A Stratified Semantics of General References
Embeddable in Higher-Order Logic*

(EXTENDED ABSTRACT)

Amal J. Ahmed Andrew W. Appel Roberto Virga
Princeton University
{amal,appel,rvirga }@cs.princeton.edu
Abstract recursive types, function pointers, and quantified types. Ap-

pel and McAllester [5] further extend this to contravariant
We demonstrate a semantic model of general referencegecursive types. Our new result is an extension of all the pre-
— that is, mutable memory cells that may contain values vious type systems to mutable references, where reference
of any (statically-checked) closed type, including other ref- cells can contain values of any type, including functions and
erences. Our model is in terms of execution sequences omther references.
a von Neumann machine; thus, it can be used in a Proof- Almost [12] all practical programming languages use
Carrying Code system where the skeptical consumer checkgnutable references; object-oriented languages (such as
even the proofs of the typing rules. The model allows us toJava) and functional languages (such as ML) permit ref-
prove a frame-axiom introduction rule that allows locality erences to contain values of arbitrary (statically-checked)
of specification and reasoning, even in the event of updatesype. Therefore, general references are essential in our
to aliased locations. Our proof is machine-checked in the plans to build PCC systems for practical languages. Our
Twelf metalogic. model can handle the full language of ML or Java refer-
ences, including cyclic data structures, covariant and con-
travariant recursive data types, and gives a detailed seman-
tics for the initialization, allocation and update of data struc-
tures in memory. The foundational PCC consumer need not
know, or trust, the typing rules in advance. This means that
Proof-carrying code is a framework for proving the we must provide a machine-checkable proof of these rules;
safety of machine-language programs with a machine-for this we use a semantic model.
checkable proof. In conventional PCC systems [19, 18], The denotational semantics of general references have
proofs are written in a logic with a built-in understanding of posed a challenge to semanticists for years [8]. Recently,
a particular type system; that is, each inference rule of thehowever, some solutions have emerged [1, 15]. An impor-
type system is an axiom of the logic. In foundational PCC, tant aspect of our model, which is a mix of denotational and
introduced by Appel and Felty [4], the only axiom besides operational semantics, is that it is immediately useful as a
the axioms of higher-order logic and arithmetic is the def- formalism for proving properties of machine-language pro-
inition of the state-transition relation of the target architec- grams. The formalism allows locality of specification and
ture. The semantics of everything else (safety, types, etc.)reasoning, even in the event of memory updates, and even
must be modeled in terms of possible state transitions. Forin the presence of aliasing.
very simple type systems, with immutable references, no In a typical syntactic theory of references we have judg-
data structure creation, and no recursive types, such modelsents of the forml, I + z : 7 (where¥ is a mapping from
are easy to construct. Appel and Felty [4] have shown how locations to types). In the Appel-Felty semantics, a type is
to extend this to allocation of immutable values, covariant a predicate on a set of allocated locatians memorym,
and a root-pointet;, wherea is simply a set of addresses.
:;c;appga&in '-'Cr? t2>00I32ARPA Grant F30602-09-1.0519 and by NSE It seems natural to generalizeto serve the role o¥, thus
ram oamooao Y ran ~EeIY and by extending Appel-Felty to model general references. Unfor-
tSupported in part by DARPA Grant F30602-99-1-0519. tunately, this leads to a circularity. The main contribution of
§Supported by DARPA Grant F30602-99-1-0519. this paper is to eliminate this circularity. Our approach con-

1 Introduction

sists of a stratification of the type universe, together with an within k instructions. Then, we shosafe(r, m) by prov-
interesting use of Gdel numbering as a way to encode the ing Vk.safen(k,r,m) by induction onk, the number of
resulting hierarchy of types in higher-order logic. Also, our future execution steps.

semantics is based on a possible-worlds model which seem
crucial in modeling the intensionality inherent in ML-style
references.

?—’roving programs safe. A program is a sequence of ma-
chine instructions at a specific place in memory. At each
point in the program there is a precondition, or invariant,
. such that if the registers and memory satisfy the precondi-
2 Foundational proofs of safety tion it is safe to execute the program. The global invarfant
maps each location in the program to its local invariarnih

We begin by summarizing the foundational PCC ap- foundational PCC (and also in Necula [19]) preconditions
proach to proving the safety of machine-language pro- are expressed using types, erdl) : 71 A m(102) : 75.
grams. A judgmentz : 7 in foundational PCC is interpreted as

Specifying safety. The first step is to build a model of a @ tkm 7, Which may be re_ad ase "has“typeT with re-
spect to memoryn to approximatiork” or “the assumption

von Neumann machine, such as the Sparc or the Pentiumthatx has tvper cannot be proved wrona withih Stens
and a safety policy. In this model, a machine state comprises yp P 9 b

.) . of execution”. Program invariants, then, are parametrized
aregister bankand amemory each of which is a function :

. . by k, r, andm. Appel and McAllester [5] give a formal
from integers (addresses) to integers (contents).

The execution of an instruction is modeled as a single !nterpretat|on_ of the judgmedt - {P}C{Q}, (whereC .
step of the machine. First, we define each instructiaga 'S an instruction and> and@ are the pre- and postcondi-
predicate on four arguments m, r’, m’) such that, givena ~ tion, respectively), as a statement gbout §afe future execu-
machine at statér, m), after execution of instructionthe ~ tion of a program with respect to an induction hypothésis
machine will be at state’, m’), provided that the execution in a foundational PCC system. Under this interpretation, to
does not violate the safety policy. For example, if the safety showT" + {P}C{Q} it is sufficient to prove two lemmas:
policy requires that “onlywritable addresses may be up- progress and approximate preservation. Progress says that
dated,” (where the predicateitable is suitably specified when the program counter points to addrie#isC is a valid
as part of the safety policy), we can define the instruction jnstryction at addressand the invariant at addres$olds,

mlrj +] « r; as: then we can safely execute
Lemma 1 (Progress)
decode(m(l), [C]) rag)y="~p ri+1)=@Q
r(PC) =1 P(k,r,m) k>1

store(i,j,¢) =
Ar,m,r’,m’. writable(r(5) +¢) A m/(r(j) +¢) = 7(3)
A (Vz # (r(5) + o). m(z) =m(z)) Ar' =7
Next, we specify the step relatidgn, m) — (', m") which
formally describes a single instruction execution. It requires
the existence of an instructiarand a register bank’ such Approximate preservatioh says that if the invariant at
thatthe integer at locatior(PC) (PCis the program counter) addres$ holds, then executing the instruction/&ads to a
in memorym decodes to instructiof) updating the register state(;, /) such that the invariart(r’(Pc)) is satisfied in
bankr with an incremented program counter producés state(r, m') with approximatiork — 1 (since one execution
and finally instruction safely mapgr”, m) to (r’,m’): step w:;s consumed by the executiordf

(T’HT,), 705;:;2(;@ (PO)).4) Lemma 2 (Approximate Preservation)
NN :T[PC::T(F’,C)H] A i m, v, m') decode(m(l),[C]) T =P TI+1)=
B r(PC) =1 P(k,r,m) k>1 (r,m) — (r’,m’)

where f[d:=x] = \i.if i =d then x else f(i).! ; —

We model a state in which the real machine would have L (PO (k = 1,r'sm’)
a next step that violates the safety policy, as a state with
no successor in the step relation. Then, proving that a state3 Semantic models of types
is safe (writtensafe(r, m)) amounts to showing that there
is no path from(r,m) to a state with no successor. To
prove a program safe it suffices to show that a state:)
where the program is loaded in memenyand the program
counterr(PC) points to the first instruction of the program,
is a safe state. We say that a staten) is safe to execute

for k steps, writtersafen(k,r, m), if it cannot get stuck 2|n practice, it would suffice foF* to map only the entry points of basic
blocks to the appropriate invariants.

