∈ a ∧ ∀j < k. τ (j, a,m,m(x))

Notice thatτ is a “smaller” type thanref τ and that to deter-
mine the members ofref τ we, in fact, only consider those
locations in the allocset whose permissible update types are

4Recall that we would like the allocset to be a finite map from locations
to types. Since a finite map can be modeled as a relation, we write(x, τ) ∈
a rather thana(x) = τ .
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“smaller” thanref τ . This suggests a well-foundedness or-
dering: types in our model should be stratified so that a type
at leveli relies not on theentire allocset, but only on that
subset of the allocset that maps locations to types at levelj,
for j < i. This leads us to the followingtype hierarchy:

type0 = unit
allocseti = num fin→ typei

typei+1 = num × allocseti ×memory × num → o

By stratifying mutable references we have eliminated the
circularity. Unfortunately, the abovetype hierarchy does
not fit into higher-order logic. We would like to have a sin-
gle type oftype in our object logic, not an infinite number
of them.

4.3 A hierarchy of Godel numberings of types

To achieve a single type oftype, we present a solu-
tion that replaces the (semantic) type (typei ) in the alloc-
set with its syntax. This syntax is simply a free algebra
of type expression terms. To manipulate syntactic types in
higher-order logic, we encode them as G¨odel numbers (we
use this term in a general sense, to mean simply “unique
identifiers”). We use a stratified G¨odel numbering relation
rep(i, n, τ) where the G¨odel numbern represents the type
τ at leveli. Note that instead of encoding syntactic types us-
ing integers, we opted to use G¨odel numbers that are finite
trees of integers. The types of the relevant logical objects
and of the G¨odel numbering relationrep are as follows:

gnum = tree(num)
allocset = num fin→ gnum
pretype = num × allocset ×memory × num → o
rep : num × gnum × pretype → o
type = num → pretype

A type is now a predicate on(i, k, a,m, x) wherei is the
index of the type in the type hierarchy; this corresponds in-
formally to a logical object of typetypei as in section 4.2.
A predicate on(k, a,m, x) is now called a pretype. (Hence-
forth, we will useσ to range over pretypes andτ to range
over types.)

Before we describe our pretypes and their encoding, we
need some notation for representing trees of integers. A tree
constructortreei(c0, t1, . . . , ti) returns a tree with integer
c0 at the root andi subtreest1, . . . , ti, for example:

1

tree0(1)

4

�

tree1(4, tree0(1))

3

n1 n2

tree2(3, n1, n2)

Pretypes. We now define the pretypesint, ∪ , and ref,
(for a type constructortycon, tycon denotes the correspond-
ing pretype constructor), and describe how arep relation
may be defined for these pretypes. Note that since the

definition of ref depends onrep (which has not been de-
fined yet), ref should takerep(i) (for somei ≥ 0) as
an argument. We useρ to denote the corresponding for-
mal parameter, where the type ofρ is as follows: ρ :
gnum × pretype → o. (All subsequent uses of the vari-
ableρ will be of this logical type — i.e.ρ is always used to
denoterep(i) for somei ≥ 0.)

int(k, a,m, x) = true
(σ1 ∪σ2)(k, a,m, x) = σ1(k, a,m,x) ∨ σ2(k, a,m, x)
(ref(ρ, σ))(k, a,m, x) = ∃n. (x,n) ∈ a ∧ ρ(n, σ)

∧ ∀j < k. σ(j, a,m,m(x))

Defining rep . We can define, as a formula in higher-order
logic, arep predicate that has the following properties:

1. It relates the pretypeint to the treetree0(1):

rep(0, tree0(1), int) 1

2. It relatesσ1 ∪ σ2 to the tree below as follows:

rep(i, n1, σ1) rep(i, n2, σ2)
rep(i, tree2(2, n1, n2), σ1 ∪σ2)

2

n1 n2

3. It relates the pretyperef(ρ, σ) to a tree where one child
is a tree with the single root nodei. Sinceρ encap-
sulatesi, the level ofσ in the type hierarchy,i must
be part of the G¨odel number forref(ρ, σ) (note that
ref(ρ, σ) is at leveli+ 1 in this hierarchy):

rep(i, n, σ)

rep(i+ 1, tree2(3, tree0(i), n), ref(ρ, σ))

3

ni

4. rep(i) ⊂ rep(i+ 1):

rep(i, n, σ)
rep(i+ 1, n, σ)

We show the inductive definition in the technical report [3].
Figure 2 illustrates the first few levels of the hierarchy for

the pretype constructorsint, ∪ , andref. Level 0 consists of
the Gödel numberings ofint, int∪ int, (int∪ int)∪ int, and
so on. Letσ0 denote a pretype that has a G¨odel number at
level 0. Level 1 consists of G¨odel numberings of pretypes
σ0, of pretypesref(rep(0), σ0), and of all pretypes in the
closure (with respect to∪ ) of the level 1 pretypes.

