
Semantics-Directed Code Generation

Andrew W. AppeP

Computer Science Department
Carnegie-Mellon University

Pittsburgh, PA 15213

1. rntroductioll

The intermediate representations (IR) used by most compilers have an operational semantics.
The nodes in the graph (or tree, or quad-code sequence) have an interpretation as the operation
codes of some abstract machine, which may or may not be closely related to the target machine.

A denotational semantics for an IR graph, in which each node has a static meaning, can lead
to a clean interface between the front and back ends of the compiler. The correctness of the front
end can be checked against the semantics of the IR, and so can the correctness of the back end.

Thii paper describes semantics-directed compilers for Pascal and C that generate register-
transfer code from such an JR graph. Code generation is accomplished by a sequence of transfor-
mations on the graph. Each transformation replaces a subgraph matching a particular pattern by a
(usually) smaller subgraph, and may emit a machine-instruction; at each stage the graph continues
to have a static interpretation. As in a denotational semantics for a programming language, states
are represented explicitly (as internal nodes in the graph), and there are no side-effects implicit in
the graph.

To illustrate, we might wish to generate machine code to implement the statement
b := c + (a := 5). This is represented semantically as shown (open circles represent function
application; dark circles are mplcs):

This node fw=-u
computer’s memory after execution

Code generation proceeds by successive reductions. Each transformation corresponds to a
machine-operation; the reducer emits one line of assembly code as it performs each reduction:

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage. the ACM copyright notice and tk title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
othcrwisc. or to rcpuhlish, requires a fee and/& specific permission.

“1984 ACM 0-89791-147-4/85/001/0315 $00.75

’ Part of this work was dme at AT&T Bell L&ma-
tori-, Murray Hill, NJ; part was supported by an
NSF Gmduatc Student Fellowship.

315

s2

rO:=S A:- mem[c] 12:=rl+ro mem[a]:- r0 mem[b]:= r2

Each transformation replaces a node in the graph by another node in the same semantic domain,
and may formally specified and semantically justified.

Note that s1 is a &Brent machine memory from SO, even if it differs only at location a. The
semantic expression-graph calls for using the value of c in state SO, not in any other state. The
expression-graph may be evaluated without regard to hidden side effects; sideeffects of expressions
in the source language been made explicit in the IR by representing them as functions from states
to states.

2. A semantics-directed compiler

Denotational semantics [lo] is a technique for describing the meanings of programming-
language constructs. The mathematical structures produced by a denotational semantics have a
static interpretation as functions from inputs to outputs; they do not require a particular model of
computation for their interpretation. (The semantic expressions may be thought of as using the A-
calculus as their model of computation. The A-calculus has the advantage that it is free of side-
effects; individual sub-expressions therefore have a well-defined, static meaning independent of
their context.)

In contrast, the intermediate representations typically used by compiler-builders have usually
been in the form of machine-code for some abstract machine. Sometimes the abstract machine is a
“thrac-address” machine[6]; sometimes it is a stack-machine[l2]. These compilers all have a “black
l)ox” -- with only an informal semantics -- between the parser and the IR. Some compilers use the
parse-tree as an intermediate representation [14,2]; this begs the question of the semantic transla-
tion into the the IR by simply putting the black box between the IR and the emitted code.

The advantage of using an intermediate representation with a static interpretation is that the
semantics of the language being compiled may be specified and discussed independently of the
semantics of the target machine (concrete or abstract). Recent work in semantics-directed compila-
tion has shown the feasibility of automatically generating translators from the source language
(such as Pascal) to the h-calculus [8,9], so that no “black box” is necessary between the parser and
the IR.

Sethi [ll] showed that by writing the denotational semantics of the source language in terms
of a specified set of combinators, a code-generator could be made to translate the resulting A-
expressions into stack-machine code. However, his choice of combinators was very restrictive, and
his reducer was not sufficiently powerful to eompile languages with the varied data types of
Pascal-like languages. Wand[l3] gives a set of combiiators similar for stack-machine interpreta-
tion, but again the semantic specification is severely restricted and the combiiators are not suffi-
ciently close to von Neumann machine-instructions.

