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Abstract—For many software components, it is useful and
important to verify their security. This can be done by an
analysis of the software itself, or by isolating the software
behind a protection mechanism such as an operating system ker-
nel (virtual-memory protection) or cryptographic authentication
(don’t accepted untrusted inputs). But the protection mechanisms
themselves must then be verified not just for safety but for
functional correctness. Several recent projects have demonstrated
that formal, deductive functional-correctness verification is now
possible for kernels, crypto, and compilers. Here I explain some
of the modularity principles that make these verifications possible.

I. INTRODUCTION

Computer systems are built from numerous software and
hardware components. These components may be buggy or
malicious, so it is standard practice to have a trusted kernel
that enforces protection mechanisms, to guarantee that bugs (or
maliciousness) of one component cannot propagate to others.

But a trusted kernel itself may be very large. It may include
1) the operating-system kernel that implements (e.g.)

virtual-memory protection and process preemption;
2) the network communication stack, such as TCP/IP;
3) crypto primitives, such as AES or RSA;
4) crypto protocols built atop these primitives;
5) compilers that translate all of the above to machine

language;
6) RTL (register-transfer language) implementations of that

machine language;
7) netlist (logic gates) implementations of the RTL.
The systems we use today are built in a modular way from

components, software/hardware processes, and layers such as
I describe. An engineer working or an expert analyzing at
one of these layers (or in one of these components) will not
want to know much, will not be able to know much, about the
internals of the next component. For example, the network-
stack experts don’t want to be optimizing-compiler experts,
who don’t want to be cryptographers. That fractioning of
knowledge is essential, otherwise we could not put together
the big and capable systems that we enjoy today.

But how can we come to trust such a big system built
from diverse components? Must there inevitably be bugs and
vulnerabilities, so that the hacker or the Nation-State Attacker
can always get in?

I will argue that:
1) We can gain a substantial basis for trust—we can sub-

stantially improve the security of our systems—by using

end-to-end, modular, deductive program verification of
all of these components.

2) The verifications must be done in different domains:
program logic or program refinement to prove that con-
crete programs correctly implement abstract algorithms;
application-domain reasoning to prove that abstract al-
gorithms accomplish our goals.

3) A higher-order pure functional programming language
is a particularly effective way of expressing functional
specifications for modular program verification.

4) One can connect these different styles of verification
together with no specification gaps, by embedding all of
the different verification methods into a single general-
purpose logic.

II. STATIC ANALYSIS VS. FUNCTIONAL CORRECTNESS

Many static analysis tools—commercially available or in
academic/industrial research—check safety or liveness prop-
erties of programs. Some are sound (if they assert a safety
property then every execution of the program must indeed be
safe), some are unsound. Such tools can be very useful in
the software engineering process to reduce the bug count and
increase reliability. Especially the sound tools have applica-
tion in computer security: for example, the Java typechecker
(bytecode verifier) or a software fault isolator (SFI) can
guarantee that untrusted code cannot escape its sandbox even
in the absence of hardware memory protection.1 Sound static
analysis tools are one kind of formal-methods verification.

Should we static-analyze the OS kernel, crypto library, byte-
code verifier? Perhaps, but it’s not enough. These protection
mechanisms exist to separate client programs from each other,
and to protect system code from client programs. To do this,
the protection mechanisms must be not only safe but also
correct. It is not enough that the OS kernel or crypto library
has no buffer overruns: it must also compute the right answer.

Therefore, an important application of formal machine-
checked functional-correctness verification is for systems code
that implements protection mechanisms.

III. FUNCTIONAL SPECIFICATIONS IN FUNCTIONAL
LANGUAGES?

A functional specification of a program characterizes the
program’s observable behavior. In this section I will discuss

1One can even do machine-checked verification of the soundness of a type-
based [1] or SFI-based [17] sandboxer.
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two different approaches to functional specs: mathematical
relations, and functional programs. Consider this C program,

int minimum(int a[ ], int n) {
int i, min;
min=a[0];
for (i=0; i<n; i++)

if (a[i]<min) min=a[i];
return min;
}

with these three different functional specifications. The nota-
tion array a σ means, “program variable a is an array whose
current contents are the sequence σ.”