Figure 2 also describes the structure of therep relation:
Here,base is a subset ofrep(0) and specifies the G¨odel
numbers of all primitive types;closure(ρ) specifies all the
types constructible by unioning together types numbered in
ρ; step(rep(i)) defines a subset ofrep(i+1); theclosure
of the latter, then, gives usrep(i+ 1).

Types. Having definedrep, we can now define the types
that correspond to the pretypes defined above:

int(i) = int
(τ1 ∪ τ2)(i) = τ1(i) ∪ τ2(i)
(ref τ )(i) = ref(rep(i− 1), τ (i− 1))
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int

int U int U� int
base

closure

ref (int U� int U� int)

ref (int)

step

ref (int U� int) U ref (int)
closure

int U� int

ref (int U� int)

int U ref (int)

step

ref (ref (int))

ref (int U ref (int))

ref (ref (int U� int))

Figure 2. Hierarchy of Godel numberings

By creating a hierarchy of G¨odel numbers, we have, in ef-
fect, created a hierarchy of types: to determine the elements
of a type at leveli+ 1 we need to know the elements of all
types at levels0 throughi — for this we userep(i). By
stratifying types we have eliminated the circularity.

5 Possible worlds

The semantics we are presenting is a possible-worlds se-
mantics. Possible-worlds models (or Kripke models5 ) are
specified by defining (see Huth and Ryan [13]):
• A setW , whose elements are calledworlds. In our

model, a world corresponds to a state so we have,
W = allocset ×memory .
• A relationR ⊆ W ×W called the accessibility rela-

tion. In our model, this corresponds to the extend-state
relation on states(a,m) and(a′,m′) which describes
how we can get from a well-formed (orvalid) state
(a,m) to a valid state(a′,m′). Section 5.1 specifies
when a state is considered valid and section 5.2 speci-
fies the extend-state relation.
• A labeling functionL : W → P(Atoms) that, given

a worldw, yields the set of atomic propositions that
hold in that world. The atomic propositionsp that we
are interested in are of the form: “locationl may hold
a value of pretypeσ” where l is an allocated location.
Therefore, in our model,

L(a,m) = {(l, σ) | (l, n) ∈ a ∧ ∃i. rep(i, n, σ)}

• The properties that the accessibility relationR should
satisfy — these depend on what set of formulas in-
volving p (wherep is an atomic proposition) should be
valid in the desired model. Without going into further
detail, our model requires that the extend-state relation
be reflexive and transitive (lemma 6).

5Kripke [29] introduced the notion of possible worlds when he devel-
oped the model theory for modal propositional logic based on this concept.

5.1 Valid states

The judgmentx :k,a,m σ says thatx has pretypeσ for
up tok execution steps with respect to the state(a,m). Im-
plicit in this assertion is the assumption that state(a,m) is
well-formed orvalid such that types are guaranteed to be
preserved fork steps. A state(a,m) is valid with index
k if it satisfies three conditions. First, the allocseta must
be a partial function, that is, each location in the allocset
should be mapped to only one G¨odel number (informally,
to only one type). Second,a should only map locations
to legitimate G¨odel numbers (informally,valid types). The
predicategodel specifies legitimate G¨odel numbers:

godelρ(n) = ∃ρ′, σ. ρ ⊂ ρ′ ∧ ρ′(n, σ)

The subscriptρ indicates thatgodel takesrep(i) as an
argument. (Note that we could have instead defined
godelρ(n) as∃σ.ρ(n, σ). We explain why the present for-
mulation is useful when we discuss the definition of the type
codeptr in section 7.) Third, the type of an allocated cell’s
contents (with respect tok, a, andm) must match its per-
missible update type ina; that is, if a maps a locationl to
pretypeσ thenm(l) :k,a,m σ should hold.) We say thatx
matches a G¨odel numbern with respect to a state(a,m)
and indexk if,

matchρ(k, n, a,m, x) =
∀ρ′, σ. ρ ⊂ ρ′ ⇒ ρ′(n, σ) ⇒ σ(k, a,m, x)

Definition 3 (Valid State)
validstateρ(k, a,m) =
∀x,n, n′. (x,n) ∈ a ∧ (x,n′) ∈ a ⇒ n =tree n

′

∧ ∀x, n. (x,n) ∈ a ⇒ godelρ(n)
∧ ∀x, n. (x,n) ∈ a ⇒ matchρ(k, n, a,m,m(x))

