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ABSTRACT
Typed assembly languages provide a way to generate machine-
checkable safety proofs for machine-language programs. But
the soundness proofs of most existing typed assembly lan-
guages are hand-written and cannot be machine-checked,
which is worrisome for such large calculi. We have de-
signed and implemented a low-level typed assembly language
(LTAL) with a semantic model and established its soundness
from the model. Compared to existing typed assembly lan-
guages, LTAL is more scalable and more secure; it has no
macro instructions that hinder low-level optimizations such
as instruction scheduling; its type constructors are expres-
sive enough to capture dataflow information, support the
compiler’s choice of data representations and permit typed
position-independent code; and its type-checking algorithm
is completely syntax-directed.

We have built a prototype system, based on Standard ML
of New Jersey, that compiles most of core ML to Sparc code.
We explain how we were able to make the untyped back end
in SML/NJ preserve types during instruction selection and
register allocation, without restricting low-level optimiza-
tions and without knowledge of any type system pervading
the instruction selector and register allocator.

Categories and Subject Descriptors
F.3.1 [Theory of Computation]: Logics and Meanings
of Programs—specifying and verifying and reasoning about
programs; D.3.4 [Software]: Programming Languages—pro-
cessors, compilers

General Terms
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1. INTRODUCTION
The idea of Proof-Carrying Code (PCC) [18] is that the

compiler should produce machine code accompanied by a
proof of safety. A weakness of previous PCC systems is that
the proof-checking infrastructure is too complex to prove
sound. We have built the first compiler that produces ma-
chine code accompanied by safety proofs that are machine-
checkable in a simple logic from minimal axioms.

Most PCC compilers, including ours, are based on typed
intermediate languages or Typed Assembly Language (TAL)
[17], which provide a way to generate safety proofs auto-
matically. TAL has a soundness guarantee: If a TAL pro-
gram type-checks and there is no bug in the assembler, the
machine code is safe to execute. Soundness is proved as
a metatheorem outside of the proving system; the proof is
hand-written and not machine-checkable. The typing rules
and the type checker are in the trusted computing base
(TCB), that is, bugs in these components can let unsafe code
slip past the checker. There have been many variants of TAL
[15, 23, 16], which rely on similar soundness metatheorems.
A recent variant [10] has a machine-checkable metatheorem.

It is hard to manage the soundness proofs and avoid errors
when scaling up to realistic type systems for real compilers.
The goal of the Foundational Proof-Carrying Code (FPCC)
[2] project at Princeton is to build machine-checkable safety
proofs for machine-code programs from the minimal set of
axioms. We have designed a low-level typed assembly lan-
guage (LTAL) to be the interface between the compiler and
the checker: the compiler compiles a source program to ma-
chine code annotated by an LTAL program.

This paper focuses on the LTAL interface and the com-
piler. Our design and implementation has the following de-
sirable properties, some of which are shared by some other
TAL and PCC systems (see Figure 1 and Appendix A):

Compiles a “real” source language. We have built
a compiler for almost all of core ML—a full-scale source
language with polymorphic higher-order functions, disjoint-
sum recursive datatypes, and so on.

Compiles to a real target machine. We generate
high-quality Sparc code.

Foundational specification. We have a concise logical
specification, independent of any type system, of the safety
property guaranteed by our system: in our prototype we
guarantee memory safety and that only a certain subset of
Sparc instructions will be executed [2]. Furthermore, our
specification relates to the actual machine language to be
executed—not assembly language—we model (and check)
instruction encodings explicitly.
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1 2 3 4 5 6 7 8 9 10 11
SpecialJ [9] • • ◦ •
TALx86 [17] ◦· • ◦ • ◦ ◦ ◦
DTAL [23] •
FTAL [12] ◦· • •
TALT [10] • ◦· ◦· • • ◦
Our LTAL ◦· • • ◦· • ◦· • • • • •

Figure 1: Comparison of typed assembly languages
(see Appendix A)

Machine-checked proof. We have a machine-checked
proof (mostly finished) of the soundness of our system—
that is, if the LTAL type-checks, the machine code is safe.
Unlike any other TAL or PCC system, our proof is with
respect to a minimal set of axioms, the largest part of which
is a specification (in logic) of the instruction set architecture
of the Sparc processor.

Minimal checker. Just in case you are worried about
bugs (or Trojan horses) in proof checkers, our soundness
proof is checkable in a very minimal logic: the trusted base
of our system (including axioms, machine specification, and
a C program implementing LF checking) is less than 2700
lines of code [5, 22], an order of magnitude smaller than
other systems.

Atomicity. Some other TALs have “macro” instruction
sequences (or even worse, calls to the runtime system) for
compare-and-branch, or datatype tag-checking, or memory
allocation. This inhibits optimizations such as hoisting and
scheduling.1 Each of our LTAL instructions corresponds to
at most one machine instruction.

Compiler can choose data representations. For data
structures such as tagged disjoint sums, a compiler may want
to exercise discretion in choosing data layouts, unhampered
by assumptions built into a typed assembly language. LTAL
permits this flexibility; some other TALs do not.

Dataflow & induction analysis. LTAL includes ex-
istential and singleton types that are powerful enough to
permit dataflow-based safety proofs of optimized machine
code (though our prototype compiler does not exploit all of
this power yet).

Position-independent code. To avoid the need to trust
a linker, we show how to check typed position-independent
code—even in the presence of long jumps and of operations
that move code addresses into pointer variables and closures.

Basic blocks. LTAL groups instructions into basic blocks,

1These optimizations can be done in the assembler, but need
to be trusted bug-free, whereas our system does not need to
trust them.

making it easy for an optimizing compiler to reorder blocks
to optimize cache placement or shorten span-dependent in-
structions.

Syntax-directed. Typechecking LTAL is syntax-directed;
that way, if a compiler generates a well-typed LTAL pro-
gram it doesn’t have to worry about whether the checking
algorithm will be smart enough to find a proof.

2. OVERVIEW OF FPCC
Necula’s PCC system [18] constructs for untrusted code

a verification condition (VC), which has the property that
if VC holds with regard to the logic axioms and the typ-
ing rules, the program is safe. A VC generator (VCGen)
is used by both the code producer and the code consumer
to construct VCs. VCGen examines a machine-code pro-
gram instruction by instruction and calculates the weakest
preconditions for each instruction in Hoare-logic style. This
VC-based verification builds the type system and machine
instruction semantics into the algorithm for formulating the
safety predicate. VCGen must be trusted to generate the
right formula, but it is a large program (23,000 lines of C
code [6]), thus difficult to guarantee bug-free.

2.1 FPCC
The motivation of Foundational PCC is to make the TCB

as small as possible, without committing to any specific type
system. We believe that the smaller the TCB, the more con-
fidence PCC users can have. Our TCB consists of the spec-
ification of the safety policy, machine instruction semantics,
and the proof checker. In the current implementation, it is
less than 2,700 lines of code [5, 22], of which more than half
is the specification of the Sparc instruction set architecture.
To make the TCB minimal, we choose Church’s higher-order
logic with a few axioms of arithmetic, give types a semantic
model to move the type system out of the TCB, and model
machine instructions by a step relation between machine
states; we avoid VCGen entirely [3].

