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Abstract

Register allocation based on graph coloring performs poorly for machines with
few registers, if each temporary is held either in machine registers or memory over
its entire lifetime. With the exception of short-lived temporaries, most temporaries
must spill – including long lived temporaries that are used within inner loops. Live-
range splitting before or during register allocation helps to alleviate the problem
but prior techniques are sometimes complex, make no guarantees about subse-
quent colorability and thus require further iterations of splitting, pay no attention
to addressing modes, and make no claim to optimality. We formulate the regis-
ter allocation problem for CISC architectures with few registers in two parts: an
integer linear program that determines the optimal location to break up the imple-
mentation of a live range between registers and memory, and a register assignment
phase that we guarantee to complete without further spill code insertion. Our lin-
ear programming model considers the various addressing modes available to an
instruction and finds an optimal solution quickly. The second phase will complete
without spilling, but at the expense of register-register copies remaining in the pro-
gram. The task of coloring while leaving behind the minimum number of splits
(optimal coalescing) is left as an open problem; we discuss two unsatisfactory
solutions (one fast and suboptimal, the other optimal but far too slow).
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1 Introduction.

Register allocation by graph coloring has been a big success for machines with 30 or
more registers. The instruction selector generates code using an unlimited supply of
temporaries; liveness analysis constructs an interference graph with an edge between
any two temporaries that are live at the same time (and thus cannot be allocated to the
same register); a graph coloring algorithm finds aK-coloring of the interference graph
(whereK is the number of registers on the machine). If the graph is notK-colorable,
then some nodes are spilled: the temporaries are implemented in memory instead of
registers, with a cost for loading them and storing them when necessary. Graph coloring
is NP-complete, but simple algorithms can often do well.

An important improvement to this algorithm was the idea that the live range of a
temporary should be split into smaller pieces, with move instructions connecting the
pieces. This relaxes the interference constraints a bit, making the graph more likely to
beK-colorable. The graph-coloring register allocator should coalesce two temporaries
that are related by a move instruction if this can be done without increasing the number
of spills.

Unfortunately, this approach has not worked well for machines like the Pentium,
which haveK = 6 allocable registers (there are 8 registers but usually two are dedicated
to specific purposes). What happens is that there will typically be many nodes with
degree much greater thanK, and there is an enormous amount of spilling. Of course,
with few registers there will inevitably be spilling, as the live variables cannot all be
kept in registers; but if a variable is spilled because it has a long live range, then it stays
spilled even (for example) in some loop where it is frequently used.

There have been much research on shrinking and splitting of live ranges[LGAT97,
Bri92, CH90, LH86], but some of these approaches are quite complicated and it was
not clear how best to integrate them with graph-coloring or other register allocation
algorithms.

At one point we attempted a simple solution to the problem: split all the live ranges
into quite small pieces (one basic block per piece), then use iterated register coalescing
[GA96] to join as many pieces as possible without spilling. It was obvious to us that this
approach would work, but in fact it failed. The problem is that many nodes have very
high degree, so no conservative coalescing was possible. Iterated register coalescing
guarantees to keep a colorable graph colorable, but it cannot find the optimal set of
nodes to spill in an uncolorable graph.

In the last few years some researchers have taken a completely different approach
to register allocation: formulate the problem as an integer linear program (ILP) and
solve it exactly with a general-purpose ILP solver. ILP is NP-complete, but approaches
that combine the simplex algorithm with branch-and-bound can be successful on some
problems. Unfortunately, the work to date in optimal register allocation via ILP has not
quite been practical: Goodwin’s optimal register allocator can take hundreds of seconds
to solve for a large procedure [Goo96, GW96]. Goodwin has formulated “near-optimal
register allocation (NORA)” as an ILP; our solution can be viewed as a different ap-
proach to near-optimal register allocation.
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A two-phase approach. Our new approach decomposes the register allocation prob-
lem into two parts: spilling, then register assignment. Instead of asking, “at program
point p, should variablev be in registerr?” we first ask, “at program pointp, should
variablev be in a register or in memory?” Clearly, this is a simpler question, and in fact
we can formulate an integer linear program (ILP) that solves it optimally and efficiently
(tens of milliseconds). This phase of register allocation finds the optimal set of spills.

Not only does our algorithm compute where to insert loads and stores to implement
spills, but it also optimally selects addressing modes for CISC instructions that can get
operands directly from memory. For example, the add instruction on the Pentium takes
two operandss and d, and computesd← d + s. The operands can be in registers
or in memory, but they cannot both be in memory. On a modern implementation of
the instruction set, the instructionm[x]← m[x] + s is no faster than the sequence of
instructionsr ←m[x]; r ← r + x; m[x]← r. However, the latter sequence requires an
explicit temporaryr, and if there are many other live values at this point, some other
value will have to be spilled; the former sequence wouldn’t require the spilling of some
other value. Therefore, it is important to make use of the CISC instructions.

The second phase is to allocate the unspilled variables to registers. This is still
difficult to do efficiently, as we will discuss in section 5.

In judging our decomposition into two phases, there are three important questions
to ask:

1. When we decompose the problem into two subproblems (spilling, coloring) and
solve each subproblem optimally, does that lead to an optimal solution to the
original problem? We will present empirical evidence that the solutions are ex-
cellent, but there is no theoretical reason that they will be optimal.

2. Can the spilling subproblem be solved optimally and efficiently? We will show
that it can, using integer linear programming.