The following property follows from the definition of
validstate. Informally, the type of the value in an al-
located cell matches the type that the allocset says it should
have for up tok execution steps:

Lemma 4 (Heap Well-Typed)
(x, n) ∈ a validstateρ(k, a,m)

∃ρ′, σ. ρ ⊂ ρ′ ∧ ρ′(n, σ) ∧ m(x) :k,a,m σ

5.2 Valid state extension

To formally describe the memory and allocset extensions
permissible in our model we specify the extend-state rela-
tion (a,m) vρ,k (a′,m′) which says that state(a′,m′) is a
valid extension of state(a,m) with indexk — or, alterna-
tively, that(a,m) approximates(a′,m′) for up tok execu-
tion steps. State extensions must satisfy three constraints.
First, memory cannot be deallocated, so ifx ∈ dom(a),
then we require thatx ∈ dom(a′). (The reason for this re-
striction is that the extend-state relation must be transitive.)
Second, the permissible update type of an allocated location
cannot be altered across state extensions, so if(x, n) ∈ a
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then(x, n) ∈ a′. Third, the model requires that all mem-
ory updates be type-preserving — to enforce this we simply
require that state(a′,m′) be a valid state (which suffices
because the last two conditions ensure that all allocated lo-
cations are “preserved” under state extension).

Definition 5 (Extend State)
Valid state extension (vρ,k) is specified as,

(a,m) vρ,k (a′,m′) =
∀x, n. (x,n) ∈ a ⇒ (x,n) ∈ a′
∧ validstateρ(k, a,m) ∧ validstateρ(k, a′,m′)

Lemma 6 (vρ,k Reflexive and Transitive)
The extend-state relation (vρ,k) is reflexive and transitive.

Consider a state(a,m) where all unallocated memory
locations containjunk; that is, there are no “initialized but
not yet allocated” locations. When we extend the state,
(a,m) vρ,k (a′,m′), as a result of theHeap Well-Typed
property of a valid state, we are forced to initialize a new
memory location (with a value of the appropriate type)be-
forewe add it to the allocset:

Lemma 7 (Initialization Before Allocation)
(a,m) vρ,k (a′,m′) ⇔ (a,m) vρ,k (a,m′) vρ,k (a′,m′)

6 What is a type?

A type is a predicate on(i, k, a,m, x). We now describe
the four properties a type must have in order to be consid-
ered a “good” or valid type.

Extensible. In section 3.3 we presented theUpdate In-
variancerule which says that type judgments are preserved
across memory extension. How can we use the stratified
model of mutable references to prove this rule as a lemma?
We start by stating update invariance as a property of a type-
predicate, which says that a type (at leveli) is closed under
valid extension of the memory (i.e., state extension at level
i− 1):

update-inv(τ ) =
∀i, k, x, a,m,m′. (a,m) vrep(i−1),k (a,m′)

⇒ x :i,k,a,m τ ⇒ x :i,k,a,m′ τ

Notice that since(a,m) vρ,k (a,m′) allows updates
of both allocated and unallocated locations,update-inv
incorporates the notion ofInitialization Invariance de-
scribed in section 3.2.

We model the allocation of new memory by extending
the allocset. To reason about programs that dynamically al-
locate memory, we need a rule that says that type judgments
are preserved under extension of the allocset. We call this
theAllocation Invariance rule. In lieu of the rule we spec-
ify the allocation invariance property of a type-predicate:

alloc-inv(τ ) =
∀i, k, x,m, a, a′. (a,m) vrep(i−1),k (a′,m)

⇒ x :i,k,a,m τ ⇒ x :i,k,a′,m τ

We say that a predicateτ on (i, k, a,m, x) is extensible
if it has both theupdate-inv and alloc-inv properties
which leads to the following definition:

extensible(τ ) =
∀i, k, x, a,m, a′,m′. (a,m) vrep(i−1),k (a′,m′)

⇒ τ (i, k, a,m,x)⇒ τ (i, k, a′,m′, x)

If extensible(τ) holds for each typeτ in our system, then
we can easily prove theUpdate, Allocation andInitializa-
tion Invariance rules as lemmas.