1For details on how to specify instruction encoding and semantics for ~ 3We use “approximate” to indicate that unlike regular proofs of preser-
real machine architectures, see Michael and Appel [16]. vation, here the induction is on the numbefftiire execution steps.

I’ m'. (r,m) — (r’,m')

To motivate our upcoming model, we present three
Hoare triples that read from, initialize, and update mem-
ory, respectively, and show type-inference rules required to
prove that each triple holds. In a foundational system these

inference rules cannot be added to the logic as axioms; we
discuss the semantic models of types from which they can rl’\?]) Iy
be derived as lemmas.

3.1 Anindexed model

Example 1 (Traversal of heap-allocated data)

Consider the following Hoare triple involving an instruction (a) Unaliased (b) Aliased
that reads a value from a data structure in memory. The
precondition says that this data structure must be a reference Figure 1. Pointer Aliasing

cell containing a value of type, while the postcondition

requires that the value in the destination register hastype

building blocks to describe more complicated datatypes, we
can reason about the safety of programs that traverse non-
trivial data structures — just as long as these data structures
arestaticallyallocated.

{Ak, 7, m.7(2) tk,m ref 7}
r3 < m(rz)

{Ak,r,mer(3) tgm T}

Let us prove that the above triple holds with respect to the
global invariant". To simplify the exposition, we will con-
centrate on proving approximate preservation — in our au-
toma_tted.proofs, of course, we also prove progress. The SFeFExample 2 (Dynamic heap allocation)

relathn Increments the program counter and the above "N“Programs written in a call-by-value pure functional lan-
struction is not a control-flow instruction, s4(PC) = [+1 g age allocate new data structures on the heap but never
is easily proved. Since we know from the semantics of the ypdate old values. Appel and Felty [4] describe a semantic
load instruction that»’ = m, to provers :x—1,,,» 7,Wecan model that allows us to reason about the safety of such pro-
use an inference rule similar to tRef Elimination rule be- grams. Consider the following Hoare triple for an instruc-
low. This rule says that if: is a pointer to a value of type tion that creates a new reference cell in memory by writing
7 in memorym with indexk, then the contents of memory 1o anew writable memory location, pointed to by register

m at address: are of typer with indexk — 1 (since one 7. The situation is depicted in figure 1(a) where all “new”
execution step is consumed in dereferencing the pointer). OF unallocated memory cells appear shaded.

3.2 A dynamic allocation model

Ref Elimination Mk, r,mer(1) tem T AT(4) tkym T2}
T im ref T m(rs) <« rqa
m(x) k—1,m T {Ak,r,mer(1) tk,m 71 Am(r(5)) tkeym T2}
But where does this inference rule come from? tyfe- Givenr; i, 71 and the fact that the store instruction alters

specializedPCC system (such as Necula’s [19]) would in- memory (i.e.,,w’ # m), how can we prove; Som! T1?
clude a similar rule as an axiom. In foundational PCC, how- First, we distinguish between allocated and unallocated lo-
ever, we build a semantic model of types that allows us 10 ¢ations by maintaining a setof allocated addresses. We
prove this type inference rule as a lemma. A value is a pa'rexpect that the program’s memory allocator module keeps

(m,z) of a memorym and an integer: (usually an ad- . . ;
dress that can be thought of as the root-pointer to a datatraCk of which memory addresses it has allocated using

structure in memory). The domain of types has elementsS°Me da'ta structure in.registers and memory. Thus,' from
that are sequences bfapproximations to the valuen, z), time to time, the set is cqmputable by some function
where(k, m, z) is in a typer iff (m,z) is “good enough” @ = alloc(r,m). Atother times, (for example, part way
for k steps of execution [5]. Then, a program that executesthrough an allocation), it may be that # alloc(r,m).

j instructions wherg < k alsobelievesthat z has type As a resulta is existentially quantified when it appears in
T, thatis,x :gm 7 = Vj < k.x:.,, 7. Types canthen program invariants.

be defined as predicates ¢k m, x) so that the judgment We say that &tateis a pair(a, m) of an allocset and a

x :p,m T IS just syntactic sugar for(k,m,z). We can de- memorym. A value is now a tuplék, a, m, x) of an index

fine integer and reference types as follows: k, a state and a root-pointer and types are, as before, pred-
) icates on values. Onlyeadable andwritable locations
int(k, m,) = true) _ are added to the allocset. This is accomplished by giving
(ref 7)(k,m,z) = readable(z) A Vj<k.7(jm,m(z)) the program’s allocator module an initial pool that is a sub-

set of (readable Nwritable). The typednt andref are

From the definition ofef above, we can immediately prove ,
defined as,

theRef Elimination rule as a lemma.
By defining a variety of types in this way (Appel and int(k, a, m, z) — true
Felty [4] provide an extensive catalog), and using them as (ref 7)(k,a,m,z) = z€a A Vj< k.7(j,a,m, m(z))

3

Next, we specify that only unallocated locations can be
modified, i.e., from a statéa, m) we can get to a state
(a,m’) if and only if Vz. 2 € a = m(z) = m/(x). In this
model, a store instruction never affects existing data struc-

tures; hence, we can prove that existing type judgments are . . ,
Jreserving — this means that only values of a certain type

preserved across memory updates. This model allows u
to prove the followingnitialization Invariance rule as a
lemma. The rule says that when we update an unallocate
location, type judgments made with respect to the old mem-
ory continue to be valid with respect to the new memory:

Initialization Invariance

yga m' =mly=2]

T ik—1,a,m’ T

T kam T

If we rewrite the invariants of our Hoare triple so that type
judgments have the form :4 4., 7, using thelnitializa-
tion Invariance rule we can prove the following statement:

{Ak,r,m. 3a. r(1) :am 1 AT(5) € a AT(4) ta,m T2}
m(rs) < ra
{Ak,r,m. Ja. r(1) :k,a,m 1 AM(1(5)) k,a,m T2}

3.3 Theneed for a new model

Example 3 (Mutable data structures)
The model described by Appel and Felty [4] cannot be used
to reason about the safety of programs written in an imper-

must devise a new semantic model of types that allows us
to prove theUpdate Invariance rule as a lemma. Such a
model and a proof of ablpdate Invariance lemma are the
main contributions of this paper.

An update to an allocated location must be type-

may be written at that location. Hence, we require a model

dhat, for each allocated location, keeps track of this type. In

the next section we describe why tracking permissible heap
updates is tricky.