In order to support contravariant recursive datatypes and
mutable fields, we model types as predicates on states, ap-
proximation indices [4], and type levels [1]. We have an
abstraction layer, Typed Machine Language (TML) [20], to
hide the complex semantic models for types. TML pro-
vides a rich set of constructors for types, type maps, and
instructions, and an orthogonal set of primitive type con-
structors such as union, intersection, existential and univer-
sal quantification, and so on. TML is so expressive that
type-checking for it is undecidable; it is more a logic than a
type system. However, it is very useful for building seman-
tic models of higher-level, application-specific type systems
such as LTAL: we give LTAL constructors a semantic model
in terms of TML.

The soundness of LTAL typing rules is proved not by a
metatheorem as in TAL, but by their semantic model [21],
bottom up: first we use higher-order logic with axioms for
arithmetic to prove lemmas about machine instructions and
types, then we prove the TML typing rules based on these
lemmas, then we prove the soundness of LTAL typing rules
in the TML model. Each typing rule is represented as a
derived lemma in our logic.

LTAL benefits from its semantic model in many aspects:
first, it is more scalable. Adding new rules that can be
described in our semantic model generally does not affect
the soundness of existing rules, which we found very useful
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Figure 2: Foundational PCC Framework

in evolving the design. Second, it is more secure because
the typing rules are moved out of the TCB. Third, TML
connects LTAL to real machine instruction semantics, thus
bridges the gap between typed assembly language and ma-
chine language.

The FPCC framework is shown in Figure 2. A source
program is compiled into a machine-code program and an
LTAL program. The “code consumer” receives the LTAL
rules, along with their soundness proof; checks the soundness
proof [5, 22]; and then runs the LTAL checker, which is a
simple computation (like Prolog but without backtracking
and with only a very limited form of unification).

LTAL is not intended as a universal TAL. Instead, it is
extensible. Our semantic modeling technique is very mod-
ular. New operators can be added to LTAL (and proved
sound) without disturbing the soundess proofs for existing
operators, as long as the new operators conform to the as-
sumptions in the semantic model. We started with a very
simple model [3], and when we added contravariant recursive
types [4] and mutable record fields [1] these changes did vio-
late previous assumptions and require nonmodular rewrites.
But now our model is very powerful and general: none of
the existing LTAL soundness proofs will need to be touched
when we add operators to handle extensible sums, various
kinds of exception handling mechanisms, various kinds of
multidimensional arrays (with or without pointer indirec-
tions), or arbitrary predicates on scalar values.

2.2 FPCC-ML Compiler
Our compiler transforms core ML (ML without the mod-

ule system) into Sparc code with LTAL annotations. At
present our prototype omits exceptions, arrays, and strings.
We have built our compiler based on the Standard ML of
New Jersey system.

There are several stages: the front end of SML/NJ trans-
lates source ML programs to FLINT (a typed intermediate
language based on Fω) [19]; we have reused the FLINT front
end. Our newly built typed CPS-conversion and closure con-
version phases generate NFLINT (a typed intermediate lan-

guage like Morrisett’s λC [17]). The next few phases break
down complex instructions, build basic blocks, and insert
coercions to get machine-independent LTAL programs. The
back end takes machine-independent LTAL, and produces
machine code with machine-specific LTAL annotations and
some auxiliary information, such as mapping from labels to
their addresses.

SML/NJ’s back end uses the untyped MLRISC retar-
getable instruction selection, register allocation, and low-
level optimization software [11]. The difficulty is to make
MLRISC preserve and manipulate type information, with-
out rewriting the MLRISC or making it dependent on our
particular type system. Fortunately, MLRISC already had
some support for an annotation mechanism [13] that per-
mits “comments” on the instructions; we have generalized
this mechanism and used it to propagate types.

2.3 Checker
Our checker has two main components. First, it uses a

simple LF type-checker to check a proof, in higher-order
logic, of the soundness of the LTAL typing rules [5, 22]. We
can view these LTAL rules as a set of lemmas.

On the other hand, the LTAL rules can be regarded as
a set of Prolog-like clauses. Then, because these rules are
syntax-directed, the checker can run a very simple subset
Prolog interpreter (without backtracking and with only a
limited form of unification) on these rules to type-check the
machine-language program [5, 22].

The LTAL program is only an untrusted hint so that
the checker can take advantage of type and dataflow in-
formation from the compiler in proving the safety of the
machine code. The process of running the checker on a
machine code and the corresponding LTAL program is like
type-checking the machine code according to structural in-
formation from the LTAL program. The overall goal of the
checker is judge_prog H P where P is the binary code (a
sequence of instruction words) and H is the correspond-
ing LTAL program. The predicate judge prog characterizes
well-typedness. The checker solves this goal according to
the structure of H. In the underlying semantic model, we
can prove that well-typedness implies safety:

judge_prog H P -> safe_program P.

The predicate safe program is the machine-level safety pol-
icy. When the checker succeeds on the goal judge prog H
P, we apply this lemma to get a proof of safe program P.

3. LTAL
We have designed our own typed assembly language be-

cause we want to generate safety proofs of machine code,
with as much flexibility as possible for an optimizing com-
piler. Thus, even part-way through a sequence of instruc-
tions that allocates on the heap or that does datatype-tag
discrimination, the LTAL type system must be able to de-
scribe the machine state. That is, LTAL has no “macro” in-
structions: each LTAL instruction corresponds to one Sparc
instruction (or is a coercion with no runtime effect). Be-
cause no sequence of instructions is unbreakable, low-level
optimizations such as instruction scheduling are permissible
(however, at present our LTAL does not accommodate the
filling of branch-delay slots on the Sparc). Macro instruc-
tions in other TALs (such as malloc and test-and-branch)

3



τ ::= α | > | ⊥ | int | ∃α.τ | µα.τ | boxed Types
| n̄ | intπ τ | field i τ | τ1 ∩ τ2 | τ1 ∪ τ2
| codeptr[α1, . . . , αj ](m, cc, v1 : τ1, . . . , vn : τn)
| addr(l) | diff(l1, l2) | def

�

cc ::= cc cmp(τ1, τ2) Cond.Codes
| cc testm(m) | cc none

v ::= x | i | l | c(v) | vdiff(l1, l2) Values
c ::= cid | c1 ◦ c2 | cpack(τ1, τ2) Coercions

| cfold[τ ] | cunfold | crange[n1, n2]
| cinj1 τ | cinj2 τ | cproj1 | cproj2
| cunion(c1, c2) | cinters(c1, c2) | cname | cdef

�

op ::= + | − | ∗ | / Arith. Ops
π ::= = | 6= | > | ≥ | < | ≤ Arith. Compares

Instructions
ι ::= (α, v′) = open(v) no instruction

| v′ = v move, or nop
| v = v1 op v2 ALU instructions
| v = sethi(n) sethi
| store(vi, v) store
| v = record move
| inc alloc(v) add
| v = load(v1, v2) load
| v = addradd(v1, v2) add
| call(v, [τ1, . . . , τn]) jump
| calln(l, [τ1, . . . , τn]) fall through

? | cmpcc(v1, v2) subcc
? | (α, v′1) = cmpcci(v1, v2) subcc
? | testm(n) subcc
? | if(π) then l1 else l2 branch
? | ifr(π){v} then (v1, l1) else (v2, l2) ”
? | iffull then l1 else l2 ”
? | iftag(π){v} then (v1, l1) else (v2, l2) ”

Basic block
B ::= l[α1, . . . , αj ](m, cc, v1 : τ1, . . . , vn : τn) = ι1; . . . ; ιk
LRT ::= (L,R, T ) Environments
L ::= {l1 7→ a1, . . . , ln 7→ an} label map
R ::= {x1 7→ r1, . . . , xn 7→ rn} register map
T ::= { �

1 7→ τ1, . . . ,
�
n 7→ τn} type abbrev . map

P ::= (LRT, ~B) Program

Figure 3: LTAL Syntax. Marked ? operators are specific
to machines with condition codes.

that expand to a fixed sequence of machine instructions, in-
terfere with low-level optimization.