Index closed. A property of types that we have already
mentioned is that ifx has typeτ for k future execution steps,
then it must be the case thatx has typeτ for j < k steps:

kclosed(τ ) =
∀i, k, j, a,m. 0≤j<k⇒ τ (i, k, a,m, x)⇒ τ (i, j, a,m, x)

Upward closed. Informally, a type at leveli has more “in-
formation” than a type at levelj, for j < i — i.e., the
former has access to more levels ofrep and consequently,
can determine the pretypes of more locations in the alloc-
set. Therefore, if we have sufficient information at leveli to
conclude thatx has typeτ , then at leveli+ 1 we still have
sufficient information to conclude thatx has typeτ :

iclosed(τ ) =
∀i, j, k, a,m. 0≤ i<j ⇒ τ (i, k, a,m, x)⇒ τ (j, k, a,m, x)

Representable. To construct a value of typeτ , we would
first write the value into an unallocated memory location
l, and then extend the allocset with the pair(l, n) where
n represents the pretypeτ(i) at some leveli in the Gödel
numbering hierarchy. Clearly this last step requires the ex-
istence of such ani andn; i.e., there must be somei ≥ 0
such that the pretypeτ(i) is representable:

repable(τ, i) = ∃n. rep(i, n, τ (i))

Valid types. We say that a predicateτ on(i, k, a,m, x) is
a type if it is extensible, index closed, upward closed and
representable:
Definition 8 (Type)
type(τ ) = extensible(τ ) ∧ kclosed(τ ) ∧ iclosed(τ )

∧ ∃i. repable(τ, i)

7 Modeling a nontrivial type system

In this section we present a model of general references.
More precisely, our model permits references to values of
any type defined using the primitive types and type contruc-
tors shown in figure 4; figure 3 gives the pretype definitions
that the figure 4 definitions rely on. We will first specify
a Gödel numbering relation for the pretypes in our system,
then explain some of the more involved type definitions, and
finally present the relevant theorems. The accompanying
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Fork ≥ 0 :

>(k, a,m, x) = true
⊥(k, a,m, x) = false
int(k, a,m, x) = true
(const(n))(k, a,m, x) = x = n

(offset(n, σ))(k, a,m, x) = σ(k, a,m, x+ n)
(σ1 ∪σ2)(k, a,m,x) = σ1(k, a,m, x)

∨ σ2(k, a,m, x)
(σ1 ∩σ2)(k, a,m,x) = σ1(k, a,m, x)

∧ σ2(k, a,m, x)
(rec F )(k, a,m,x) = F k+1⊥(k, a,m, x)
(box(ρ, σ))(k, a,m, x) = ∃n. (x,n) ∈ a

∧ ρ(n,K const(m(x)))
∧ ∀j < k. σ(j, a,m,m(x))

(ref(ρ, σ))(k, a,m, x) = ∃n. (x,n) ∈ a
∧ ρ(n,Kσn) ∧ σn = σ
∧ ∀j < k. σ(j, a,m,m(x))

(codeptr(ρ, σ))(k, a,m, x) = ∀r′, a′,m′, j. j < k
∧ r′(PC) = x
∧ (a,m) vρ,j (a′,m′)
∧ σ(j, a′,m′, r′(1))
⇒ safen(j, r′,m′)

Figure 3. Pretype definitions

technical report [3] contains a more detailed exposition of
our model (including existential and universal types which
we have not described here due to lack of space), as well as
proofs of the theorems in this paper.

7.1 Godel numbers of pretype functions

Our model requires that we specify the G¨odel number of
each of the pretypes in figure 3. But to specify the G¨odel
number ofrec(F ) (whereF is a function from pretypes to
pretypes), we have to first specify the G¨odel numbers of
pretype functionsF . Rather than extend therep relation so
that it specifies the G¨odel numbers of pretype functions as
well as of pretypes, we observe that if we represent every
pretype as a pretype function that simply ignores its argu-
ment, then we would only require G¨odel numbers of pre-
type functions. We useKσ to denote a pretype function
that ignores its argument and returns the pretypeσ (i.e.,
K = λy. λx. y).

We definerep(i, n, F ), the Gödel numbering relation
for pretype functions, in the same way as we defined
rep(i, n, σ) in section 4.3. We present some of the rules
characterizing the relation in figure 5. Note thatbase now
consists of the G¨odel numbers ofKσ for primitive pre-
typesσ, as well as, the G¨odel number of the identity pre-
type functionλσ. σ. For closure, if the pretype func-
tionsF and the pretypeσ are representable at leveli, then
F (σ) should also be representable at leveli. (This con-
dition is specified by theclos apply rule in figure 5.) In

For i ≥ 0 :

>(i) = >
⊥(i) = ⊥
int(i) = int
(const(n))(i) = const(n)
(offset(n, τ ))(i) = offset(n, τ (i))
(τ1 ∪ τ2)(i) = τ1(i)∪ τ2(i)
(τ1 ∩ τ2)(i) = τ1(i)∩ τ2(i)
(rec F )(i) = rec(F (i))

For i > 0 :

