
Verified Compilation for Shared-memory C

Lennart Beringer1, Gordon Stewart1, Robert Dockins2, and Andrew W. Appel1

1 Princeton University
2 Portland State University

Abstract. We present a new architecture for specifying and proving op-
timizing compilers in the presence of shared-memory interactions such
as buffer-based system calls, shared-memory concurrency, and separate
compilation. The architecture, which is implemented in the context of
CompCert, includes a novel interaction-oriented model for C-like lan-
guages, and a new proof technique, called logical simulation relations, for
compositionally proving compiler correctness with respect to this inter-
action model. We apply our techniques to CompCert’s primary memory-
reorganizing compilation phase, Cminorgen. Our results are formalized
in Coq, building on the recently released CompCert 2.0.

1 Introduction

Shared-memory cooperation—the coordinated use of memory by several static
or dynamic execution units—occurs ubiquitously in systems software. Sequential
applications exchange pointers across module boundaries; concurrent threads
interact via memory synchronization and by communicating pointers to shared
data; nearly all programs communicate via memory with libraries and make
pointer-valued system calls. Correct compilers—that preserve program safety
and functional specifications—must respect a program’s effects on memory.

Yet optimizing compilers for system languages such as C routinely perform
code transformations that alter memory behavior. They relocate or eliminate
load and store operations, they coalesce allocation events (especially as local
variables are formulated into a stack frame), and they delete and insert loads,
stores, stack allocations, and stack frees. For example, consider the CompCert
verified optimizing C compiler [Ler11]. To limit pointer aliasing and perform
efficient register allocation, CompCert identifies in an early compiler phase all
local variables whose addresses are not taken. These unaddressed variables are
shifted from in-memory blocks in function stack frames to register-allocated
compiler temporaries. The variables are thus “removed from memory” (though
some may later be spilled back into memory after register allocation).

Optimizing transformations are important for generating efficient code, yet
also complicate the compiler’s specification as it relates to memory. Correctness
of any phase that adjusts the memory layout must preserve the program’s mem-
ory behavior. However, it is not clear what “preservation of memory behavior”
means when the compiler may introduce or remove memory effects. The difficul-
ties are even more acute when translation units may be separately compiled, since

appel
Typewritten Text
To appear in ESOP'14: 23rd European Symposium on Programming, April 2014, Springer LNCS 8410.

appel
Typewritten Text

appel
Typewritten Text

appel
Typewritten Text

a pointer passed as an argument between modules may need to be translated
depending on the (intermediate) languages in which the modules are expressed.

To address these issues, we present a novel framework for specifying C-
like languages—imperative languages with low-level memory models—and their
translations. The framework consists of two major components.

First, we develop a new interaction model, core semantics, that describes
communication between execution threads with pointer exchange. A thread, or
core, might represent true concurrency, or a sequential call to an external func-
tion. Crucially, our model is language-independent, separating thread-local data
such as the control stack and local environment from global data such as shared
memory. The caller of an external function thus need not know in which lan-
guage the invoked function is implemented—a necessary precondition even for
the specification of separate compilation and linking.

Second, we introduce logical simulation relations (LSRs), a notion of compiler
correctness that supports the core semantics model. Critically important—and
a major contribution of our work—is a proof that LSRs compose transitively.
Transitivity is essential for compositional verification of multiphase compilers.

We develop our framework in the concrete setting of CompCert. CompCert
is an ideal testbed for three reasons: (i) it is the only publicly available opti-
mizing C compiler that is equipped with a formal specification and correctness
proof; (ii) CompCert provides a uniform memory model across all intermedi-
ate languages, a prerequisite for meaningful pointer communication; and (iii)
CompCert punts on shared-memory cooperation, by disallowing communication
of pointers to dynamically allocated data. CompCert’s transitivity proof is de-
pendent on this restriction, but in consequence, even basic interactions with
system calls such as Linux read and write cannot be validated. Our framework
reformulates CompCert’s correctness theorem to lift these restrictions.

Contributions and Outline

i. We provide a detailed analysis of the tensions that result when proving
compiler correctness in the shared-memory setting (§2). Our analysis is con-
ducted in the concrete setting of CompCert and its memory model.

ii. We present core semantics, a new execution model for C-like languages (§3).
Core semantics capture the interactions between a running thread, or core,
and its environment via calls to external functions. Unlike in current Comp-
Cert, our execution model enables pointer sharing at interaction points.

iii. We develop (§4) a language-independent notion of shared-memory compiler
correctness, called logical simulation relations (LSRs), that is compatible
with all three classes of memory transformations employed by CompCert.
Our model of compiler correctness is transitively composable, a result that
is necessary for the verification of multiphase compilers.

iv. Our approach requires minimal changes to CompCert’s existing machine-
checked correctness proofs. We demonstrate a proof adaptation for the hard-
est case, Cminorgen (§6).

2

Fig. 1. CompCert block-
level memory transforma-
tions

injection (phase 1) extension (phase 2)

local variable env.
memoryspillrelocation

b1

b0

b2
b3 b3

v. Our operational-semantic model supports the soundness proof of expressive
program logics. For example, we have formalized the soundness proof of a
step-indexed program logic for C light [A+14], but could support xcap-
like syntactic models [NS06] just as well. Section 5 briefly describes the
connection of the C light logic to the techniques of this paper.

2 Technical Challenges and Approach

The technical challenges inherent in adapting CompCert to support shared mem-
ory lie in three major areas: the CompCert memory model, the CompCert cor-
rectness proofs, and the compiler’s specification of external functions. This sec-
tion motivates, with examples, the main technical challenges in each of these
three areas, and outlines our solutions.

2.1 The CompCert C Memory Model

The semantics of pointer arithmetic, pointer comparison, and other “messy” fea-
tures of C led Leroy, Blazy et al. to strike a balance in the design of CompCert’s
memory model [LB08,L+12] between concreteness and abstraction. Concreteness
is necessary to model C’s low-level memory behavior, such as aliasing and par-
tial overlap of word-sized loads due to pointer arithmetic. Abstraction is needed
for high-level reasoning. These competing requirements have led to a memory
model—for use in operational semantics—that is elegant, yet inherently complex.

CompCert models memory as a set of blocks, the sizes of which are fixed at
allocation time. Addresses are pairs of a block-number and an offset, which is
an integer pointing to a particular location within the block. Pointer arithmetic
is allowed within blocks but not across blocks. CompCert allocates a fresh block
for each local variable, thus permitting pointer arithmetic within a local (array
or struct) variable, but not across them. A stack-allocated char array of size n
would be allocated an n-byte block, whereas a local integer variable occupies a
block of size 4 (on 32-bit architectures).