Specification A :
∀ σ : list(Z).
precondition : {|σ| = n > 0 ∧ array a σ}
postcondition : {∀j. 0 ≤ j < n → ret ≤ σj}

Specification B :
∀ σ : list(Z).
precondition : {|σ| = n > 0 ∧ array a σ}
postcondition : {∃i. 0 ≤ i < n ∧ ret = σi

∧∀j. 0 ≤ j < n → ret ≤ σj}

Specification C :
LET
function fold (f: α→ β → β) (b: β) (al: list(α)) : β =

match al with nil ⇒ b | a::ar ⇒ f a (fold f b ar) end

function min (i: Z) (j: Z) : Z =
if i<j then i else j

function hd (d: α) (al: list(α)) : α =
match al with nil ⇒ d | a::ar ⇒ a end

IN
∀ σ : list(Z).
precondition : {|σ| = n > 0 ∧ array a σ}
postcondition : {ret = fold min (hd 0 σ) σ}

Specs A and B characterize some mathematical relations
between the input and the output. You might notice that Spec
B is stronger. Spec A just ensures the return value is ≤ all
elements of the array, without necessarily being one of the
elements. Does that mean Spec B is better than Spec A?
Perhaps not; perhaps property A is all that the client needs.

Spec C says, “the program computes exactly this function.”
Now, any program that satisfies Spec C will also satisfy Specs
A and B; that’s straightforward to prove, using the simple
semantics of the ML-like functional language in which fold,
min, and hd are written.

That is, Spec C is at least as strong as A or B. In fact,
any specification written in this style must have a strongest-
possible postcondition. That’s because the functional language
we use is deterministic and total—if it typechecks then it can’t
go wrong and must compute a single unique result.

Is that a good thing? One might think, not necessarily:

• Perhaps property A is all the client needs; are B and C
overkill?

• Specification C looks verbose.
• What if my program doesn’t have a deterministic seman-

tics?
Even so, experience in many projects has shown that writing

functional specs in functional languages is very effective
indeed. These projects use a three-level approach:

domain-specific properties
domain-specific proof

pure functional program
refinement proof

imperative program
compiler-correctness proof
machine-language program

The reason this strategy often works so well is that it
modularizes the proof effort. The refinement proof can focus
on programming, the relation between some clumsy low-level
language (such as C, Java, or assembly language) and how it
implements a given function. In this proof, domain knowledge
about the mathematics of the application domain is often not
necessary; all the domain knowledge can go in the high-level
proof about properties of the functional program.

With this method, it’s crucial to have a functional language
that’s easy to reason about formally, i.e., a language with a
clean proof theory. Successful examples are,

Gallina, the functional language embedded in the CiC
logic of the Coq proof assistant.

HOL-fun, (the name I will use to refer to) the pure
functional language embedded in the higher-order
logic of the Isabelle/HOL proof assistant.2

ACL, Applicative Common Lisp, the pure functional
Lisp used in ACL2 (A Computational Logic for
Applicative Common Lisp).

Later (§VI) I will argue that first-order logics such as ACL2
are insufficiently modular.

IV. EXAMPLES

Researchers around the world have accomplished full func-
tional correctness verifications of protection mechanisms, em-
ploying principles of end-to-end, modular, deductive program
verification with respect to functional specifications. The re-
sults I list here all use a functional program as a refinement
layer in the proof.
CertiKOS: Hypervisor kernel, implemented in C and proved

correct in Coq, by multilayer contextual refinement
proofs between Gallina functional specifications and C
operational semantics [14]. Then the Gallina specs are
shown to enjoy correctness properties: process (VM)
isolation [10], VM liveness, OS availability, and correct

2“The language doesn’t have a name. We speak of Isabelle/HOL’s function
definition facility/command.” Tobias Nipkow, e-mail of April 11, 2016.
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execution of guest processes (they execute as if running
solo on the bare machine).

HMAC: OpenSSL SHA-256 and HMAC, implemented in
C and proved correct in Coq [8]. Proved by Separation
Logic proofs between C and Gallina functional spec-
ifications. The Gallina specs are direct transcriptions
of the FIPS 180 and FIPS 198 standards for SHA
and HMAC respectively. Then the Gallina specs are
shown to enjoy the correctness property that a com-
putationally limited adversary not in possession of the
session key cannot distinguish the HMAC from a PRF
(pseudorandom function). That proof is by reasoning in
a computational monad of probability distributions.