3. Can the coloring subproblem be solved optimally and efficiently? We can do it
optimally but slowly using ILP; we can do it quickly but suboptimally using iter-
ated register coalescing; but at present we cannot do it optimally and efficiently.
However, the coloring subproblem is an interesting simplification of the general
graph-coloring register-allocation problem, and one that we think merits further
study as a problem in algorithms.

2 Optimal spilling via ILP

We model the register-spilling problem as a 0-1 linear program, that is, an optimiza-
tion problem with constraints that are linear inequalities, a linear cost function, and
the additional constraint that every variable must take the value 0 or 1. We use AMPL
[FGK93] to describe, generate, and solve the linear program. AMPL is a programming
language for describing the constraints and objective in a linear program as a mathe-
matical model. The AMPL compiler derives an instance of the optimization problem
by instantiating the model with data specific to the task being solved, and feeds the
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resulting system (in a suitable form) to a standard off-the-shelf simplex solver. The
data is in the form of symbolic sets and scalar parameters.

The input to our spiller is a control-flow graph containing Intel IA-32 instructions.
At the lowest level, our model contains a set of symbolic variablesV corresponding to
temporaries in the program, and a setP of points within the flowgraph. There is a point
between any two sequential instructions. A branch instruction terminates in a single
point that is then connected to all points at the targets of the branch. In the AMPL
model, these sets are declared simply as:

model
set V;
set P;

There are several different classes of instructions in the IA-32 instruction set, such
as two address binary instructions (d← d⊕s), and unary instructions (d← f(s)), for
example. If there is an add instruction between program pointp1 and a successor
point p2, with source variablev1 and destination variablev2, we model this by writing,
(p1, p2,v1,v2) ∈ Binary , and similarly forUnary . That is, setBinary is a subset
of P×P×V×V and is declared in the AMPL model using:1

set Binary ⊂ (P×P×V×V) ;
set Unary ⊂ (P×P×V×V) ;

For any variablev1 that is live at a pointp1, we write (p1,v1) ∈ Exists . The
Exists set is similar to the live set but not identical: if an instruction between points
p1 and p2 produces a resultv that is immediately dead, thenv is nowhere live but
(p2,v) ∈ Exists .

If a variablev1 is live and carried unchanged from pointp1 to p2, then we say that
(p1, p2,v1) ∈ Copy. If, from point p1 to point p2 variablev1 is copied to variablev2

(e.g., by a move instruction), we write(p1, p2,v1,v2) ∈ Copy2 .

set Exists ⊂ (P×V) ;
set Copy ⊂ (P×P×V) ;
set Copy2 ⊂ (P×P×V×V) ;

The compiler selects instructions that use temporaries (v,w, . . .) that are to be as-
signed registers, but sometimes refers to specific registers (%eax, %esp, . . . ), either
because a machine instruction requires an operand in a specific register or because of
parameter-passing conventions.

Now consider the instruction

movl %eax, %v

that moves the contents of register%eax to the variablev . We model this as an instruc-
tion that takes no argument (because no temporary is a source operand) and produces
a result intov . Binary instructions (such asmovl ) can take their source or destina-
tion operands from registers or memory, but they cannot both be from memory. In this

1AMPL actually uses the wordcross instead of the symbol×, andwithin instead of⊂. In general,
we will use mathematical notation instead of strictly AMPL notation in the body of the paper, and give the
exact AMPL code in the appendix.
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case, since the source (%eax) is known to be a register, the destination can be a register
or memory. The class of instructions that take no argument and produce a register or
memory result we callNullary .

In contrast, in the instruction

movl 4(%esp), %v

that moves the contents of memory at4(%esp) to v , the operandv must be a register.
The instruction class that take no argument and produce a register-only result we call
NullaryReg .

set Nullary ⊂ (P×P×V) ;
set NullaryReg ⊂ (P×P×V) ;

Some instructions accomplishv← f(v), wherev can be in a register or memory
(e.g. addl($256, %v) , that adds an immediate to the variablev ); others require
thatv must be in a register and nothing else (e.g.addl(4(%esp), %v) ). We call
theseMutate andMutateReg respectively:

set Mutate ⊂ (P×P×V) ;
set MutateReg ⊂ (P×P×V) ;

For cases where no results are produced, the instruction may take two operands
of which at most one can be in memory (e.g., thecompareinstruction); or take one
operand which can be either a register or memory (e.g.addl(%v, %eax) ); or take
one operand that must be in a register. We call these three instruction-classesUseUp2,
UseUp, andUseUpReg respectively:

set UseUp2 ⊂ (P×P×V×V) ;
set UseUp ⊂ (P×P×V) ;
set UseUpReg ⊂ (P×P×V) ;

Consider a branch instruction between pointsp1 andp2 that branches top4 if v1 =
0, but otherwise falls through top3. It is necessary to know about points such asp2

that are associated with a branch, as we cannot insert spill or reload instructions atp2.
We therefore have

set Branch ⊂ P

with p2 ∈ Branch . Supposev3 is live throughout, andv1 is live only in thep4 succes-
sor. Then it is necessary to propagate this liveness along the edges of the branch, and
we represent this by generating

(p1, p2,v1) ∈ UseUp

{(p1, p2,v3),(p2, p3,v3),(p2, p4,v3),
(p1, p2,v1),(p2, p4,v1),} ⊂ Copy

The model declares several scalar and vector parameters (that are indexed symbol-
ically using sets such asP). Each point in the program has an estimated frequency
of execution that is used to weight the cost of spill or reload instructions in our op-
timal spilling framework. The frequencies can be obtained by profiling or by static
estimation [WL94]. In our model we have the vector parameterweight :
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param weight { P};

to say that there is oneweight parameter for each point.
In the case where the compiler has explicitly used a machine register (e.g.,movl %eax,%v ),

that register (e.g.,%eax) is not available for coloring temporaries live at the same point.
We communicate this to the model via a parameterK specific to each point:

param K { P};

Finally we have some scalar cost parameters:

param Cload, Cstore, Cmove, Cinstr

Cload, CstoreandCmove are the cost of executing a load, store, and move instruction.
Cinstr is the cost of fetching and decoding one instruction byte. Presumably,Cload>
Cstore>Cmove>Cinstr. (In fact,Cinstr really measures the cost of a slight extra pressure
on the instruction cache.)