This paper describes a semantics-directed compiler-generator which is powerful enough to
implement compilers for Pascal and C. The front end of the compiler takes the program source as
input and produces, as output, a A-expression representing the denotation of the program. The
reducer takes this expression and produces register-transfer “assembly code.” This register-transfer
code is designed to be fed to fed to a register allocator and peephole optimizer phase, although this
phase has not been implemented. None of the phases in this compiler is a “black box.” All have

310

their semantics described formally, and each is produced automatically from its formal description.

Denotational Reduction Target

JI JI JI r------i

Prog3xm--- Parser A-CalculuB 3 Reducer register ’ Peephole ’ 2-l k--ma&ine transfers , Optimizer ,
1 L------J

The front end is generated automatically from a denotational-semantic description. Such front
ends have been described in [B] , [9] , and [ll]; no detailed description is given here.

The peephole optimizer may be generated automatically from the target-machine description,
89 in [3] , [4], and p]; it performs the task of assigning temporaries to registers and of choosing
appropriate target-machine instructions to effect the specified register transfers.

This paper describes the reducer. Section 3 briefly summarizes the semantic language used in
the front end; section 4 describes the notation for specifying reductions to the reducer-generator.
Sections 5, 6, and 7 describe the reductions which are useful for compiling conventional program-
ming languages. Section 8 discusses the algorithm for applying these reductions. Section 9
discusses the compilation of languages with structured data types, and the last section gives an
overview of compiler performance and open problems.

3. Representation of expressions
The front end produces a X-calculus expression representing the meaning of the source pro-

gram. Expressions are represented as directed graphs, rather than trees, to permit sharing of com-
mon sub-expressions. The sharing of common sub-expressions is extremely important, because the
domains of expressions include machine-states, which must not be copied by the reducer; and con-
tinuations, which if needlessly copied will produce needless duplication of emitted code.

The syntax and semantics of X-expressions is very similar to that of ML[5], and is summarized as
follows:

i&nti#et Variable identifiers and combinators.
hx.expr Lambda-abstraction on the variable x
expr apt Application of first cxpr to second.

(ew, . . . mpr) N-tuples
expr.i Selection of i” element from N-tuple*
Tagged variants as in Hope [l] are also used.
Standard reductions are associated with these operators. A selection node connoted to a

tuple node reduces by selecting one of the elements; a h-node applied to an argument reduces by
g-reduction.

4. User-specified reductiona
In addition, the compiler-writer may introduce arbitrary combinator symbols, and provide

reductions associated with them. This differs from simple X-abstraction because several reductions
may be provided for the same combinator. These may correspond to different ways of implement-
ing the same thing; for example, a reduction for the combinator plus might emit an “add” instruc-
tion, while a different reduction (applicable only if both arguments have been evaluated to
integers) could evaluate the addition at compilctime.

l This wtation fa adazion ia not used in the -tic hmguage; thae, acktion is accomplished by lambda-
binding a tuple, as in A (i,y,z) . pfi&,pruS(y,z)).
wea-P-demene nodes.

In the graph rqxcscntation, hawcver, these are amvutcd to

317

Reductions are specified as “pattern - substitution.” The language of patterns is similar to a
restricted form of the language of expressions:

identifier Variable name.
identifier : identifier Variable name with representation specification.
identifier Constant-symbol or combiiator.
pattern pattern Application of first pattern to second.
(pattern, . . . ,pattem) N-tuple
We will use the pattern plus (a:Num, bzNum) to illustrate the semantics of patterns. This

pattern specifies the combinator plus applied to a pair (Ztuple) of numbers.
In the denotational-semantic specification, plus is declared to be in the domain (ZntxZnt)-Znt.

It would seem from the domain declaration that plus could not be applied to anything but two
numbers; however, plus may be applied to any pair of expressions that evaluate to something in the
domain Int. The pattern above will only be matched when these two expressions have been fully
evaluated (i.e., when a is represented as a numeric constant -- as specified by “flum” -- rather
than as a more general expression).