4 Modeling permissible heap updates

In the semantics of immutable fields described in sec-
tion 3.2 a type is a predicate on an indeXan integer), a
memorym (a function from integers to integers), a set
of allocated addresses (a predicate on integers), and a root-
pointerx (an integer). In our object logic, we write the types
of these logical objects as,

memory = num — num
allocset = mnum — o
type = num X allocset X memory X num — o

whereo is the type of propositionsfue or false).

4.1 Putting typesin the allocset

ative language. That model prohibits updates to allocated To allow for the update of existing values we might think

memory locations — the store instruction in the following
Hoare triple performs such an update:

{Ak,r,m.3a.r(1) tk,a,m T1

A r(5) ‘k,a,m ref 2 A r(4) k,a,m T2}
m(rs) <« rq
{Ak,r,m.3a. (1) tk,a,m 71 AT(D) tk,a,m ref 72}

Consider the scenario illustrated by figure 1(b) — the store
instruction updates the location thaf points to (thereby
modifying the data structure that points to), so that we
cannot know ifr; has typer; with respect to the modified
memorym’. We do not want to rule out situations such

of enhancing the allocset to become a finite map from
locations to types: for each allocated addressve keep

track of the typer of updates allowed at. As before, a

type is a predicate on four argumeftsa, m, x):

fin
num — type
num X allocset X memory X num — o

allocset

type
But there is a problem with this specification: notice that
the metalogical type ofype is recursive, and, furthermore,
that it has an inconsistent cardinality: the set of types must
be bigger than itself.

as this one where an aliased location is being updated. Thel.2 A hierarchy of types

Update Invariancerule allows us to handle updates even in

the presence of aliasing. This rule says that when we update To better understand the problem, let us take a closer

anallocatedlocation, type judgments made with respect to
the old memory continue to be valid with respect to the new
memory. This suggests that writing to an allocated location
should be permitted only if the update is type-preserving.

Update Invariance

’ ’ ! —
Tikam T Yikam e T 2igamT m =mly:=2z]

xr ‘k—1l,a,m’ T

Allowing updates of aliased locations while guaranteeing
consistency is not an easy task — i.e., provinglipelate
Invariance rule is nontrivial. For foundational PCC, we

look at ourdesireddefinition ofref. We sayx :j o, ref 7
if location z is allocated, if the allocset says that the per-
missible update type for locationis 7, and if the value in
memory at location: is of typer with index;j for j < k: 4

(ref 7)(k,a,m,x)

(z,7) €a AN Vj<k.7(j,a,m,m(x))

Notice thatr is a “smaller” type thamef 7 and that to deter-
mine the members otf we, in fact, only consider those
locations in the allocset whose permissible update types are

4Recall that we would like the allocset to be a finite map from locations
to types. Since a finite map can be modeled as a relation, we(write €
a rather tharu(z) = 7.

“smaller” thanref 7. This suggests a well-foundedness or-
dering: types in our model should be stratified so that a type
at leveli relies not on theentire allocset, but only on that
subset of the allocset that maps locations to types at jevel
for j < 4. This leads us to the followingype hierarchy:

typeo = unit
allocset; = num it type;
typeir: = num X allocset; X memory X num — o

By stratifying mutable references we have eliminated the
circularity. Unfortunately, the abovaype hierarchy does
not fit into higher-order logic. We would like to have a sin-
gle type oftype in our object logic, not an infinite number
of them.

4.3 A hierarchy of Godel numberings of types

To achieve a single type ofype, we present a solu-
tion that replaces the (semantic) typeze;) in the alloc-
set with its syntax. This syntax is simply a free algebra
of type expression terms. To manipulate syntactic types in
higher-order logic, we encode them asdel numbers (we

use this term in a general sense, to mean simply “unique 3.

identifiers”). We use a stratifiedd@@él numbering relation
rep(i, n, 7) where the ®@del numben represents the type

T atleveli. Note that instead of encoding syntactic types us-
ing integers, we opted to usen@&l numbers that are finite
trees of integers. The types of the relevant logical objects
and of the @del numbering relationep are as follows:

gnum = tree(num)

allocset = num 53 gnum

pretype = num X allocset X memory X num — o
rep num X gnum X pretype — 0

type = num — pretype

A type is now a predicate oft, k, a, m, x) wherei is the
index of the type in the type hierarchy; this corresponds in-
formally to a logical object of typeype; as in section 4.2.
A predicate or{k, a, m, x) is now called a pretype. (Hence-
forth, we will uses to range over pretypes andto range
over types.)

Before we describe our pretypes and their encoding, we

definition of ref depends omrep (which has not been de-
fined yet), ref should takerep(i) (for somei > 0) as
an argument. We use to denote the corresponding for-
mal parameter, where the type pfis as follows: p :
gnum x pretype — o. (All subsequent uses of the vari-
ablep will be of this logical type — i.ep is always used to
denoterep(i) for somei > 0.)

int(k,a,m,x)

(01 Uo2)(k,a,m,x)
(ref(p, 0))(k,a,m,z)

true
o1(k,a,m,z) V o2(k,a,m,z)
In. (z,n) €a A p(n,o)

A Vi < k.o(j,a,m,m(z))

Definingrep . We can define, as a formulain higher-order
logic, arep predicate that has the following properties:
1. ltrelates the pretypat to the treecreey(1):

rep(0, treeo(1), int) 1

L]

2. ltrelatess; Uos to the tree below as follows:
rep(i,n1,01) rep(i,n2,02) 2
rep(i,treex(2,n1,n2),01 Uoz) n/\n

1 2

It relates the pretypef(p, o) to a tree where one child
is a tree with the single root node Sincep encap-
sulatesi, the level ofo in the type hierarchy; must
be part of the ®del number forref(p, o) (note that
ref(p, o) is at leveli 4 1 in this hierarchy):

rep(i,n, o)

rep(i + 1, trees(3, treeq(i), n), ref(p, o))
4. rep(i) C rep(i + 1):

rep(i,n, o)

rep(i + 1,n,0)

We show the inductive definition in the technical report [3].
Figure 2 illustrates the first few levels of the hierarchy for

the pretype constructonst, U, andref. Level O consists of

the Gidel numberings oht, intUint, (intUint) Uint, and

so on. Lets? denote a pretype that has @@l number at

level 0. Level 1 consists of @lel numberings of pretypes

o, of pretypesef(rep(0),0°), and of all pretypes in the

need some notation for representing trees of integers. A treg:osure (with respect to)) of the level 1 pretypes.

constructortree;(co, t1, - - ., t;) returns a tree with integer
co at the root and subtrees,, . . ., t;, for example:

z ! :
| /N
nl n2
treeo(l) tree;(4,treeo(1)) treex(3,ni,n2)

Pretypes. We now define the pretypéast, U, andref,
(for a type constructatycon, tycon denotes the correspond-
ing pretype constructor), and describe howes relation
may be defined for these pretypes.