L4.verified: The seL4 operating-system kernel, imple-
mented in C and proved correct in Isabelle/HOL [16].
Proved by operational refinement proofs between the
C program and an “abstract functional specification,”
that is, a program in HOL-fun. Then the functional
program is shown to enjoy correctness properties such
as integrity and confidentiality.

Raft: The Raft consensus protocol, implemented as a
state machine translated by the Verdi system (in Coq)
to Gallina for extraction to OCaml [28]. Correctness
properties proved in Coq include: state machine safety,
election safety, log matching, leader completeness, and
linearizability. The relation between the Gallina spec
and the low-level imperative program (assembly lan-
guage) is by compilation in OCaml; this part is not
proved correct.

In this short paper I cannot possibly survey all the excellent
results in related areas; I pick just these few to illustrate some
principles of their construction.

V. FUN WITH FUNCTIONAL PROGRAM SPECS

The advantage of a two-level verification—low-level im-
plementation to functional program, then functional program
to domain-specific mathematical/relational properties—is that
functional programs are easy to reason about. I will use our
HMAC verification as an example.

SHA-2 (Secure Hash Algorithm) is an iterated block com-
pression: in 256-bit mode, a 512-bit block is mixed with a
256-bit hash yielding a new 256-bit hash. Blocks can be
chained together, and odd-length strings are handled by a
padding+length suffix.

In 1996, Bellare et al. [7] described the HMAC algorithm
for symmetric-keyed cryptographic authentication based on
any (good-enough) iterated block compression (such as SHA).
They proved that it provides cryptographic security: in partic-
ular, a polynomial-time adversary who lacks the session key
cannot distinguish HMAC from a random function.3 (In short,
HMAC is a PRF, a pseudorandom function.)

3This proof was subject to the hypothesis that the underlying block-
compression function (e.g., the core of SHA-256) is a PRF; a more precise
characterization of the assumption is in footnote 12 of Appel [5]. No one
knows how to prove this assumption about SHA, but it is generally accepted
as a “true enough” property of SHA.

In 2002 the FIPS 180-2 standard for SHA-2 was promul-
gated, and in 2008 the FIPS 198 standard for HMAC.

Bellare’s proof is not about a program, but about a math-
ematical presentation (in English and LATEX math) of an
algorithm. FIPS 180-2 and FIPS 198 comprise a similar but
not identical English+LATEX presentation of an algorithm that
should be an instance of what Bellare et al. describe.

In 2015 we proved, with machine-checked proofs in Coq,
that OpenSSL’s SHA+HMAC, as actually compiled to assem-
bly language, is cryptographically secure (is a keyed PRF) [8].
The four authors of our paper worked on modularly separable
tasks, with little communication except at specification inter-
faces. The specification interfaces are written in Coq, typically
in the form of functional programs in Gallina.
• Appel proved the OpenSSL SHA-256 C program imple-

ments (our Coq formalization of) FIPS 180.
• Beringer proved the OpenSSL HMAC C program imple-

ments (our Coq formalization of) FIPS 198.
• Petcher implemented in Coq the Bellare et al. proof that

(our Coq formalization of) Bellare et al.’s presentation of
HMAC/SHA is a keyed PRF.

• Ye proved that (our Coq formalization of) FIPS 180 + FIPS
198 is equivalent to (our Coq formalization of) Bellare et
al.’s presentation of HMAC/SHA.
Our SHA/HMAC proof would have been impractical with-

out a modular separation of concerns. In particular, Petcher’s
proof has no interaction with the C language or with tech-
niques for proving correctness of C programs. Appel’s and
Beringer’s proofs have no interaction with Petcher’s computa-
tional monad over probability distributions, or with techniques
for proving correctness of probabilistic programs, or with
crypto proof techniques about distinguishability by computa-
tionally limited adversaries. Ye’s proof concerned neither the
C language nor the probabilistic techniques.

This proof of a cryptographic primitive is just one example.
The OS kernel proofs cited above also enjoy this modularity—
the separation of concerns between implementation in C and
properties of the algorithm—by using a functional-language
specification interface between these two levels.