3.1 Syntax
LTAL is a calculus with conventional features such as vari-

able names and scoping rules. The LTAL syntax is shown
in Figure 3. LTAL supports first-order kinds; it has only
limited support for higher-order kinds, since TML does not
model higher-order kinds in full generality. For core ML,
this is enough.

LTAL has a set of standard types: type variables2, top and
bottom types, integer types, existential types, and recursive
types. We give type boxed to pointers pointing to heap
values.

There are low-level constructors to model high-level ab-

2In our implementation we use de Bruijn indices, but in this
presentation we will show named variables.

stractions, such as singleton integer type n̄ and refined in-
teger type intπ n̄ for integers (i has type intπ n̄ means i π n
is true, where π is a predicate on integers such as = or ≤),
field types, intersection types and union types for records
and user-defined datatypes.

To model basic blocks (with their live variables) and func-
tions (with their formal parameters) we have polymorphic
“code pointer” types codeptr[~α](m, cc, v1 : τ1, . . . , vn : τn).
where ~α is a list of type variables, m is the available memory
size known at this point, cc is the condition code require-
ment, and vi : τi are the input arguments.

For label arithmetic we have type constructors addr and
diff, which will be explained further in Section 3.7.

Type def refers to a type expression by a name
�

; in our
implementation, names are just integers. Each program can
have a sequence of type abbreviations that give names to
type expressions. This mechanism makes LTAL programs
concise, and saves the checker some work. The checker ex-
pands a name to the type expression it stands for only when
such expansion is needed. Otherwise, the checker simply
passes the name around, which is more efficient than pass-
ing the type expression.

We have a special category cc to capture the condition
codes status (on machines with condition codes), which in-
cludes cc cmp for comparison, cc testm for memory avail-
ability testing, and cc none for arbitrary status.

A value can be a variable x, an integer i, a label l, a
coerce value c(v), or a vdiff value. We use variables to track
aliases of registers. Different variables with different types
can be assigned the same register, indicating different views
of the same register to the type-checker. Value constructor
vdiff and type constructors addr and diff are used for typed
position-independent code. Their meaning is explained in
Section 3.7.

Coercions are used to change the type of values; all coer-
cions are free of runtime effect, as they follow subtyping
relations in the underlying model. Many of these coer-
cions are conventional, such as identity, composition, pack,
fold/unfold, inject, and project. Coercion rules are further
discussed in Section 3.5.

LTAL has a machine-independent core, which includes:
move and ALU instructions, sethi for loading large integers,
store, record, and inc alloc for heap allocation, calln
for “call by fall-through,” (which generates no code), and
addradd for address arithmetic. Each target machine re-
quires the addition of machine-specific operators and rules.
The instructions in LTALSparc that are specific to machines
with condition codes are: cmpcc compares two integers
and sets condition codes; cmpcci compares a value with
a compile-time-known integer, sets condition codes and re-
fines the type of the value; testm tests for out-of-heap; if
is normal conditional branch without type refinement; ifr is
conditional branch with type refinement in both branches,
and iffull and iftag specialize type refinement for memory
allocation and datatype tag discrimination, respectively.

Function declaration l[~α](m, cc, v1 : τ1, . . . , vn : τn) =
ι1; . . . ; ιk defines a function (basic block) with label l, type
parameters ~α, formal parameters v1 : τ1, . . . , vn : τn, and
function body ι1 . . . ιk which is a sequence of LTAL instruc-
tions. The number m specifies how much memory is guaran-
teed to be available when the function is called. If a function
specifies m words and allocates no more than m words, there
is no need to test the memory availability. Otherwise, it has

4



to check explicitly if there is enough memory. The condition-
code requirement cc specifies the status of condition codes
when the function is called. The function label l is assigned
a code pointer type codeptr[~α](m, cc, v1 : τ1, . . . , vn : τn).
Each function is closed in the sense that there are no free
type variables or value variables.

Triple LRT represents three environments that keep aux-
iliary information for type checking: label environment L
maps labels to addresses (offset from the beginning of the
program); register environment R maps variables to tempo-
raries (registers or spill locations); type abbreviation envi-
ronment T maps type abbreviations to their expansions.

An LTAL program consists of the above environments and
a set of function declarations.

3.2 Static Semantics
The low-level type and term constructors in LTAL make

the typing system expressive. Yet we need a decidable and
simple type-checking algorithm so that proof generation can
be done without a complicated decision procedure or con-
straint solver. To this end, we have made LTAL completely
syntax-directed. There are no subtyping rules; instead, we
use coercions to avoid nondeterministic choices during type
checking. We explain various typing judgments, and then
show some typing rules in this section.

The typing judgment for values LRT ; ρ; Φ ` v : τ means
value v has type τ under environment LRT ; ρ; Φ. Triple
LRT is part of the program. Kind environment ρ is a list of
type variables bound so far (in our implementation we use de
Bruijn numbers, so ρ is just a number). Value environment
Φ maps variables to their types.

The judgment LRT ` (ρ; � ; Φ; cc) {ι} (ρ′; � ′; Φ′; cc′) means
after instruction ι is executed, environment (ρ; � ; Φ; cc) be-
comes (ρ′; � ′; Φ′; cc′). The construction Φ, v : τ augments Φ
with a new binding v : τ and keeps the bindings other than v
unchanged. The heap-allocation environment � is explained
in Section 3.4. Environment cc specifies the current status
of condition codes.

As an example we will show a simplified rule for an LTAL
add instruction. In Section 3.7 we will show a different typed
version of add. These two different typed versions of add
expand to the same Sparc machine instruction. The first rule
we show here is useful for compiling a source-language add
for which no dataflow tracking is needed to prove safety; the
second is useful for compiling address arithmetic. Having
multiple LTAL instructions for the same machine instruction
simplifies type-checking.

LRT ; ρ; Φ ` x : int LRT ; ρ; Φ ` y : int
LRT ` (ρ; � ; Φ; cc) {z = x+ y} (ρ; � ; Φ, z : int; cc)

In fact, this rule is dramatically simplified for clarity. The
full version looks like this:

(1) LRT ; ρ; Φ ` x : int32 (2) LRT ; ρ; Φ ` y : int32

(3) `′ = `+ 4
(4) rmap(LRT )(z) = tz (5) rmap(LRT )(x) = tx
(6) realreg(tz) = rz (7) realreg(tx) = rx
(8) ym = match reg or imm(y)
(9) Φ′ = {z : int32} ∩ (Φ\z)
(10) decode list ` `′P P ′ i ADD(rx, ym, rz)
LRT ; Γ ` (`; ρ; � ; Φ; cc;P ){z = x+ y}(`′; ρ; � ; Φ′; cc;P ′)

The first and second premises state that both x and y
have type int32, the 32-bit integer type. Address ` is the
location of current instruction z = x+y; `′ is the location of
the next instruction. Premise (3) specifies that the length
of the add instruction is 4 bytes.