(box τ )(i) = box(rep(i− 1), τ (i− 1))
(ref τ )(i) = ref(rep(i− 1), τ (i− 1))
(codeptr τ )(i) = codeptr(rep(i− 1), τ (i− 1))

where, F (i) : pretype → pretype = λτ. (F (λi′.τ ))(i)

Figure 4. Type definitions

addition, the pretype constructorsoffset, ∪ , ∩ , and rec
are used to compute theclosure of eachρ whereρ ⊂
rep(i). Given someρ = rep(i), the pretypesbox, ref,
andcodeptr, (each of which is parametrized byρ) are used
to computestep(ρ). For example, ifF is representable
at leveli, then the pretype functionsλσ. ref(rep(i), F (σ))
andK rec(λσ. ref(rep(i), F (σ))) are representable at level
i + 1. We modify the definitions ofgodel, match, and
repable as follows:

godelρ(n) = ∃ρ′, σ. ρ ⊂ ρ′ ∧ ρ′(n,Kσ)
matchρ(k, n, a,m, x) = ∀ρ′, σ. ρ ⊂ ρ′ ⇒ ρ′(n,Kσ)

⇒ σ(k, a,m, x)
repable(F, i) = ∃n. rep(i, n, F (i))

7.2 Types

Recursive types (rec). We have incorporated Appel and
McAllester’s [5] indexed model of types where the indices
k allow the construction of a well-founded recursion, even
when modeling contravariant recursive types. All defini-
tions and proofs regarding recursive types are explained in
their paper. In proving that a typerec(F ) is a valid type
(theorem 11), we require thatF bewellfounded (see [5]).

Immutable references (box). The typebox of immutable
references is defined in figures 3 and 4. Any value may be
stored in an immutable location, as long as it is numerically
equal to the value that is already there.

First-order continuations (codeptr). A value of type
codeptr(τ) is a first-order continuation, that is, a machine-
code address to which control may be passed, provided that
its precondition (that registerr1 contain a value of typeτ )
is satisfied. Consider the judgmentx :i,k,a,m codeptr(τ).
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rep(0, tree0(1),K>)
base >

rep(0, tree1(4, tree0(c)),K const(c))
base const

rep(0, tree0(7), λτ. τ)
base id

rep(i, n1, F ) rep(i, n2,K τ)

rep(i, tree2(11, n1, n2),K (F (τ)))
clos apply

rep(i, n, F )

rep(i, tree2(12, tree0(c), n), λτ. offset(c, F (τ)))
clos offset

rep(i, n1, F1) rep(i, n2, F2)

rep(i, tree2(13, n1, n2), λτ. F1(τ)∪F2(τ))
clos ∪

wellfounded(F ) rep(i, n, F )

rep(i, tree1(15, n),K rec(F ))
clos rec

rep(i, n, F )

rep(i + 1, n, F )
step include

rep(i, n, F )

rep(i+ 1, tree2(22, tree0(i), n), λτ. ref(rep(i), F (τ)))
step ref

Figure 5. Some clauses in the Godel numbering relation for pretype functions

This says that if we jump to addressx in some future ma-
chine state(r′,m′) (i.e., if r′(PC) = x), then(r′,m′) is a
safe state forj < k steps if the following three conditions
hold. First, the argument (i.e., the value stored in register
r1) must be of the right type; that is,r′(1) :i−1,j,a′,m′ τ
(see codeptr in figure 3). A crucial observation about
codeptr(ρ, σ) is that if ρ = rep(i′), thenσ is a pretype
at leveli′.

Second, state(a′,m′) must be a valid extension of state
(a,m) — i.e., (a,m) vρ,j (a′,m′). Note that in extend-
ing (a,m) to (a′,m′) we may have created new cells with
types that are higher in the G¨odel numbering hierarchy.
In that event we need a higher levelrep relation, sayρ′

such thatρ ⊂ ρ′, to ensure that state(a′,m′) is valid.
But recall the definition ofvalidstate, or more specif-
ically, the definitions ofgodel andmatch in section 5.1.
The predicatesgodel and match are defined in such a
way that we havevalidstateρ(j, a′,m′) if and only if
validstateρ′(j, a′,m′) for ρ ⊂ ρ′ (see lemma 10).

Third, the programp that is in memory in state(a,m)
must still be in memory in state(a′,m′). To enforce this
condition, we make all allocset locations that contain pro-
gram instructions “immutable”; that is, the allocset maps
these locations to G¨odel numbers ofbox types. Since the
program is preserved under state extension, our requirement
is simply(a,m) vρ,j (a′,m′).

