
Local Actions for a Curry-style Operational Semantics∗

Gordon Stewart Andrew W. Appel
Princeton University, Princeton, NJ, USA

jsseven@cs.princeton.edu appel@princeton.edu

Abstract
Soundness proofs of program logics such as Hoare logics and type
systems are often made easier bydecoratingthe operational seman-
tics with information that is useful in the proof. However, modify-
ing the operational semantics to carry around such information can
make it more difficult to show that the operational semantics corre-
sponds to what actually occurs on a real machine.

In this work we present a program logic framework targeting
operational semantics inCurry-style—that is, operational seman-
tics without proof decorations such as separation algebras, share
models, and step indexes. Although we target Curry-style oper-
ational semantics, our framework permits local reasoning via the
frame rule and retains expressive assertions in the program logic.
Soundness of the program logic is derived mechanically from sim-
ple properties of primitive commands and expressions.

We demonstrate our framework by deriving a separation logic
for the model of a core imperative programming language with
external function calls. We also apply our framework in a more
realistic setting in the soundness proof of a separation logic for
CompCert’s Cminor. Our proofs are machine-checked in Coq.

Categories and Subject Descriptors D.3.1 [PROGRAMMING
LANGUAGES]: Formal Definitions and Theory — Semantics;
F.3.1 [LOGICS AND MEANINGS OF PROGRAMS]: Specifying
and Verifying and Reasoning about Programs — Logics of pro-
grams; F.4.1 [MATHEMATICAL LOGIC AND FORMAL LAN-
GUAGES]: Mathematical Logic — Mechanical theorem proving

General Terms Languages, Theory, Verification

Keywords Curry-style Operational Semantics, Local Actions,
Separation Logic

1. Introduction
Decorating an operational semantics with extra information often
makes soundness proofs of program logics such as Hoare logics and
type systems easier. This extra information might include, e.g., lock
invariants, step indexes, or forms of ghost state. However, modi-
fying the operational semantics to include this extra information
comes at a price: one must show that the decorated semantics cor-
responds to the original intuitive semantics. Otherwise, properties

∗ This work supported in part by NSF award CNS-0910448 and AFOSR
award FA9550-09-1-0138.

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLPV’11, January 29, 2011, Austin, Texas, USA.
Copyright c© 2011 ACM 978-1-4503-0487-0/11/01. . . $10.00

proved with respect to the decorated semantics might not hold of
the intuitive semantics.

We faced this problem while attempting to prove the soundness
of a separation logic for Cminor, an intermediate language in the
CompCert certified compiler stack [14]. CompCert’s compiler cor-
rectness proof is dependent on the specific memory model used
to define the operational semantics of Cminor and the other lan-
guages in the stack. Because this memory model makes the formu-
lation of these operational semantics quite natural and well-suited
to proofs by bisimulation, we found it undesirable from an engi-
neering standpoint to modify the memory model and the opera-
tional semantics of Cminor to support the sorts of extra informa-
tion useful in our proof of soundness of the separation logic. In-
stead, we chose to prove our separation logic sound with respect to
a decorated semantics and then show that the decorated semantics
corresponds to the intuitive semantics already used in CompCert.

This paper presents our solution to the general problem of con-
structing program logics targetingCurry-styleoperational seman-
tics, that is, those without proof decorations. We call such seman-
tics Curry-style by analogy to Curry-style formulations of the sim-
ply typed lambda calculus in which types are seen as decorations of
untyped lambda terms. The outline of our approach is as follows:
First, we isolate the components of the program logic: (1) theop-
erational semanticsof the programming language with respect to
which the logic is proved sound; (2)worldsof the program logic;
and, in the case of separation logic, (3) aseparation algebraon
worlds. Then, we reassemble these three components in a way that
exposes the right interfaces. This principled reassembly enables us
to construct models of state at the level of the program logic that
are resilient to changes in the target language. Conversely, sophisti-
cated models of state at the level of the program logic need not com-
plicate the data model of the programming language in our frame-
work. This has a twofold benefit: (1) the operational semantics of
the programming language can be stated more simply, making it
easier to understand; and (2) undecorated operational semantics are
better suited to compiler correctness proofs by bisimulation, e.g. in
CompCert. In Section 9, we demonstrate that our approach works
for the core of an imperative programming language with external
function calls. We also apply our framework in a more realistic set-
ting in the soundness proof of a separation logic for undecorated
Cminor.