VI. PROGRAM MODULES AND DATA ABSTRACTION

SHA-256 and HMAC really are functions: given an input
(message + key) there is a unique output. So it’s easy to see
how a C program can implement a functional spec written in
a pure functional language. But an operating system, or one
module of an operating system or of any large software system,
is not simply a function from an input to an output. A module
has internal state, and interface operations (methods) that
operate on the external state. No problem! We can represent
this in the functional language as a dependent record of a
representation type, a value of that type that represents the
“current internal state,” and a series of pure functions that
take the representation type and other inputs, and produce the
representation type and other outputs [14].

The essence of data abstraction is that the private repre-
sentation of an abstract data type (ADT) can be modeled by

3



existential quantification [22]. Not only the type of the private
variables, but the representation invariant (a predicate), must
be quantified over. Let’s do an example:

struct counter; Counter.h
struct counter ∗ make(void);
void inc(struct counter ∗p);
int get(struct counter ∗p);

#include ”Counter.h”; Counter.c
struct counter {int x3; int x2;}; /∗ deliberately baroque ∗/
struct counter ∗make(void) {

struct counter ∗p = (struct counter ∗)malloc(sizeof(∗p));
p−>x3 = 0; p−>x2=0;
return p;
}
void inc (struct counter ∗p) {

p−>x3+=3; p−>x2+=2;
}
int get (struct counter ∗p) {

return p−>x3 − p−>x2;
}

Part of the module-interface’s specification is (and don’t be
intimidated by the notation, just read on),

Σ(τ : Type).Σ(φ : τ → Prop).
(1→ Σ(x : τ).φ(x), make
Π(x : τ).φ(x)→ Σ(y : τ).φ(y), inc
Π(x : τ).φ(x)→ Z× Σ(y : τ).φ(y)) get

This says there is a hidden representation whose type is
τ (in the example implementation, τ = Z × Z, a pair of
integers representing the x3 and x2 fields of the struct).
Then, φ is a representation invariant (in the example,
φ(x3, x2) = ∃i. x3 = 3i ∧ x2 = 2i). Then, within the
scope of the existential quantification of τ and φ, there are
characterizations of the three interface functions. For example,
inc takes input x of type τ such that φ(x), and produces output
y such that φ(y).

Both the “deliberately baroque” implementation shown
above, and the obvious straightforward implementation, are
instances of this representation-hiding specification.

There is more to this specification: I haven’t shown that
x is actually represented as a C struct, and I haven’t shown
how we represent the claim that inc actually increments rather
than decrements (or adds 6). But the point I want to make is:
quantification over types (τ) and predicates (φ) is essential
to data abstraction, that is, reasoning about program modules
with private data representations.

Therefore, when doing large compositional proofs about
modular programs (such as CertiKOS), it’s important to have
a higher-order logic, which permits quantification over pred-
icates. Thus I focus on HOL and Coq/Gallina, and it’s not
surprising that the OS kernel verifications L4.verified [16] and
CertiKOS [14] were done in these (respective) logics rather
than a first-order logic such as ACL2.

VII. PROGRAM SYNTHESIS

Instead of (laboriously, interactively) proving the correct-
ness of a C program w.r.t. a functional specification, one
might wish to compile the functional spec directly to an
imperative (C, or assembly language) program. That is, replace
the box labeled refinement proof with one labeled synthesize
or compile . In that case, one would need a formally verified
functional-language compiler. Several approaches have been
demonstrated.

One could compile the ML-like language used in the logic
(such as Gallina or HOL-fun) using standard techniques for
ML compilation (with heap-allocated data structures and func-
tion closures), but with a compiler verified with a machine-
checked proof. CakeML is such a compiler, proved correct
w.r.t. formalized operational semantics of (a variant of) Stan-
dard ML source language and (x86-64) machine language [18].
It is written in (HOL4’s version of) HOL-fun, proved correct
in HOL4, and translated through CakeML itself (with careful
attention to bootstrapping the proof so this is not too circular).

CertiCoq is an ongoing project at Princeton and Cornell
to write, in Gallina, a proved-correct compiler from Gallina
to CompCert C light. In the Raft example cited in §IV,
CertiCoq+CompCert could be used to obtain formally verified
compile layers.

A disadvantage of that approach is that heap-allocated data
and closures require garbage collection. Some kinds of low-
level security-relevant software, such as OS kernels and crypto
primitives, cannot easily tolerate garbage collection.