The right-hand-side of a reduction specification may be another pattern, or it may be spcci-
fied in the C language. A register-transfer statement to be emitted may also be specified.

4.1. Substitions written in C
The C-language substitutions are useful chiefly for implementing the constant-folding of

operators about which the h-machine has no need of knowing. The compile-time evaluation of
additions is accomplished thus:

plus (a*Nw, bflunr) - (return numbcr(a+b); }

where number is a C function that returns an expression node representing a numeric constant.
Using this reduction, the expression plus (plus(3,4) ,8) could be reduced in two steps to (15).

4.2. Substitions written UI patterns
Substitutions may also be specified as patterns. The same syntax applies; variables in the

substitution that also appear in the left-hand-side specify the reuse of the corresponding nodes.
A reduction to simplify an expression containing addition and negation is specified by

plm (a, negate b) - minus (a, b);

Note that a and b have no representation specification here, as this reduction is applicable regard-
less of their representation.

4.3. code tmtsion

When the substitution is a pattern, a line of register-transfer code may be emitted as the
reduction is done. This line may use any of the variables used in either side of the reduction.
(Variables in the substitution that do not appear in the right-hand-side must have a representation
specifier, and indicate the use of a “new” node of that type). Here is a reduction that emits an
“add” instruction:

plus (azReg, bseg) - cSeg “c := a+b”

Thus, pZus(r& could be replaced by rs, while emitting the instruction 99 := r6+r7.”
The store combinator performs a role similar to that of the “store” machine-instruction of a

von Neumann machine. That is, store(s,I,v) produces a new state s’ similar to the state s, except
that at the location+ 1 it produces the value v. This is expressed straightforwardly as a reduction:

store (s:State, l:Zde, v:Reg) + sl:State “mem[f] := v”

318

5. A simple example

A denotational semantics for a simple expression-language is given, with a set of reductions
sufficient to generate assembly code.

[goal]: s A seance ill th! lmngwge ¬es the stab! mllnng fhm tvduanug the c-n.

@]: Me ‘lhetermhlmymbollDhmmklenti6ermtbdeno~t&n.

[NUM]: v Th~SplbdNUMhr~VdWMhSdWOtdOIh

s($ s The ldtlal state.
pluf: (VX V)-v pIl4fb~dpdkfhWtiOllOOthsdO~OfVdW4.

sfore : (S x Ide x V)4 As dacrlbed In actloll 4.3

5.2. Dcnomlollal ee!llantic8
goal - expr let 8,v=[expr] SO in J
expr~NUM .’ wmJw, 4
cxpr+ID ws Pm, 4

expr+expr+wpr As. let sl,vl=[cxprI] J in let s2,v2=[cxprd s1 in (plus(vI,v2), ~2)
cxpr - ID := cxpr As. let v=[uprj s in (v, store(s,~],v))

cxpr - expr ; cxpr As. let 8r,v1=[cxprr] s in [expr2J 81

-pr+ (=pr) I=prl

5.3. Reducff OM

plus (a-Jpeg, b:Reg) - c*Aeg “C := a+‘b”

iflum - rag “Y i” :=

s:Stafe a:Ide + tzReg “r := mem[a]”
store (s:State,a:lde,vzReg) + sl:Stute “mem[a] := v”
This reducer will work correctly only if there is at most one node in the graph with the Stare
representation at any given time, just as von Neumann machines may have only one state at a
given time. To ensure this condition, the last reduction may never be used while there is any
instance in the expression-graph of the pattern on the left-hand-side of the third reduction; this
intuitively means that any reading from a state must be done before that state is destroyed (this
will be discussed later in more detail).