This memory model is used in all operational semantics from C, through sev-
eral intermediate languages, to assembly language. Because CompCert may al-
ter a program’s memory layout during compilation, the model must also support
memory transformations. The transformations include (1) removal from function

3

activation records of scalar local variables that are never addressed with the &
operator, and (2) spilling of local variables that could not be register-allocated.
Figure 1 depicts these transformations schematically. In CompCert’s variable re-
location phase (labeled injection in the diagram), local variables that are never
addressed (here, block 0) are moved from memory into a local variable envi-
ronment. Additionally in this phase, CompCert coalesces the distinct memory
blocks of the local variables for each function activation (here, blocks 1 and 2)
into a single block representing the entire activation record (block 3). It is sound
to merge blocks—thus permitting more pointer arithmetic in the target program
than in the source program—because we assume that the source program did
not go wrong: i.e., did not do forbidden cross-variable pointer arithmetic.

To model phase (1), CompCert introduces a generic form of memory em-
bedding called memory injection: a block-wise partial function of the form
B ⇀ B × Z. Here B is a countable set of blocks. The second component Z
of the result pair is an integer offset that is applied, in the resulting memory,
uniformly to every address in the mapped block. For example, assuming four
byte blocks in the source language, the memory injection in phase (1) would be
specified as, b0 7→ None b1 7→ Some (b3, 4) b2 7→ Some (b3, 0).
Block b0 is unmapped because it is not addressed, block b1 is mapped to block b3
at offset 4 and block b2 is mapped to block b3 at offset 0. Thus a load from block
b1 at offset 0 becomes a load from block b3 at offset 4 after the transformation.

Variables in the local variable environment do not have addresses, but may
be spilled back into memory in phase (2) (labeled extension in Figure 1) after
register allocation. Spilling requires that certain (stack-frame) blocks be extended
(here, block 3) to make room for the spilled variables. Extension of a block is
modeled by a change in memory permissions, which record the level of access
allowed (read, write, etc.) at a particular memory location.

CompCert 1.x’s3 memory injections and memory extensions did not compose.
This was not a problem for CompCert 1.x because memory was not exposed at
external calls. We discuss the solution for CompCert 2.x in Section 4.1.

Permission Changes. A different limitation of CompCert 1.x is its operational
model of memory-access permissions: at each abstract block number, a range
lo . . . hi of addresses could be read or written. Calling a function would allocate
a new (stack) block, returning would deallocate (without reusing block numbers).

Consider a source-level program logic for shared-memory concurrency, such
as Concurrent Separation Logic [O’H07], in which we prove that a synchroniza-
tion operation (lock acquire/release) adds or removes write or read permission to

3 We describe as CompCert 1.x early versions of CompCert dating from 2006 in
which Leroy et al. focused on whole-program single-threaded execution. Certain
releases between 1.0 and 2.0 have incorporated several technical suggestions that
resulted from the work reported in this paper and from discussions with Leroy. We
describe as CompCert 2.x the 2.0 release, incorporating these changes, and near-
future CompCert versions in which other adjustments to the specification may be
made to improve compositionality of shared-memory interaction. Of course, between
CompCert 1.0 and 2.0, Leroy et al. made many other unrelated enhancements.

4

some set of addresses. To communicate the result of the program-logic reasoning
to CompCert, without embedding the entire program logic into CompCert, we
now use a finer-grain permission structure in the operational semantics: byte by
byte, read or write [L+12]. External functions (such as lock-acquire, lock-release)
may change the permissions in arbitrary and nondeterministic ways.4 Reason-
ing in the program logic ensures that the source program (with its operational
permission changes) is safe. These permissions in the operational semantics will
not exist physically when executing the compiled program.

CompCert 1.x could not permit this; it could not even permit general system
calls such as brk to change memory permissions; malloc and free could not
be modeled as system calls, so had to be special built-ins. The new permission
model allows for expressive proofs about correct compilation of synchronized
shared-memory programs.

2.2 The CompCert Correctness Proofs

The correctness proofs of the CompCert phases generally take the form of for-
ward simulations to deterministic languages. By proving receptiveness of the
source language, CompCert recovers event trace equivalence from the forward
simulation proofs, for a limited class of events not containing pointers to stack or
heap data. For shared-memory interaction, the events in CompCert 1.x’s event
traces are simply too inexpressive; but we will use forward simulations.5

A forward simulation proof consists of a measured simulation relation be-
tween the states of the source and target languages and a proof that the sim-
ulation relation can be re-established over execution steps. For example, in the
proof of CompCert’s variable relocation phase, the simulation relation asserts
that the values of variables that have been removed from memory match the
contents of the blocks from which the variables were relocated. That is, a four
byte load from block b0 in Figure 1 should produce the same value as evaluation
of the associated local variable in the environment that results after the injec-
tion. “Measured” means the simulations allow multiple source language steps to
correspond to zero target language steps, as long as there is a well-founded order
on source language states that decreases at each step.

CompCert 1.x permits calls to external functions that take numeric param-
eters and do not access shared memory. For whole-program embedded appli-

4 CompCert need not know which external functions do what; any external call may
change memory permissions. Standard optimizing compilers such as gcc behave con-
sistently with similar conservative assumptions. In principle, one could tell CompCert
that lock-acquire only increases permissions, and lock-release only decreases them;
then CompCert could hoist loads/stores past these calls (down, and up, respectively).

5 Forward simulations are adequate because: We determinize multithreading with
an external oracle (schedule), we transform racy loads/stores into “external calls”
(which the compiler cannot remove or reschedule). Nonracy loads/stores are thread-
modular by Dijkstra/Hoare (Pthreads) locking, modeled by (implicit virtual) per-
mission transfers at acquire/release events; load/store without permission is “stuck”
in the source program. In summary, no unmatched target behaviors are possible.

5

Fig. 2. Schematic
CompCert simulation
diagram for f’s call
to external function
g. Compilation goes
left-to-right; execution
goes top-to-bottom.

{
0

{a, 0}

injection

a

b

c

0

0

0

0

0a

b

c

3

3

3

3

Source

Pre-call

g(&b, &c) g(&b, &c)

{a, 0}match

injection

match

{ {Target

Post-call

{

cations without an operating system, such an external function could drive an
actuator or read a scalar value from a sensor. But more generally in the C lan-
guage, external functions are just those that are declared within the current
module (as extern) but defined, or implemented, in another.