Contributions.

• We present a separation logic framework targeting generic
Curry-style operational semantics. Because worlds of the pro-
gram logic are distinct from states of the operational semantics
in our framework, the operational semantics of the target lan-
guage can be given without decoration. Soundness of the sepa-
ration logic is a consequence of simple erasure and safety facts
proved about primitive commands and expressions.

• Our framework forms the core of the soundness proof of a
separation logic for undecorated Cminor.

• We show how to prove functional correctness properties in a
program logic for safety without requiring semantic assertions
in the target language.

• We present a reusable Coq library implementing our frame-
work: http://www.cs.princeton.edu/~jsseven/local.

• Our proofs are machine-checked in Coq.

2. Background
We set the stage for a more detailed description of our approach
by first reviewing separation algebras and the theory of local ac-
tion, both introduced by Calcagno et al. [7] to describe a class of
models of separation logic. We then provide a short introduction to
CompCert, share models, and indirection theory. CompCert serves
as our motivating example of a case in which it is important whether
we can isolate the program logic from the definition of the opera-
tional semantics. Share models and indirection theory illustrate two
parts of the proof apparatus that we would like to isolate from the
operational semantics, but which are useful in the construction of
separation logic proofs and separation logics themselves. If they
were naively added to CompCert, both share models and indirec-
tion theory would present complications for the CompCert model:
share models would unduly burden CompCert with too much in-
formation, while indirection theory would complicate bisimulation
proofs used to prove compiler correctness.

Separation Algebras and Local Action. Separation algebras
are mathematical structures (partial, cancellative, commutative
monoids) that describe in a general way what it means for two
heaplets to be disjoint. They were first used by Calcagno et al. [7]
to construct an abstract model of separation logic. In this work we
use a formalization of separation algebras in Coq due to Dockins
et al. [10], called multi-unit separation algebras, that replaces the
partial binary operator of the monoid with a three-place relation
calledjoin and allows multiple identity elements. A three-place re-
lation is used in order to express noncomputable join relations in
Coq. We write that “x joins withy to producez” with the notation
x ⊕ y = z.

The theory of local action provides a second useful abstraction.
Local actions are commands (1) whose effects on the program state
can be tracked back to “smaller” states (this is often called the
frame property in the literature [7, 21]); and (2) whose safety in
small states guarantees safety in extensions of safe small states. It
can be shown that a command has both of these properties iff the
frame rule is sound for it [7].

The CompCert Memory Model. CompCert is an optimizing C
compiler developed by Leroy with formal operational semantics of
source, target, and compiler intermediate languages and machine-
checked proofs of correctness in Coq of each compiler stage [14].
The main features of CompCert’s memory model [15] are general-
ity (the same memory model is used at all levels of the compiler
stack) and relocatability (the memory model supports a notion of
memory injectionthat is critical in the proofs of many program
transformations performed by the compiler).

CompCert memories are byte-addressable. Data in the Comp-
Cert model includes integers and floats, in various bit sizes, as well
as pointers. To support these features, CompCert’s memory model
includes theorems for reasoning about encoding and decoding val-
ues to and from lists of bytes, calledmemvalsin CompCert par-
lance, with support for big- and little-endian architectures, and a
realistic model of fixed-width machine integers.

Permissions vs. Shares. We have been working with Leroy to
adapt CompCert’s memory model to includepermissionsat each
memory cell. These permissions (free, write, etc.) are the minimal
decoration needed to ensure the compiler never performs thread-

unsafe optimizations, such as hoisting loads and stores past lock
synchronizations. Such permissions don’t, however, support the
sort of resource accounting required to construct a separation al-
gebra.1 For example, CompCert’sread permission, which models
situations in which a program can read a location in the heap but
not modify or free it, doesn’t satisfy thecancellativityaxiom of
separation algebras: in a natural formulation of⊕ for CompCert’s
permission lattice, both the empty permission and thereadpermis-
sion join with read to produceread, thus violating cancellativity
(read 6= the empty permission).

Additionally, permissions in CompCert don’t have the conve-
nient properties of share models, such as those of Dockins et al.
[10], Parkinson [20], and Bornat et al. [6], that allow infinite split-
ting of shares and token counting. Infinite share splitting is useful
in proofs of arbitrary-depth divide-and-conquer algorithms. Token
counting can be used to verify that outstanding readers on a lock
have all completed. We would like to support such proof idioms in
our program logic but don’t want to burden the operational seman-
tics with the additional complexity of the required share models.