Premises (4) and (5) relate variables z and x to their tem-
porary numbers, and premises (6) and (7) map temporaries
to registers; this rule would not be applicable to operands
represented in spill locations (but of course that’s true of
the actual Sparc add instruction too). There are about 1000
temporaries (after register allocation); the first 20 are reg-
isters, and the remainder are in the spill area. The per-
program rmap—the R component of LRT—maps variables
to temporaries; the program-independent relations realreg
and memtemp relate temporaries to their machine represen-
tation.

Since value y can be either a register or an immediate,
we use match reg or imm in premise (8) to match either a
register or an immediate. So ym can be either (rmode ry)
for some register ry or (imode i) for some immediate i.

Premise (9) states the relation between the value typing
context before and after execution of the current instruction.
Before we add the type of variable z into the context, all
aliases of z should be killed since they are not live anymore,
which is what Φ\z does.

Premise (10) will be explained in the next subsection.
The conclusion is like a Hoare-logic judgment. In envi-

ronment LRT , the instruction z = x + y is at location `;
the length of the instruction is `′ − `; this instruction does
not affect type contexts ρ or heap allocation environment

� ; value context Φ becomes Φ′ after execution; the machine
code at location `′ is P ′.

3.3 Instruction decoding
The decode list relation in premise (10) maps an instruc-

tion word to a higher-level instruction with semantic mean-
ing. Specifically, it says that the instruction word at the be-
ginning of P with length `′ − ` is an add instruction
i ADD(rx, ym, rz). We check for proper instruction encod-
ing with rules such as the following:

1 0 Z 0 0 0 0 0 0 X 0 0 0 0 0 0 0 0 0 Y
32 30 25 19 14 13 5 0

32 · 2 + Z = X9 64 ·X9 + 0 = X7

32 ·X7 +X = X6 2 ·X6 + 0 = X4

256 ·X4 + 0 = X1 32 ·X1 + Y = W
decode(i ADD(X, rmode(Y ), Z), W )

This rule is not an axiom of our system, it is a lemma derived
from a more concise and readable definition of instruction
encodings [14]. The predicate A · B + C = D shown here is
a simplification of an actual predicate that also checks that
C < A and that A,B,C,D are natural numbers.

3.4 Heap Allocation
Like SML/NJ, our compiler allocates closures and records

in registers or on the heap; we don’t push and pop the stack.
At present, our type system (like most TALs) also does not
accommodate reasoning about garbage collection either. We
intend to handle stacks and GC in the future, after we de-
velop a unified theory of stack and heap deallocation (prob-
ably based on a region calculus).

As in SML/NJ, with so much heap allocation we need ex-
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tremely efficient, in-line allocation of records. We model the
allocable heap memory as a large contiguous region bounded
by two pointers, allocptr and limitptr. Heap allocation is
broken into two steps: first, test whether there is enough
memory for allocation; second, initialize memory.

Before the runtime system starts executing a program, it
reserves a chunk of memory, and sets the allocptr to the
lowest address of the memory chunk, and the limitptr the
highest address (minus a constant C = 4096). When the
program needs n memory words, where 4n ≤ C, it tests
whether allocptr ≤ limitptr; if so, then at least n words
must be available. Then it fills in n words consecutively to
addresses from allocptr to allocptr + 4n− 4, then increases
allocptr by 4n.

The following LTAL instruction sequence creates a 3-field
record [v0, v1, v2] and assigns it to v. The corresponding
Sparc instructions are on the right side of the table (d, d0,
d1, d2 are registers assigned to LTAL variables v, v0, v1, v2).

LTAL Sparc
l0 : l0 :

testm(3) subcc allocptr, limitptr,%g0
iffull then l1 else l2 bg l1

l2 : l2 :
store(0, v0) st d0, [allocptr + 0]
store(1, v1) st d1, [allocptr + 4]
store(2, v2) st d2, [allocptr + 8]
v = record mov allocptr, d
inc alloc 3 add allocptr, 12, allocptr
. . . . . .

l1 : . . . l1 : . . .

Block l0 tests if there are at least 3 words in the memory
for allocation; after the testm comparison the condition-
code environment is cc testm(3). Then the branch instruc-
tion iffull “consumes” this condition code, and statically
guarantees 3 words in the fall-through case (memory is not
full).

Block l2 initializes the three newly allocated words. In-
struction store(i, vi) initializes the word whose address is
allocptr+4i with vi. Instruction v = record copies allocptr
to v. Instruction inc alloc n increases allocptr by 4n.

The instruction sequence for allocation is not fixed. The
instruction scheduler can shuffle these instructions with oth-
ers, as long as certain constraints hold.

An allocation environment � is used to check heap allo-
cation. It consists of three parts: the number of words that
are guaranteed to be available in the memory, the largest
index of initialized fields, and the type of the partial record
initialized so far. We don’t need the initialization flags used
in TALx86 [17].

The typing rules for the allocation instructions are shown
in Figure 4. The judgement LRT ; ρ; � ; Φ; cc `` l states that
the signature of block l matches the current environment. If
this judgement holds, it is safe to jump to block l. Instruc-
tions testm and iffull establish the allocation environment
in which the store instructions type-check. The compiler
can (and does) optimize by making one iffull cover the se-
quential allocation of several different records in a control-
flow path that covers several basic blocks. The parameter
m of codeptr conveys the necessary information about how
much memory is guaranteed to remain.

0 ≤ n ≤ 1024
LRT ` (ρ; � ; Φ; cc) {testm(n)} (ρ; � ; Φ; cc testm(n))

cc = cc testm(n) LRT ; ρ; � ; Φ; cc `` l1
LRT ; ρ; (n,−1, boxed); Φ; cc `` l2

LRT ` (ρ; � ; Φ; cc) {iffull then l1 else l2} (ρ; � ; Φ; cc)

LRT ; ρ; Φ ` vi : int= i 0 ≤ i < n m′ = max (m, i)
LRT ; ρ; Φ ` v : ti t′ = t ∩ (field i ti)

LRT ` (ρ; (n,m, t); Φ; cc) {store(vi, v)} (ρ; (n,m′, t′); Φ; cc)

LRT ` (ρ; (n,m, t); Φ; cc) {v = record} (ρ; � ; Φ, v : t; cc)

LRT ; ρ; Φ ` v : int= n
′ m < n′ ≤ n

LRT ` (ρ; (n,m, t); Φ; cc testm(k)) {inc alloc v}
(ρ; (n − n′,−1, boxed); Φ; cc none)

LRT ; ρ; Φ ` v : int= n
′ m < n′ ≤ n cc 6= cc testm(k)

LRT ` (ρ; (n,m, t); Φ; cc) {inc alloc v}
(ρ; (n− n′,−1, boxed); Φ; cc)

Figure 4: Rules for Allocation Instructions

A tuple type [τ0, τ1, . . . , τn−1] is represented in LTAL as
(field 0 τ0) ∩ (field 1 τ1) ∩ . . . ∩ (field (n− 1) τn−1). If v has
this type, then the word located at memory address v has
type τ0, at address v + 4 type τ1, etc. (where 4 is the word
size). When a field is initialized by a store instruction, one
more conjunct (a field type) is added into the type of the
partial record in the allocation environment.