Example. Figure 1 shows the Intel IA-32 instructions that may be generated for the
factorial function, and Figure 2 shows the corresponding flowgraph annotated with
points surrounding each instruction. For this program the following AMPL sets are
generated:

set P := { p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14}
set V := { t1 t2}
set Branch := { p7 p11}
set NullaryReg := { (p3, p4,t1)}
set UseUp2 := { (p5, p6,t1,t2)}
set UseUp := { (p8, p9,t1) (p12, p13,t2)}
set Mutate := { (p9, p10,t1)}
set MutateReg := { (p8, p9,t2)}
set Binary := { (p8, p9,t1,t2)}
set Copy :=

{ (p4, p5,t1) (p5, p6,t1) (p6, p7,t1) (p7, p8,t1) (p8, p9,t1) (p10, p11,t1) (p11, p8,t1)
(p5, p6,t2) (p6, p7,t2) (p7, p8,t2) (p9, p10,t2) (p10, p11,t2) (p11, p8,t2)}

set Exists :=
{ (p4,t1) (p5,t1) (p6,t1) (p7,t1) (p8,t1) (p9,t1) (p10,t1) (p11,t1)

(p5,t2) (p6,t2) (p7,t2) (p8,t2) (p9,t2) (p10,t2) (p11,t2) (p12,t2) (p13,t2)}

Theimull instruction is not classified as aBinary instruction as the destination
must be a register operand, and cannot be memory. Therefore,imull is classified as
MutateReg for the destination operand andUseUp for the source operand, as the
source can be in either class.

Missing in the data are the concrete parameters such as the execution frequency of
each point, the costs, and the value ofK at each point. If we assume that%esp and
%ebp are dedicated, then the value ofK at all points in the flowgraph is 6, except at
pointp_13 where%eax is defined, and the value ofK is 5.
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fac: pushl %ebp ;; save old frame pointer
movl %esp, %ebp ;; new frame pointer
movl 8(%ebp), t1 ;; n
movl #1, t2 ;; fac := 1
testl t1, t1 ;; cc := n ∧ n
je L1 ;; if n=0 goto L1

L2: imull t1, t2 ;; fac := n * fac
decl t1 ;; n := n - 1
jnz L2 ;; if n <> 0 goto L2

L1: movl t2, %eax ;; return register
leave ;; done
ret

Figure 1: Intel IA-32 instructions for the factorial function
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Figure 2: Flowgraph annotated with points
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3 Variables and constraints

Spilling is the insertion of loads and stores between the instructions of the program.
Each instruction of our program spans a pair of points, and “between the instructions”
means “at a point.” Thus, we will insert loads/stores at points, not between them.

Consider a variablev live at a program pointp. The variablev could arrive atp
in a register and depart in a register – we call thisr p,v. Or it could arrive in memory
and depart in memory –mp,v. It could arrive in a register and depart in memory –sp,v;
or v could arrive in memory and depart in a register –l p,v. A solution to the spilling
problem is just the description of where the loads and stores are to be inserted.

We model this as follows:

var r {Exists} binary;
var m {Exists} binary;
var l {Exists} binary;
var s {Exists} binary;

This says that for each(p,v) in Exists – that is, for each variablev live at a program
point p – there are linear-program variablesr p,v, mp,v, l p,v, andsp,v; thebinary key-
word says that the variable must take on the value 0 or 1. We wish to find the values of
these variables subject to a set of linear constraints.

Exists: The first constraint is that exactly one of these variables is set for anyp and
v:

∀(p,v) ∈ Exists . l p,v + rp,v + sp,v + mp,v = 1

Branch: At a branch-point it’s not possible to load or store, because we can’t insert
an instruction after a conditional-branch instruction but before its targets.

∀(p,v) ∈ Exists s.t. p∈ Branch . l p,v + sp,v = 0

Coloring: At any pointp, all the stores can be performed before all the loads. How-
ever, the variables to be stored originate in registers, therefore the sum of variables that
remain in registers and those that are to be spilled must be no more than the number of
registers available for coloring.

∀p∈ P. K[p] ≥ ∑
(p,v)∈Exists

rp,v + sp,v

Similarly, after all the loads have been done at a point, the number of variables in
registers should be no more thanK.

∀p∈ P. K[p] ≥ ∑
(p,v)∈Exists

rp,v + l p,v
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Copy propagation: If a variablev is copied fromp1 to p2, then either it departs
from p1 in a register and arrives atp2 in a register, or it departs fromp1 in memory and
arrives atp2 in memory. If it departs fromp1 in a register it must have already been in
a register (i.e.rp1,v = 1), or was loaded into a register atp1 (l p1,v = 1). If it arrives at
p2 in a register, it can either continue in a register atp2 (rp2,v = 1) or it can be stored at
p2 (sp2,v = 1):

∀(p1, p2,v) ∈ Copy. l p1,v + rp1,v = sp2,v + rp2,v

The constraintsp1,v + mp1,v = l p2,v + mp2,v is redundant and must not be specified
(redundant constraints will – with the inevitable rounding errors – overconstrain the
problem so that the LP solver fails to find a solution).