5.4. A compilatiou

Using thii language specification and reducer, we may translate the sentence

b := c + (a := 5)

After all g-reduction and tuplc-selection has been done, the expression-graph shown in section 1
remaina. The reduction-sequence shown in section 1 yields the register-transfer code:

ro := 5
rl := mem[c]
r2 := rl + 1-0

l FCK th6 pupcses of tbie ~C&ZI, ~CWUSCS art reprewrted IIS idcntifias, so that S-Me-V; in an achd
ccayiltx, alldram 8retllumdw valuca.

mem[a] := r0
mem[b] := 12

The same reducer might choose to apply the reductions in a different order to generate slightly dif-
ferent code. For example, mem[c] might be fetched before 5 is loaded.

Although the semantic definition seems to specify left-to-right evaluation, in evaluating the
arguments of the plus the same result will be obtained either way. Thii is because all sideeffects
have been made explicit by the semantics; the semantic graph does not require any particular
evaluation order. Different reduction orders will often lead to different patterns of register usage,
and a sophisticated reducer might make its choices so as to reduce the number of registers needed.

6. Continuations

The domain C=S-A of continuations - functions from states to answers - is useful in
describing the semantics of conventional programming languages. A continuation may be written
in the A-calculus in the obvious way - by a A-function whose bound variable is in the domain S.
The application of a continuation to a state may be reduced by P-reduction. No special machinery
is required.

Unfortunately, p-reduction often requires copying the h-expression beiig applied; this is
necessary when the A-expression is also applied to some other argument in a diferent part of the
graph. (Recall that common subexpressions are shared in the graph representation. If they were
not, then copying of the argument would be rquired if the bound variable occurred more than
once in the body of the A-function.)

The copying of a subexpression implies that machine-code will be generated for each copy.
The application of a continuation c to a state s is therefore to be avoided when there are instances
in the graph of c S’ for S’ #J. What will be done is to take advantage of the intuitive correspon-
dence between continuations and assembly-language statement-labels.

Given a continuation c of the form Xs.anrwer, we may assume that code could be generated
to implement that continuation, starting at some label L. The continuation c is replaced in the
graph by a “goto”; instead of g-reducing c SO, we emit the instruction “goto L.” The reductions to
accomplish this are as follows:
c:Cont -b keep(genbody(c,I:Label))(goto I)

got0 1:Label s:State + undefined “got0 I”

genbody(c:Cunt, 1:Label) - c dtate 11 I:”

The keep combinator actually splits the graph into two graphs (which may, however, share com-
mon s&expressions). If we start with the expression

(l (kcep+x)-)

then after keep is reduced, two expressions will remain:

(-(x)-) and’ c2

Just as there was a restriction on the applicability of the stare combinator in the previous sec-
tion (i-e, that it could not be used if the state s was still being used elsewhere in the graph), there
are restrictions on the applicability of these reductions:

The first of these reductions - which chops a subgraph out of the graph - should not be
used if the continuation c contains free variables. It turns out that if c is (somewhere in the
graph) applied to the current state (i.e., a node having the St&e representation), then c will
have no free variables.
The second reduction should not be used if there are other references to the state J. (This
restriction is identical to the restriction on store.)

The last of these reductions - which begins a new “basic block” - should not be used if the
reducer is still in the middle of generating code for some other basic block. This condition

320

will be satisfied by simple avoiding this reduction as long as there is some node in the graph
with the State representation. (Note that the reduction that emits a “goto” also has the effect
of removing the last reference to a State node; this ends a basic block.)

This leaves the problem of determining which A-nodes are continuations (i.e., given a node s,
determining whether it is in the representation-class Cant). If the front-end (which processes the
semantic description) has a type-checker (which is recommended), then it can mark all A-nodes in
the domain C. The part of the reducer that does g-reduction must not p-reduce A-nodes with this
mark; instead, it should leave them to be handled by the reductions in this section.

7. conditlonola
With the reductions to handle continuations already in place, condition-operators are simple.

Again, to find the appropriate semantic domain, consider the intuitive semantics of a typical
conditional-goto machine instruction. Two values are compared; depending on whether they meet
the test (i.e. equality), either a label is branched to, or the next statement is the continuation.