After initialization, the allocptr is copied to a variable
(with record type) by instruction v = record, and then the
allocptr is adjusted to point to the next available memory
word by instruction inc alloc. After instruction inc alloc,
the condition codes set by testm are invalid because allocptr
has been changed. So we reset the condition-code environ-
ment if it is cc testm.

3.5 Coercions
A coercion only changes the static type of a value; it has

no runtime effect. A coercion c defines a type transformation
function fc. If c is applied to value v of type τ , we get
another value c(v) of type fc(τ ). Type τ and fc(τ ) should
be compatible, more accurately, it should be provable in the
underlying model that τ is a subtype of fc(τ ). Coercions
simplify type-checking by telling the checker, in effect, where
to apply subtyping. However, this can significantly increase
the size of the LTAL code.

We list some coercion rules in Figure 5. The coercion
typing judgement ρ;LRT `c τ c

↪→ τ ′ means that under kind
environment ρ and maps LRT , coercion c changes τ to τ ′.

Sometimes after applying a coercion we need to use the
value both at its old type and its new type. This has been
a difficulty in some previous TALs, which assign types to
registers: they have to emit a mov instruction to handle
this case.

We solve this problem by assigning types to variables,
not to registers: A variable has only one type, but different
variables can be assigned the same register. A move-with-
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ρ;LRT `c τ1
cinj1 [τ1∪τ2]

↪→ τ1 ∪ τ2

ρ;LRT `c τ2
cinj2 [τ1∪τ2]

↪→ τ1 ∪ τ2

τ ′ = τ [µα.τ/α]

ρ;LRT `c τ ′
cfold[µα.τ ]

↪→ µα.τ

ρ;LRT `c τ
c2
↪→ τ ′ ρ;LRT `c τ ′

c1
↪→ τ ′′

ρ;LRT `c τ
c1 ◦ c2
↪→ τ ′′

ρ;LRT `c τ1
c1
↪→ τ ′1 ρ;LRT `c τ2

c2
↪→ τ ′2

ρ;LRT `c τ1 ∪ τ2
cunion(c1,c2)

↪→ τ ′1 ∪ τ ′2

Figure 5: Selected coercion rules

coercion creates a new variable (in the same register) with-
out executing an instruction. In effect, the variable name in
an LTAL instruction tells the checker which type to use.

This means that when we “kill” a variable (by assigning
a new value to its underlying register), we must also kill all
the other variables bound to that register. When adding a
new type binding v : τ , we examine each binding v′ : τ ′ in Φ
and remove it from Φ if v′ is assigned the same register as v,
which means v′ should be no longer live. We use (Φ\v), v : τ
to represent this operation; it can be seen in premise (9) of
the big rule in Section 3.2. When there is no ambiguity, it
is abbreviated to Φ, v : τ .

On the other hand, a move-with-coercions such as v =
c(v′) does not require the application of the \v operator;
other aliases of v continue to be active.

3.6 User-defined Datatypes
LTAL’s low-level type constructors provide support for

various data representations, and extracting and checking
tags. The type-checker can check the connection between
a sum value and its tag, and refine the type of sum values
after tag-checking. We provide flexibility for the compiler
writer to choose her preferred style of datatype representa-
tion; the representations we describe in this section are not
new, but the point is that we can type each aspect of their
construction and deconstruction.

For simplicity, we use the notation [τ0, τ1, . . . , τn−1] for
tuple types and use the following two type macros:

• Type range(n1, n2) for type (int≥ n1) ∩ (int< n2). A
sum type is often represented as range(0, n) ∪ t. The
number n indicates the number of constant construc-
tors, which are represented as integer 0, 1, . . . , n − 1.
Type t is the union of types for the boxed constructors.

• Type hastag(τtag, τ ) for (field 0 τtag) ∩ τ . It means
that the tag of a sum value has type τtag, and the sum
value is of type τ .

The compiler can choose from different data representa-
tions for user-defined datatypes such as intlist:

datatype intlist = nil | cons of int ∗ intlist

(1) The most straightforward representation is to tag each
constructor with a small integer: nil is tagged 0, and cons
tagged 1.

intlist1 = µα.([int= 0] ∪ [int= 1, [int, α]])

(2) We assume that small integers can be distinguished from
pointers, thus constant data constructors can be represented
as small integers: nil is represented as integer 0; cons is a
boxed record with tag 0.

intlist2 = µα.(range(0, 1) ∪ [int= 0, [int, α]])

(3) A datatype with only one value-carrying constructor can
be optimized further. If the value-carrying constructor car-
ries an always-boxed value, it need not be tagged. Since cons
carries a tuple that is always boxed, its tag can be removed.

intlist3 = µα.(range(0, 1) ∪ [int, α])

Creating Sum Values. We create an empty list of intlist 1

by building a 1-element record v0 = [0], then coercing it to
type intlist1:

LTAL Sparc
v0 : [int= 0]
v1 = cinj1 ([int= 0] ∪ [int= 1, [int, intlist1]])(v0)
v2 = cfold[intlist1](v1)

The only difference between v0, v1 and v2 is coercions.
They are assigned the same register, so no Sparc instruction
is emitted for the above LTAL instructions.

By inserting coercions, the type-checker can easily tell
that value v0 can be coerced to be of type intlist 1. It sim-
ply checks if the type of v0 is the first part of union type
[int= 0]∪[int= 1, [int, intlist1]] (by the rule of coercion cinj1),
and if the type of v1 is exactly the same as intlist1 with type
variable α replaced with intlist1 (coercion cfold).

The following two LTAL instructions create an empty list
of intlist3 by coercing integer 0 to be of type intlist3.

v1 = crange[0, 1](0) mov 0, d1

v2 = cinj1 (range(0, 1) ∪ [int, intlist3])(v1)
v3 = cfold[intlist3](v2)

Coercion crange[n1, n2] changes a value of type int= n to
type range(n1, n2) if n1 ≤ n < n2. In the first instruction
the type-checker only needs to check if 0 ≤ 0 < 1 holds.

Eliminating Sum Values. Consider what happens when
doing case discrimination on a boxed-tag style of sum type
representation, such as is used when there are multiple value-
carrying constructors. Given a value x, one fetches the tag
into a variable y, then does a conditional branch on y; at this
point, the difficulty is in relating the outcome of the condi-
tional branch to the refined type of x. One solution is to use
a “macro” TAL instruction to code for the load+compare+
branch; we wanted to avoid all such macro instructions. We
use type quantification and singleton types to keep track of
the implicit dataflow.

User-defined datatype

datatype t = A | B | C of int | D of int ∗ t
can be represented in LTAL as:

τ = µα.(range(0, 2) ∪ [int= 0, int] ∪ [int= 1, int, α]).
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“Switching” on sum values in source program

case(v : t) of A⇒ eA
| B⇒ eB
| C(x)⇒ eC
| D(x, y)⇒ eD

is translated to the following LTAL and Sparc instruction
sequence (Variables v0, v, v

′
0, v1, v2, v3, v

′
3, v
′′
3 are all assigned

register d, and variable t is assigned dt):

LTAL Sparc
v0 = cunfold(v)
(β, v′0) = cmpcci(v0, 256) subcc d, 256
ifr(≥){v′0} then (v1, lCD)

else (v2, lAB) bge lCD
lAB : . . . lAB : . . .
lCD : lCD :

(α1, v3) = open(v1)
t = load(v3, 0) ld [d], dt
cmpcc(t, 0) subcc dt, 0,%g0
iftag(=){v3} then (v′3, lC)

else (v′′3 , lD) be lC
lD : . . . lD : . . .
lC : . . . lC : . . .