7.3 Validity of types

Lemma 9 (rep Upward Closed)
rep(i, n, F )⇒ rep(i+ 1, n, F )

Lemma 10 (State Valid Modulo Rep Level)
If rep(i) is a sub-relation ofrep(i′) then:
validstaterep(i)(k, a,m) ⇔ validstaterep(i′)(k, a,m)

The above lemma iskeyto the consistency of our model. It
follows from lemma 9 and our carefully crafted definitions

of godel and match, and allows us to prove a series of
lemmas critical to the proof of the following theorem [3].

Theorem 11 (Type)
a-d. type(τ), whereτ ::= >|⊥|int|const(n)

e. type(τ) ⇒ type(offset(i, τ)).
f. type(τ1) ∧ type(τ2) ⇒ type(τ1 ∪ τ2).
g. type(τ1) ∧ type(τ2) ⇒ type(τ1 ∩ τ2).
h. wellfounded(F ) ⇒ type(rec(F )).
i. type(τ) ⇒ type(box τ).
j. type(τ) ⇒ type(ref τ).
k. type(τ) ⇒ type(codeptr τ).

We can construct a variety of types using the types shown
in figure 4 (and∃, ∀ types [3]) as building blocks (see Ap-
pel and Felty [4]). Any such type (except arbitrarily nested
recursive and quantified types — see section 9) can easily
be shown to be atype.

7.4 Invariance lemmas

Lemma 12 (Initialization Invariance)
x :i,k,a,m τ y /∈ a m′ = m [y := z] type(τ )

x :i,k−1,a,m′ τ

Lemma 13 (Allocation Invariance)
x :i,k,a,m τ a′ = a ∪ {(y, n)}
(y /∈ a ∨ (y, n) ∈ a) type(τ )

x :i,k,a′,m τ

Lemma 14 (Update Invariance)
x :i,k,a,m τ y :i,k,a,m ref τ ′ z :i,k,a,m τ ′

m′ = m [y :=z] type(τ )
x :i,k−1,a,m′ τ

We can show that the premises of the above lemmas satisfy
the extend-state (v) relation. The conclusions then follow
trivially from type(τ).
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7.5 Introduction & elimination rules

We prove introduction and elimination lemmas for each
type in figure 4 [3]. We only show the lemmas forref here.

Lemma 15 (Ref-I)
x /∈ a m(x) :i,k,a,m τ repable(τ, i) type(τ )
∃a′. (a,m) vrep(i),k (a′,m) ∧ x :i+1,k+1,a′,m ref τ

Lemma 16 (Ref-E)
x :i+1,k+1,a,m ref τ
m(x) :i,k,a,m τ

8 Two examples

Using our model of general references we can prove
lemma 2 for the following program fragments. The proofs
are given in the technical report [3].

r 5

r 6

Allocated

	
ee

���

��


���

���

���

(a) Before example 1

100

101

r 1
1 100

101

r 1

Before �f�er

(b) Before and after example 2

Figure 6. Scenarios for examples

Example 1 (Initialize, allocate, update)
Consider figure 6(a) as the starting point of the following
program fragment at addressl in memory, which constructs
a reference cell of typeτ2 (i.e., initializes a location, then
adds it to the allocset) and then updates it. Note thatτ2 may
be any type definable in our system. For this example, as-
sume that registerr6 is a special register that always points
to the next address to be allocated; then, to add a location
to the allocated set, we must simply increment this register.
For brevity, we have omitted “λk, r,m.” from the following
invariants.
{∃a, i. r(1) :i,k,a,m τ1 ∧ r(4) :i,k,a,m τ2

∧ r(5) /∈ dom(a) ∧ r(5) = r(6)}
m(r5)← r4

{∃a, i. r(1) :i,k,a,m τ1 ∧ r(4) :i,k,a,m τ2 ∧m(r(5)) :i,k,a,m τ2}
r6 ← r6 + 1
{∃a, i. r(1) :i,k,a,m τ1 ∧ r(4) :i,k,a,m τ2 ∧ r(5) :i,k,a,m ref τ2}
m(r5)← r4

{∃a, i. r(1) :i,k,a,m τ1 ∧ r(5) :i,k,a,m ref τ2}

Example 2 (Cycles in memory)
Our model can handle cycles in the memory graph. Fig-
ure 6(b) depicts the situation before and after executing the
store instruction in the following Hoare triple, whereF de-
notesλτ. ref int∪ ref τ :

{∃a, i. r(1) :i,k,a,m ref int ∧ 100 :i,k,a,m rec(F )}
m(r1)← r1

{∃a, i. 100 :i,k,a,m rec(F )}

9 Typed machine language

A limitation of the semantics we described in section 7
is that it does not allow us to represent arbitrarily nested
recursive and quantified types such as the following:

rec(λα. ref(rec(λβ. (ref β)∪α)))
Typed Machine Language, described by Swadi and Appel,
[31] accommodates arbitrarily nested recursive and quan-
tified types using DeBruijn indices. Our new semantics is
compatible with this approach.