// Module A

extern void g(int *d, int *e);

int f(void) {

int a=0, b=0, c=0;

g(&b, &c);

return a + b + c;

}

// Module B

void g(int *d, int *e) {

*d = 3;

*e = 3;

}

For example, module A above declares an external function g taking two integer
pointers as parameters and returning void. It also defines an internal function f

calling g with the addresses of f’s local variables b and c as arguments. Module
B defines g to perform side effects on the pointers that are passed.

Now imagine CompCert compiles module A through its variable relocation
phase, with external module B remaining uncompiled. The memory state before
and after the memory injection, just before external function g is called, is shown
in the top half of Figure 2. The simulation invariant, pre-call, says that the value
in memory at address &a in the source (i.e., before variable relocation) equals
the value of the variable a in the local variable environment in the target, after
variable relocation. In the diagram, we depict this constraint as a bold line
labeled “match” connecting the two boxes along the compilation axis.

To preserve semantics, CompCert needs to show that at the point of the
external call, g will succeed in the injected memory state assuming it succeeded
before memory injection, and that the “match” relation can be re-established
after the call, assuming it held initially. This proof corresponds to the completion

6

of the lower half of the diagram in Figure 2. We must find a state that (1) results
from running g with injected arguments; (2) is the injection of the lower left
state; and (3) satisfies the match invariant with respect to the lower left. But
an issue arises when we attempt to establish (3). To retain expressiveness, we
must give external functions the freedom to mutate memory. On the other hand,
simulation proofs for modules such as A should be able to safely assume that
certain portions of memory remain unchanged by external calls. For example,
the value in memory at address &a above, which is private to module A because
the location has not been leaked as a parameter to g, should match the value
assigned to a in the local variable environment both before and after the call to
function g. How to reconcile these opposing concerns?

2.3 External Functions

CompCert 1.x maintains a distinction between “public” and “private” memory,
but does so in a way that restricts the kinds of external functions that may be
defined. To see why, consider CompCert 1.13’s specification of external calls,
modeled as a relation on the function arguments, the initial memory, the re-
turn value, and the final memory. We call this relation ec sem, for external-call
semantics. The axiom for external calls is: Suppose

• ec sem ge −→v1 m1 rv1 m ′1; inject j m1 m2 (we use notation m1�j m2 for this);
• block validity, and permissions (see below) are suitably preserved; we use

notation forward m1 m ′1 for this; and
• val list inject j −→v1 −→v2 (notation: −→v1 �j

−→v2);

that is, in the source language, in global environment ge, calling a particular
function with parameters −→v1 and memory m1 yields return-value rv1 and memory
m ′1; and there is a source-to-target memory injection j injecting −→v1 into −→v2 , and
m1 into m2. Then there must exist a post-call injection j ′ extending j (notation
j ≤ j ′), and rv2 and m ′2 such that:

• ec sem ge −→v2 m2 rv2 m ′2; forward m2 m ′2; rv1�j ′ rv2; m ′1�j ′ m ′2;
• unchOn (loc unmapped j) m1 m ′1; and unchOn (loc out of reach j m1) m2 m ′2.

That is, at every external function call (ec sem ge −→v1 m1 rv1 m ′1) one can
complete the simulation diagram (ec sem ge −→v2 m2 rv2 m ′2) for compiler phases
that adjust the memory representation via a memory injection. (CompCert im-
poses a similar restriction in the memory extension case.) Also, on locations such
as &a that are unmapped by the memory injection, the memory remains unmod-
ified (unchOn, “unchanged on”) in the pre-transformation execution. Memory
locations in the post-transformation states that have empty permission initially,
before the injection is applied (loc out of reach j m1), must remain unmodified
by the external function call.

There are two problems with these restrictions. The first is that they impose
a big-step semantics on external calls. Clause ec sem ge −→v2 m2 rv2 m ′2 requires
that the external function terminate, in one step, when executed in m2. This

7

requirement is incompatible with external functions implemented by potentially
nonterminating code, or that might block in a concurrent setting.

The second problem lies with the restrictions on how external function calls
may mutate memory (clauses beginning unchOn. . .). The unchOn P m m ′ clauses
have two effects. They ensure that (1) external calls do not modify, in the pre-
compilation memories m1 and m ′1, locations which are unmapped by the memory
injection j (loc unmapped); and (2) they ensure that external calls do not modify
locations in m2 which were unreachable in m1 under j (loc out of reach). The
problem here is that CompCert is using injections both to specify the memory
transformations performed by the compiler, and to axiomatize the behavior of
external function calls. In other words, restrictions on which locations external
calls may mutate are keyed to the compiler transformations themselves. (Lo-
cations mapped by a memory injection are made public, whereas unmapped
locations, e.g., &a in the example above, remain private.) Unfortunately, this
dual-purpose use of memory injections (and extensions) fails to account for situ-
ations in which the external function is itself code, perhaps a second CompCert
translation unit, that is compiled independently from the calling module.

To illustrate the issues that arise when external functions are compiled, con-
sider the case in which the function g of module B itself contains an unaddressed
local variable, say h, which is relocated out of memory by CompCert’s variable
relocation phase.

void g(int *d, int *e) { // Module B’

int h = <expr >; *d = h; *e = <expr >;

}

By the above axiom, module B’ must not mutate memory blocks that are subse-
quently removed from memory by compilation (here, the block containing vari-
able h). Yet this is exactly what module B’ does when it assigns to h. Indeed, since
h is a private local variable, the modification is perfectly acceptable behavior.

3 Core Semantics

The first major part of our solution is to define a uniform, protocol-oriented inter-
face to languages that interact with their environments. Imagine a multithread
shared-memory execution. One can spawn a new thread; a thread may yield (or
block on a synchronization) and perhaps later resume; eventually a thread may
exit. We use this model not only for concurrency but also for sequential calls to
separately compiled functions (spawn a new “thread” to run the call, block until
it returns) and for a single thread running in an operating-system context with
system calls. When a thread yields (or calls a sequential external function), its
local state including stack and registers will be preserved until it resumes, but
the state of most of memory may have changed arbitrarily upon resumption.

Core semantics (Figure 3) are a general formulation of a thread protocol. At
a high level, a core semantics (G ,C ,M) is a partitioning of a thread’s state into
a global environment (G), a local part (C), which we call the core state, or core,

8

and which typically includes both the control continuation and local variable
environment, and a shared part (M), which we typically identify with shared
memory. V is the type of values, and F is the type of external function names.