Note that since the

Figure 2 also describes the structure of tlee relation:
Here, base is a subset okep(0) and specifies the @ilel
numbers of all primitive types;losure(p) specifies all the
types constructible by unioning together types numbered in
p; step(rep(i)) defines a subset ekp(i+1); theclosure
of the latter, then, gives usep(i + 1).

Types. Having definedrep, we can now define the types
that correspond to the pretypes defined above:
int(¢) int
(11 UT2)(3)

(ref 7)(i)

int
71(7) Ura(i)
ref(rep(: — 1),7(i — 1))

e 5.1 Valid states

T The judgment: 31 .., o says thate has pretyper for

N up tok execution steps with respect to the staten). Im-
plicit in this assertion is the assumption that statemn) is
well-formed orvalid such that types are guaranteed to be

| preserved foik steps. A statda,m) is valid with index

J k if it satisfies three conditions. First, the allocgemust

ref (ref (int U int))/ be a partial function, that is, each location in the allocset
- should be mapped to only oneo@¢l number (informally,

to only one type). Second, should only map locations

_____________ to legitimate @del numbers (informallyalid types). The

-z - predicatesodel specifies legitimate G&del numbers:

T~ stey
\\p

N\ int U ref (int)
\

int Uint U int
~—~base

N .
int) int Uint
_—

ref (int U int) |

_________ ref (ref (int)) -~

godel (n) = 3p',0.pCp' A p'(n,0)

Figure 2. Hierarchy of Godel numberings The subscriptp indicates thaigodel takesrep(i) as an
argument. (Note that we could have instead defined
godel (n) asdo.p(n, o). We explain why the present for-

By creating a hierarchy of &lel numbers, we have, in ef- mulation is use_ful when we discuss the definition of the type
fect, created a hierarchy of types: to determine the elementgodeptr in section 7.) Third, the type of an allocated cell’'s
of a type at levef + 1 we need to know the elements of all contents (with respect th, a, andm) must match its per-

types at level$) throughi — for this we userep(i). By missible update type in; that is, ifa maps a location to

stratifying types we have eliminated the circularity. E{:gﬁgg ;h%gg(é)u%gé% Uwistnoruelgpgzltd tZ) \;vitz?é’t?na)t

and indexk if,
match,(k,n,a,m,x) =
Vo',o.pCp = p'(n,o) = olk,a,m,x)

5 Possible worlds

The semantics we are presenting is a possible-worlds se-
mantics. Possible-worlds models (or Kripke mode)sare Definition 3 (Valid State)
specified by defining (see Huth and Ryan [13]): validstate,(k,a,m) =
e A setTV, whose elements are calleebrids In our Vz,n,n'. (z,n) €a A (z,n) €a = n =tree 0/

model, a world corresponds to a state so we have, A V&7 (z,n) €a = godel (n)
W = allocset x memory. A Vz,n. (z,n) € a = match,(k,n,a,m, m(z))

e Arelation R C W x W called the accessibility rela- The following property follows from the definition of
tion. In our model, this corresponds to the extend-state |, .1 ; 4state. Informally, the type of the value in an al-

relation on statega, m) and(a’, ') which describes 410 cell matches the type that the allocset says it should
how we can get from a well-formed (malid) state have for up tok execution steps:

(a,m) to a valid statg(a’,m’). Section 5.1 specifies
when a state is considered valid and section 5.2 speci-
fies the extend-state relation.

e A labeling functionZ : W — P(Atoms) that, given 0. pCp' AP (n,0) A M) thiam O
a world w, yields the set of atomic propositions that
hold in that world. The atomic propositiopsthat we
are interested in are of the form: “locatibmay hold

a value of pretype” where! is an allocated location.
Therefore, in our model, To formally describe the memory and allocset extensions

permissible in our model we specify the extend-state rela-
) o) tion (a,m) C, x (a’,m’) which says that state’, m’) is a
. Th(_e properties that the accessibility relatiBrshould ~ valid extension of statéz, m) with indexk — or, alterna-
satisfy — these depend on what set of formulas in- tiely, that(a, m) approximatesa’, m’) for up tok execu-
volving p (wherep is an atomic proposition) should be - tion steps. State extensions must satisfy three constraints.
detail, our model requires that the extend-state relationthen we require that < dom(a’). (The reason for this re-
be reflexive and transitive (lemma 6). striction is that the extend-state relation must be transitive.)
SKripke [29] introduced the notion of possible worlds when he devel- S€cond, the permissible update type of an allocated location
oped the model theory for modal propositional logic based on this concept. cannot be altered across state extensions, 60,#) € a

Lemma 4 (Heap Well-Typed)

(z,n) €a validstate,(k,a,m)

5.2 Valid state extension

L(a,m) ={(,0) | (l,n) € aAJi.rep(i,n,0)}

then(z,n) € o'. Third, the model requires that all mem- We say that a predicateon (i, k, a, m, z) IS extensible
ory updates be type-preserving — to enforce this we simply if it has both theupdate-inv andalloc-inv properties
require that statéa’,m’) be a valid state (which suffices Which leads to the following definition:

because the last two conditions ensure that all allocated l0-extensible(r) =

cations are “preserved” under state extension). Vi k,z,a,m,a’,m’. (a,m) Crepi—1),x (a',m)
. . / /

Definition 5 (Extend State) = 7(i,k,a,m,z) = 7(i, k,a’,m’, z)
Valid state extensiori{, ;) is specified as, If extensible(r) holds for each type in our system, then
(a,m)C,x (a/,m') = we can easily prove thdpdate, Allocation andlnitializa-

Vz,n. (z,n) €a = (z,n) € d tion Invariance rules as lemmas.

A validstate,(k,a,m) A validstate,(k,a’,m’)
Lemma 6 (C,x Reflexive and Transitive) Index closed. A property of types that we have already

mentioned is that if: has typer for k future execution steps,

then it must be the case thahas typer for j < k steps:
Consider a stat¢a,m) where all unallocated memory y 14seq(r) =

locations contaijunk; that is, there are no “initialized but Vi k,j,a,m. 0<j<k = 7(i,k,a,m,z) = 7(i, j,a,m, x)

not yet allocated” locations. When we extend the state,

(a,m) Ep . (a',m’), as a result of theteap Well-Typed ypward closed. Informally, a type at level has more “in-

The extend-state relatiofi(, ;) is reflexive and transitive.

property of a valid state, we are forced to initialize a new formation” than a type at level, for j < i — i.e., the
memory location (with a value of the appropriate type} former has access to more levelsreph and consequently,
fore we add it to the allocset: can determine the pretypes of more locations in the alloc-

set. Therefore, if we have sufficient information at levtl
conclude that: has typer, then at levef + 1 we still have
sufficient information to conclude thathas typer:

Lemma 7 (Initialization Before Allocation)
(a,m) Cok (@' ,m) & (a,m) Cpk (a,m") Cop (a,m)

iclosed(r) =
Vi, 4, k,a,m. 0<i<j = 7(i,k,a,m,x) = 7(j, k,a,m,x)