10 Machine-checked proof

All of our proofs are machine-checked, and furthermore,
these proofs have an actual use: they form part of the proof
of safety of a machine-language program in a PCC sys-
tem. The logic that we use is Church’s higher-order logic
with a few axioms of arithmetic; we represent our logic,
and check proofs, in the LF metalogic [10] implemented in
the Twelf logical framework [25]. Our proof “implemen-
tation” consists of about 16,500 lines of Twelf code, us-
ing the encoding of higher-order logic described by Appel
and Felty [4]. The implementation of the Appel-McAllester
model (without mutable references) consisted of 8,200 lines
of proof, while that of the Appel-Felty model (with neither
contravariant recursive types nor mutable references) con-
sisted of 5,400 lines.

11 Conclusions & related work

Denotational vs. structured operational semantics. In
our model we prove all type inference rules as derived lem-
mas. The reader may have wondered if our denotational
semantics approach or an operational (purely syntactic) ap-
proach is the right one to take. We should observe that
our model is a mix of denotional and operational seman-
tics. Ourvalidstate predicate behaves like the induction
hypothesis of a syntactic progress-and-preservation proof,
though in the indexed model the induction is over the num-
ber of steps that can be executed in the future rather than the
past. We have used the semantic approach to build a syn-
tactic type system for Sparc instructions with 1032 clauses
(including both operator definitions and typing rules). The
syntactic proof of the soundness of this type system would
require the analysis of close to a thousand cases for each
property proved by induction. A person doing the syn-
tactic proof of this theorem would, no doubt, tire of the
large number of cases and soon settle on an ¨uber-property
to use as the induction hypothesis, just as we have done us-
ing validstate. There really is a continuum between the
purely syntactic and purely semantic approaches — types
in the Appel-Felty [4] model were sets of terms, in Appel-
McAllester [5] they were domains of terms, and in this
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model we have domains of terms with embedded syntax.
We believe that in practice our approach has turned out to
be more modular than a purely syntactic approach.

Compositionality and syntax-in-the-semantics. We
have presented a model of general references based on
possible-worlds semantics. This model is not composi-
tional in the conventional sense. To see why, consider the
fact that a valuex is of typeref τ if and only if it has type
τ in the extensional sense (which, in our model, means by
inspection of the registers and memory) andalso has type
τ in the intensional sense. The intension indicates thatx
will continue to be of typeτ indefinitely. References in
ML and Java have an intensional component: when aref
cell is allocated it is tagged with the type that it must have
for its lifetime. We suspect that only purely extensional
concepts can have a (strictly) compositional semantics.
Kripkean possible worlds have proven extremely valuable
in modeling intension. So let us consider the nature of
possible worlds. Peregrin’s [24] analysis concludes that “a
possible world in the intuitive sense can be explicated as
a maximal consistent class of statements”. This implies
that to give the semantics of possible worlds we require
techniques like coinduction [23, 17, 6] or non-well-founded
sets [2], each of which is in some sense syntax-dependent.
In light of that, and Peregrin’s conclusion that “possi-
ble worlds are language dependent”, our embedding of
syntactic types (that express intension) in the semantics
seems unavoidable. But the latter should not be interpreted
as: “the use of G¨odel numbers in the semantics seems
unavoidable” — we use G¨odel numbers to encode our
stratified semantics in higher-order logic, but even without
that, the stratified semantics itself contains syntactic types
(in theallocset i).

Game semantics. Hintikka [11] advocated the use of
game-theoretical semantics to model possible worlds.
Game semantics is especially useful in removing from
consideration allimpossiblepossible worlds. Abramsky,
Honda and McCusker[1] describe a game semantics of gen-
eral references that they show to be fully abstract. In this
model, reference types are modeled by their behavior, or
more specifically as a product of a “read method” and a
“write method” in the style of Reynolds [27]. This represen-
tation is quite different from that in location-based models
such as ours. It would be interesting to see if such a model
could be incorporated into a foundational PCC system.