In the last section the correspondence between labels and the domain C was described. The
domain of the eq eombinator is eq: (VxVxSxCxC)+A. The interpretation of eq(v1,vz,s,c&
is that if vt is equal to 19, then this is equivalent to cl s; if not equal, to c2 s. In fact, the reduc-
tion to perform constant-folding of cq expresses this as follows:

eq(vl:Num ,v&$m ,J,c& + {return apply(vl= =v2?cl:c2, s);}

To generate code for a conditional, we use the fact that cl can be represented as a label:

0p:Comp (v~:Rcg,q:Reg,s:Szute,(goto Mubel),cz) - c2 s “if Vl op v2 got0 I”

This is subject to the same restriction on other uses of J as are the store and got0 reductions.

8. Orderiug the reductions
The set of reductions presented thus far are sufficient (with a few adjustments) to build a

compiler for a language such as Pascal or C. As the reductions were presented, however, restric-
tions on their use were mentioned. Thii section describes an algorithm to implement a reducer
consistent with these restrictions; it is not necessarily the only possible algorithm.

The idea is to divide the reductions into several clusses. The reductions in lower-numbered
classes take precedence over those in higher-numbered classes. More formally, at any point in the
reduction sequence, no reduction of class j may be applied if there is a reduction in class i (for
isj) that may also be applied. For example, the restriction that a state may not be updated until
there are no pending “fetches” from that state may be implemented by putting the “fetch” reduction
in a lower reduction class than the “store” reduction.

The division into classes of the reductions discussed in this paper is as follows:
‘Ibt~tsetofnductiaos~dre”classicel”kindthatanitnocodt.
p-reduction
tuple-selection
tag-selection
plea (aNurn, bNum) - { return number(a+b); }

~sscoadclass~~afthe~ianrthatanitcodewhih~not~gethcstate.

op:Bhop (useg, baeg) - czReg “C := a op b”

imun I+ ttReg “y := i”

s:State a:Ide - rzReg “r := mem[a]”

Tbethirddaudxeductionsdlangethcstateinscmeway.

321

store (s:Stute,a:Zde,v~9teg) - sl:State

c:Cont -, keep(genbody(c,Z:Labcl))(goto Z)

goto 1:Lubel s:State - undefined

“mem[u] := r”

“got0 I”

‘Ibis reductim begins a new basic block.
genbody(c:Cont, klubel) + c szStute”Z:”

The patterns on the left-hand-sides of the reductions all have a bounded depth. This fact can
be exploited to quickly find matches to these patterns. A queue U of unexamined nodes is main-
tained. As nodes are removed from this queue, they are matched by a pattern-matcher and put in
a queue Ci corresponding to the appropriate reduction-class. When U is empty, then a reduction
may be done on a node in the lowest-numbered non-empty Ct.

Performing a substitution will create new patterns in the graph. However, these arc local-
ized, so only a small number of nodes will be affected. These nodes will be put into the queue U.

Graph nodes need not be processed through U and the Ci in a first-in, fiit-out order (or any
other particular order), since any order consistent with the class-priority restriction will produce
correct code. In fact, P-reductions require some care, as some reduction orders will never ter-
minate on some inputs, while other reduction orders will terminate on the same inputs. However,
selecting nodes at random from the queues is a mathematically-justified way of ensuring termina-
tion on inputs that have some terminating reduction-sequence. (This will be true as long as the
sire of the graph does not diverge.)

9. Data types in Algal-like languages.

High-level languages (or rather, languages so considered in 1970) allow variables in such
domains as integers, reals, records (modelled in a denotational semantics as functions from identif-
iers to values), and arrays (modelled as functions from integers to values). Machines, on the other
hand, provide only one data type -- the “word” -- with a set of integer, real, and indexing opera-
tions upon words.

The reductions presented in this paper are suited to the implementation of functions upon
words, but not of the higher-order functions provided by Algol-like languages. It is the job of the
semantics to map these higher-order functions into the domain of words.