6 Whatis atype?

Atype is a predicate ofy, k, a, m, z). We now describe panresentable. To construct a value of type, we would
the four properties a type must have in order to be consid-first write the value into an unallocated memory location

ered a “good” or valid type. I, and then extend the allocset with the péirn) where
n represents the pretypéi) at some level in the Gidel
Extensible. In section 3.3 we presented thipdate In- numbering hierarchy. Clearly this last step requires the ex-

variancerule which says that type judgments are preservedistence of such anandn; i.e., there must be some> 0
across memory extension. How can we use the stratifiedsuch that the pretype(i) is representable:

model of mutable references to prove this rule as a lemma?
We start by stating update invariance as a property of a type-
predicate, which says that a type (at lei)abk closed under
valid extension of the memory (i.e., state extension at level Valid types. We say that a predicateon (i, k, a, m, x) is

repable(r,i) = In.rep(i,n, 7(7))

i—1): atype if it is extensible, index closed, upward closed and
update-inv(r) = representable:
Vi, k,x,a,m,m'. (a,m) Crep(i—1),x (a,m') Definition 8 (Type)

= T lidam T =T b ka,m! T type(T) = extensible(7) A kclosed(r) A iclosed(r)

Notice that since(a,m) C,; (a,m’) allows updates A Ji.repable(r,i)

of both allocated and unallocated locationgdate-inv

incprporates the notion dhitialization Invariance de- 7 Modeling a nontrivial type system
scribed in section 3.2.

We model the allocation of new memory by extending . .
the allocset. To reason about programs that dynamically al- !N this section we present a model of general references.
locate memory, we need a rule that says that type judgmentd/ore precisely, our model permits references to values of
are preserved under extension of the allocset. We call thisany type defined using the primitive types and type contruc-
theAllocation Invariance rule. In lieu of the rule we spec- tors shown in figure 4; figure 3 gives the pretype definitions
ify the allocation invariance property of a type-predicate: that the figure 4 definitions rely on. We will first specify

alloc-inv(r) = a Godel numbering relation for the pretypes in our system,
Vi, k,z,m,a,a’. (a,m) Crepi—1),k (a’,m) then explain some of the more involved type definitions, and
=T kam T =T ikam T finally present the relevant theorems. The accompanying

T(k,a,m,x) = true T(Z) = T
1L(k,a,m,x) = false J-(Z) = i
int(k,a,m,z) = true int(z) = int
(const(n))(k, a, m, z) — r=n (const(n))(7) = const(n
(offset(n, 7)) (k, a,m, z) = o(k,a,m,z +n) (offset(n,7))(z) = osteth7 7(4))
(61U02)(k,a,m, x) = o1(k,a,m,) (mUm2)(2) = 7())Um(7)

V o2(k,a,m,x) (11N 72)(3) = (i) N7(i)
(o1No2)(k,a,m,x) = oi(k,a,m,x) (rec F)(3) = Tec(F(i))

A o2(k,a,m,x)
(rec F)(k,a,m,x) = F*11(k,a,m,z)
(box(p, 0))(k,a,m, z) = 3n.(x, n)E_a (box T)(4) = box(rep(i — 1), 7(i — 1))

A p(n,Kconst(m(x))) (ref 7)(4) = ref(rep(i — 1),7(i — 1))
. A Vi <k.o(j,a,m,m(x)) (codeptr 7)(i) = codeptr(rep(i —1),7(i — 1))
(ref(p,0))(k,a,m,x) = In.(z,n) €a .

A p(n,Kop) A on =0 where, F(i) : pretype — pretype = 7. (F(Xi'.T))(3)

A Vi <k.o(j,a,m,m(x)) ' o
(codeptr(p,0))(k,a,m,z) = Vria,m’jj<k Figure 4. Type definitions

A T'(PC) =2z

A (avm) EP,]' (alvml) -

A o(ja,m/,r' (1)) addition, the pretype constructoséfset, U, M, andrec
= safen(j,r,m’) are used to compute thelosure of eachp wherep C
rep(i). Given somep = rep(i), the pretypebox, ref,
andcodeptr, (each of which is parametrized Ipy are used
to computestep(p). For example, ifF’ is representable
technical report [3] contains a more detailed exposition of & 1veli, then the pretype functions. ref (rep(i), (o))
our model (including existential and universal types which aNdK ec(Ao. ref (rep(i), F'(0))) are representable at level
we have not described here due to lack of space), as well a¢ + 1- We modify the definitions ogodel, match, and
proofs of the theorems in this paper. repable as follows:

Figure 3. Pretype definitions

godel (n) = 3 ,opCp Ap(nKo)
7.1 Godel numbersof pretype functions matchy (k,n,a,m,z) = Vp',0.pCp' = p'(n,Ko)
= o(k,a,m,x)
repable(F), 1) = 3In.rep(i,n, F(i))

Our model requires that we specify thed&l number of
each of the pretypes in figure 3. But to specify thedél’
number ofrec(F") (whereF' is a function from pretypes to
pretypes), we have to first specify theo@sl numbers of 7.2 Types
pretype functiong’. Rather than extend thep relation so
that it specifies the @del numbers of pretype functions as Recursive types fec). We have incorporated Appel and
well as of pretypes, we observe that if we represent everyMcAllester’s [5] indexed model of types where the indices
pretype as a pretype function that simply ignores its argu- & allow the construction of a well-founded recursion, even
ment, then we would only requiredgél numbers of pre- when modeling contravariant recursive types. All defini-
type functions. We us& o to denote a pretype function tions and proofs regarding recursive types are explained in
that ignores its argument and returns the pretypg@e., their paper. In proving that a typec(F') is a valid type
K = \y. \z.y). (theorem 11), we require that bewellfounded (see [5]).

We definerep(i, n, F'), the Gidel numbering relation
for pretype functions, in the same way as we defined
rep(i,n, o) in section 4.3. We present some of the rules
characterizing the relation in figure 5. Note tihhate now
consists of the @del numbers oK & for primitive pre-
typeso, as well as, the &del number of the identity pre- First-order continuations (codeptr). A value of type
type function\o.o. For closure, if the pretype func- codeptr(r) is a first-order continuation, that is, a machine-
tions F' and the pretype are representable at levglthen code address to which control may be passed, provided that
F (o) should also be representable at level(This con- its precondition (that registar, contain a value of type)
dition is specified by thelos_apply rule in figure 5.) In is satisfied. Consider the judgment; j, o ., codeptr(7).