But most software can tolerate garbage collection—just
consider the huge amount of code written in Java, Perl, Python,
Ruby, Go, and so on. If this software is insecure, it is not
because of garbage collection! In fact, just the opposite, since
explicit malloc/free is the source of many bugs and security
vulnerabilities. Probably most software—even most operating-
system and crypto-protocol software—should be written in
garbage-collected languages. For example, Mirage OS kernels
(written in garbage-collected OCaml) are layered over over the
Xen hypervisor (written in C) [21].

But still, can the Gallina or HOL-fun functional specifica-
tion be automatically translated to an “imperative style” non-
garbage-collected low-level program?

Cogent is a linear-typed polymorphic first-order pure func-
tional language. It is not as general as ML (or Gallina or HOL-
fun), but it is at least sufficient for implementing (verified
functionally correct) file systems [3]. From a Cogent program,
the compiler generates a HOL-fun program, a C program, and
a refinement proof that the C program implements the HOL-
fun program [23]. The linear types ensure that malloc/free can
be used instead of garbage collection.

VIII. COMPILER CORRECTNESS

To show correctness of the SHA/HMAC assembly language
programs that result from compilation, we rely on two more
self-contained modular proofs in Coq:
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• Leroy’s proof [19] that the CompCert C compiler is correct
with respect to the operational semantics of C and of x86 as-
sembly language (both formalized as small-step operational
semantics).

• Appel et al.’s proof [6] that our Verifiable C program logic
(used in the SHA and HMAC proofs above) is sound with
respect to Leroy’s operational semantics for C.

There is not much overlap between these two proofs. However,
there has been much work (2006–2016) on the specification
interface between them, that is the Coq presentation of a
memory model and operational semantics for CompCert C
light [20], [9].

Similarly, CertiKOS enjoys an end-to-end connection be-
tween its contextual refinement proofs (about C programs) and
the CompCert compiler-correctness proof.

In connecting to a verified compiler, it is advisable to
bypass the compiler’s lexer and parser to connect directly
via abstract syntax tree (AST) representations of parsers. The
high-level tools (such as Verifiable C or CertiKOS’s Certified
Abstraction Layers) can reason directly on ASTs, using the
formal operational semantics as a reasoning principle. The
compiler semantics phases can reason on the same ASTs,
using the same operational semantics, in the same logic. There
is no need to reason formally about parsing and pretty-printing.

IX. TOOL LINKAGE

The pretty picture repeated at
right can get rather messy, de-
pending on how one specifies
and proves compiler correct-
ness. What works well is to
have concrete abstract-syntax
tree (AST) data structures

domain-specific properties
domain-specific proof

functional program
refinement proof

imperative program
compiler-correctness proof

machine-language

as the specification interface for compiler correctness. This is
how the HMAC (Verifiable C) and CertiKOS proofs connect
to the CompCert proofs.

L4.verified, the correctness proof in Isabelle/HOL of the
seL4 kernel, connects to its compiler using a somewhat
weaker semantic specification. It was built originally using
an untrusted “C parser” that generates a (partly) shallowly
embedded functional semantics, and compiled using gcc,
an unverified compiler. Certainly at the time the L4.verified
project started (in 2005 or so [13]) there was no available
verified C compiler, nor any trustworthy formal specification
of an operational semantics for C.

By 2012, CompCert did exist; so why not connect it to the
L4.verified proofs? The seL4 team tried this but unfortunately,

“We have used [CompCert] on the verified C source
of the seL4 microkernel, but in this case found the
result unsatisfactory: There is a remaining chance
of a mismatch between CompCert’s interpretation
of the C standard in the theorem prover Coq and the
interpretation of the C standard the seL4 verification
uses in the theorem prover Isabelle/HOL, esp. in
cases where the standard is purposely violated to

implement machine-dependent, low-level operating
system (OS) functionality. Reconciling these two
semantics is non-trivial. Firstly the logics of Coq
and Isabelle/HOL are not directly compatible. Sec-
ondly, since the seL4 semantics is largely shallowly
embedded, an equivalence proof would have to be
performed for each program, ....” [26]

Instead they take a different approach: they use ad-hoc
translation validation of a gcc compilation. Proof checking
now relies on two proof assistants (Isabelle/HOL and HOL4)
and two SMT solvers (Z3 and SONOLAR). The validation
processes uses both tactical proof search and SMT solving.
The primary specification interface is the control-flow graph.
From the C program there is refinement-based proof search
down to the graph; from the ARM binary there is heuristic-
based decompilation (with proof) up to the graph; then SMT-
based proof is used to match the two graphs.