If a variablev1 at p1 is copied to a variablev2 at p2, then if it departsv1 in a register
it must arrivev2 in a register. The constraint is similar to theCopy case except that
two variables are involved.

∀(p1, p2,v1,v2) ∈Copy2 .
l p1,v1 + rp1,v1 = sp2,v2 + rp2,v2

3.1 Specifying the CISC instructions

On the IA-32 (x86, Pentium), if there is aBinary instruction (e.g., two-operand add)
betweenp1 andp2, operating on source variablev1 and destination variablev2, then at
least one ofv1 andv2 must departp1 in registers:

∀(p1, p2,v1,v2) ∈ Binary
l p1,v1 + rp1,v1 + l p1,v2 + rp1,v2 ≥ 1

Furthermore, the destination operandv2 must be in registers departingp1 if and
only if it is in registers arrivingp2:

∀(p1, p2,v1,v2) ∈ Binary
l p1,v2 + rp1,v2 = sp2,v2 + rp2,v2

There are similar constraints for the other classes of instructions, as shown in the
appendix. They say that the result of aNullaryReg must arrivep2 in a register; at
least one operand of aUseUp2 must be in a register; the operand of aUseUpReg
must be in a register; the operand of aMutate must departp1 in the same storage
class as it arrivesp2; the operand of aMutateReg must departp1 in a register and
arrivep2 in a register; and that at least one operand of aUnary must be in a register.

These constraints are all Pentium-specific, but by illustrating how easily they are
specified we hope to convince the reader that many kinds of CISC instructions could
be specified within this framework.
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3.2 Objective function

The objective function of our linear program calculates the estimated runtime cost of
the spill-related loads, stores, and CISC operands. The first component of the cost
comes from loads and stores:

minimize COST :
(∑(p,v)∈Exists

weight p((Cload+ 3Cinstr)l p,v+
(Cstore+ 3Cinstr)sp,v))

+ . . .

The cost of executing a load isCload. The cost of a 3-byte load instruction (in i-cache
occupancy) is 3Cinstr. For each pointp and variablev such that there is a spill-load ofv
at p we incur this cost; and similarly for stores.

If the destination operand of aBinary instruction is in memory, we incur a cost
Cload andCstore, and only one byte ofCinstr cost to specify the operand. If the source
operand is in memory, then we incur only a load cost and one instruction-byte cost:

+(∑(p1,p2,v1,v2)∈Binary

weight p1((Cload+Cinstr )(1− (rp1,s+ l p1,v1))
+(Cload+Cstore+Cinstr )(1− (rp2,v2 + sp2,v2))))

+ . . .

There are similar clauses to account for the cost of memory operands of the other
classes of instructions:Unary , Mutate , and so on.

This completes the description of our linear-program model of spill costs.

3.3 Special cases of instructions

Consider an add instruction whose destination is known to be in memory:m[x]←
m[x] + v. This could occur becausex is the address of an array element, for example.
Thenv must be in a register, andx must be in a register. We can model this as

(p1, p2,x) ∈ UseUp
(p1, p2,v) ∈UseUp

Similarly, the instructionv← v+ m[x] is modeled as

(p1, p2,v) ∈Mutate
(p1, p2,x) ∈ UseUp

Or consider the case where the source operand is a constant,v← v+ c:

(p1, p2,v) ∈Mutate

There are many variations on this theme, but the point is that each special case of
an instruction (where one of the operands is forced to be in memory, or in registers, or
constant) reduces to a case that can also be described in the model. The compiler does
this reduction before generating the data set sent to AMPL.
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4 Solving the model.

Our compiler [AM91][GGR94] feeds the data associated with a flowgraph together
with the model to AMPL. AMPL generates a linear program with variables, constraints,
and an objective function. From the example in Figure 2 the variables:

rp4,t1, l p4,t1, sp4,t1, mp4,t1

would be generated fort1 corresponding to the pointp4, since(p4,t1) ∈ Exists . A
constraint corresponding to theExists formula (Section 3) would establish the equa-
tion:

rp4,t1 + l p4,t1 + sp4,t1 + mp4,t1 = 1

In a typical large cluster of basic blocks spanning several source-program functions,
there will be a few thousand pointsp and several hundred temporariesv, yielding tens
of thousands of linear-program variables.

AMPL first runs a “presolve” phase in which as many variables as possible are
eliminated; for example, any use ofmp,v could be replaced by 1− (rp,v + l p,v + sp,v).
After the presolve, AMPL formats the linear program in a way acceptable to the back
end, which is any one of several commercial and noncommercial LP solvers. Some of
these solvers can do integer linear programs using a combination of the simplex method
with branch-and-bound; others can do only continuous LP’s using simplex alone. We
have used CPLEX [CPL00] and IBM’s OSL [Hun93]; CPLEX is an order of magnitude
faster but sometimes dumps core.

After the ILP solver is finished, AMPL formats the results – a table ofr, l ,s,m for
each(p,v). Our compiler computes all the spilling from this information inserting
load and store instructions at points wherel p,v andsp,v is set, and introduces memory
operands at instructions for whichmp,v is set. A prior phase assigns a logical spill
location for every temporary, ensuring that nonoverlapping live ranges share the same
memory location.