Fig. 3. Core Semantics interface.
The types G (global environ-
ment), C (core state), and M
(memory) are parameters to the
interface. F is the type of
external function identifiers. V
is the type of values, and T
is Coq’s type of propositions,
Prop. The names initial core,
at external, after external, halted
are not constructors, but are
(proved) disjoint predicates.

initial_core running

halted after_external

at_external

interference

initial core : G → V → list V → option C
at external : C → option (F × list V)

after external : option V → C → option C
halted : C → option V

corestep : G → C → M → C → M → T

With this partitioning comes a step relation (corestep) on core states and
memories that defines the small-step operational model of the core semantics.
We will often write the corestep relation as ge ` 〈c,m〉 7−→ 〈c′,m ′〉. The global
environment ge maps functions to their definitions and does not vary.

In a (concurrently or sequentially) multithreaded system, different cores could
have different core types (C) and different corestep relations. This permits in-
teroperation of modules written in different languages. But such a surrounding
system, modeling (respectively) a scheduler or a linker, is not needed for speci-
fying compilation. This is an important separation of concerns.

To enforce the protocol described above, we divide core states into the five
lifetime stages. Initial cores result directly from the creation of the thread or
initialization of the program using initial core. Typically, an initial core contains
an empty local environment, together with a control continuation consisting of a
single function call (the V parameter in the definition), with arguments (list V).
For a standalone program, this function is main; for a thread, it is the function
that was forked; for a call to a separately compiled module, it is the called
function. At external cores are those initiating an external function call. In C
terminology, external functions are just functions that are declared within the
current translation unit or module but which are defined elsewhere (e.g., in a
module that is later linked to the current one). After external cores result from
resumption of the thread or program after an external call. In the transition from
after external to a running state, a core is expected to incorporate the return value
(option V) into its local variables (in its own language-dependent way). Halted
cores are just that: threads or programs that have terminated normally, yielding
an optional return value (option V). Finally, running cores are neither blocked
on an external function call nor halted.

9

Statements:

s ::= Sskip no-op
| Sassign a1 a2 lval ← rval
| Sset id a temp ← rval
| Scall optid a −→a function call
| Sbuiltin optid f −→τ −→a intrinsic
| Ssequence s1 s2 sequence
| Sifthenelse a s1 s2 conditional
| Sloop s1 s2 infinite loop
| Sbreak | Sreturn aopt break/return
| Scontinue s continue stmt.
| Switch s | Slabel l s | Sgoto l

Internal Functions:

Fi ::= { returnType τ ; fun. ret. type

params
−−−−→
(id , τ); params./types

locals ρv ; local var. env.
temps ρt ; temp. env.
body s } function body

Internal & External Fun. Definitions:

τ ::= int | float | long | single
F ::= Internal Fi

| External f −→τ τ

Fig. 4. Syntax of C light

Preemption. The core semantics protocol is nonpreemptive—it does not directly
model thread preemption that may result from interrupt handling. We can make
this simplification—even though the underlying machine-language system may
do preemption—because we write well-synchronized race-free code. Our source-
level program logic verifies a stronger property than race-freedom: every mem-
ory access is performed with permission, and synchronization ensures that no
two threads have conflicting permissions to a given address. Race-free programs
running in a nonpreemptive semantics soundly approximate race-free programs
in an interleaving semantics. Moreover, we are interested ultimately in proving
correctness of the logic and compilation toolchain with respect to weak memory
models—on such machines, interleaving is not even the right model. Race-free
programs have sequentially consistent behavior on all well-behaved weakly con-
sistent machines.6 In our approach, the compiler correctness theorems can be
oblivious of preemption and weak cache coherence—they just follow the rules of
operational memory permissions.

3.1 Example: C light

As an example of a core semantics, we show CompCert C light. This high-level
subset of C is the target of CompCert’s first translation phase (from the full
CompCert C language). It serves as a natural interface between CompCert,
user-level program logics, and verified static analyses.

Figure 4 gives the syntax of C light. The syntax of expressions a is standard.
In the statement syntax, for and while loops have already been translated (in an
earlier compiler phase) to combinations of the more primitive Sloop and Sbreak
constructs. The details of local control flow (loop, if, break, continue, switch,
goto) are standard CompCert 1.13 Clight, and not relevant to (or changed by)
our work on external interaction.

6 This is not a theorem, it’s better than a theorem: it is the definition of “well-behaved”
for weakly consistent memory models.

10

ge ` a ⇓ρv ,ρt ,m vf ge ` −→a ⇓ρv ,ρt ,m −→v ge[vf] = Some (Internal Fi)
typeOf Fi = Tfunction −→τ τ allocVars ρ∅ m (locals Fi) = (ρ′v ,m

′)
bindParams (params Fi)

−→v (initTempEnv (temps Fi)) = Some ρ′t

ge ` 〈RunState(ρv , ρt , Scall optid a −→a · κ),m〉 7−→
〈RunState(ρ′v , ρ

′
t , body Fi · Sreturn None · Kcall optid Fi ρv ρt κ),m ′〉

(ScallInternal)

ge ` a ⇓ρv ,ρt ,m vf ge ` −→a ⇓ρv ,ρt ,m −→v ge[vf] = Some (External f −→τ τ)

ge ` 〈RunState(ρv , ρt , Scall optid a −→a · κ),m〉 7−→
〈ExtCallState(f ,−→τ , τ,−→v , optid , ρv , ρt , κ),m〉

(ScallExternal)

Fig. 5. Internal and external call rules from the operational semantics of C light

Functions F are either internal (defined in the current translation unit) or
external (declared here but defined elsewhere). Internal functions comprise a
record containing the function return type, a list of function parameters with
their types, a local variable environment for address-taken variables, a tempo-
raries environment for the rest of the function variables, and the function body.
External functions comprise an external function identifier f , a list of argument
types −→τ and a return type τ , where τ is int, float, long, or single (single-precision
floats). External functions do not contain a function body. The core semantics for
C light will stop at external calls and yield control to the execution environment.

Semantics. Figure 5 shows our reformulation of the internal and external func-
tion call rules of the C light operational semantics. The operational semantics is
a three-place relation on global environments ge : G , initial configurations 〈c,m〉
and final configurations 〈c′,m ′〉. Here c is a core state; m is a CompCert mem-
ory. The relation ge ` a ⇓ρv ,ρt ,m v denotes big-step evaluation of expression a
to value v in global environment ge, local variable environment ρv , temporaries
environment ρt , and memory m.

We instantiate the type C of the core semantics interface to C light as follows.

c ∈ C ::= RunState ρv ρt κ “running” states
| ExtCallState f sig −→v optid ρv ρt κ at external states

RunStates are normal execution states. ExtCallStates are calls to an external func-
tion f , with arguments −→v . Parameter optid is an optional return value variable
(= None when the function has void return type). The control continuation κ
is a stack of suspended commands and function activations. In the ExtCallState
constructor, sig is the external function type signature.

