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Abstract

The Standard ML of New Jersey compiler has been
under development for five years now. We have
developed a robust and complete environment for
Standard ML that supports the implementation of
large software systems and generates efficient code.
The compiler has also served as a laboratory for de-
veloping novel implementation techniques for a so-
phisticated type and module system, continuation
based code generation, efficient pattern matching,
and concurrent programming features.

1 Introduction

Standard ML of New Jersey is a compiler and
programming environment for the Standard ML
language[26] that has been continuously developed
since early 1986. Our initial goal was to produce
a working ML front end and interpreter for pro-
gramming language research, but the scope of the
project has expanded considerably. We believe that
Standard ML may be the best general-purpose pro-
gramming language yet developed; to demonstrate
this, we must provide high-quality, robust, and effi-
cient tools for software engineering.

Along the way we have learned many useful
things about the design and implementation of
“modern” programming languages. There were
some unexpected interactions between the mod-
ule system, type system, code generator, debugger,
garbage collector, runtime data format, and hard-
ware; and some things were much easier than ex-
pected. We wrote an early description of the com-
piler in the spring of 1987[7], but almost every com-
ponent of the compiler has since been redesigned
and reimplemented at least once, so it is worthwhile
to provide an updated overview of the system and
our implementation experience.

Our compiler is structured in a rather conven-
tional way: the input stream is broken into tokens
by a lexical analyzer, parsed according to a context-
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free grammar, semantically analyzed into an an-
notated abstract syntax tree, type-checked, and
translated into a lower-level intermediate language.
This is the “front end” of the compiler. Then
the intermediate language—Continuation-Passing
Style—is “optimized,” closures are introduced to
implement lexical scoping, registers are allocated,
target-machine instructions are generated, and (on
RISC machines) instructions are scheduled to avoid
pipeline delays; these together constitute the “back
end.”

2 Parsing

Early in the development of the compiler we used
a hand-written lexical analyzer and a recursive-
descent parser. In both of these components the
code for semantic analysis was intermixed with
the parsing code. This made error recovery dif-
ficult, and it was difficult to understand the syn-
tax or semantics individually. We now have ex-
cellent tools[8, 32] for the automatic generation of
lexical analyzers and error-correcting parsers. Syn-
tactic error recovery is handled automatically by
the parser generator, and semantic actions are only
evaluated on correct (or corrected) parses. This has
greatly improved both the quality of the error mes-
sages and the robustness of the compiler on incor-
rect inputs. We remark that it would have been
helpful if the definition of Standard ML[26] had in-
cluded an LR(1) grammar for the language.

There are two places in the ML grammar that
appear not to be context free. One is the treat-
ment of data constructors: according to the def-
inition, constructor names are in a different lexi-
cal class than variable names, even though the dis-
tinction depends on the semantic analysis of pre-
vious datatype definitions. However, by putting
constructors and variables into the same class of
lexical tokens, and the same name space, parsing
can be done correctly and the difference resolved in
semantic analysis.

The other context-dependent aspect of syntax is
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the parsing of infix identifiers. ML allows the pro-
grammer to specify any identifier as infix, with an
operator precedence ranging from 0 to 9. Our solu-
tion to this problem is to completely ignore operator
precedence in writing our LALR(1) grammar; the
expression a+b∗c is parsed into the list [a,+, b, ∗, c]
and the semantic analysis routines include a simple
operator precedence parser (35 lines of ML).

Each production of our grammar is annotated by
a semantic action, roughly in the style made pop-
ular by YACC[16]. Our semantic actions are writ-
ten like a denotational semantics or attribute gram-
mar, where each fragment is a function that takes
inherited attributes as parameters and returns syn-
thesized attributes as results. Within the actions
there are occasional side-effects; e.g. when the type-
checker performs unification by the modification of
ref-cells.

A complete parse yields a function p parameter-
ized by a static environment e (of identifiers defined
in previous compilation units, etc.). No side-effects
occur until p is applied to e, at which point e is
distributed by further function calls to many levels
of the parse tree. In essence, before p is applied to
e it is a tree of closures (one pointing to the other)
that is isomorphic to the concrete parse tree of the
program. Yet we have not had to introduce a myr-
iad of data constructors to describe concrete parse
trees!

Delaying the semantic actions is useful to the
error-correcting parser. If an error in the parse oc-
curs, the parser might want to correct it at a point
10 tokens previous; this means discarding the last
few semantic actions. Since the actions have had no
side-effects, it is easy to discard them. Then, when
a complete correct parse is constructed, its seman-
tic value can be applied to the environment e and
all the side-effects will go off in the right order.

Finally, the treatment of mutually-recursive defi-
nitions is easier with delayed semantic actions; the
newly-defined identifiers can be entered into the
environment before the right-hand-sides are pro-
cessed.

There is one disadvantage to this arrangement.
It turns out that the closure representation of the
concrete parse tree is much larger than the anno-
tated parse tree that results from performing the
semantic actions. Thus, if we had used a more con-
ventional style in which the actions are performed
as the input is parsed, the compiler would use less
memory.

Our parser-generator provides, for each nonter-
minal in the input, the line number (and position
within the line) of the beginning and end of the pro-
gram fragment corresponding to that nonterminal.
These are used to add accurate locality information

to error messages. Furthermore, these line num-
bers are sprinkled into the annotated abstract syn-
tax tree so that the type checker, match compiler,
and debugger can also give good diagnostics.