Levy’s possible-worlds model. Recently, Levy [15] de-
scribed a possible-worlds model for general references.
There are interesting correspondences between his model
and ours. Hisworld-store(w, s), wherew is a world ands is
aw-store, (i.e., each location ins is well-typed with respect
tow) corresponds to a valid state(a,m) in our model. His
accessibility relation between worlds resembles ours. His

model has the property: “ifw ≤ w′ then everywτ -value
is aw′τ -value” (wherewτ -value denotes a value of typeτ
in worldw); this corresponds toextensible in our model.
The definition (denotation to be more precise) of the type
ref τ in his model is:[[ref τ ]]w = $wτ (where$wτ denotes
“the set of cells of typeτ in w”). Notice that[[ref τ ]] is de-
fined in terms of the syntaxτ rather than the semantics[[τ ]]
; that is, this semantics is not compositional either. Levy is
faced with the same kind of circularity that we described in
section 4. He solves it by observing that recursive equations
on domains have solutions. We solve it by showing that our
hierarchy of types has a limit.

Locality of reasoning. We have shown how our seman-
tic model provides us with rules (lemmas) that allow us to
prove properties of programs with mutable references — as
long as these properties are expressed as types. There has
been a great deal of work on program-proving for pointers;
here, we discuss only the formalism described by Ishtiaq
and O’Hearn [14] (which is closely related to the work of
Burstall and Reynolds [7, 28]). When proving properties
of programs that mutate the heap, a great deal of effort is
spent reasoning about what doesnot change. Ishtiaq and
O’Hearn use the BI logic [20] which provides a spatial form
of conjunction∗ such that the statementP ∗ Q is true just
when the current heap can be split into two components,
one of which makesP true and the other of which makesQ
true. This operator allows them to introduce frame axioms
(which describe invariants of the heap) using the rule,

{P}C{Q}
{P ∗R}C{Q ∗R} ModifiesOnly(C) ∩ free(R) = ∅

whereModifiesOnly(C) is the set of (free) variables that
are updated by the commandC. This resembles the follow-
ing rule in our system, though in our model,R is restricted
to type judgments such asr(1) :a,m τ1 ∧ 100 :a,m τ2
(where 100 may be a memory location). Also, in our model,
ModifiesOnly(C) is the set ofregistersthat are updated by
the commandC and free(R) is the set of registers about
whichR contains assertions:

{P}C{Q}
{P ∧R}C{Q ∧R} ModifiesOnly(C) ∩ free(R) = ∅

The use of∧ instead of∗ has important consequences. Con-
sider the situation in figure 1(b). Now suppose we have the
following C, P ,Q, andR:

P = ∃a. r(5) :k,a,m ref τ2 ∧ r(4) :k,a,m τ2
C = m(r5)← r4

Q = ∃a. r(5) :k,a,m ref τ2
R = ∃a. r(1) :k,a,m τ1

If {P}C{Q} holds, then using our frame-axiom introduc-
tion rule, we can conclude{P ∧ R}C{Q ∧ R} holds. We
cannot conclude{P ∗R}C{Q∗R} using their frame-axiom
introduction rule because in this situation (figure 1(b)) the
heap cannot be split into two parts, such that one part satis-
fiesr(5) :a,m ref τ and the other partr(1) :a,m τ1. Their
frame axiom introduction rule is useful when aliasing is not
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expected to occur because their predicatesR are stronger
than just typing judgments.

Other related work. The use of a store typing mapping
locations to types is not new. Tofte [32] uses this approach
in his type soundness proof for polymorphic references.
Tofte, however, makes use of coinduction to handle cycles
in the memory graph. Harper [9] has shown how a progress-
and-preservation proof can be arranged so that there is no
need for coinduction. Our model, meanwhile, can handle
cycles in memory by virtue of the indexk. For a reference
to a memory cycle to be well-typed, we only need to know
that it is well-typed to approximationk. With each mem-
ory dereference thek decreases. Hence, there is no need for
coinduction.

A common feature of models of mutable state is that they
specifyhow the state is allowed to vary over time. Mod-
els for Idealized Algoldeveloped by Reynolds and Oles
[27, 21, 22] make use of functor categories indexed by pos-
sible worlds orstore shapesto specify how the size of the
store, as well as its contents, may change at any point in the
program. We note, however, that these models do not han-
dle general references. Stark [30] (building on work done
with Pitts on possible world models of the nu-calculus [26])
describes a denotational semantics forReduced MLthat in-
cludes integer references.

12 Future work

All practical languages provide some means for manag-
ing memory, but the model that we have described does not
allow memory to be reclaimed. Building a possible-worlds
model that permits deallocation is challenging in the con-
text of ML-style references where the type of a memory
cell is fixed upon allocation; (technically, the difficulty lies
in defining an extend-state relation that permits deallocation
andis transitive). We are attempting to extend our possible-
worlds model to allow region-based memory management.

Appel and McAllester’s indexed model [5] has both a
simple, nonextensional version and an extensional version
using PERs. It is not trivial to make an extensional seman-
tics for general references because the equivalence of two
values depends on the set of their free locations. We intend
to investigate this.
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