Unlike a standard deeply embedded SOS7, the partly shal-
low embedding obstructs some kinds of reasoning about the
syntactic C program in the proof assistant.4 In particular, one
cannot reason in the logic about transformation functions from
one program to another–that is, compilers or domain-specific
language processors.

So therefore: L4.verified does indeed use machine-checked
formal verification to connect the functional spec to the C
program and thence to the machine-language program. That’s
good. But their system has several disadvantages. The trusted
base is huge; validation is slow and must be done on every
recompile of the C program; it’s hard to reason generally about
program transformers.

This case study illustrates several issues regarding the
specification interface to the compiler:
• Abstract syntax trees and structural operational semantics

are good. The programming-languages research commu-
nity has 35 years experience formalizing them for use
as interfaces between compilers and programmers [25].
Failing to use this abstraction layer is a missed opportunity
for modularity. Not only for direct refinement proofs on
C programs one at a time: ASTs + SOS permit cleaner
specifications and proof of domain-specific languages that
target C. Perhaps the Cogent compiler [23] would be simpler
if it could have targeted an AST rather than heuristic-based
decompilation.

4“[The] C-parser uses Norbert Schirmer’s Simpl language, which is deeply
embedded with respect to statements, but just uses HOL functions (with
lambdas) for expressions. The parser also produces types in Isabelle which
match input types from C, e.g. an Isabelle record per struct in the C source.
All of this is designed to produce an AST which the user can manipulate
conveniently like it was the C program.

“However, for automatic or reflected methods, this is a headache. Because
the expressions are just state transformers, you can write a VCG or other proof
method, but you can’t write a translator to another language (in HOL). You can
write a translator at the ML level, but then the translator has to be validating
rather than validated, e.g. AutoCorres. [Another reason the translator has to be
validating rather than validated is:] Because some of the types are unknown
until the parser runs, you can’t obviously use the AST as a target language
for some conversion. . . . you can’t show that you produced the same result as
some external C program.” [Thomas Sewell, e-mail of April 23, 2016.]
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• Compilation is complete, decompilation is incomplete. Pro-
gramming languages such as C are designed so that there
is an algorithm for translating a legal source program to
a target program. (It almost goes without saying.) Sewell
et al.’s decompilation heuristics must be tuned to each
application; for example, they do not handle nested loops,
because these were unnecessary for seL4.

• Reflection. Sewell et al.’s refinement from C to control-
flow graphs, and decompilation from machine-language to
graphs, is driven by tactical proof search, which is slow.
CompCert’s translation from C to assembly language is
simply the execution of an ML-like functional program;
within an order of magnitude, it is approximately as fast
as running gcc. That is, CompCert takes advantage of
proof by reflection, the ability to write a functional program
inside the logic, prove it correct, then use it in further
proofs. CompCert is proved, once and for all in Coq, to
preserve observable behavior between source program and
target program. Each time a C program is compiled, it is
not necessary to do a tactical translation-validation proof.

• When possible, one should connect proof modules together
at specification interfaces in the same logic and proof
system. Then we don’t have to worry whether the program
proof and the compiler proof interpret the operators of the
language semantics in the same way: they both import the
same specification in logic, and that’s the end of it.
Still, formal top-to-bottom functional correctness verifi-

cation is much better than top-to-middle verification. Both
CertiKOS and L4.verified guarantee that the next bug to show
up in gcc cannot undetectedly compromise the security of
their operating systems. Neither can the next misunderstanding
of the C semantics (see the next section), since the top-to-
middle proof connects at the specification interface with the
middle-to-bottom proof. If that specification in the middle is
not exactly “C,” no matter; the proofs still compose.

X. THE RISE OF THE C LANGUAGE LAWYERS

In the first decades of the 21st century, the discussions
leading up to (and past) the C11 standard made the semantic
definition of C more precise. This definition is still in natural
language and “litmus tests,” rather than in formal mechanized
logic. Even so, the characterization of undefined behavior is
clearer than before, as is the understanding that compilers are
responsible only for the defined behavior of the C language.

This increased precision had an unexpected and paradoxi-
cal effect. The language lawyers5 who write the optimizing
compilers are “taking advantage” of legalisms in order to
make programs misbehave! Wang et al. explain this with two
examples [27].