3 Semantic analysis

A static environment maps each variable of the pro-
gram to a binding containing its type and its runtime
access information. The type is used for compile-
time type checking, and is not used at runtime. The
access information is (typically) the name of a low-
level λ-calculus variable that will be manipulated by
the code generator. Static environments also map
other kinds of identifiers—data constructors, type
constructors, structure names, etc.—to other kinds
of bindings.

Our initial implementation treated environments
imperatively: the operations on environments were
to add a new binding to the global environment;
to “mark” (save) the state of the environment; to
revert back to a previous mark; and, for imple-
mentation of the module system, to encapsulate
into a special table everything added since a par-
ticular mark. We did this even though we knew
better—denotational semantics or attribute gram-
mars would have us treat environments as pure val-
ues, to be combined to yield larger environments—
because we thought that imperative environments
would be faster.

We have recently changed to a pure functional
style of environments, in which the operations are
to create an environment with a single binding, and
to layer one environment on top of another nonde-
structively, yielding a new environment. The im-
plementation of this abstract data type has side
effects, as sufficiently large environment-values are
represented as hash tables, etc. We made this
change to accommodate the new debugger, which
must allow the user to be in several environments
simultaneously; and to allow the implementation of
“make” programs, which need explicit control over
the static environments of the programs being com-
piled. Though we were willing to suffer a perfor-
mance degradation in exchange for this flexibility,
we found “pure” environments to be just as fast as
imperative ones.

This illustrates a more general principle that we
have noticed in ML program development. Many
parts of the compiler that we initially implemented
in an imperative style have been rewritten piece-
meal in a cleaner functional style. This is one
of the advantages of ML: programs (and program-
mers) can migrate gradually to “functional” pro-
gramming.



Type checking

The main type-checking algorithm has changed rel-
atively little since our earlier description[7]. The
representations of types, type constructors, and
type variables have been cleaned up in various ways,
but the basic algorithm for type checking is still
based on a straightforward unification algorithm.

The most complex part of the type-checking al-
gorithm deals with weak polymorphism, a restricted
form of polymorphism required to handle mutable
values (references and arrays), exception transmis-
sion, and communication (in extensions like Con-
current ML[28]). Standard ML of New Jersey im-
plements a generalization of the imperative type
variables described in the Definition[26, 34]. In our
scheme, imperative type variables are replaced by
weak type variables that have an associated degree
of weakness: a nonnegative integer. A type vari-
able must be weak if it is involved in the type of
an expression denoting a reference, and its degree
of weakness roughly measures the number of func-
tion applications that must take place before the
reference value is actually created. A weakness de-
gree of zero is disallowed at top level, which insures
that top-level reference values (i.e. those existing
within values in the top level environment) have
monomorphic types. The type-checking algorithm
uses an abstract type occ to keep track of the “ap-
plicative context” of expression occurrences, which
is approximately the balance of function abstrac-
tions over function applications surrounding the ex-
pression, and the occ value at a variable occurrence
determines the weakness degree of generic type vari-
ables introduced by that occurrence. The occ value
at a let binding is also used to determine which type
variables can be generalized.

The weak typing scheme is fairly subtle and has
been prone to bugs, so it is important that it be for-
malized and proven sound (as the Tofte scheme has
been [Tofte-thesis]). There are several people cur-
rently working on formalizing the treatment used in
the compiler[17, 38].

The weak polymorphism scheme currently used in
Standard ML of New Jersey is not regarded as the fi-
nal word on polymorphism and references. It shares
with the imperative type variable scheme the fault
that weak polymorphism propagates more widely
than necessary. Even purely internal and tempo-
rary uses of references in a function definition will
often “poison” the function, giving it a weak type.
An example is the definition

fun f x = !(ref x)

in which f has the type 1α → 1α, but ought to have
the strong polymorphic type α → α. This inessen-
tial weak polymorphism is particularly annoying

when it interferes with the matching of a signature
specification merely because of the use of an imper-
ative style within a function’s definition. Such im-
plementation choices should be invisible in the type.
Research continues on this problem[17, 22, 38], but
there is no satisfactory solution yet.

The interface between the type checker and the
parser is quite simple in most respects. There is
only one entry point to the type checker, a function
that is called to type-check each value declaration at
top level and within a structure. However, the inter-
face between type checking and the parser is com-
plicated by the problem of determining the scope or
binding point of explicit type variables that appear
in a program. The rather subtle scoping rules for
these type variables[26, Section 4.6][25, Section 4.4]
force the parser to pass sets of type variables both
upward and downward (as both synthesized and in-
herited attributes of phrases). Once determined,
the set of explicit type variables to be bound at a
definition is stored in the abstract syntax represen-
tation of the definition to make it available to the
typechecker.

4 Modules

The implementation of modules in SML of NJ has
evolved through three different designs. The main
innovation of the second version factored signatures
into a symbol table shared among all instances,
and a small instantiation environment for each
instance[23]. Experience with this version revealed
problems that led to the third implementation de-
veloped in collaboration with Georges Gonthier and
Damien Doligez.

Representations

At the heart of the module system are the internal
representations of signatures, structures, and func-
tors. Based on these representations, the following
principal procedures must be implemented:

1. signature creation—static evaluation of signa-
ture expressions;

2. structure creation—static evaluation of struc-
ture expressions;

3. signature matching between a signature and a
structure, creating an instance of the signature,
and a view of the structure;

4. definition of functors—abstraction of the func-
tor body expression with respect to the formal
parameter;



5. functor application—instantiation of the for-
mal parameter by matching against the ac-
tual parameter, followed by instantiation of the
functor body.