For example, the semantics for subscripting an array variable might look like this:

Var~Var.ID Achs. ckreccfctch([var] e) s) m]

with the meaning, “evaluate the v6n the environment e, fetch it from the state s, check that it is a
record variable, and then apply the resulting Zde+Lv function to the identifier ID.

The problem is that the reducer doesn’t know about records and identifiers; all it knows
about are addition and states. Furthermore, if the reducer could be made to know how to generate
code to look up identifiers in record environments, the result wouldn’t be what we had in mind at
all! That kind of evaluation should be done at compile time.

What should be done, then, is to describe such functions as c&cc, and the Zde-Lv functions
representing records, in the X-calculus, so that ordinary p-reduction can do at compile time the
things that we believe compilers should do at compile-time.

In a denotational semantics, however, there is no distinction between run-time and compilc-
time. Indeed, the semantics itself does not even specify that the program should be run. Them
fore, although we wish to make the compiler handle certain kinds of reductions at compile-time,
and generate code to handle others, it would be nice if this division did not unduly twist the struc-
ture of the semantic definition. In this section a set of semantic definitions is provided to map the
high-level data types onto the machine semantics.

Let L-values be functions from states to R-values (Lv=S4?v), and let R-values be the union

322

of various domains:

Rv = int of fnt 1 real of Real 1 array of Int4L.v 1 * * *

Finally, let a “type” be a mapping from a location to an L-value (Ty =L-+Lv). Then we can define
the integer and real types:

inr-ty = XLXs. lnt of s I

real& = ALAS. real of s I

Unfortunately, this doesn’t allow for the updating of the state! What must now be done is to make
things a little less abstract. Instead of L-values being functions from states to r-values, they will
also have locations and sizes attached: Lv= (S+Rv) x (L x fnt). This location and size will he avail-
able to the (typed) “update” function, which will be implemented in terms of the (untyped) “store”
function.

intJy = Al.(Ar. int of s 1),(1,1)

The array constructor is parameterized by element-type and number of elements:

mak~ay b n = Al. let f,(r’&e)=ry 1 in (Xs.array of Ai.Zy(l+sizex i)),(l,sizeXn)

This, “breaking of the abstraction”, in giving an l-value two somewhat redundant representations
(on one hand, as a function from states to r-values, and on the other, as a location and a size) can
be “hidden” from the high-level semantics by a proper modularization of the semantic definition.

Using this technique, the semantics behaves a lot like a “real” denotational semantics, even
though there is a less-than-abstract aspect to it. Most importantly, the code generator can deal
with a machine semantics rather than a high-level semantics.

10. Implementation detaih and fiwther resew&
There is room for much improvement in this method of code generation. The compilers that

use this reducer can compile at the rate of less than one line per second, and use a lot of space;
and there are some problems in the way mathematically abstract functions are mapped into
machine code.

10.1. Parrmetea of the implementation
The specification of a Pascal compiler requires approximately 700 lines of semantics, and 50

lines of reductions. The reducer as implemented is fairly slow; most of its time is spent copying
nodes for P-reduction. (This copying is what causes the growth from “Initial size of graph” to
“Maximum size of graph” in the table below.)

ROpUIl Lines of Initial size Maximum Size Code Reductions CPU time
_ name Pascal of graph of nravh emitted performed (VAX 750)

hY 8 1427 nodes 1600 node!4 32 lines 436 13 sec.
queens 39 3486 9500 330 5410 60

57 2756 7800 322 4119 58
_ accel 85 4148 17200 675 11663 464

It may be possible to (automagically) process the semantics to perform more reductions at
compiler-generation time (about 400 reductions are done on the present Pascal-compiler before
reading the input). Or it may be that the same number of reductions may he done more efficiently
by a hettcr reducing algorithm.

323

10.2. Eager evaluation of fetches

The specification of the reducer calls for the application of the reductions in class 2 (which
emit “add” and “fetch” instructions) before the use of those in class 3 (which emit “goto” and
“store” instructions), whenever possible. This guarantees correctness, but has some unpleasant
consequences. What happens is that whenever a value becomes available, it is loaded into a regis-
ter. This has a very unfortunate effect on register usage. Values which are used at the end of a
procedure may be loaded into registers, sitting there untouched until many instructions later when
they are used.