5 Optimal register coalescing

In a flowgraph where no more thanK variables are ever simultaneously live, it may still
be the case that there is noK-coloring of the variables – thatK registers do not suffice.
If x interferes withy at point p1, y interferes withz at pointp2, andz interferes with
x at pointp3, then no more than two of these variables are simultaneously live, but no
two of them can share a register.

Our solution is to copy every variable to a freshly named temporary at every pro-
gram point. At pointp1 we will copy x2← x1 and y2← y1, at p2 we copyy3←
y2|| z3← z2, and so on. We assume the copies are done in parallel, so thaty2 interferes
only with x2 and not withx1 or z3. Then no temporary interferes with more thanK−1
others, and the graph is colorable.

Whenever there is an edge from program pointp1 to p2 such that the optimal-
spill model has aCopy or Copy2 relation, we also introduce a copy in the optimal-
coalescing graph. That is, all the variables copied across an edge are formed into a
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Figure 3: Flowgraph with internal splits
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parallel copy that is meant to occur simultaneously with any other instruction executed
at the edge. For edges that don’t contain any “real” instruction, a new basic block
must sometimes be introduced; this is callededge splittingand is common in register-
allocation problems [App98, figs. 19.2–3].

After the graph is colored, eachK−way parallel copy must be implemented by
a sequence ofK register-register move instructions. If the parallel copy corresponds
to a permutation with one or more cycles, then extra work (and extra storage) may be
required to move a value out of the way and then move it back. Fortunately, thexchg
(exchange two registers) on the IA-32 avoids the need for extra storage.

Because there are no more thanK live variables at any time, and because a variable-
span live at one time is never live at any other time (onlyrelatedto other live ranges),
the graph is triviallyK-colorable. Any conflicts that arise at an instruction can be
removed by an appropriate set of parallel copies before the instruction. That is, from
the result of the spill phase, we can construct an interference graph in which every
node2 has degree less thanK. Such a graph can be easily colored by Kempe’s algorithm
[Kem79] (rediscovered 102 years later by Chaitin [CAC+81]).

Having K “artificial” move instructions before every “natural” instruction would
be expensive. Given a move instructionu← v, if u andv can be colored the same –
assigned to the same register – then the move can be deleted. Theregister coalescing
problem is to find a coloring so that as many moves as possible have source and desti-
nation colored the same. When we formulate the coloring problem, we say thatu and
v aremove-related.

Briggs [BCT94] developed an algorithm calledconservative coalescingthat K-
colors a graph while attempting to color move-related nodes the same. Ouriterated
register coalescingalgorithm [GA96] is an improvement to Briggs’s algorithm; it is
a greedy algorithm that will coalesce two nodes in the interference graph whenever
it can be proved, using a simple heuristic, that the action will not render the graph
non-K-colorable.

Iterated register coalescing is efficient (linear time) and in many applications (es-
pecially on underconstrained problems such as RISC machines with 32 registers) it
produces excellent results. However, the our optimal spilling phase generates highly
constrained problems, and the greedy algorithm yields poor solutions.

We therefore implemented an integer-linear-programming solution to the coloring
problem, which we describe in the next section. It produces optimal (and in fact excel-
lent) results, in a matter of only a few hours for tiny programs. It is useful primarily in
establishing that coalescing problems generated by our spilling phase do in fact have
good solutions. This means that we have not lost valuable information by splitting
the problem into two phases. If good approximation algorithms can be found for the
coalescing problem, then the whole approach will be effective and feasible.

The coloring/coalescing problem is significantly simpler than the problem handled
by most graph-coloring register allocators, because the spills have already been identi-
fied and the graph is guaranteedK-colorable. Therefore it’s worth stating exactly what

2The situation is more complicated for machines with instructions that both overwrite some of the input
operands and generate new result operands. (Neither the IA-32 (Pentium), MIPS, Sparc, or Alpha have such
instructions.) The interference graph after optimal spilling may have some nodes of degree≥ K, but these
nodes won’t have high-degree neighbors, so the graph will still be trivially colorable by Kempe’s algorithm.
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the algorithmic problem is.

Optimal register coalescing. Given an undirected graph of maximum degreeK−1
(these are theinterferenceedges), and an additional set of weighted edges (these are
themoveedges), find aK-coloring of the graph such that

1. No two nodes connected by an interference edge have the same color;

2. There is the lowest possible cost, where cost is the sum of the weights of those
move edges whose endpoints are colored differently.

This problem is clearly NP-complete; it reduces the general graph-coloring prob-
lem (though we won’t show the reduction here). However, it is entirely conceivable
that good approximation algorithms can be found.

6 Optimal register coalescing via ILP

The linear program for graph coloring with register coalescing makes use of two vari-
ables:

xv,r =
{

1 if variablev is in registerr
0 otherwise

wherer ∈ R a set of physical registers on the machine, and

sc,r =
{

1 if copyc is coalesced/subsumed[Cha82] using registerr
0 otherwise

The setInterfere contains the element(v1,v2) if there is an edge fromv1 to v2 in
the interference graph.

set R;
set Interfere ⊂ (V×V);
set Copy2 ⊂ (P×P×V×V) ;
var x { V, R} binary;
var s {Copy2, R} binary;

Specifiying the constraints for interference graph coloring and coalescing using the
above could not be simpler.