It is clear that instantiation of structure tem-
plates (i.e. signatures and functor bodies) is a criti-
cal process in the module system. It is also a process
prone to consume excessive space and time if imple-
mented naively. Our implementation has achieved
reasonable efficiency by separating the volatile part
of a template, that which changes with each in-
stance, from the stable part that is common to all
instances and whose representation may therefore
be shared by all instances. The volatile compo-
nents are stored in an instantiation environment
and they are referred to indirectly in the bindings
in the shared symbol table (or static environment)
using indices or paths into the instantiation envi-
ronment. The instantiation environment is repre-
sented as a pair of arrays, one for type constructor
components, the other for substructures.

The static representation of a structure is essen-
tially an environment (i.e., symbol table) contain-
ing bindings of types, variables, etc., and an iden-
tifying stamp[26, 33, 23]. In the second implemen-
tation a signature was represented as a “dummy”
instance that differs from an ordinary structure
in that its volatile components contain dummy or
bound stamps and it carries some additional infor-
mation specifying sharing constraints. The volatile
components with their bound stamps are replaced,
or instantiated, during signature matching by cor-
responding components from the structure being
matched. Similarly, a functor body is represented
as a structure with dummy stamps that are replaced
by newly generated stamps when the functor is ap-
plied.

The problem with representing signatures (and
functor bodies) as dummy structures with bound
stamps is the need to do alpha-conversion at var-
ious points to avoid confusing bound stamps. To
minimize this problem the previous implementation
insures that the sets of bound stamps for each signa-
ture and functor body are disjoint. But there is still
a problem with signatures and functors that are sep-
arately compiled and then imported into a new con-
text; here alpha-conversion of bound stamps is re-
quired to maintain the disjointness property. Man-
aging bound stamps was a source of complexity and
bugs in the module system.

The usual way of avoiding the complications of
bound variables is to replace them with an index-
ing scheme, as is done with deBruijn indices in the
lambda calculus[13]. Since in the symbol table part
we already used indices into instantiation arrays

to refer to volatile components, we can avoid the
bound stamps by using this relativized symbol ta-
ble alone to represent signatures.

To drop the instantiation environment part of the
signature representation, leaving only the symbol
table part, we need to revise the details of how envi-
ronments are represented. Formerly a substructure
specification would be represented in the symbol ta-
ble by a binding like

A �→ INDstr i

indicating that A is the ith substructure, and the
rest of the specification of A (in the form of a dummy
structure) would be found in the ith slot of the in-
stantiation environment. Since we are dropping the
dummy instantiation environment we must have all
the information specifying A in the binding. Thus
the new implementation uses

A �→ FORMALstrb{pos = i, spec = sigA}

as the binding of A. This makes the substructure
signature specification available immediately in the
symbol table without having to access it indirectly
through an instantiation environment.

Another improvement in the representation of
signatures (and their instantiations) has to do with
the scope of instantiation environments. In the old
implementation each substructure had its own in-
stantiation environment. But one substructure may
contain relative references to a component of an-
other substructure, as in the following example

signature S1 =

sig

structure A : sig type t end

structure B : sig val x : A.t end

end

Here the type of B.x refers to the first type com-
ponent t of A. This would be represented from the
standpoint of B as a relative path [parent, first sub-
structure, first type constructor]. To accommodate
these cross-structure references when each struc-
ture has a local instantiation environment, the first
structure slot in the instantiation environment con-
tains a pointer to the parent signature or structure.
Defining and maintaining these parent pointers was
another source of complexity, since it made the rep-
resentation highly cyclical.

The new representation avoids this problem by
having a single instantiation environment shared by
the top level signature and all its embedded signa-
tures. An embedded signature is one that is writ-
ten “in-line” like the signatures of A and B in the
example above. In the above example, the new rep-
resentation of A.t within B is [first type constructor]



since A.t will occupy the first type constructor slot
in the shared instantiation environment.

A nonembedded signature is one that is defined
at top level and referred to by name. The signa-
ture S0 in the following example is a nonembedded
signature.

signature S0 = sig type t end

signature S1 =

sig

structure A : S0

structure B : sig val x : A.t end

end

In this case the type A.t of x uses the indi-
rect reference [first substructure, first type construc-
tor] meaning the first type constructor in the local
instantiation environment of A, which is the first
structure component in the instantiation environ-
ment of S1. S1 and B share a common instantiation
environment because B is embedded in S1. But S0,
the signature of A, is nonembedded because it was
defined externally to S1. It therefore can contain
no references to other components of S1 and so it
is given its own private instantiation environment
having the configuration appropriate to S0.

Signature Matching

The goal of the representation of signatures is to
make it easy to instantiate them via signature
matching. A signature is a template for struc-
tures, and a structure can be obtained from the sig-
nature by adding an appropriate instantiation en-
vironment (and recursively instantiating any sub-
structures with nonembedded signature specifica-
tions).

The signature matching process involves the fol-
lowing steps: (1) Create an empty instantiation en-
vironment of a size specified in the signature repre-
sentation. (2) For each component of the signature,
in the order they were specified, check that there is a
corresponding component in the structure and that
this component satisfies the specification. When
this check succeeds it may result in an instance of a
volatile component (e.g. a type constructor) that is
entered into the new instantiation environment. (3)
Finally, having created the instantiation structure,
any sharing constraints in the signature are verified
by “inspection.”