Immutable references pox). The typebox of immutable
references is defined in figures 3 and 4. Any value may be
stored in an immutable location, as long as it is numerically
equal to the value that is already there.

base_T base_const base_id

rep(0, treeo(1), K T) rep(0, trees (4, treeo(c)), K const(c)) rep(0, treeo(7), AT. T)
rep(i,n1, F) rep(i,n2, K1) rep(i,n, I')
clos_apply p— clos_offset
rep(i, treez (11, ny, n2), K (F(1))) rep(i, treez (12, treeg(c), n), 7. offset(c, F'(1)))
rep(i,n1, F1) rep(i, na, F2) wellfounded(F) rep(i,n, F)
. — clos_U - — clos_rec
rep(i,treez(13,n1,n2), A7. F1(7) U F2(7)) rep(i, tree1(15,n), KTec(F))
rep(i,n, F') rep(i,n, F)
———————— step.include - - — - step_ref
rep(i + 1,n, F) rep(i + 1, treez(22, treeo(i), n), At. ref(rep(z), F'(T)))

Figure 5. Some clauses in the Godel numbering relation for pretype functions

This says that if we jump to addressn some future ma- of godel andmatch, and allows us to prove a series of
chine statgr’, m’) (i.e., if ¥(PC) = z), then(r’,m’) is a lemmas critical to the proof of the following theorem [3].
safe state foj < k steps if the following three conditions
hold. First, the argument (i.e., the value stored in register
r1) must be of the right type; that i8/(1) 51 ja/m T

Theorem 11 (Type)
a-d. type(7), wherer ::= T|L|int|const(n)

(seecodeptr in figure 3). A crucial observation about € type(r) = type(offset(i, 7)).
codeptr(p, o) is that if p = rep(i), theno is a pretype f. type(m1) A type(ms) = type(mi UTs).
at leveld'. g type(T1) A type(rs) = type(ri N7s).

Second, statéa’, m’) must be a valid extension of state |, wellfounded(F) = type(rec(F)).
(a,m) — i.e., (a,m) C,; (¢/,m'). Note that in extend-

ing (a,m) to (a’, m") we may have created new cells with I type(r) = type(box 7).

types that are higher in thed@él numbering hierarchy.
In that event we need a higher lewsdp relation, sayp’ k. type(r) = type(codeptr 7).

such thatp C p/, to ensure that staté:’,m’) is valid. _ _
But recall the definition ofralidstate, or more specif- We can construct a variety of types using the types shown

ically, the definitions ofgodel andmatch in section 5.1. in figure 4 (and3, v types [3]) as building blocks (see Ap-
The predicategodel and match are defined in such a Peland Felty [4]). Any such type (except arbitrarily nested
way that we haveralidstate,(j,a’,m’) if and only if recursive and quantified types — see section 9) can easily
validstate, (j,a’,m’) for p C p’ (see lemma 10). be shown to be aype.

Third, the progranp that is in memory in statéa, m)
must still be in memory in statgy’, m’). To enforce this 7.4 Invariancelemmas
condition, we make all allocset locations that contain pro-
gram instructions “immutable”; that is, the allocset maps
these locations to @lel numbers obox types. Since the
program is preserved under state extension, our requirement
is simply (a,m) T, ; (a’,m’).

—

type(r) = type(ref 7).

Lemma 12 (Initialization Invariance)

T Yikam T Yy ¢ a m' =m [y ::Z] type(T)
Tl k—1,a,m’ T

Lemma 13 (Allocation Invariance)

7.3 Validity of types T tgamT & =aU{(y,n)}
(y¢aV (y,n) €a) type(r)
Lemma 9 (rep Upward Closed) T ke’ m T

rep(i,n, F') = rep(t + 1,n, F)
Pl) p() Lemma 14 (Update Invariance)
T Yikam T Y ik,a,m ref 7/ Z lik,a,m T’

Lemma 10 (State Valid Modulo Rep Level) m' = mly=2] type(T)

If rep(7) is a sub-relation otep(i’') then:
validstaterep(;) (K, a,m) < validstateep(ir)(k,a,m)

Tl k—1,a,m’ T

We can show that the premises of the above lemmas satisfy
The above lemma ikeyto the consistency of our model. It the extend-stateX) relation. The conclusions then follow
follows from lemma 9 and our carefully crafted definitions trivially from type(7).

7.5 Introduction & elimination rules 9 Typed machine language

We prove introduction and elimination lemmas for each A limitation of the semantics we described in section 7

type in figure 4 [3]. We only show the lemmas fef here. is that it does not allow us to represent arbitrarily nested
Lemma 15 (Ref-I) recursive and quantified types such as the following:
Tz ¢a m(z) tikam T repable(T,1) type(T) rec(Aa. ref (rec(A\B. (ref) Uw)))
3a’. (a,m) Crep(iy.e (@'sm) A T gt j1,ar,m ref T Typed Machine Language, described by Swadi and Appel,

[31] accommodates arbitrarily nested recursive and quan-
tified types using DeBruijn indices. Our new semantics is
compatible with this approach.

Lemma 16 (Ref-E)

X lit1,k+1,a,m ref 7

m(x) i kam T

10 Machine-checked proof
8 Two examples

All of our proofs are machine-checked, and furthermore,
these proofs have an actual use: they form part of the proof
of safety of a machine-language program in a PCC sys-
tem. The logic that we use is Church’s higher-order logic
with a few axioms of arithmetic; we represent our logic,
Moctes 17— R e > and check proofs, in the LF metalogic [10] implemented in

Using our model of general references we can prove
lemma 2 for the following program fragments. The proofs
are given in the technical report [3].

s o o1 \ the Twelf logical framework [25]. Our proof “implemen-
e tation” consists of about 16,500 lines of Twelf code, us-
sefore . ing the encoding of higher-order logic described by Appel
and Felty [4]. The implementation of the Appel-McAllester
(a) Before example 1 (b) Before and after example 2 model (without mutable references) consisted of 8,200 lines

of proof, while that of the Appel-Felty model (with neither
Figure 6. Scenarios for examples contravariant recursive types nor mutable references) con-
sisted of 5,400 lines.
Example 1 (Initialize, allocate, update)
Consider figure 6(a) as the_starting point pf the following 11 Conclusions & related work
program fragment at addrelssn memory, which constructs
a reference cell of type, (i.e., initializes a location, then . . .
adds it to the allocset) and then updates it. Note thatay Denotational vs. structured _operat|onal semanugs. In
be any type definable in our system. For this example, as-OUr model we prove all type inference rulgs as derived [em-
sume that registars is a special register that always points Mas. The reader may have wondered if our denotational
to the next address to be allocated; then, to add a locatiorsemantics approach or an operational (purely syntactic) ap-
to the allocated set, we must simply increment this register.proach is the right one to take. We should observe that
For brevity, we have omitted\%k, r, m.” from the following our model is a mix of denotional and operational seman-

invariants. tics. Ourvalidstate predicate behaves like the induction
{Fa,i.7(1) tikam T AT(4) 5 kam T2 hypothesis of a syntactic progress-and-preservation proof,
Ar(5) ¢ dom(a) Ar(5) =r(6)} though in the indexed model the induction is over the num-
m(rs) — rq ber of steps that can be executed in the future rather than the

3a,i.7(1) tikam T AT(4) tikam T2 AM(r(5)) tikyam T2} past. We have used the semantic approach to build a syn-

’{“E‘l; r:f(;r) 1 A s Ar(5) ref 72} tactic type system for Sparc instructions with 1032 clauses

m(135j a r:”“’“’"” ! kam 2 ks ISR (including both operator definitions and typing rules). The