5From Wikipedia (Rules lawyer): A rules lawyer is a participant in a rules-
based environment who attempts to use the letter of the law without reference
to the spirit, usually in order to gain an advantage within that environment.
[Shared Fantasy, by Gary Alan Fine, University of Chicago Press, 2002, pp.
109–113.] The term “language lawyer” is used to describe those who are
excessively familiar with the details of programming language syntax and
semantics. [The Jargon File ed. by Eric S. Raymond, v.4.4.8, October 2004.]

char ∗buf = ...; Example 1
char ∗buf end = ...;
unsigned int len = ...;
if (buf + len >= buf end) return; /∗ len too large ∗/
if (buf + len < buf) return; /∗ overflow ∗/
/∗ write to buf[0..len−1] ∗/

In recent years gcc deletes the second if-statement. The
language lawyers who maintain the optimizing C compiler
point out that if buf+len overflows, then (buf + len < buf) is
not a defined computation (it “goes wrong” in the Milner
sense); and the compiler is allowed to compile undefined
computations however it wants. The operating-system hackers
complain that in the “good old days” when the C compiler did
not delete the second if-statement, the undefined computation
did not actually cause buggy behavior in practice; the second
if-statement executed its then clause as intended.

struct tun struct ∗tun = ...; Example 2
struct sock ∗sk = tun−>sk;
if (!tun) return POLLERR;
/∗ write to address based on tun ∗/

If tun==NULL then the dereference tun−>sk will have
been undefined (“wrong”); therefore the compiler (recently)
deletes the if-statement. What’s the consequence? In the Linux
kernel (from which this example was taken), if tun==NULL
then tun−>sk does not segfault (as it would in user mode), it
just dereferences page zero (which is mapped in the kernel).
This fetches a nonsense value; but fortunately the if-statement
prevents the nonsense value from being used. When the if is
deleted, then there’s a bug.

I’m a language lawyer myself, but ethical concerns make
me ask: How can the poor operating-system hacker cope with
the language lawyers? The best defense is never compile a
program that exhibits undefined behavior. A program proved
functionally correct will never exhibit undefined behavior.6

XI. WHEN A FUNCTION WON’T DO

Compilers seem to be an exception to the general rule
that specifications should be functional programs. Verified
compilers such as CompCert, CakeML, and CertiCoq have
specifications in the form of structural operational semantics
(SOS). These are not functions, they are inductive relations.
That is, the source and target languages are deeply embedded
into the object logic, not shallowly embedded as semantic
functions.7

However, all these verified compilers
are pure functional programs. Instead
of refinement proof between func-
tional program and executable pro-
gram, they are written directly in
the logic’s functional programming

domain-specific
properties (in SOS)

domain-specific proof
functional program

compilation (+proof?)
machine-language

language, and extracted automatically for compilation instead.

6Wang et al. [27] propose a different solution: a static analysis to detect
C code that behaves differently when the compiler does or does not optimize
based on undefined behavior.
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These examples support my thesis rather than disprove it: it’s
useful to have a functional program as one of the specification
layers. In the diagram, (+proof?) indicates that Coq’s extrac-
tor/compiler is not proved correct; in HOL with CakeML or
(eventually) Coq with CertiCoq this phase will be proved.

These examples do show the importance of reasoning in
a logic that supports higher-order reasoning about inductive
relations. Proving compiler-correctness in a first-order (SMT-
compatible) logic can be done for toy examples [11], but I am
not aware of attempts to do it at scale.

Randomness.8 Consider a program that is nondeterministic,
or that explicitly uses randomness. For example, a quick-
sort implementation may use a random-number generation to
choose a pivot element. We would like to reason about both the
correctness and the average-case complexity of the program.

We could model this as a deterministic program that con-
sumes an input from an external stream of random numbers.
Then we could model the program as a simple pure function.
But it is not a very natural model. In particular, in what order
does the function consume coin-flips from the external stream?
Really it should not matter; but the determinized program is
considered a different function if we reorder the two recursive
calls to quicksort. And this determinized program, which
threads the random stream explicitly through the recursive
calls, is difficult to parallelize.

Perhaps this is an application domain where a pure func-
tional program does not serve well as a functional specifica-
tion. Instead, perhaps some sort of probabilistic Hoare logic
[12] is appropriate.