Functors

The key idea is to process a functor definition to
isolate volatile components of the result (those de-
riving from the parameter and those arising from
generative declarations in the body) in an instanti-
ation environment. Then the body’s symbol table is

relativized to this instantiation environment by re-
placing direct references by indirect paths. As in the
case of signature matching, this minimizes the effort
required to create an instance of the body when the
functor is applied, because the symbol table infor-
mation is inherited unchanged by the instance.

Defining a functor is done in three steps: (1) The
formal parameter signature is instantiated to create
a dummy parameter structure. (2) This dummy
structure is bound to the formal parameter name
in the current environment and the resulting envi-
ronment is used to parse and type-check the func-
tor body expression. If a result signature is spec-
ified the functor body is matched against it. (3)
The resulting body structure is scanned for volatile
components, identified by having stamps belonging
to the dummy parameter or generated within the
body, and references to these volatile components
are replaced by indirect positional references into
an instantiation environment.

The instantiation of the parameter signature
must produce a structure that is free modulo the
sharing constraints contained in the signature. In
other words, it must satisfy the explicit sharing
constraints in the signature and all implicit shar-
ing constraints implied by them, but there must
by no extraneous sharing. The algorithm used for
this instantiation process is mainly due to George
Gonthier and is vaguely related to linear unification
algorithms. This instantiation process is also used
to create structures declared as abstractions using
the abstraction declaration of Standard ML of New
Jersey (a nonstandard extension of the language).

Given this processing of the functor definition,
functor application is now a fairly straightforward
process. The actual parameter is matched with the
formal parameter signature yielding an instantia-
tion environment relative to the parameter signa-
ture. This is combined with a new instantiation
environment generated for the functor body using
freshly generated stamps in new volatile compo-
nents.

5 Translation to λ-language

During the semantic analysis phase, all static pro-
gram errors are detected; the result is an abstract
parse tree annotated with type information. This
is then translated into a strict lambda calculus aug-
mented with data constructors, numeric and string
constants, n-tuples, mutually-recursive functions;
and various primitive operators for arithmetic, ma-
nipulation of refs, numeric comparisons, etc. The
translation into λ-language is the phase of our com-
piler that has changed least over the years.



Though the λ language has data constructors, it
does not have pattern-matches. Instead, there is a
very simple case statement that determines which
constructor has been applied at top level in a given
value. The pattern-matches of ML must be trans-
lated into discriminations on individual construc-
tors. This is done as described in our previous
paper[7], though Bruce Duba has revised the de-
tails of the algorithm.

The dynamic semantics of structures and functors
are represented using the same lambda-language op-
erators as for the records and functions of the core
language. This means that the code generator and
runtime system don’t need to know anything about
the module system, which is a great convenience.

Also in this phase we handle equality tests. ML
allows any hereditarily nonabstract, nonfunctional
values of the same type to be tested for equality;
even if the values have polymorphic types. In most
cases, however, the types can be determined at com-
pile time. For equality on atomic types (like in-
teger and real), we substitute an efficient, type-
specific primitive operator for the generic equal-
ity function. When constructed datatypes are
tested for equality, we automatically construct a
set of mutually-recursive functions for the specific
instance of the datatype; these are compiled into
the code for the user’s program. Only when the
type is truly polymorphic—not known at compile
time—is the general polymorphic equality function
invoked. This function interprets the tags of ob-
jects at runtime to recursively compare bit-patterns
without knowing the full types of the objects it is
testing for equality.

Standard ML’s polymorphic equality seriously
complicates the compiler. In the front end, there are
special “equality type variables” to indicate poly-
morphic types that are required to admit equality,
and signatures have an eqtype keyword to denote
exported types that admit equality. The eqtype
property must be propagated among all types and
structures that share in a functor definition. We es-
timate that about 7% of the code in the front end
of the compiler is there to implement polymorphic
equality.

The effect on the back end and runtime system is
just as pernicious. Because ML is a statically-typed
language, it should not be necessary to have type
tags and descriptors on every runtime object (as
Lisp does). The only reasons to have these tags are
for the garbage collector (so it can understand how
to traverse pointers and records) and for the poly-
morphic equality function. But it’s possible to give
the garbage collector a map of the type system[1],
so that it can figure out the types of runtime objects
without tags and descriptors. Yet the polymorphic

equality function also uses these tags, so even with
a sophisticated garbage collector they can’t be done
away with. (One alternative is to pass an equality-
test function along with every value of an equality
type, but this is also quite costly[36].)

Finally, the treatment of equality types in Stan-
dard ML is irregular and incomplete[15]. The
Definition categorizes type constructors as either
“equality” or “nonequality” type constructors; but
a more refined classification would more accurately
specify the effects of the ref operator. Some types
that structurally support equality are classified as
nonequality types by the Definition.

6 Conversion to CPS

The λ-language is converted into continuation-
passing style (CPS) before optimization and code
generation. CPS is used because it has clean seman-
tic properties (like λ-calculus), but it also matches
the execution model of a von Neumann register ma-
chine: variables of the CPS correspond closely to
registers on the machine, which leads to very effi-
cient code generaton[18].