We need to generate code that tests v to decide which
branch to take. Each test and each branch should be an
explicit LTAL instruction. From our assumption that no
pointers point to the first 256 words in the memory, if v is a
small integer (less than 256), then it is either A or B, other-
wise it is C or D. Instruction cmpcci performs this test and
sets condition codes. Instruction ifr examines the condition
codes and rebinds two fresh variables v1 and v2 with refined
types for boxed and unboxed cases respectively. Variable v1

has type ∃α.hastag(α, [int= 0, int] ∪ [int= 1, int, τ ]), which
means it is tagged (we do not know the tag yet). Variable
v2 has type range(0, 2), which means it is either 0 or 1.
Both v1 and v2 are forced to be assigned the same register
as v0, so no machine instruction is needed to move v0 to v1

or v2.
In the unboxed case, we further test if v2 is 0 or 1, which

is easy. In the boxed case, we need to test the tag of v1.
Variable v1 hides the type of its tag by existential types.
We first open v1 to v3 and bind a brand new type vari-
able α1. Again, no Sparc instruction is needed because
v1 and v3 are assigned the same register. Variable v3 has
type hastag(α1, [int= 0, int] ∪ [int= 1, int, τ ]). Instruction
load extracts the tag t and gives it type α1. Then cmpcc
checks if tag t is 0 and set condition-code environment to be
cc cmp(α1, 0̄). Instruction iftag checks condition codes set
by cmpcc, rebinds two new variables v′3 and v′′3 as aliases
of v3 and does conditional branch. The type-checker checks
in iftag instruction that: cc is cc cmp(τ0, 0̄), v3 is of type
hastag(τ ′0, τ ), and τ0 = τ ′0; and it refines the types of v′3
and v′′3 to [int= 0, int] and [int= 1, int, τ ], respectively. This
refinement rules out disjuncts by the result of comparing
tags with integers. All these rules will be explained in detail
in an upcomping thesis [8]. A constraint solver as in DTAL
[23] is overkill for our purpose.

The connection between a tagged value and its tag is
established by existential types, since every time we open
a variable of type ∃α.hastag(α, τ ) and assign it to some
variable v, we get a fresh type variable α′, and only v’s
type contains the new type variable α′ in the first conjunct

(field 0 α′), and only by instruction load(v, 0) can we get a
variable of type α′.

For simplicity we use linear search here. LTAL also per-
mits binary search; to do an indexed jump we would need
to extend LTAL, but our underlying semantic model will
permit this in a modular way.

3.7 Don’t trust the linker!
To avoid the need to reason about possible bugs in the

link-loader, we arrange that each compilation unit needs no
link-editing, and links to others using closures, in the style
of SML/NJ [7, §3]. We must avoid the need for a linker to
do relocation. Our safety policy says, “a program is safe if,
no matter where we load it in memory, it will never access
an illegal address or execute an illegal instruction” [2].

Position-independent code must use relative addresses in-
stead of absolute ones. The problem arises when we move
a label into a register or store it in memory, to make a
function-pointer or a closure. The value of the label depends
on where the code is loaded.

We adopt the solution that SML/NJ uses, but we show
how to type-check it. Each function takes a base parameter,
which is the start address of its own machine code in the
memory. We keep the base address of the current function
in a register, and calculate the addresses of labels as offsets
from base. When a function f is called, the address f is
passed as its own base argument.

In the body of a function f , moving a label g to variable v
is implemented as v = addradd(base , g−f), where g−f is a
constant computed by the compiler. Instruction addradd
is translated to Sparc add instruction, and used only for
address arithmetic.

Φ′ = Φ, v : addr(g)
LRT ; ρ; Φ ` v1 : addr(f)
LRT ; ρ; Φ ` v2 : diff(g, f)

LRT ` (ρ; � ; Φ; cc) {v = addradd(v1, v2)} (ρ; � ; Φ′; cc)

To type-check position-independent code, we introduce type
constructors addr and diff. The former gives a type to base
and the latter types the difference between two labels. For
example, in the above example v = addradd(base, g − f),
variable base has type addr(f); the constant g − f , which
is represented as a value vdiff(g, f), has type diff(g, f); and
the typing rule for addradd will give type addr(g) to v.

When a function f is called in a compilation unit other
than where it is defined, its label is (statically) unknown
at the call site. Then the type of its base cannot be addr.
We use existential types to hide the base type; the type of
f becomes ∃β.codeptr[~α](m, [base : β, . . . ]). To make sure
that f itself is passed to its base when f is called, we make
f have type ∃β.(β ∩ codeptr[~α](m, [base : β, . . . ])).

As an important optimization, when a function is called
only by direct jumps from known locations, it does not need
its own base argument—it can use the base of one of its
known callers. This avoids addradd instructions in local
loops and branches.

4. MAKING AN UNTYPED BACK END
PRESERVE TYPES

Our compiler is based on SML/NJ, whose back end uses
MLRISC [11], a generic framework for compiler back ends.
It can be customized to different source languages and retar-
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geted to different architectures. MLRISC provides instruc-
tion selection, register allocation, and instruction scheduling
modules parameterized by machine specifications. To gener-
ate a compiler back end, users customize these modules for
their target machine. MLRISC has been used in many com-
piler projects including SML/NJ for years, and generates
high-performance code.

We did not originally intend to take advantage of ML-
RISC, because MLRISC is totally untyped while we need
type-preserving transformations. When we learned of the
annotation mechanism [13], we tried using annotations to
connect the typed representation we need and the untyped
one MLRISC uses. The experiment turned out to be re-
warding: reusing MLRISC this way is much less work than
writing a back end from scratch, and has the advantages
that MLRISC provides, such as generating code with good
performance and being retargetable.

4.1 Annotations
Annotations in MLRISC are like comments; in fact, they

are emitted as comments in assembly code. They have no
runtime effect. One can annotate cells (pseudo-registers that
will be mapped to physical registers or memory words), in-
structions, code blocks, and compilation units. Each anno-
tation describes a property of the construct it annotates,
and a construct can have many annotations addressing dif-
ferent properties. MLRISC provides ways to create, append,
extract and remove annotations.

By annotating cells with variables, instructions with LTAL
instructions, code blocks with function signatures, compila-
tion units with type definitions, we get a close correspon-
dence between MLRISC code and LTAL programs.

Originally MLRISC developers added this mechanism to
propagate type information to code optimization phases.
Annotations have been used extensively in MLRISC to pass
information without changing existing data structures. Data
abstraction hides the representation of client annotations
from MLRISC’s register allocator and instruction selector.

However, we found that MLRISC did not take care to
maintain annotations through every program transforma-
tion. For example, sometimes MLRISC removes annotations
of instructions, or creates new constructs without annota-
tions because it does not know what annotations to give
them. So the main difficulty in using MLRISC is how to
restore the missing annotations.

4.2 Basic Blocks
Part of the solution to missing annotations is to design

LTAL to provide annotations when MLRISC rewrites in-
structions.