Indirection. An even more compelling reason to enforce a clear
distinction between worlds of the program logic and states of the
operational semantics is the need to reason about challenging lan-
guage features such as function pointers, Pthreads-style locks, and
ML-style reference types. Semantic approaches to reasoning about
such features, such as indirection theory [13]—which generalizes
previous step-indexing approaches to reasoning about recursion
[1, 2]—and Kripke models of modal logics [4, 9] appear to work
well but require significant machinery to implement. For example,
in step-indexed models of locks with higher-order resource invari-
ants in the heap, we must keep track of the level, or “age,” of the
world at each computation step andage the world appropriately
in order to prove the soundness of the Hoare rule forunlock. Such
bookkeeping is necessary in the soundness proof of the Hoare logic
but there’s no reason to allow this information to leak into the op-
erational semantics and the compiler correctness proof.

3. Our Approach

Concrete
Semantics

Separation
Algebra

Abstract
Semantics

αε

Figure 1: Overview of the Framework

The central insight of our work is synthetic: within an appro-
priately stratified framework (depicted in Figure 1), one can de-
rive a separation logic for a Curry-style semantics without adapt-
ing the semantics to support the usual required machinery, such as
a separation algebra. The technique, which is a form of proof by
refinement, requires that one define an appropriate abstract com-
mand or expression for each primitive command and expression in
the Curry-style semantics. Abstract commands and expressions are

1 We do not mean to imply that the permission model of CompCert is
deficient and should be changed, only that the minimally decorated memory
model that is convenient for proofs by bisimulation and is easily understood
is not the right model for use in the program logic.

appropriate when their concrete counterparts refine, or implement,
them. In order to prove the soundness of the frame rule, each such
pair of commands must be local in the sense of Calcagno et al. [7].

The worlds and states of the abstract and concrete semantics
are related by a collection oferasure relationspairing worlds with
states, and primitive commands and expressions of the abstract
semantics with corresponding primitive commands and expressions
of the concrete semantics. In Figure 1, we represent this collection
of erasure relations withε.

The worlds of the abstract semantics induce worlds of the sepa-
ration logic via aprojection function, which we callα. The function
α maps abstract worlds to separation algebra elements supporting
the predicates of separation logic. We choose not to define a sep-
aration algebra directly on worlds of the abstract semantics just to
increase the generality of our system: there are cases in which we’d
like abstract worlds to contain extra information that we don’t want
to pass to predicates of the separation logic: for example, the thread
schedule in the model of a concurrent programming language.

This stratification—of data, primitive expressions, and primitive
commands—enables us to couple Curry-style operational seman-
tics with an expressive program logic.

Technical Development. We now describe the framework in
more detail (Figure 2).

Concrete
Semantics

Abstract
Semantics

(W, V, G)

Separation
Algebra

(A, , H)(S, U, F)

εWS VUε GFε αWA HGε

Figure 2: Detailed Overview of the Framework

Here, W and S are (resp.) the types of worlds of the pro-
gram logic and states of the operational semantics. The structure
(S,U, F) defines the operational semantics of the object language
(also called the concrete language):U is a set ofprimitive concrete
commands, whileF is a set ofprimitive concrete expressions. Prim-
itive commands are deterministic binary relations onS; primitive
expressions are partial functions fromS to boolean values. On top
of U andF we define the operational semantics of a conventional
while-language, in continuation-passing style.

The structure(W,V,G) defines the operational semantics of
theabstract language:V is a set of (potentially nondeterministic)
abstract primitive commands,whileG is a set ofabstract primitive
expressions.εVU is a predicate defining the set of corresponding
pairs of abstract and concrete commands;εGF , in turn, defines the
set of corresponding pairs of abstract and concrete expressions.We
explain what we mean bycorrespondingbelow.

The world erasureprojectionεWS , which we’ll often just call
ε, maps worlds of the program logic to states of the operational
semantics.

The structure(A,⊕) defines a separation algebra over elements
of typeA. Theα-projectionαWA maps elements ofW to elements
of A. We’ll often call αWA just α. H defines a set of primitive
expressions operating on elements ofA while εHG defines the
set of corresponding expressions inH andG. We need primitive
expressionsH in order to express separation logic assertions such
asassert expr(e), which is satisfied by elementsa : A in which
e evaluates totrue. Such assertions appear in the proof rules for
conditionals and while loops.