In the λ-language (with side-effecting operators)
we must specify a call-by-value (strict) order of eval-
uation to really pin down the meaning of the pro-
gram; this means that we can’t simply do arbitrary
β-reductions (etc.) to partially evaluate and opti-
mize the program. In the conversion to CPS, all
order-of-evaluation information is encoded in the
chaining of function calls, and it doesn’t matter
whether we consider the CPS to be strict or non-
strict. Thus, β-reductions and other optimizations
become much easier to specify and implement.

The CPS notation[30] and our representation of
it[5] are described elsewhere, as is a detailed descrip-
tion of optimization techniques and runtime repre-
sentations for CPS[4]. We will just summarize the
important points here.

In continuation-passing style, each function can
have several arguments (in contrast to ML, in which
functions formally have only one parameter). Each
of the actual parameters to a function must be
atomic—a constant or a variable. The operands
of an arithmetic operator must also be atomic; the
result of the operation is bound to a newly-defined
variable. There is no provision for binding the re-
sult of a function call to a variable; “functions never
return.”

To use CPS for compiling a programming
language—in which functions are usually allowed
to return results, and expressions can have nontriv-
ial sub-expressions—it is necessary to use continu-
ations. Instead of saying that a function call f(x)



returns a value a, we can make a function k(a) that
expresses what “the rest of the program” would do
with the result a, and then call fcps(x, k). Then
fcps, instead of returning, will call k with its result
a.

After CPS-conversion, a source-language func-
tion call looks just like a source-language function
return—they both look like calls in the CPS. This
means it is easy to β-reduce the call without reduc-
ing the return, or vice versa; this kind of flexibility
is very useful in reasoning about (and optimizing)
tail-recursion, etc.

In a strict λ-calculus, β-reduction is problemat-
ical. If the actual parameters to a function have
side effects, or do not terminate, then they can-
not be safely substituted for the formal parameters
throughout the body of the function. Any actual
parameter expression could contain a call to an un-
known (at compile time) function, and in this case
it is impossible to tell whether it does have a side
effect. But in CPS, the actual parameters to a func-
tion are always atomic expressions, which have no
side effects and always terminate; so it’s safe and
easy to perform β-reduction and other kinds of sub-
stitutions.

In our optimizer, we take great advantage of a
unique property of ML: records, n-tuples, construc-
tors, etc., are immutable. That is, except for ref

cells and arrays (which are identifiable at compile
time through the type system), once a record is cre-
ated it cannot be modified. This means that a fetch
from a record will always yield the same result, even
if the compiler arranges for it to be performed ear-
lier or later than specified in the program. This al-
lows much greater freedom in the partial evaluation
of fetches (e.g. from pattern-matches), in constant-
folding, in instruction scheduling, and common
subexpression elimination than most compilers are
permitted. (One would think that in a pure func-
tional language like Haskell this immutable record
property would be similarly useful, but such lan-
guages are usually lazy so that fetches from a lazy
cell will yield different results the first and second
times.)

A similar property of ML is that immutable
records are not distinguishable by address. That
is, if two records contain the same values, they are
“the same;” the expressions

[(x,y), (x,y)]

let val a = (x,y) in [a,a] end

are indistinguishable in any context. This is not
the case in most programming languages, where the
different pairs (x,y) in the first list would have dif-
ferent addresses and could be distinguished by a
pointer-equality test.

This means that the compiler is free to perform
common sub-expression elimination on record ex-
pressions (i.e. convert the first expression above to
the second); the garbage collector is free to make
several copies of a record (possibly useful for concur-
rent collection), or to merge several copies into one
(a kind of “delayed hash-consing”); a distributed
implementation is free to keep separate copies of
a record on different machines, etc. We have not
really exploited most of these opportunities yet,
however.

7 Closure conversion

The conversion of λ-calculus to CPS makes the con-
trol flow of the program much more explicit, which
is useful when performing optimizations. The next
phase of our compiler, closure conversion, makes
explicit the access to nonlocal variables (using lex-
ical scope). In ML (and Scheme, Smalltalk, and
other languages), function definitions may be nested
inside each other; and an inner function can have
free variables that are bound in an outer function.
Therefore, the representation of a function-value (at
runtime) must include some way to access the values
of these free variables. The closure data structure
allows a function to be represented by a pointer to
a record containing

1. The address of the machine-code entry-point
for the body of the function.

2. The values of free variables of the function.

The code pointer (item 1) must be kept in a stan-
dardized location in all closures; for when a function
f is passed as an argument to another function g,
then g must be able to extract the address of f in
order to jump to f . But it’s not necessary to keep
the free variables (item 2) in any standard order;
instead, g will simply pass f ’s closure-pointer as an
extra argument to f , which will know how to ex-
tract its own free variables.

This mechanism is quite old[19] and reasonably
efficient. However, the introduction of closures is
usually performed as part of machine-code genera-
tion; we have made it a separate phase that rewrites
the CPS representation of the program to include
closure records. Thus, the output of the closure-
conversion phase is a CPS expression in which it is
guaranteed that no function has free variables; this
expression has explicit record-creation operators to
build closures, and explicit fetch operators to ex-
tract code-pointers and free variables from them.

Since closure-introduction is not bundled to-
gether with other aspects of code generation, it is



easier to introduce sophisticated closure techniques
without breaking the rest of the compiler. In gen-
eral, we have found that structuring our compiler
with so many phases—each with a clean and well-
defined interface—has proven very successful in al-
lowing work to proceed independently on different
parts of the compiler.