At first we used extended basic blocks in LTAL: instruc-
tions such as if(v) then(l, σ) else(l′, σ′) could appear in
the middle of a function body. To avoid long jumps, ML-
RISC would create a new block for the fall-through case and
change the “jump” block to be fall-through case. In the fol-
lowing example, the neq case has more than 221 instructions,
but the eq case does not. MLRISC simply switches the two
cases, changing the code in the left column to the one in the
right. Label l3 is for illustration purpose. It does not exist
before MLRISC switches branches.

l1 : . . . l1 : . . .
be l2 (else l3) bne l3 (else l2)

(l3 :)neq case (l2 :)eq case
l2 : eq case l3 : neq case

Newly created block l3 needed to be annotationed with an
LTAL function signature, which MLRISC could not provide
since there was no LTAL function that corresponds to this
new block. So we changed LTAL to make each basic block a
function. Thus in the above example, when MLRISC moves
blocks, the LTAL function signature for l3 is already there.

The important lesson here is that a good TAL should serve
not only as an interface between a compiler and a checker,
but also as a useful intermediate language in the back-end
phases of the compiler itself. By using basic blocks instead
of extended basic blocks, LTAL becomes useful as such an
intermediate language.

4.3 Hooks
Our approach needs tight connection between machine

code and LTAL annotations. But MLRISC sometimes breaks
annotations. This causes problems. For example, MLRISC
transformed instruction d1 = 3 + d2 to d1 = d2 + 3 (thus
one Sparc instruction suffices), and annotated the new in-
struction with the annotation of the old one. The LTAL
annotation of d1 = 3 + d2 would be like v1 = 3 + v2 where
v1 and v2 are assigned register d1 and d2 respectively. This
annotation is not valid for d1 = d2 + 3. The checker will try
to map 3 to d2 and v2 to 3, and fail.

This problem results from the fact that MLRISC does not
know the meaning of annotations or the connection between
annotations and code, thus could not preserve them. Yet
MLRISC should not understand annotations because differ-
ent users give different annotations. Our solution is that
MLRISC users provide hooks (functions) that manipulate
annotations, and MLRISC calls those hooks when it trans-
forms the code. The commuting transformation (shown
above) will call a function of type annotation → annotation
to restore annotations before it exchanges the two operands.
This function takes the old instruction’s annotation and
rewrites it to fit the new instruction.

Another case in which MLRISC breaks LTAL annotations
is when it splits an instruction into several ones. For exam-
ple, pseudo-instruction d = 4097 is split into two instruc-
tions, d = sethi 4 and d = d or 1, where the first instruc-
tion loads the high 22 bits of constant 4097 to the high 22
bits of register d, and the second instruction loads the low
10 bits. In our modified back end, MLRISC calls a function
to get the annotations for the two new instructions.

5. MEASUREMENTS
The LTAL calculus is a large engineering artifact, just

like the compiler that produces it and the Sparc machine
that consumes it. It comprises (at the current state of im-
plementation) approximately 1200 operators and rules, in-
cluding 196 machine-language Sparc instruction construc-
tors (many of which are not used by the compiler and could
be deleted from our checker), 263 Sparc instruction decod-
ing rules, 30 coercion operators and 49 coercion rules, 48
explicit-substitution operators and reduction rules, 41 types
and constructors for such things as label-maps and register-
maps, 27 type operators (union, intersection, field, etc.),
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69 rules for type refinement, 98 rules for wellformedness of
types, 73 operators and rules for local environment man-
agement, 44 operators and rules for static arithmetic cal-
culations, 38 rules for parsing the label, register, and type
maps, 50 structural matching heuristics for type expressions,
51 LTAL instruction constructors, and 53 typing rules for
instructions.

A typical large rule, such as the one shown in Section 3.2,
is quantified over a dozen variables and has a dozen premises.
In all, the current LTAL type checker is 3900 lines of (non-
blank, non-comment) Prolog-like source code. The machine-
checked proof of the soundness of all the LTAL rules (which
is nearing completion) is over 98,000 lines of higher-order
logic as represented in the Twelf system. The axioms com-
prise 1850 lines, almost all of which is the specification of
the Sparc instruction set.

The compiler from core ML to LTAL+machine code is
written in ML; its size (including blank lines and comments)
is 50k lines of the Standard ML of New Jersey (110.35) front
end (unmodified); 1.8k lines of code copied and modified
from the implementation of the SML/NJ interactive top-
level loop; 2.7k lines to translate FLINT to NFLINT; 7.8k
lines to translate NFLINT to LTAL; 1.2k lines to interface
of MLRISC; and approximately 50k lines of the MLRISC
system3 itself, of which 400 lines are new or modified to
support our more-general annotation interface.

5.1 Performance
We compared our performance4 to that of SML/NJ 110.35

on two small benchmarks: Life (adapted from the Standard
ML benchmark suite) and RedBlack, which uses balanced
trees to do queries on integer sets.

Benchmark redblack life
SML/NJ Compile time 0.300 0.490 sec.
SML/NJ Run time 0.013 0.262
FPCC Compile time 0.955 2.998
Safety check time 0.183 0.432
FPCC Run time 0.014 0.407
FPCC/SMLNJ slowdown 1.036 1.555
Sparc instrs. 870 1816
LTAL tokens 34278 57670
Coercion tokens 17% 23%

Our compile time is not competitive (2.998 seconds to
compile Life compared to 0.49 seconds for the production
release of SML/NJ); we have not engineered our compiler
algorithms as necessary for a production compiler. Run
time is almost as good as SML/NJ. We do not garbage col-
lect; SML/NJ spends 0.02% of its time garbage-collecting on
these benchmarks. SML/NJ’s better performance is proba-
bly because it has more sophisticated liveness-based closure
conversion and fills branch-delay slots.

To measure Safety check time, we translate our lemmas
into Prolog rules and time the execution in SICStus Prolog.
As an alternative, we are building a minimal-size interpreter
for syntax-directed lemmas; it is much simpler than Prolog
because it doesn’t require backtracking or full unification; we
have yet to measure the checking speed in that interpreter.

3The MLRISC software has several other analyses, opti-
mizations, and target machine specifications that we did not
use and that we don’t count here.
4Measured on Sun UltraSparc E250, 400 MHz.

Simple encodings should be able to represent LTAL in
a few bits per token, so the LTAL expression should not
be significantly bigger than the machine-language program.
Eliminating the coercions—thus requiring some backtrack-
ing in the checker—could save about 20% in LTAL size.
The builders of SpecialJ [9] and TALx86 [15] have devoted
substantial effort to reducing proof size—not just removing
coercions but getting the checker to reconstruct other data
as well. Clearly, there is some engineering to be done in this
respect, although we would not want to complicate any part
of the checker that is in the trusted base.

6. RELATED WORK AND CONCLUSION
Morrisett et al.’s TAL [17] demonstrated the idea of typed

assembly language, but was too limited for practical pro-
gramming languages. Extensions of this work supported
stack allocation [16] and implemented a more realistic cal-
culus (TALx86) [15] for compiling a safe C-like language to
Intel IA32 assembly language. Xi and Harper’s DTAL [23]
added a restricted form of dependent types to TAL to sup-
port array bound check elimination and datatype tag dis-
crimination. These implementations have soundess proved
by hand about abstractions of subsets of the system that is
actually implemented; the proofs cannot be machine-checked.
These TALs each have a macroinstruction “malloc” for heap
allocation (and TALx86 has another macro “btagi” which
tests tags and branches).