(Fa,i. (1) ikam T Ar(5) tikamref 72} syntactic proof of the soundness of this type system would

o o require the analysis of close to a thousand cases for each

Example 2 (Cycles in memory) property proved by induction. A person doing the syn-
Our model can handle cycles in the memory graph. Fig- tactic proof of this theorem would, no doubt, tire of the
ure 6(b) depicts the situation before and after executing thelarge number of cases and soon settle omla@r-property

store instruction in the following Hoare triple, whefede- to use as the induction hypothesis, just as we have done us-

notesAt. ref int Uref 7: ing validstate. There really is a continuum between the
{3a,i. 7(1) tik,a,m ref int A 100 3 k,0,m rec(F)} purely syntactic and purely semantic approaches — types
m(r1) < r1 in the Appel-Felty [4] model were sets of terms, in Appel-
{3a,1. 100 2 k,a,m rec(F)} McAllester [5] they were domains of terms, and in this

10

model we have domains of terms with embedded syntax.model has the property: “ifv < w’ then everyw,-value

We believe that in practice our approach has turned out tois aw!-value” (wherew,-value denotes a value of type

be more modular than a purely syntactic approach. in world w); this corresponds textensible in our model.
The definition (denotation to be more precise) of the type
ref 7 in his model is:[ref 7]w = $w, (where$w, denotes
"he set of cells of type in w”). Notice that[ref 7] is de-
fined in terms of the syntax rather than the semantigs]

; that is, this semantics is not compositional either. Levy is
faced with the same kind of circularity that we described in
section 4. He solves it by observing that recursive equations
on domains have solutions. We solve it by showing that our
hierarchy of types has a limit.

Locality of reasoning. We have shown how our seman-
tic model provides us with rules (lemmas) that allow us to
R , rove properties of programs with mutable references — as
for its lifetime. We suspegt that only pqr_ely extensmn_al ﬁ)ng ag thF:ase propgrtigs are expressed as types. There has
co.ncepts can .have a (strictly) compositional semantics. o qn a great deal of work on program-proving for pointers;
Kripkean possible worlds have proven extremely valuable pere, we discuss only the formalism described by Ishtiag
in modeling intension. So let us consider the nature of and O’Hearn [14] (which is closely related to the work of
possible worlds. Peregrin’s [24] analysis concludes that “a Burstall and Reynolds [7, 28]). When proving properties
possible world in the intuitive sense can be explicated asof programs that mutate the heap, a great deal of effort is
a maximal consistent class of statements”. This implies spent reasoning about what da®st change. Ishtiag and
that to give the semantics of possible worlds we require O'Hearn use the Bl logic [20] which provides a spatial form
techniques like coinduction [23, 17, 6] or non-well-founded Of conjunctions such that the statemeit« Q is true just

sets [2], each of which is in some sense syntax-dependent‘."’he”fthﬁ,Crtl‘”e“kt heap Ca”db?] Sp":] intof t\/\;‘q (r:lompl?nents,
In light of that, and Peregrin's conclusion that “possi- 2n€ Of which make#’ true and the other of which makexs
ble worlds are language dependent”, our embedding Oftrue. This operator allows them to introduce frame axioms

) i) . .~ (which describe invariants of the heap) using the rule,
syntactic types (that express intension) in the semantics

Compositionality and syntax-in-the-semantics. We
have presented a model of general references based o
possible-worlds semantics. This model is not composi-
tional in the conventional sense. To see why, consider the
fact that a value: is of typeref 7 if and only if it has type

7 in the extensional sense (which, in our model, means by
inspection of the registers and memory) aisb has type

7 in the intensional sense. The intension indicates that
will continue to be of typer indefinitely. References in
ML and Java have an intensional component: whesfa
cell is allocated it is tagged with the type that it must have

seems unavoidable. But the latter should not be interpreted __Pe} ModifiesOnly(C) N free(R) =0
as: “the use of @del numbers in the semantics seems {F* R}C{Q * R}
unavoidable” — we use @lel numbers to encode our where ModifiesOnly(C) is the set of (free) variables that

stratified semantics in higher-order logic, but even without are updated by the commaat This resembles the follow-

that, the stratified semantics itself contains syntactic typesing rule in our system, though in our modél,is restricted

(in the allocset;). to type judgments such asl) . 71 A 100 tqm 72
(where 100 may be a memory location). Also, in our model,

Game semantics. Hintikka [11] advocated the use of ModifiesOnly(C) is the set ofegistersthat are updated by

game-theoretical semantics to model possible worlds.the command” and free(R) is the set of registers about

Game semantics is especially useful in removing from which R contains assertions:

consideration alimpossiblepossible worlds. Abramsky, {P}C{Q}

Honda and McCusker[1] describe a game semantics of gen- {P A R}C{Q A R}

eral references that they show to be fully abstract. In this the use of\ instead of has important consequences. Con-
model, refe_:rence types are modeled by their behavior, orsjger the situation in figure 1(b). Now suppose we have the
more specifically as a product of a “read method” and a following C, P, Q, andR:

“write method” in the style of Reynolds [27]. This represen-
tation is quite different from that in location-based models

ModifiesOnly(C) N free(R) = 0

P = da. T‘(5) ‘k,a,m ref 79 A r(4) k,a,m T2
C=m(rs) < ra

such as ours. It would be interesting to see if such a model Q = 3a.7(5) p.am ref 7
could be incorporated into a foundational PCC system. R=3a.r(1) Mn n
Levy's possible-worlds model. Recently, Levy [15] de- If {P}C{Q} holds, then using our frame-axiom introduc-

scribed a possible-worlds model for general references.tion rule, we can concludgP A R}C{Q A R} holds. We
There are interesting correspondences between his modatannot concludéP* R}C{Q = R} using their frame-axiom
and ours. Hisvorld-store(w, s), wherew is aworld ands is introduction rule because in this situation (figure 1(b)) the
aw-store, (i.e., each location inis well-typed with respect heap cannot be split into two parts, such that one part satis-
to w) corresponds to a valid state, m) in our model. His fies»(5) :4,, ref 7 and the other pam(1) :4 , 7. Their
accessibility relation between worlds resembles ours. Hisframe axiom introduction rule is useful when aliasing is not

11

expected to occur because their predicdtesre stronger
than just typing judgments.

Other related work. The use of a store typing mapping
locations to types is not new. Tofte [32] uses this approach

teenth Annual IEEE Symposium on Logic in Computer Sci-
ence pages 334-344, Los Alamitos, California, 1998. IEEE
Computer Society Press.

P. Aczel. Non-Well-Founded Set<Center for the Study of
Language and Information, Stanford University, 1988.

in his type soundness proof for polymorphic references. [3] A.J. Ahmed, A. W. Appel, and R. Virga. A stratified se-

Tofte, however, makes use of coinduction to handle cycles
in the memory graph. Harper [9] has shown how a progress-
and-preservation proof can be arranged so that there is no
need for coinduction. Our model, meanwhile, can handle

cycles in memory by virtue of the indéx For a reference

to a memory cycle to be well-typed, we only need to know

that it is well-typed to approximatioh. With each mem-

ory dereference the decreases. Hence, there is no need for

coinduction.