Next, we define the at external function of the core semantics interface as a
straightforward match on a core state c, returning Some (f ,−→v) when c is an
ExtCallState, and None otherwise.

11

After external takes as arguments an optional return value vret (again, None
is used for void functions) and a core state c. If c is an ExtCallState and the
return value is not None, then the temporary environment is updated to reflect
the new return value. After external will return None if c is not a proper external
call state or if the return value and return variable are incompatible.

Readers familiar with CompCert 1.x will observe the proximity of our defi-
nition to Leroy et al.’s presentation: our adaptation removes the memory com-
ponents from the two state constructors RunState and ExtCallState and adds the
definitions of after external and so on. The operational semantics (not shown)
arises by refactoring the existing definition in accordance with these state rep-
resentation changes and removing the rule for external function calls: such calls
are now handled by the generic core-semantics interface.

4 Logical Simulation Relations

To adapt compiler correctness to the core semantics of Section 3 in a composable
way, we take inspiration from the well established notion of type-indexed logical
relations. Given a pair of core semantics, our notion of compiler correctness takes
the form of a forward simulation, a correspondence relation between cores that
is structure-preserving in source-to-target direction. Given the absence of suffi-
ciently expressive type structure, preservation of structure in our case amounts
to compatibility with the cores’ lifetime stages.

CompCert distinguishes among three kinds of translations: memory equality
passes leave memory unaffected but may modify the representation or opera-
tional behavior of cores; memory extension passes may enlarge existing memory
blocks (by increasing the block size during allocation) and increase the defined-
ness of memory-held values, but do not add or remove blocks; memory injection
passes may discard or merge blocks by eliminating or coalescing allocation in-
structions. Our simulation relation accordingly defines distinct clauses for the
three cases. Definition 1 below details the clause for injection passes, where
j , j ′, . . . : B ⇀ B × Z indicate block relocations (e.g., j b = (b′, z) relocates
block b to a contiguous region in block b′, starting at offset z), j ≤ j ′ indicates
inclusion of relocations, j ./m1;m2 j ′ denotes that for any entry j ′ b1 = (b2, z)
not present in j , blocks b{1,2} must be unallocated in m{1,2}, and m1 �j m2

indicates that m2 is m1’s image under j (and similarly for −→v1 �j
−→v2).

Definition 1 (Measured Forward Simulation (Injection Case)). Let M
be the type of CompCert memories; L1 = (G1,C1,M) be the source core seman-
tics; L2 = (G2,C2,M) be the target core semantics; ge1 : G1 be some source
global environment; ge2 : G2 be some target global environment.

Then we say there is a measured forward simulation for injections from L1

to L2 (notation L1 �Inj L2) if there exist a well-founded-order < and a family of
relations (∼j) : C1 → M → C2 → M → T on cores and memory states, indexed
by memory injections, such that the following hold.

12

1. If initial core ge1 u1
−→v1 = Some c1; entryPoints u1 u2 sig; m1 �j m2; and

−→v1 �j
−→v2 then there exists c2 such that initial core ge2 u2

−→v2 = Some c2 and
〈c1,m1〉 ∼j 〈c2,m2〉.

2. If halted c1 = Some v1 and 〈c1,m1〉 ∼j 〈c2,m2〉 then there exists v2 such
that halted c2 = Some v2, v1�j v2, and m1�j m2.

3. If ge1 ` 〈c1,m1〉 7−→ 〈c′1,m ′1〉 then for all c2, j , m2 such that 〈c1,m1〉 ∼j

〈c2,m2〉, there exist c′2, m ′2, j ′ for which j ≤ j ′; j ./m1;m2
j ′; and 〈c′1,m ′1〉 ∼j ′

〈c′2,m ′2〉; and either
– ge2 ` 〈c2,m2〉 7−→+ 〈c′2,m ′2〉; or
– ge2 ` 〈c2,m2〉 7−→∗ 〈c′2,m ′2〉 and c′1 < c1.

4. If 〈c1,m1〉 ∼j 〈c2,m2〉 and at external c1 = Some (f ,−→v1) then m1 �j m2,
and there exists −→v2 with −→v1 �j

−→v2 and at external c2 = Some (f ,−→v2).
5. If 〈c1,m1〉 ∼j 〈c2,m2〉 and at external c1 = Some (f ,−→v1), then for all m ′1,

m ′2, j ′, v ′1, v ′2 with j ≤ j ′; j ./m1;m2
j ′; m ′1�j ′ m ′2; v ′1�j ′ v ′2 and

– forward m1 m ′1; forward m2 m ′2;
– unchOn (loc unmapped j) m1 m ′1; unchOn (loc out of reach j m1) m2 m ′2

there exist c′1, c′2 such that
– after external (Some v ′1) c1 = Some c′1;
– after external (Some v ′2) c2 = Some c′2; and 〈c′1,m ′1〉 ∼j ′ 〈c′2,m ′2〉.

The definition contains one clause for each protocol stage of core semantics:
Initial Cores. Clause 1, the base case, requires L2 to match any L1-initial

core, given matching memories and arguments and related entry points.
Halted Cores. Symmetrically, clause 2 propagates termination from L1 to L2

for any ∼j -related states, guaranteeing correspondence with respect to j for final
memories and return values.

Core Steps. Clause 3 handles core steps, following the pattern of CompCert
1.x’s forward simulations. An L1 step may be matched by empty or nonempty se-
quences of L2 core steps. In order to prevent infinite stuttering, the well-founded
measure < over core states c must decrease each time a possibly empty sequence
is chosen. Since c1 and c2 may allocate new blocks during execution, resulting
in larger memories m ′1 and m ′2, the relocation map j may also be extended to j ′

(notation j ≤ j ′) to account for the new blocks (under condition j ./m1;m2 j ′).
External Steps. The most interesting clauses concern the interaction of a

core semantics with its environment. Clause 4 requires that L2 match any call
performed by L1 with a call to the same function, with corresponding arguments.

Function Returns (Clause 5). In contrast to formulations using logical rela-
tions or >>-closure, we do not explicitly impose a simulation relation on environ-
ments. Instead, we require that the cores be ready to accept (and to re-establish
the match relation on) nearly any pair of memories and return values the en-
vironments happen to return.7 As a consequence, a compilation is considered
correct independent of the termination behavior of its environment.

7 This is an important point! The authors of a compiler such as gcc or CompCert
make few assumptions about the environment, or about separately compiled mod-
ules. They do not want their reasoning about compiler correctness entangled with
specifications of the programs to be linked with.