Initially, we considered variations on two differ-
ent closure representations, which we call flat and
linked. A flat closure for a function f is a record
containing the code-pointer for f and the values of
each of f ’s free variables. A linked closure for f con-
tains the code pointer, the value of each free vari-
able bound by the enclosing function, and a pointer
to the enclosing function’s closure. Variables free in
the enclosing function can be found by traversing
the linked list of closures starting from f ; this is
just like the method of access links used in imple-
menting static scope in Pascal.

It would seem that linked closures are cheaper
to build (because a single pointer to the enclos-
ing scope can be used instead of all the free vari-
ables from that scope) but costlier to access (get-
ting a free variable requires traversing a linked list).
In fact, we investigated many different represen-
tational tricks on the spectrum between flat and
linked closures[6], including tricks where we use the
same closure record for several different functions
with several different code-pointers[5, 4].

In a “traditional” compiler, these tricks make a
significant difference. But in the CPS representa-
tion, it appears that the pattern of functions and
variable access narrows the effective difference be-
tween these techniques, so that closure representa-
tion is not usually too important.

There are two aspects of closures that are impor-
tant, however. We have recently shown that us-
ing linked or merged closures can cause a compiled
program to use much more memory[4]. For exam-
ple, a program compiled with flat closures might
use O(N) memory (i.e. simultaneous live data) on
an input of size N , and the same program compiled
with linked closures might use O(N2). Though this
may happen rarely, we believe it is unacceptable
(especially since the programmer will have no way
to understand what is going on). We are therefore
re-examining our closure representations to ensure
“safety” of memory usage; this essentially means
sticking to flat closures.

We have also introduced the notion of “callee-
save registers.”[9, 4] Normally, when an “unknown”
function (e.g. one from another compilation unit)
is called in a compiler using CPS, all the registers
(variables) that will be needed “after the call” are
free variables of the continuation. As such, they
are stored into the continuation closure, and fetched

back after the continuation is invoked. In a conven-
tional compiler, the caller of a function might sim-
ilarly save registers into the stack frame, and fetch
them back after the call.

But some conventional compilers also have
“callee-save” registers. It is the responsibility of
each function to leave these registers undisturbed;
if they are needed during execution of the function,
they must be saved and restored by the callee.

We can represent callee-save variables in the orig-
inal CPS language, without changing the code-
generation interface. We will represent a contin-
uation not as one argument but as N + 1 argu-
ments k0, k1, k2, . . . , kN . Then, when the continua-
tion k0 is invoked with “return-value” a, the vari-
ables k1, . . . , kN will also be passed as arguments to
the continuation.

Since our code generator keeps all CPS vari-
ables in registers—including function parameters—
the variables k1, . . . , kN are, in effect, callee-save
registers. We have found that N = 3 is sufficient
to obtain a significant (7%) improvement in perfor-
mance.

8 Final code generation

The operators of the CPS notation—especially af-
ter closure-conversion—are similar to the instruc-
tions of a simple register/memory von Neumann
machine. The recent trend towards RISC machines
with large register sets makes CPS-based code gen-
eration very attractive. It is a relatively simple mat-
ter to translate the closure-converted CPS into sim-
ple abstract-machine instructions; these are then
translated into native machine code for the MIPS,
Sparc, VAX, or MC68020. The latter two machines
are not RISC machines, and to do a really good
job in code generation for them we would have to
add a final peephole-optimization or instruction-
selection phase. On the RISC machines, we have
a final instruction-scheduling phase to minimize de-
lays from run-time pipeline interlocks.

One interesting aspect of the final abstract-
machine code generation is the register allocation.
After closure-conversion and before code generation
we have a spill phase that rewrites the CPS expres-
sion to limit the number of free variables of any
subexpression to less than the number of registers
on the target machine[5, 4]. It turns out that very
few functions require any such rewriting, especially
on modern machines with 32 registers; five spills in
40,000 lines of code is typical.

Because the free variables of any expression are
guaranteed to fit in registers, register allocation is
a very simple matter: when each variable is bound,



only K other variables are live (i.e. free in the con-
tinuation of the operation that binds the variable),
where K < N , the number of registers. Thus, any
of the remaining N −K registers can be chosen to
hold the new value.

The only place that a register-register move is
ever required is at a procedure call, when the ac-
tual parameters must be shuffled into the locations
required for the formal parameters. For those func-
tions whose call sites are all evident to the compiler
(i.e. those functions that are not passed as param-
eters or stored into data structures), we can choose
the register-bindings for formal parameters to elim-
inate any moves in at least one of the calls[18]. By
clever choices of which register to use for the bind-
ings described in the last paragraph, we can almost
eliminate any remaining register-register moves that
might be required for the other procedure calls.

9 The runtime system

The absence of function returns means that a run-
time stack is not formally required to execute pro-
grams. Although most CPS-based compilers in-
troduce a runtime stack anyway[30, 18], we do
not. Instead, we keep all closures (i.e. activa-
tion records) on the garbage-collected heap. This
not only simplifies some aspects of our runtime
system, but makes the use of first-class continua-
tions (call-with-current-continuation) very ef-
ficient.

Because all closures are put on the heap, how-
ever, SML/NJ allocates garbage-collected storage
at a furious rate: one 32-bit word of storage for
every five instructions executed, approximately[4].
This means that the most important requirement
for the runtime system is that it support fast stor-
age allocation and fast garbage collection.