Assign: For starters, only one register can be assigned to a variable:

∀v∈ V. ∑
r∈R

xv,r = 1

Interfere: If two variables interfere then they cannot be assigned to the same register:

∀(v1,v2) ∈ Interfere .∀r ∈ R. (xv1,r + xv2,r) ≤ 1;
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Constrained: A copy is constrained if the source and destination interfere:

∀c=(p1,p2,v1,v2) ∈Copy2 . ∀r ∈R .
s.t. (v1,v2)∨ (v2,v1) ∈ Interfere . sc,r = 0;

Coalesced: If a copyc is coalesced then both the source and destination of the copy
must be in the same register. Ifv1 andv2 are the source and destination associated with
the copyc, then for any registerr then the following situations are permitted:

xv1,r xv2,r sc,r

0 0 0
0 1 0
1 0 0
1 1 1

This relation can be expressed bysc,r = xv1,r · xv2,r , but that’s a nonlinear relationship
between the variables and is not permitted by the ILP solver. Instead, we take advantage
of the fact that the variables are constrained to be 0 or 1, and use the following two
linear inequalities:

xv1,r + xv2,r ≥ 2sc,r

xv1,r + xv2,r −1≤ 2sc,r

That is, we express the coalescing constraints by the equations

∀c=(p1,p2,v1,v2) ∈Copy2 . ∀r ∈ R.
(xv1,r + xv2,r) ≥ 2 ·sc,r ;

∀c=(p1,p2,v1,v2) ∈Copy2 . ∀r ∈ R.
(xv1,r + xv2,r −1) ≤ 2 ·sc,r ;

Cost function: The linear program is set to minimize the number of uncoalesced
copies weighted by their execution frequency,

∑
c=(p1,p2,v1,v2)

weight p1
· (1−∑

r
sc,r)

Thus, the optimal coalescing problem can be expressed as an integer linear pro-
gram. However, it does not seem as natural an expression as that of the optimal spilling
problem: there are many more variables and we believe that fewer of the constraints
can be solved by Gaussian elimination after each branch-and-bound step.

7 Benchmarks

We evaluate the method as follows:

• How costly is the optimal spilling algorithm?
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• How many spills remain, compared to other algorithms?

• How costly is the optimal coalescing algorithm? How costly is the (greedy)
iterated coalescing algorithm?

• How many moves remain, compared to other algorithms?

• How much suboptimality is caused by splitting the problem into two phases,
spilling and coalescing?

7.1 Optimal Spilling

Figure 4 provides a graphical and tabular representation of the spill statistics. In the
tabular form, theSpill andReloadcolumns shows the number of spill and reload in-
structions inserted into the program. In other words, these columns are a count of the
number of memory loads and stores from spill instructions. Some spills and reloads
can be combined with addressing modes, and the number of instructions affected is
shown in the last column. No distinction is made between instructions that use mem-
ory as an operand and destination, and those that use memory for an operand only. In
any case, we would expect the LP columns to be better in this regard as it is designed
to reduce this cost. Each column shows the base SML/NJ compiler (version 110.23),
and the same compiler modified to use our new algorithm for optimal spilling.

The base compiler uses static single-assignment (SSA) form, which divides each
program variable into several temporaries based on the relation of definitions of the
variable to the dominator tree of the program. Then a Chaitin-style spiller implements
each temporary either entirely in registers or entirely in memory. Briggs [Bri92] con-
jectured that SSA was the best way to split the variables prior to coloring with coalesc-
ing. Our current paper can be viewed as a test of his conjecture; we have described an
entirely different method for splitting the variables.

A characteristic of SSA form is that there will typically be one spill and multiple
reloads for any temporary that is spilled. The number of spill and reloads from the base
compiler is 30% higher than the LP version. In particular the number of spills in the LP
version is higher than the base compiler. This can easily be explained as the LP model
is splitting a live range into multiple parts, some subset of which are implemented in
registers and the others in memory. In other words, there is only one transition from
register to memory in the base compiler, but multiple transitions in the LP model.

A different story applies to theReloadcolumn. The LP column reloads less than
half as many variables as the base compiler, as the LP model effectively keeps active
temporaries in registers.

The Memory instructions column again demonstrates that the optimal-spill has
made much better use of external registers.

7.2 Optimal-spill performance

Figures 5, 6, and 7 shows the size of the AMPL model and the speed of generating an
optimal solution. Each dot in these figures represents a cluster, and each benchmark
is made up of multiple clusters. A cluster is a call graph in which every function in
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Memory
Spills Reloads Instructions

Base LP Base LP Base LP
barnes-hut 131 200 319 186 550 269
boyer 301 189 156 103 211 108
count-graphs 52 122 184 110 446 195
knuth-bendix 141 194 423 208 769 322
lexgen 292 347 525 277 961 332
life 41 70 90 57 180 62
logic 73 103 270 109 509 347
mandelbrot 10 11 38 16 67 32
mlyacc 752 1001 2006 1017 3605 1623
ray 91 134 204 103 428 240
simple 375 671 729 241 1295 480
tsp 45 94 92 53 224 76
Total 2304 3136 5036 2480 9245 4086
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Figure 4: Comparison of spill statistics for SML/NJ v110.23 (Base) using previous
algorithm (SSA splitting and iterated register coalescing) and same compiler based on
optimal spilling via integer linear programming (LP)
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Figure 5: Solve time versus program points

Figure 6: Constraints generated versus program points
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Figure 7: Solve time versus number of constraints

Benchmark Base LP Speedup
Mandelbrot 28.09s 23.99s 17%
Life 22.01s 16.54s 33%
Barnes-hut 4.21s 3.85s 9%
Geometric mean of speedup 19%

Figure 8: Execution speed

the graph has at least one call-edge with another function in the graph. Since this is a
continuation passing style (CPS) compiler, there are usually a large number of clusters
for each benchmark.