13

More precisely, given a call in L1 (and, necessarily, a corresponding call in
L2, by Clause 4), we mandate that the match relation ∼ be re-established (and
the resumption of normal execution succeed in both languages) whenever the
environments yield back with return values v ′1 and v ′2 and updated memories
m ′1 and m ′2 that are related by a relocation map j ′. Here j ′ is an extension of
the relocation map j provided at the time of the calls, meaning it agrees with j
wherever j was defined, but may relocate new, freshly allocated blocks.

In accordance with the restrictions on external calls in CompCert, however,
we assume that the evolution of memories across calls satisfies some basic con-
ditions: forward m m ′ requires that an evolution m m ′ does not invalidate
(i.e., return to the allocation pool) any block that was previously allocated,
and at most decreases the maximum permissions of the block’s individual loca-
tions.8 Blocks may of course be freed, but in CompCert’s memory model, freed
blocks are never re-allocated (each new allocation takes a fresh block-number
from a countable set of positive numbers). The unchOn conditions impose a
frame discipline, by confining the effects of the commands to addresses speci-
fiable using j . In particular, unchOn (loc unmapped j) m1 m ′1 requires that m ′1
contain identical values as m1 in all blocks b outside the preimage of j , while
unchOn (loc out of reach j m1) m2 m ′2 imposes preservation of values at m2 ad-
dress whose preimage under j has empty Max permission.

In addition to the clauses in Definition 1, our formal definition imposes some
structural conditions on the relation 〈c1,m1〉 ∼j 〈c2,m2〉, such as a constraint
that global environments be suitably preserved (notation preservesGlobals ge1 j),
and that all blocks mentioned by j be valid in the respective memories. We omit
the details of these clauses from our presentation.

We denote simulations for extension and equality passes by L1 �Ext L2 and
L1 �Eq L2, respectively—the definitions of these notions mirror that of L1 �Inj

L2, but we omit the details. We write . � . for the union of all three relations.

4.1 Transitive Composition of Simulations

In order to verify a multiphase compiler in a modular way, it is critically im-
portant to transitively compose correctness proofs of individual compiler phases.
That is, we would like to prove that L1 � L3 holds whenever L1 � L2 and
L2 � L3. In the following, we summarize our Coq proof of this result.

A cooperative core semantics is a core semantics such that ge ` 〈c,m〉 7−→
〈c′,m ′〉 implies forward m m ′.

Theorem 1. For cooperative L1,L2,L3, suppose L1 � L2 and L2 � L3. Then
there exists a simulation L1 � L3.

The proof of this result proceeds by case distinction on L1 � L2 and L2 � L3,
yielding nine cases. The resulting simulation is of type . �Inj . whenever at least
one hypothesis is an injection, is of type . �Eq . if both hypotheses are equalities,

8 The current permission at each memory location may fluctuate arbitrarily so long
as it does not exceed the Max permission.

14

Fig. 6. Interpolation lemma for com-
posing injection phases L1 �Inj L2 and
L2 �Inj L3. Solid lines represent as-
sumptions; dashed lines represent con-
straints that the constructed m ′

2 has to
satisfy. Similar lemmas have been val-
idated in Coq for all combinations of
injection and extension passes.

m1 m2 m3

m ′
1 ∃ m ′

2 m ′
3

forward,
unchOn

j1

forward,
unchOn

j2

j ′1

forward,
unchOn

j ′2

j ′

and is of type . �Ext . otherwise. Each case consists of subgoals according to the
clauses in Definition 1 (or the similar clauses in case of . �Ext . and . �Eq .).

The most interesting subgoals are those for the after external-clauses.9 In
order to establish the desired relation 〈c′1,m ′1〉 ∼j ′ 〈c′3,m ′3〉 between the return
states in languages L1 and L3, one would like to appeal to the corresponding
relations that are inductively given for L1 � L2 and L2 � L3. However, in order
for these induction hypotheses to apply, one must provide a suitable intermediate
state 〈c′2,m ′2〉, and in particular the memory m ′2. Figure 6 depicts this situation
for the case in which both compiler phases are injection passes. As illustrated
in the figure, we require the existence of a post-call memory m ′2 in L2 such that
m ′1 can be injected to m ′2 (via an extension j ′1 of j1) and m ′2 can be injected to
m ′3 via j ′2, such that j ′ = j ′2 ◦ j ′1 (j2 ◦ j1 defines injection composition). This is
assuming j1 injects m1 to m2, j2 injects m2 to m3, and j ′ injects m ′1 to m ′3.

Prior to CompCert 2.0, memory injections did not compose, i.e. m1 �j2◦j1
m3 did not follow from m1�j1 m2 and m2�j2 m3. Because the simulations did
not expose memory, transitive compiler correctness did not require this property
to hold. In CompCert 2.0, Leroy respecified injections to facilitate such composi-
tion, based on a suggestion of Tahina Ramananandro. The interpolation lemma
provides the counterpart to this composition, by guaranteeing that the post-call
injection m ′1 �j ′ m ′3 can be split into some m ′2, j ′1, and j ′2 with m ′1 �j ′1

m ′2
and m ′2 �j ′2

m ′3. Moreover, these items can be constructed in such a way that
the evolution m2 m ′2 inherits the appropriate forward and unchOn properties
from the extremal evolutions m1 m ′1 and m3 m ′3. Our proofs of the inter-
polation lemmas suggested a handful of additional alterations to the memory
model, which we communicated to Leroy. These included a subtle refinement
to the treatment of permissions across external calls and a tweak to the defi-
nition of unchOn. Leroy installed these modifications in CompCert 2.0, and we
formally validated the interpolation lemma in Coq. That is, we have proved that
intermediate memories m ′2, and injections j ′1 and j ′2 with the required properties
can indeed be constructed.10 Having proved similar lemmas for the cases where

9 Indeed, a principal result of this paper is that one can reason about the interac-
tion between the memory manipulations of the compiler and the memory effects of
external function calls.

10 Differences between injections and extensions mean that the intermediate memories
differ slightly between these cases, although several auxiliary lemmas are shared. As a

15

one or both of the phases are memory extension translations, we combined the
interpolation lemmas to a Coq proof of Theorem 1.

The evolutions mi m ′i in Figure 6 are stated purely extensionally, in terms
of forward and unchOn. The alternative would be a requirement to preserve se-
quences of memory operations—but the question of which sequences we’d want to
preserve would take us back exactly to square one: simply requiring all sequences
to be preserved prevents the compiler from optimizing redundant loads/stores
and from reordering loads/stores once we refine external calls into (compilable)
code. On the other hand, any other equivalence would itself require extensional
justification, so nothing would be gained by considering such sequences.