To make heap allocations cheap, we use a gen-
erational copying garbage collector[2] and we keep
the format of our runtime data simple[3]. Copying
collection is attractive because the collector touches
only the live data, and not the garbage; we can ar-
range that almost all of a particular region of mem-
ory is garbage, then just a few operations can re-
claim a very large amount of storage. Another ad-
vantage of copying collection is that the free area
(in which to allocate new records) is a contiguous
block of memory; it is easier to grab the first few
words of this block than it would be to manage a
“free list” of different-sized records.

Indeed, we keep pointers to the beginning and
end of the free area in registers for fast access. Al-
location and initialization of an n-word record re-
quires n store instructions at different offsets from

the free-space register, followed by the addition of a
constant (the size of the new record) to the reg-
ister. We perform allocations in-line (without a
procedure call), and we use just one test for free
storage exhaustion to cover all the allocations in a
procedure (remember that in CPS, procedures don’t
have internal loops). Furthermore, we can perform
this test in one single-cycle instruction by clever
use of the overflow interrupt to initiate garbage
collection[4].

Overall, garbage-collection overhead in Standard
ML of New Jersey (with memory size equal to 5
times the amount of live data) is usually between 5
and 20%; this means that for each word of memory
allocated, the amortized cost of collecting it is about
1/4 to 1 instruction. Thus, copying a data structure
(reading it and writing a new copy) takes only two
or three times as long as traversing it (examining all
the fields). This encourages a more side-effect-free,
functional style of programming.

In addition to the garbage collector, the runtime
system provides an interface to operating system
calls[3]. Higher-level services like buffered I/O are
provided by a “standard library” written in Stan-
dard ML. There are also many C-language func-
tions in the runtime system callable from ML; but
we have not yet provided an easy interface for users
to link their own foreign-language functions to be
called from ML. Since the overhead for calling a C
function is rather high, we have implemented half a
dozen frequently-used functions (e.g. allocation of
an array or a string) in assembly language.

There is also an ML interface to operating system
signals[27] that uses the call/cc mechanism to bun-
dle up the current state of execution into a “contin-
uation;” to be resumed immediately, later (perhaps
from another signal handler), never, or more than
once.

A snapshot of the executing ML system may be
written to a file; executing that file will resume ex-
ecution just at the point where the snapshot was
taken. It is also possible to remove the compiler
from this snapshot, to build more compact stand-
alone applications.

Our reliance on operating system signals for
garbage collection, our direct connection to system
calls, our snapshot-building utility, and other useful
features of the runtime system have turned out to
be quite operating-system dependent. This makes
it hard to port the runtime system from one ma-
chine (and operating system) to another. Perhaps
as different versions of Unix become more standard-
ized (e.g. with System V/R4) these problems will
largely disappear.



10 Performance

We had several goals for Standard ML of New Jer-
sey:

• A complete and robust implementation of
Standard ML.

• A compiler written in Standard ML itself, to
serve as a test of ML for programming-in-the-
large.

• A reasonably efficient compiler with no “bot-
tlenecks.”

• Very fast compiled code, competitive with
“conventional” programming languages.

• A testbed for new ideas.

We believe we have achieved these goals. While our
compiler has a few minor bugs (as does any large
software system), they don’t substantially detract
from the usability of the system. We have found
that ML is an excellent language for writing real
programs. Our compiler’s front end is quite care-
fully designed to be fast, but the back end needs
(and is receiving) further work to make it compile
faster. The quality of our compiled code is ex-
tremely good, as figures 1 and 2 show.

We tested Poly/ML[24] and SML/NJ on six real
programs[4], whose average size was about 2000
nonblank noncomment lines of source. Figure 1
shows the results on a SparcStation 2 (the only
modern platform on which they both run). In-
deed, Poly/ML compiles about 43% faster (when
it doesn’t blow up); but SML/NJ programs run
five times faster than Poly/ML programs, on the
average (geometric mean). SML/NJ reportedly
uses about 1.5 times as much heap space for
execution[10]; and on a 68020-based platform (like
a Sun-3), SML/NJ may not do relatively as well
(since we don’t generate really good code for that
machine). So on obsolete machines with tiny mem-
ories, Poly/ML may do almost as well as SML/NJ.

Figure 2 compares implementations of several
programming languages on a Knuth-Bendix bench-
mark. Standard ML of New Jersey does quite well,
especially on the RISC machine (the DECstation
5000 has a MIPS processor).

11 Continuations

One of the more significant language innovations
in Standard ML of New Jersey is typed first-class
continuations[14]. It turned out to be possible to
add a major new capability to the language merely
by introducing a new primitive type constructor and

Poly/ML 1.91 SML/NJ 0.69
Compile Run Compile Run
Time Time Time Time

Life 10 128 13 27
Lex 41 95 66 20
Yacc abort — 531 10
Knuth-B 19 116 30 25
Simple 44 461 124 60
VLIW abort — 839 45

Figure 1: Comparison of Poly/ML and SML/NJ

This table shows compile time and run
time in seconds of elapsed time for each
benchmark on a SparcStation 2 with 64
megabytes of memory. SML/NJ was run
with the optimization settings normally
used for compiling the compiler itself,
and with all the input in one file to
enable cross-module optimization (which
makes things about 9% faster). Note that
the callee-save representation is not yet
implemented for the Sparc and might
save an additional 7% runtime. On two
of the benchmarks (as shown), the
Poly/ML compiler aborted after several
minutes; we believe this is caused by
complicated pattern-matches tripping
over an exponential-time algorithm in the
Poly/ML front end.

two new primitive functions. The signature for first-
class continuations is:

type ’a cont

val callcc : (’a cont -> ’a) -> ’a

val throw : ’a cont -> ’a -> ’b

The type int cont is the type of a continua-
tion that is expecting an integer value. The
callcc function is similar to call-with-current-

continuation or call/cc in Scheme — it is the
primitive that captures continuation values. The
function throw coerces a continuation into a func-
tion that can be applied to invoke the continuation.
Since the invocation of a continuation does not re-
turn like a normal function call, the return type of
throw k is a generic type variable that will unify
with any type.