The most important result is Figure 5 which is the time to solve the model as a
function of the number of instructions. Two minutes was the longest time taken on
a 150MHz, SGI, MIPS processor, with most clusters being solved within 10 seconds.
The complexity is close to linear (O(n1.3) – taking the least square fit), and is sig-
nificantly better than theO(n2.5) reported by Goodwin and Wilken[GW96] for gen-
eral purpose processors. In all fairness, Goodwin and Wilken are solving the entire
register allocation problem for an architecture with many more registers. Kong and
Wilken[KW98] get much better performance but do not report any empirical com-
plexity result, but the same caveat applies as they also solve the complete register
allocation problem. The number of constraints also grows almost linearly with the
program size (O(n1.3)) which is significantly better than the models solved by Wilken
et al.[GW96, KW98].
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7.3 Register Allocation

The AMPL model described in Section 6 was not viable in practice. A tiny function
consisting of about 100 instructions (generated from an unrolled version of factorial)
took in excess of two hours to solve, however, the resulting program had practically no
uncoalesced moves at all.

In order to get practical validation we used the following approach for each cluster:

1. Perform iterated register coalescing as described by us[GA96], but record the
number of freezes required to completely color the color.

2. Repeat iterated register coalescing as above, but perform only a fraction of the
total number of freezes required.

3. If the resulting interference graph is of reasonable size and a small number of
freezes were used, then feed the resulting interference graph to the ILP solver as
described in Section 6.

4. Otherwise, abort and use the base compiler (SML/NJ v110.23) for this cluster.

Step 2 is performed to simplify the interference graph as much as possible so that
the generated model could be solved in a reasonable amount of time. In some cases
the clusters were so big that a large number of freezes were required before a reason-
able sized model was obtained. In many cases such clusters would be converted to go
through the regular compiler phases and not through the AMPL model.

It must be emphasized that this approach is highly unsatisfactory. The freezes done
in the iterated register allocator may be at the cost of constraining more expensive splits
that eventually remain in the program — note that the conservative coalescing heuristic
may have been too weak to coalesce the expensive move to begin with. Despite these
caveats we were able to get three benchmarks (the smallest three) to go through, and
Figure 8 shows the results.

On this admittedly inadequate set of benchmarks, optimal spilling followed by op-
timal coalescing generates code that is about 19% faster than the code generated from
SSA-based splitting followed by iterated register coalescing.

8 Algorithmic challenge

The algorithmic challenge is to find a better algorithm for the optimal coalescing prob-
lem, as described at the end of Section 5. We invite others to take up the challenge.

We have provided a web site

http:www.cs.princeton.edu/˜appel/coalesce

containing a database of problem instances, suboptimal solutions as found by iterated
register coalescing[GA96], and a simplecheck.c program that validates and evalu-
ates solutions.
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A technical note about how the problem instances were generated.The inter-
ference graphs naturally generated by our optimal spilling algorithm may have some
nodes of≥K. In general, such nodes will not have high-degree neighbors, so the graphs
are naturallyK-colorable by Kempe’s algorithm; therefore, the high-degree nodes are
not likely to be a problem for any coalescing algorithm. But just to make the input
data more regular for those who would take up our challenge, we have transformed the
graphs to have maximum degreeK−1 by the following procedure:

• Assumev1
0, v1

1, · · ·, v1
n are live and passed unchanged between pointp1 andp2.

• If a new temporary is not defined by the instruction betweenp1 and p2, then
assuming the instruction has the formv1

0 := v1
0⊕v1

1, the interference graph is
generated assuming the following instructions betweenp1 andp2:

• p1

v2
0 ← v1

0 || v2
1 ← v1

1 || · · · v2
n← v1

n
v2

0 := v2
0 ⊕ v2

1

• p2

All the fall-through temporaries (no more thanK−1) are copied into fresh tem-
poraries, and the rewritten instruction is executed in sequence.

• If a new temporary or temporaries are defined, then assuming the instruction has
the formv1

m := v1
0⊕v1

1 the interference graph is generated assuming the follow-
ing instruction betweenp1 andp2:

• p1

v2
0 ← v1

0 || v2
1 ← v1

1 || · · · v2
n← v1

n || v2
m := v1

0 ⊕ v1
1

• p2

That is to say the fall-through variables and instruction are executed in parallel.
It is necessary to do it this way because if one of the fall-through variablesv1

0
used in the instruction should go dead atp2, then the new temporaryv2

m will not
interfere with it.

9 Conclusions

We have formulated the register allocation problem for CISC architectures with few
registers to one involving optimal placement of spill code, followed by optimal register
coalescing. We have shown empirically that dividing the problem into these two phases
does not significantly worsen the overall quality of the solution. We have demonstrated
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an efficient algorithm using integer linear programming for optimal spill-code place-
ment. The optimal coalescing has a significantly simpler structure than the general
register-allocation problem, as the spilling has already been taken care of. We have
shown an inefficient algorithm for optimal coalescing, and an efficient algorithm for
suboptimal coalescing.

Programs compiled with optimal spilling followed by optimal coalescing run about
19% faster than when compiled with SSA-based splitting followed by iterated regis-
ter coalescing (though this number is based on an inadequate set of small programs).
This refutes a conjecture by Briggs [Bri92] that the splits induced by SSA would be
appropriate for register allocation and spilling.