5 Semantics Preservation

As Section 4 showed, LSRs support phase-by-phase verification of a compiler
such as CompCert. But what end-to-end result do LSRs guarantee?

This section answers this question, by stating and proving a strong semantics
preservation theorem implied by LSRs. In order to simplify the presentation of
this theorem, we deal here only with closed programs, i.e., those whose calls
to external functions have been fully resolved after linking. But LSRs imply a
strong semantics preservation theorem for open programs as well.

We prove semantics preservation as a corollary of safety preservation, under
the following definition of program safety.

Definition 2 (Safety). A program 〈c,m〉 is safe for n steps with postcondition
Q and in global environment ge when either

– n = 0, or
– n 6= 0 and if halted c = Some v then Q(v ,m) else there exist c′,m ′ such

that ge ` 〈c,m〉 7−→ 〈c′,m ′〉 and 〈c′,m ′〉 is safe for n − 1 steps.

A program 〈c,m〉 is safe iff it is safe for all n.

In particular, if 〈c,m〉 is safe with postcondition Q , then 〈c,m〉 will either infinite
loop or halt in a state (return value and memory) satisfying Q .

We state safety preservation in terms of this definition of safety as follows.

Theorem 2 (Safety Preservation). Let M be the type of CompCert memo-
ries; L1 = (G1,C1,M) be the source semantics; L2 = (G2,C2,M) be the target
semantics; 〈c1,m1〉 be a configuration of L1; and 〈c2,m2〉 be a configuration of
L2. Assume that L1 and L2 are deterministic, and that L1 �Inj L2 holds with
〈c1,m1〉 ∼j 〈c2,m2〉 for some injection j . Then for all postconditions Q up to
injection, if 〈c1,m1〉 is safe for Q then 〈c2,m2〉 is safe for Q.

consequence of our work, it became apparent that under certain conditions, namely
the absence of pointers to previously unallocated blocks, memory extensions are
special cases of memory injections. This opens the potential to unify the two notions
across the entire CompCert development, and hence to coalesce all interpolation
lemmas. The price is that all languages would have to (be proven to) preserve the
absence of such wild pointers throughout execution. At present, it is unclear which
way CompCert will eventually go, so we adopt the status quo for the time being.

16

By “postconditions Q up to injection,” we mean the set of predicates on return
values and memories that remain true under injection of their arguments. For-
mulating Theorem 2 with respect to . �Inj . is appropriate since this is the type
of simulation one obtains when composing all translation phases of CompCert.
In the Verified Software Toolchain [App11], a proof of {P}c{Q} in our C light
program logic [A+14] and soundness of the logic together give us the required
safety theorem for source-language C light configurations.

As a corollary of Theorem 2 and from termination preservation, we get the
following semantics preservation result.

Corollary 1 (Semantics Preservation). For any execution of L1 starting in
an initial state (module entry point) and resulting in a halted state, and for any
observation Q up to injection one could make of that halted state, there is a
unique execution starting from the initial state of L2 that terminates in a unique
halted state also satisfying the predicate Q.

These top-level theorems concern fully linked programs, but our results on
LSRs allow the extensions of these theorems to the situation in which a thread
interacts with its environment using shared-memory interaction, provided exter-
nal functions are equipped with suitable up-to-injection specifications. To get an
even stronger result regarding fully separate compilation, some additional con-
straints need to be imposed on CompCert’s specification: that all assumptions
made in the External Steps clause are established by the Core Steps clause.

6 Backwards Compatibility

Although CompCert 2.0’s top-level correctness theorems still say very little
about the memory transformations performed by the compiler, many of the com-
piler’s internal invariants—established in proofs of individual compiler phases—
make more precise statements about these memory transformations. In order to
maximize the reuse of CompCert’s proof infrastructure, it is desirable to preserve
as many of these internal invariants as possible.

To evaluate our approach, we adapted the proof of one of the trickiest com-
pilation passes, Cminorgen, to the simulation structures of Section 4. The main
task of Cminorgen is to remove from activation records any local variables that
are not address-taken (these local variables are allocated in registers, or occa-
sionally spilled back into activation records after CompCert’s register allocation
pass). Because the Cminorgen pass significantly reorganizes memory, CompCert
2.0 proves Cminorgen as an injection pass.

First, we refactored the source and target languages of the transformation,
Csharpminor and Cminor, as described for C light in Section 3.1. This involved
isolating the memory component from the core data and giving definitions for the
core semantics interface from Figure 3. Next, we adapted the proof, by exposing
the memory injection in a match relation that described the evolution of the call
stack, and reassembling the main inductive argument. While most instruction
forms were rather easy to adapt, the rule for internal function calls required a

17

slight strengthening of invariants in order to establish the j ./m1;m2
j ′ condition

of clause 3 from Definition 1. In contrast, the case for external functions, which
in CompCert 1.x and 2.0 was rather involved, disappeared completely since
external function calls are now handled by the core semantics interface.

That the adaptation of the Cminorgen proof, one of CompCert’s most com-
plicated phases, to our setting was reasonably straightforward indicates that
our proof techniques will scale to the remainder of CompCert. Indeed, many of
CompCert’s phases make no adaptations to the memory layout at all. For these
phases, all that is needed is to adapt the source and target languages to the core
semantics interface of Section 3, and its strengthening to cooperative semantics.

7 Related Work

Some of the most appealing treatments of compiler correctness to-date have
been developed in the setting of ML-like languages or (typed) lambda-calculi
[Plo73,Rey74]. Proof techniques such as logical relations or >>-closure exploit
type structure to capture the relationship between code and its execution con-
text, supporting advanced language features such as higher-order functions, ex-
istential or recursive types, polymorphism, and references. But the property of
transitive compositionality has often been difficult to obtain.

Inspired in part by Pitts and Stark’s work on Kripke logical relations [PS98],
recent years have seen progress on supporting local state in the form of mutable
references [ADR09,DNB10,HDNV12,HNDV13]. State transition systems, which
are similar in some respects to our protocol-oriented semantics, figure promi-
nently in many of the recent approaches as a means of specifying invariants on
local state. However, this work has all been done in the context of strongly typed
functional languages, e.g., System F extended with recursive types and muta-
ble references. Our context and goals are different: we apply logical simulation
relations to the problem of verified separate compilation of a weakly typed lan-
guage (C), in the context of a realistic optimizing compiler (CompCert). The
application to CompCert is one of the major contributions of our work.