Hamid et al. proposed a syntactic approach to build
machine-checkable foundational proofs. They designed Feath-
erweight Typed Assembly Language (FTAL) [12], mapped
each valid machine state to a well-typed FTAL program, and
related transition of machine states to evaluation of FTAL
programs by a machine-checked syntactic metatheorem. It
is not clear whether syntactic metatheorems scale very well,
or can be made as modular as our semantic-modelling ap-
proach; FTAL is too featherweight to tell. Crary [10] has
built a more substantial TALT, with a machine-checked syn-
tactic metatheorem proving progress and preservation; he is
now working on the machine-checked metatheorem relating
his typed calculus to the “bare machine” untyped step rela-
tion.

We have designed a syntactic low-level typed assembly
language with a semantic model that backs up its soundness
with a machine-checkable proof. The semantic modelling
technique makes LTAL easily and safely extensible. It has
a rich set of expressive constructors, yet its type-checking
is decidable and simple. We have implemented a prototype
compiler that transforms core ML programs to Sparc code
annotated with LTAL programs. In our compiler an untyped
back end preserves types by annotations and hooks.
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APPENDIX

A. COMPARISON OF TAL SYSTEMS
Figure 1 makes sweeping claims about many competing

proof-carrying-code (PCC) and typed-assembly-language (TAL)
systems. Here we explain the basis for these claims, based
on our understanding of the various cited works. Boxed nu-
merals i reference the columns of the table.

SpecialJ [9] is a PCC compiler from Java byte code 1 to
x86 machine language 2 . It includes a verification condition
(VC) generator that scans the Java .class files (that contain
compiled information about the data layout and formal pa-
rameters of methods) and the machine code, extracting a
formula that is supposed to imply the correctness of the
machine code. The closest that SpecialJ comes to a founda-
tional specification 3 is a reference [9, §4.2] to a proof about
a different VC generator in an earlier system. Assumptions
about instruction encodings and about the safety policy are
implicit in the VC generator (a C program tens of thousands
of lines long), and there is no machine-checked soundness
proof 4 5 .

SpecialJ mostly treats instructions atomically 6 : for ex-
ample, comparisons that set condition codes can be sepa-
rated from branches that depend on them. However, mem-
ory allocation is done by a call to the runtime system. Data
representations are fixed by the surrounding Java runtime 7 .
The VC generator and prover can accommodate dataflow-
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based optimizations 8 . Position-independent code does not
seem to have been a design goal 9 . Since the VC is entirely
a post-compilation pass, support for basic blocks as a tool
for back-end optimization is beside the point 10 . There
is no syntax-directed calculus at the interface between the
SpecialJ compiler and the prover/checker 11 .

TALx86 [17, 16, 15] is the typed assemply language of
the Popcorn compiler, which compiles a superset of a subset
of C 1 to Pentium code 2 . Several papers about differ-
ent subsets of TALx86 each specify overlapping subsets of
the safety property, but there is no formal specification of
the safety achieved by the actual implementation 3 . There
is no machine-checked soundness proof 4 5 . TALx86 has
nonatomic instruction sequences for compare-and-branch and
for memory allocation 6 ; later versions of TALx86 can sep-
arate the compare from the branch. Disjoint-sum datatype
tag-checking is done in separable atomic instructions in the
implementation 6 , and with some flexibility in choosing rep-
resentations 7 . There is limited support for dataflow-based
reasoning on integer variables 8 or for position-independent
code 9 . “Blocks” in TALx86 are extended basic blocks, not
basic blocks—this would hamper optimizations that reorder
blocks—but in the implementation there is a pseudoinstruc-
tion to handle “fall-through” that could mitigate this prob-
lem 10 . TALx86 (as implemented) is approximately syntax-
directed, but omits many coercions to save space; there is
no formal specification of what a compiler-writer must do to
guarantee that proofs will be checkable 11 .

DTAL [23] is a Dependently Typed Assembly Language.
DTAL has been demonstrated with a toy source language 1
and no translation to any particular target machine 2 . Ex-
cept for the lack of correspondence to a real machine, there
is a formal specification 3 of the safety property; there is
no machine-checked proof 4 5 . Atomicity of instructions is
impossible to judge in the absence of a translation to a real
machine 6 . There is only one tagged 2-way sum datatype
7 . The dependent types permit reasoning about dataflow
analysis on user program variables and other quantities 8 .
There is no position-independent code 9 . Extended basic
blocks are used instead of basic blocks 10 . Type-checking
is not syntax-directed, but requires a more sophisticated de-
cision procedure 11 .

Featherweight Typed Assembly Language, FTAL [12],
demonstrates an approach to foundational proof-carrying
code using machine-checked soundness proofs based on syn-
tactic operational semantics. There’s no compiler for a source
language nor translation to any target machine 1 2 , but
there is a type-independent specification of the safety prop-
erty, encoded in the Stratified Calculus of Inductive Con-
structions (CiC), with a machine-checked proof in the Coq
system 4 . However, the safety specification does not in-
clude instruction encodings or other “real-machine” issues
3 . Existing checkers for CiC are at least an order of mag-
nitude larger than our minimal LF checker 5 . Atomicity of
instructions is impossible to judge in the absence of a trans-
lation to a real machine 6 . There is not enough support for
data structures to judge whether the compiler has flexibility
to choose data representations 7 . Although the possibility
is mentioned of adding existentials and singletons to sup-
port dataflow-based reasoning, this has not been done 8 .
There is no position-independent code 9 . Extended basic
blocks are used instead of basic blocks 10 . Typechecking is
syntax-directed 11 .

TALT [10] is a “Foundational” typed assembly language,
meaning that, like ours, it is intended to support machine-
checked proofs from first principles. It has not yet been
demonstrated (as far as we can tell) in a compiler for any
source language 1 , but its application to Pentium assembly
language is quite explicit 2 . There is a near-foundational
specification of safety, but it does not model instruction de-
coding 3 . Soundness of TALT type-checking will be proved
by machine-checked metatheorems of progress, type preser-
vation, and a simulation relation between the typed cal-
culus and the untyped machine calculus; machine-checked
progress and preservation proofs have been built, but work
on the simulation proof is still ongoing 4 . However, the
implementation of Twelf’s metatheorem checker (in which
these theorems are written) is two orders of magnitude larger
than our minimal LF checker 5 . TALT has nonatomic
compare-branch and memory-allocation instructions 6 . Its
use of explicit unions and tags for representing disjoint sums
appears to allow a compiler flexibility in choosing represen-
tations 7 . Its use of singleton types (like ours) gives the
power to reason about dataflow 8 . TALT does not support
position-independent code 9 , but it does support reason-
ing about relative addressing that is almost enough for that
purpose. TALT has no notion of blocks (neither extended
nor basic) 10 . TALT has no syntax-directed type-checking
algorithm (type-checking is not even decidable), so typing
derivations must be sent from compiler to checker 11 .

The LTAL system described in this paper achieves almost
all of our goals. However, we don’t yet compile all of core
ML 1 ; we expect to do all of core ML in a few months.
Our soundness proofs based on the semantic model are con-
structed by hand and checked by machine, but the machine-
checked proofs are not finished 4 ; we expect to finish in a
few months. All of our instructions are atomic except for
the delayed branch on the Sparc processor, which we bundle
with a nop instruction in the delay slot 6 .
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