An efficient algorithm for optimal coalescing is left as an open problem.
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A Appendix: AMPL model for spilling

model;
set Vars;
set Pts;

set Exists within (Pts cross Vars);

set Binary within (Pts cross Pts cross Vars cross Vars);
set Unary within (Pts cross Pts cross Vars cross Vars);
set Copy within (Pts cross Pts cross Vars);
set Copy2 within (Pts cross Pts cross Vars cross Vars);
set Nullary within (Pts cross Pts cross Vars);
set NullaryReg within (Pts cross Pts cross Vars);
set Mutate within (Pts cross Pts cross Vars);
set MutateReg within (Pts cross Pts cross Vars);
set UseUp2 within (Pts cross Pts cross Vars cross Vars);
set UseUp within (Pts cross Pts cross Vars);
set UseUpReg within (Pts cross Pts cross Vars);

param weight Pts;
param K, loadCost, storeCost, moveCost, instrCost;

var inReg Exists binary;
var inMem Exists binary;
var load Exists binary;
var store Exists binary;

subject to EXISTS (p,v) in Exists:
load[p,v] + inReg[p,v] + store[p,v] + inMem[p,v] = 1;

subject to BRANCH (p,v) in Exists : p in Branch:
load[p,v] + store[p,v] = 0;

subject to REGISTERS_K1 p in Pts:
sum (p,v) in Exists (inReg[p,v]+store[p,v]) <= K;

subject to REGISTERS_K2 p in Pts:
sum (p,v) in Exists (inReg[p,v]+load[p,v]) <= K;

subject to COPY_PROPAGATE (p1,p2,v) in Copy:
load[p1,v] + inReg[p1,v] = store[p2,v] + inReg[p2,v];

subject to COPY2_PROPAGATE (p1,p2,v1,v2) in Copy2:
load[p1,v1] + inReg[p1,v1] = store[p2,v2] + inReg[p2,v2];

subject to BINARY_IN_REG (p1,p2,s,d) in Binary:
load[p1,s] + inReg[p1,s] + load[p1,d] + inReg[p1,d] >= 1;

subject to BINARY_PROPDST (p1,p2,s,d) in Binary:
load[p1,d] + inReg[p1,d] = store[p2,d] + inReg[p2,d];

subject to NULLARY_REG (p1,p2,v) in NullaryReg:
store[p2,v] + inReg[p2,v] = 1;
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subject to USEUP2 (p1, p2, s1, s2) in UseUp2:
load[p1,s1] + inReg[p1,s1] + load[p1,s2] + inReg[p1,s2] >= 1;

subject to USEUP_IN_REG1 (p1,p2,v) in UseUpReg:
load[p1,v] + inReg[p1,v] = 1;

subject to MUTATE_PROPDST (p1,p2,v) in Mutate:
load[p1,v] + inReg[p1,v] = store[p2,v] + inReg[p2,v];

subject to MUTATE_REG1 (p1,p2,d) in MutateReg:
load[p1,d] + inReg[p1,d] = 1;

subject to MUTATE_REG2 (p1,p2,d) in MutateReg:
store[p2,d] + inReg[p2,d] = 1;

subject to UNARY_BINARY_IN_REG (p1,p2,s,d) in Unary:
load[p1,s] + inReg[p1,s] + store[p2,d] + inReg[p2,d] >= 1;
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minimize COST:
(sum v in Vars, p in Pts: (p,v) in Exists

weight[p] *
( loadt[p,v] * (loadCost + 3 * instrCost) +

load[p,v] * (loadCost + 3 * instrCost) +
store[p,v] * (storeCost + 3 * instrCost)))

+ (sum (p1,p2,src,dst) in Binary
weight[p1] *

( (1 - (inReg[p1,src] + load[p1,src] + loadt[p1,src])) *
(loadCost + instrCost) +

(1 - (inReg[p2,dst] + store[p2,dst])) *
(loadCost + storeCost + instrCost)))

+ (sum (p1,p2,src,dst) in Copy2
weight[p1] *

((1 - (inReg[p1,src] + load[p1,src] + loadt[p1,src])) *
(loadCost + instrCost) +

(1 - (inReg[p2,dst] + store[p2,dst])) *
(storeCost + instrCost)))

+ (sum (p1,p2,src,dst) in Unary
weight[p1] *

( (1 - (inReg[p1,src] + load[p1,src] + loadt[p1,src])) *
0.8 * (loadCost + instrCost) +

(1 - (inReg[p2,dst] + store[p2,dst])) *
(storeCost + instrCost)))

+ (sum (p1,p2,dst) in Mutate
weight[p1] *

( (1 - (inReg[p2,dst] + store[p2,dst])) *
(loadCost + storeCost + instrCost)))

+ (sum (p1,p2,dst) in Nullary
weight[p1] *

( (1 - (inReg[p2,dst] + store[p2,dst])) *
(storeCost + instrCost)))

+ (sum (p1,p2,src) in UseUp
weight[p1] *

( (1 - (inReg[p1,src] + load[p1,src] + loadt[p1,src])) *
(loadCost + instrCost)))

+ (sum (p1,p2,src1,src2) in UseUp2
weight[p1] *

( (1 - (inReg[p1,src1] + load[p1,src1] + loadt[p1,src1]))*
(loadCost + instrCost)+

(1 - (inReg[p1,src2] + load[p1,src2] + loadt[p1,src2])) *
(loadCost + instrCost)));
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