The runtime implementation of first-class contin-
uations was also quite easy and very efficient, be-
cause of the use of continuation passing style in the
code generation, and the representation of continu-
ations as objects in the heap. Bundling up the cur-
rent continuation into a closure is just like what is
done on the call to an escaping function, and throw-
ing a value to a continuation is like a function call.
So continuations are as cheap as ordinary function



Sun 3/280 DEC 5000/200

16 Mbytes 16 Mbytes
Run G.C. Run G.C.

CAML V2-6.1 14.5 14.8 6.2 6.2
CAML Light 0.2 28.3 6.5
SML/NJ 0.65 9.6 0.3 1.7 0.1
SML/NJ 0.65 x 8.5 0.3 1.4 0.1
LeLisp 15.23 4.1 1.4
SunOS 3.5, cc -O 4.35
gcc 1.37.1, gcc -O 4.22
Ultrix 4.0, cc -O2 0.90

Figure 2: Comparison of several different compilers

Xavier Leroy translated Gerard Huet’s
Knuth-Bendix program into several
different languages, and ran them on two
different machines[21]. This table shows
non-gc run time and gc time in seconds
for each version of the program. Since
the program uses higher-order functions,
Leroy had to do manual lambda-lifting to
write the program in Lisp and C, and in
some places had to use explicit closures
(structures containing function-pointers).

CAML is a different version of the ML
language (i.e. not Standard ML)
developed at INRIA[11]; CAML V2-6.1 is
a native-code compiler that shares the
LeLisp runtime system, and CAML
Light[20] is a compiler with a byte-code
interpreter written in C. SML/NJ x
refers to Standard ML of New Jersey with
all modules placed in “super-module” to
allow cross-module optimization.

calls.

Continuations are not necessarily a good tool for
routine programming since they lend themselves
to tricky and contorted control constructs. How-
ever, continuations have an important “behind the
scenes” role to play in implementing useful tools
and abstractions. They are used in the implemen-
tation of the interactive ML system to construct a
barrier between user computation and the ML sys-
tem. This makes it possible to export an executable
image of a user function without including the ML
compiler. Another application of continuations is
Andrew Tolmach’s replay debugger[35], where they
are used to save control states. This is the basis of
the time travel capabilities of the debugger.

It is well known that continuations are useful for
implementing coroutines and for simulating paral-
lel threads of control[37]. Using continuations in
conjunction with the signal handling mechanisms

implemented by John Reppy[27] (themselves ex-
pressed in terms of continuations), one can build
light-weight process libraries with preemptive pro-
cess scheduling entirely within Standard ML of New
Jersey. Two major concurrency systems have been
implemented at this point: Concurrent ML by John
Reppy[28] is based on CCS/CSP-style primitives
(synchronous communication on typed channels)
but introduces the novel idea of first-class events.
ML Threads is a system designed by Eric Cooper
and Greg Morrisett[12] that provides mutual exclu-
sion primitives for synchronization. A version of
ML Threads runs on shared-memory multiproces-
sors, where threads can be scheduled to run in par-
allel on separate physical processors. Both Concur-
rent ML and ML Threads are implemented as ordi-
nary ML modules, requiring no enhancements of the
language itself—except that ML Threads required
modification of the runtime system to support mul-
tiprocessing.

12 Related projects

A number of very useful enhancements of the Stan-
dard ML of New Jersey system are being carried
out by other groups or individuals. One such
project is the SML-to-C translator done by David
Tarditi, Anurag Acharya, and Peter Lee at Carnegie
Mellon[31]. This provides a very portable basis for
running ML programs on a variety of hardware for
which we do not yet have native code generators,
with very respectable performance.

Mads Tofte and Nick Rothwell implemented the
first version of separate compilation for Standard
ML of New Jersey. Recently Gene Rollins at
Carnegie Mellon has developed a more sophisticated
and efficient system called SourceGroups for man-
aging separate compilation. SourceGroups builds
on the primitive mechanisms provided by Tofte and
Rothwell but gains efficiency by doing a global anal-
ysis of dependencies among a set of modules and
minimizing redundancy when loading or recompil-
ing the modules.

John Reppy and Emden Gansner have developed
a library for interacting with the X window system.
This system is based on Concurrent ML and pro-
vides a much higher-level of abstraction for writing
graphical interfaces than the conventional conven-
tional C-based libraries.

13 Future Plans

The development of Standard ML of New Jer-
sey and its environment is proceeding at an ac-
celerating pace. John Reppy is implementing a



new multi-generation, multi-arena garbage collector
that should significantly improve space efficiency.
Work is in progress to improve code generation and
significantly speed up the back end. Exploratory
work is being done on new features like type dy-
namic, extensible datatypes, and higher-order func-
tors.
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