Arguably, the most closely related work to ours is Hur et al.’s integration of
bisimulations and Kripke logical relations [HDNV12]. Hur et al. achieve com-
positionality for the rich setting of Fµ!, but employ a highly nonstandard con-
struction: the cardinalities of the syntactic categories for types and values, and
of the semantic interpretation of the type nat, are exploited to construct “bad”
values that have little motivation from a typed perspective (these values occur
in the logical relation at function type position, despite being integers) and are
then used to “artificially” block certain executions in the intermediate language
L2. In contrast, although being far from trivial, the proofs of our interpolation
lemmas have significantly more constructive content.

A strength of Hur et al.’s contribution is to capture the intricate inter-
actions between global (shared) and local knowledge. Hur et al.’s analysis is
formulated using relation-transition systems (RTS’s), an evolution of the au-
thors’ earlier work on using state transition systems to index Kripke-worlds in

18

step-indexed logical relations [ADR09,DNB10]. Our protocol-oriented interac-
tion model shares many of the features of RTS’s but is used to specify the
“operational ground truth”.

Progress has also been made in extending logical relations to low-level code,
and to compilation [BH09,BH10]. One of the challenges is to transform high-level
type structure into well-behavedness at the low level even in the presence of more
fine-grained observation contexts. Again, the situation for our work is different,
as the C language does not provide us with much high-level type structure to
start with. It is indeed the memory model, not type structure, that constitutes
the lingua franca between C modules, and the use of a uniform memory model
across all stages of compilation is a crucial feature of CompCert.

Recently, Liang et al. [LFF12] have explored applications of rely-guarantee
reasoning [Jon83] to proving the correctness of concurrent program transforma-
tions. In that work, rely-guarantee conditions were used to model the interactions
of a program thread with its concurrent context. There are natural extensions of
these ideas to separate compilation in the CompCert setting. Indeed, we are ac-
tively exploring a rely-guarantee simulation proof method that would allow sep-
arate compilation of linked modules even in the presence of mutually recursive
inter-module dependencies. In the CompCert setting, rely conditions correspond
to the assumptions CompCert currently makes about the behaviors of external
function calls, and which we expose in Clause 5 of measured forward simulations
(Definition 1, Section 4). Adapting CompCert to support symmetric guarantees
about compiled code is much trickier. Solving these issues is active research.

Our work on verified compilation of concurrent programs has goals similar to
those of CompCertTSO [ŜVZN+11] but with a quite different method. Instead
of modeling a specific relaxed memory model, e.g., x86-TSO, as CompCert-
TSO does, we prove—by instrumenting the CompCert languages with memory
permissions—that data race freedom is preserved by compilation. For programs
proved data race free in our concurrent separation logic we will therefore get cor-
rectness guarantees with respect to even weaker memory models than x86-TSO,
e.g., the POWER and ARM models. Our approach even permits CompCert to
optimize nonsynchronizing loads and stores, e.g., hoist loads/stores, eliminate
redundant load/stores, when they do not cross synchronization operations.

8 Conclusion

Compositional compilation is not an easy problem. In this paper, we attack the
problem “at scale,” in the intensely practical CompCert compiler. In this setting,
we show that core semantics and LSRs, together with the program logic [A+14],
enable end-to-end verification of C programs that interact via shared memory.
But our approach to “how to specify a compiler” is significant beyond just Comp-
Cert, and will be relevant to optimizing compilation of any C-like language.

Acknowledgments. We thank the members of the Princeton programming lan-
guages group and the ESOP anonymous reviewers for their comments on earlier drafts
of this paper. We are indebted to Xavier Leroy and Tahina Ramananandro for many
enlightening technical conversations.

19

This material is based on research sponsored by the DARPA under agreement num-
ber FA8750-12-2-0293. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright notation thereon.
The views and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of DARPA or the U.S. Government.

References

A+14. Andrew W. Appel et al., Program logics for certified compilers, Cambridge,
2014.

ADR09. Amal Ahmed, Derek Dreyer, and Andreas Rossberg, State-dependent rep-
resentation independence, POPL, 2009.

App11. Andrew W. Appel, Verified Software Toolchain, ESOP, 2011.
BH09. Nick Benton and Chung-Kil Hur, Biorthogonality, step-indexing and com-

piler correctness, ICFP (New York), ICFP, 2009, pp. 97–108.
BH10. , Realizability and compositional compiler correctness for a polymor-

phic language, Tech. Report MSR-TR-2010-62, Microsoft Research, 2010.
DNB10. Derek Dreyer, Georg Neis, and Lars Birkedal, The impact of higher-order

state and control effects on local relational reasoning, ACM SIGPLAN No-
tices, vol. 45, ACM, 2010, pp. 143–156.

HDNV12. Chung-Kil Hur, Derek Dreyer, Georg Neis, and Viktor Vafeiadis, The mar-
riage of bisimulations and Kripke logical relations, POPL, 2012.

HNDV13. Chung-Kil Hur, Georg Neis, Derek Dreyer, and Viktor Vafeiadis, Paramet-
ric bisimulations: A logical step forward, draft, 2013.

Jon83. Cliff B. Jones, Tentative steps toward a development method for interfering
programs, TOPLAS 5 (1983), no. 4, 596–619.

L+12. Xavier Leroy et al., The CompCert memory model, version 2, Tech. Report
RR-7987, INRIA, 2012.

LB08. Xavier Leroy and Sandrine Blazy, Formal verification of a C-like memory
model and its uses for verifying program transformations, JAR 41 (2008),
no. 1.

Ler11. Xavier Leroy, The CompCert verified compiler, software & ann. proof, 2011.
LFF12. H. Liang, X. Feng, and M. Fu, A rely-guarantee-based simulation for veri-

fying concurrent program transformations, POPL, 2012.
NS06. Zhaozhong Ni and Zhong Shao, Certified assembly programming with em-

bedded code pointers, POPL, 2006.
O’H07. Peter W. O’Hearn, Resources, concurrency and local reasoning, Theoretical

Computer Science 375 (2007), no. 1, 271–307.
Plo73. Gordon Plotkin, Lambda-definability and logical relations, School of Artifi-

cial Intelligence, University of Edinburgh, 1973.
PS98. Andrew Pitts and Ian Stark, Operational reasoning for functions with local

state, Higher order operational techniques in semantics (1998), 227–273.
Rey74. John Reynolds, On the relation between direct and continuation semantics,

Automata, languages and programming (1974), 141–156.
ŜVZN+11. J. Ŝevčik, V. Vafeiadis, F. Zappa Nardelli, S. Jagannathan, and P. Sewell,

Relaxed-memory concurrency and verified compilation, ACM SIGPLAN
Notices 46 (2011), no. 1, 43–54.

20

	Verified Compilation for Shared-memory C