Graph algorithms. Imperative programs with pointer data
structures with mutation can be refinements of pure functional
programs. Our Verifiable C program logic (in which we did
HMAC) uses separation logic for such proofs. But when
the data structures go beyond lists and trees, to graphs with
dynamic patterns of sharing, the going gets rough even in
separation logic: “Programs manipulating mutable data struc-
tures with intrinsic sharing present a challenge for modular

7An inductive data type is a type associated with a finite set of constructors.
The constructors build instances, possibly recursively, and also permit traversal
(“parsing”) of the data. Examples are lists (with constructors nil and cons),
trees with (internal node and leaf ). Direct support for inductive data types
is found in some languages (such as ML and Haskell) and logics (such as
Coq and some implementations of HOL, higher-order logic). Inductive data
types are a bit like context-free grammars, and they work very well to express
abstract-syntax trees (AST) that represent programs inside compilers.

Functions in Gallina or HOL-fun have direct semantic meaning, as func-
tions, in their respective logics (CiC and HOL); such a program is called
shallowly embedded. In contrast, the AST representation of a program is just
syntax—it doesn’t mean anything by itself except a static tree. Such a program
is called deeply embedded. Structural operational semantics (SOS) is a way of
giving meaning to deep embeddings by means of inference rules, showing the
transformations on ASTs that can “calculate” the results of program execution.
These inference rules are also a kind of inductive construction, but they
construct logical propositions rather than data; they are an example of an
inductive relation.

All of this is described in standard textbooks such as Pierce [24]. The point
here is that in modular layered proofs about the correctness of security-kernel
implementations, it is very useful to work in a logic capable of expressive
reasoning about inductive relations.

8Thanks to my student Qinxiang Cao for this observation.

verification.” [15] Graph algorithms are not trivial to model
with functional programs, especially concurrent algorithms.

So perhaps my thesis of “functional programs are a good
specification layer” applies only to easy domains like compil-
ers, operating systems, and cryptography.

XII. LIMITATIONS

In the Introduction I talked about the software/hardware
stack all the way down past the ISA (instruction-set archi-
tecture) to the RTL (register-transfer language) and netlist.
Indeed, from the RTL to the netlist, formal machine-checked
functional-equivalence verification (FEV) tools are heavily
used in industry. But there is a big gap between the ISA and
the RTL: ISA specifications have not been heavily formalized,
especially in industry and especially in details such as their
cache coherence models [4]. Closing this verification gap is
an interesting question, in which there is active academic
research; but it is beyond the scope of this paper. However,
I will remark that the operational-semantic description of
the ISA, along with an axiomatic description of the cache
coherence model [2], should be an excellent kind of modular
specification interface between the software and the hardware.

Functional correctness is a practical necessity for those sys-
tem components that implement protection mechanisms: OS
kernels, file systems, crypto libraries. Program testing, even of
the most organized and principled variety, cannot catch all the
bugs that a clever and determined attacker will be looking
for. The corollaries of functional correctness are important
too, including immunity to buffer-overrun vulnerabilities and
general absence of undefined behaviors.

Still, functional correctness does not automatically imply
freedom from timing channels or resilience in the presence of
hardware faults. Formal machine-checked program analyses
of such properties would be useful in conjunction with the
methods I have described in this paper.

And what about the bootloader, did it actually install our
verified components? And does the chip actually implement
that netlist, or were there fab-level hardware trojans? A proof
of functional correctness does not make an entire security
assurance case! But known cases of deliberate trojans installed
by insiders are rare: most rootkits are installed by outsiders
exploiting unintentional functional-incorrectness vulnerabili-
ties. Therefore, functional-correctness verification would yield
significant improvements in security.

XIII. CONCLUSION

Modular machine-checked functional-correctness verifica-
tion of significant system security components is practical
now. I recommend three important modularity principles:
(1) Use a functional specification written as a functional
program, to separate domain-specific reasoning from low-level
program verification. (2) Use operational semantics of the
low-level programming language (such as C or assembly)
to separate program verification from compiler verification
(or machine-architecture verification). (3) To verify modular
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programs, use a higher-order logic that permits abstraction by
quantification over predicates.

Finally, to minimize semantic gaps at specification inter-
faces, it is helpful if all the verifications can be done (and
tools can be embedded) in a common framework—such as a
general-purpose higher-order logic proof assistant.
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