A common feature of models of mutable state is that they
specifyhow the state is allowed to vary over time. Mod-
els for Idealized Algoldeveloped by Reynolds and Oles
[27, 21, 22] make use of functor categories indexed by pos- 71
sible worlds orstore shape$o specify how the size of the
store, as well as its contents, may change at any point in the
program. We note, however, that these models do not han-
dle general references. Stark [30] (building on work done [8]
with Pitts on possible world models of the nu-calculus [26])

describes a denotational semanticsReduced Mlthat in-
cludes integer references.

12 Future work

All practical languages provide some means for manag-
ing memory, but the model that we have described does not;q
allow memory to be reclaimed. Building a possible-worlds
model that permits deallocation is challenging in the con-
text of ML-style references where the type of a memory [11]
cell is fixed upon allocation; (technically, the difficulty lies
in defining an extend-state relation that permits deallocation [1
andis transitive). We are attempting to extend our possible-
worlds model to allow region-based memory management. [13]

Appel and McAllester’'s indexed model [5] has both a
simple, nonextensional version and an extensional version
using PERs. It is not trivial to make an extensional seman- [14]
tics for general references because the equivalence of two
values depends on the set of their free locations. We intend

to investigate this.

Acknowledgements. We would like to thank Peter O’Hearn
for noting that our model is a possible-worlds model and for point-
ing out Paul Levy'’s related work, and the anonymous referees for

various helpful comments and suggestions.

References

[1] S. Abramsky, K. Honda, and G. McCusker. A fully abstract

game semantics for general referencefroceedings Thir-

12

mantics of general references embeddable in higher-order
logic. Technical Report TR-650-02, Princeton University,
May 2002.

[4] A.W. Appel and A. P. Felty. A semantic model of types and

machine instructions for proof-carrying code.R@PL '00:

The 27th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languagegages 243-253. ACM Press,
Jan. 2000.

[5] A.W. Appel and D. McAllester. An indexed model of recur-

sive types for foundational proof-carrying code. Technical
Report TR-629-00, Princeton University, Oct. 2000.

] J. Barwise and L. MossVicious Circles: On the Mathemat-

ics of Non-wellfounded Phenomen@ambridge University
Press, 1996.

R. M. Burstall. Some techniques for proving correctness
of programs which alter data structures. In B. Meltzer and
D. Michie, editors,Machine Intelligence ,7pages 23-50.
Edinburgh University Press, Edinburgh, Scotland, 1972.

M. P. Fiore, A. Jung, E. Moggi, P. O’Hearn, J. Riecke,
G. Rosolini, and |. Stark. Domains and denotational seman-
tics: History, accomplishments and open problems. Tech-
nical Report CSR-96-2, School of Computer Science, The
University of Birmingham, 1996. 30pp., available from
http://www.cs.bham.ac.uk/ .

R. Harper. A note on: “A simplified account of polymor-
phic references” [Inform. Process. Leftl (1994), no. 4,
201-206; MR 95f:68142]Information Processing Letters
57(1):15-16, 1996.

] R. Harper, F. Honsell, and G. Plotkin. A framework for

defining logics. Journal of the ACM40(1):143-184, Jan.
1993.

K. J. Hintikka. Impossible possible worlds vindicatddur-

nal of Philosophical Logic4:475-484, 1975.

P. Hudak, S. Peyton Jones, and P. Wadler. Report on the pro-
gramming language Haskell, a non-strict, purely functional
language, version 1.BIGPLAN Notice27(5), May 1992.

M. R. A. Huth and M. D. Ryan.Logic in Computer Sci-
ence: Modelling and reasoning about syster@ambridge
University Press, Cambridge, England, 2000.

S. Ishtiag and P. W. O’'Hearn. Bl as an assertion language
for mutable data structures. ®onference Record of POPL
2001: The 28th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languagepages 14—26, New
York, 2001. ACM.

P. B. Levy. Call-by-Push-Value Ph. D. dissertation, Queen
Mary, University of London, London, UK, March 2001.

N. G. Michael and A. W. Appel. Machine instruction syntax
and semantics in higher-order logic. 17th International
Conference on Automated Deductidane 2000.

R. Milner and M. Tofte. Co-induction in relational seman-
tics. Theoretical Computer Sciencg7(1):209-220, 1991.

G. Morrisett, D. Walker, K. Crary, and N. Glew. From Sys-
tem F to typed assembly languageCM Trans. on Program-
ming Languages and Systerg4(3):527-568, May 1999.

(19]

(20]

(21]

(22]

(23]

(24]

(25]

[27]

(28]

[29]

(30]

(31]

(32]

G. Necula. Proof-carrying code. Bdth ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guagespages 106-119, New York, Jan. 1997. ACM Press.
P. W. O’'Hearn and D. J. Pym. The logic of bunched im-
plications. Bulletin of Symbolic Logic5(2):215-244, June
1999.

F. J. Oles.A Category-Theoretic Approach to the Semantics
of Programming LanguagesPh. D. dissertation, Syracuse
University, Syracuse, New York, August 1982.

F. J. Oles. Functor categories and store shapes. In P. W.
O'Hearn and R. D. Tennent, editor®yLGOL-like Lan-
guages, Volume,2pages 3-12. Birldwiser, Boston, Mas-
sachusetts, 1997.

D. Park. Fixpoint induction and proofs of program proper-
ties. In B. Meltzer and D. Michie, editor&jachine Intelli-
gence volume 5, pages 59-78, Edinburgh, 1969. Edinburgh
University Press.

J. Peregrin. Possible worlds: A critical analysitie Prague
Bulletin of Mathematical Linguistic$9-60:9-21, 1993.

F. Pfenning and C. Sdinfhann. System description: Twelf
— a meta-logical framework for deductive systems. In
The 16th International Conference on Automated Deduc-
tion. Springer-Verlag, July 1999.

A. M. Pitts and I. D. B. Stark. Observable proper-
ties of higher order functions that dynamically create lo-
cal names, or: What'siew? In A. M. Borzyszkowski
and S. Sokotowski, editordylathematical Foundations of
Computer Science 199%olume 711 ofLecture Notes in
Computer Scienggages 122-141, Berlin, 1993. Springer-
Verlag.

J. C. Reynolds. The essence of Algol. In J. W. de Bakker
and J. C. van Vliet, editorsAlgorithmic Languagespages
345-372, Amsterdam, 1981. North-Holland.

J. C. Reynolds. Intuitionistic reasoning about shared muta-
ble data structure. In J. Davies, B. Roscoe, and J. Woodcock,
editors,Millennial Perspectives in Computer Scienpages
303-321, Houndsmill, Hampshire, 2000. Palgrave.

S.A. Kripke. Semantical considerations on modal logic. In
Proceedings of a Colloquium: Modal and Many Valued Log-
ics, volume 16, pages 83-94, 1963.

I. D. B. Stark. Names and Higher-Order Function®h. D.
dissertation, University of Cambridge, Cambridge, England,
December 1994.

K. N. Swadi and A. W. Appel. Foundational semantics for
tal syntactic rules via typed machine language. Submitted
for publication, 2002.

M. Tofte. Type inference for polymorphic referencésfor-
mation and Computatiqr89:1-34, November 1990.

13