Something even worse happens when an instruction which is modelled in the semantics as a
pure function -- such as plus, from integers to integers -- has the capability of halting the proces-
sor, such as by overflow. A very similar example is the bounds-checking of subranges, and the
testing of pointers for NIL before dcreferencing. All of these can be modelled in the semantics by
functions that do not refer to the state, but can generate error:

plus = X(x,y). if x+y>fnuxint then error else x+y

The problem is that error is not simply an undefined value to be loaded into a register (as it would
be in the CDC-6600); most machines will generate an overflow exception which (in Pascal) halts
the execution of the program. This problem shows up in the following Pascal code:

if iC0 thea i := i+maxint
This might be translated into machine code that loads i+maxint into a register, then does a condi-
tional branch (one branch of which assigns the register into i). However, this will overflow if DO,
so the addition should be performed only u&r the conditional branch.

The solution is to use lazy evaluation of the reductions in this class. By avoiding them until
necessary, values won’t be loaded into registers until they are truly needed. This will aid register
allocation and avoid extraneous overflows.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

R Burstall, D. h&Queen, and D. Sanmlla, “Hope an l%pmimatal Applicative bnguage,” Proceedings af the
1980 LISP Cm~mJce, pp. 136143 (1980).

R G. G. Cattell, “Formaliz.ation and automatic daivati~ d code gmaauxs,” Ph.D. Thesis, Camegie-Melicn
Univasity, FQtsburgh, PA (April 1978).

J. W. Devidscm, ‘%nplifyhg code Generation Through Peephole optihation,” TR 81.19, Dqwtmcnt of corn-
puta science, University of Arizona, Tucson, Arizum (1981).

J. W. Davidson and Christopher W. Fher, “Autanatic Generation a[Peephole @hizations,” Sigph ‘84 Syqw-
sium on Canpilrr Carrtnrcrson, pp. 111-116 ACM, (1984).

M. J. Gordon, A J. Milna, and C. P. Wadsworth, Edinburgh LCF, Sphger-Verlag, Berlin (1979).
IBM, “FORTRAN IV (H) compiler program logic manual,” Farm Y28-6642.3, IBM, New York, NY (l!X8).

Robert R Kessler, ‘*Peep -- An Adhctural DuaiptiOn Ixivul Pcephale opthim,” @p&m ‘84 synlpbsium cm
Compiler Cbncmccrion, pp. 106-110 ACM, (1984).
P. D. Mosses, “SIS -- Reference and user’s guide,” DAIMI -30, canplw Science Dqartmat, University of
Aarhus, bunark (1979).

L. Paulson, “A Sanantics-Directed compiler Generator,” Ninth ACM Synposlum on Principle8 of Progmfnming
Languagu, pp. 224-233 ACM, (1982).
D. S. Scott and C Stradwy, “Towards a mathanatical ranentia for axnputex languages,” Proc. Synrp. Cmputm
cud Aurormrtc, R* 19-46 Polytedlnic press, (1971).
R sethi, “Gmtrol Flow Aspects of !bnantics Directed catlpiling,” Tr w&l. Prog. IAng. and *stems 5(4) pp. 554495
m (octoba 1983).
A S. Tan&awn, H van Stavercq and J. W. Stcvawm, “‘Using bphde Opthization an Intcsmediate Code,”
Zhns. Rag. Lung. and System 4(l) pp. 23-36 ACM, (1982).
M. Wand, “Deriving target code as a repsentation of continuation sunantics,” ACM Traw Programming Languages
and Systems r(3) pp. 496-517 (July 1982).
W. Wulf, R K. Johnson, C B. WeirMock, C B. Hobbs, and C. M. Geadh, Design 4/ an Optimizing Compikr,
Elacvier North-Holland, New York (1975). ,

324