We say that two primitive commands(v, u) : εVU correspond
to constitute astratified primitive commandwhenv andu have the
following properties, expressed as commutative diagrams:

w w′

s s′

v

ε ε

u

w w′

s s′

v

ε

u

Erasure Safety

Erasure states that if worldw erases to states, (w,w′) is a state
transition permitted byv, and(s, s′) is a state transition permitted
by u, thenw′ must erase tos′. Becauseε is a function, primitive
command erasure entails that primitive commandsu are determin-
istic.

Safety states that if worldw erases to states and (w,w′) is
a state transition permitted byv, then there exists ans s.t. (s, s′)
is a state transition permitted byu. Primitive expressions(g, f) :
εGF must satisfy correspondingexpression erasureandexpression
safetyproperties.

An easy consequence of primitive command erasure and safety
are the following extensions to the step relations of the abstract and
concrete languages:

w w′

s s′

ε ε

w w′

s s′

ε

Step Erasure Step Safety

Step erasure states that steps in the abstract semantics commute
under erasure with steps from corresponding states in the concrete
semantics. Step safety states that whenever we can take a step in
the abstract semantics we can take a step in the concrete semantics,
i.e. abstract steps ensure corresponding concrete steps are nonstuck.
We use these two properties in the proof of soundness of the Hoare
logic rule for primitive command introduction. In Section 5.1, we
prove a corollary simulation theorem relating abstract and concrete
semantics, though this theorem is not necessary in the soundness
proof of the Hoare logic.

Finally, we construct a separation logic and prove it sound with
respect to(S,U, F). Facts proved in the separation logic are true,
up to erasure and theα-projection, of programs in(S,U, F). Be-
cause of how we interpret the Hoare triple⊢ {P} c {Q}, each
primitive command with a valid Hoare rule in the separation logic
must satisfy the frame ruleand is thus a local action. Because of
the erasure and safety properties, the introduction rule for prim-
itive concrete commands in the Hoare logic requires only that a
corresponding abstract primitive command be exhibited as a proof
witness. This greatly simplifies the soundness proofs of Hoare rules
for primitive commands.

Notation. In what follows, we denote abstract worlds withw ∈
W , and concrete states withs ∈ S. Elementsa ∈ A are elements
of the separation algebra(A,⊕). The functionε : W → S is
an erasure function mapping abstract worlds to concrete states.
The functionα : W → A projects a separation algebra element
from an abstract world. We use the “forces” notationα(w) � P to
express the fact that theα-projection of worldw satisfies separation
logic predicateP . The assertionα(w) � P is equivalent to the
propositionP (α(w)).

4. Generic Operational Semantics
We start with the rather conventional notion ofnondeterministic
operational semantics.Such semantics are well-understood and
highly expressive: the dynamic behavior of most programming lan-
guages can be expressed in such a framework. We say an opera-
tional semantics isgenericwhen the set of primitive commands is
left abstract.

Because we are concerned primarily with modeling data and not
control, we present generic operational semantics in continuation-
passing style (thus isolating data from control) and we use a con-
ventional expression language evaluating expressions to boolean
values in control-flow constructs, with the standard operators for
conjunction, disjunction, and negation. Unlike in some models of
separation logic [16, 21], expression evaluation in our framework
is partial, meaning expressions can get stuck. We assume a separa-
tion logic proof will show that the expressions in a particular code
fragment are safe to evaluate. We present the syntax and excerpted
semantics of our expression language in Figure 3. The elided rules
are for disjunction and negation.

Syntax

e ::= val(b) | primexpr(f) | ¬e | e1 && e2 | e1 || e2

Evaluation F ⊢ e⇓s ⌊b⌋

F ⊢ val(b)⇓s ⌊b⌋

F ⊢ primexpr(f)⇓s ⌊b⌋ if f ∈ F and f(s) = ⌊b⌋

F ⊢ primexpr(f) ⇓s none if f ∈ F and f(s) = none

F ⊢ e1 && e2⇓s ⌊b⌋ if F ⊢ e1⇓s ⌊b1⌋
and F ⊢ e2⇓s ⌊b2⌋
and b1 ∧ b2 = b

Figure 3: Expression Syntax and Evaluation (excerpted)

We write F ⊢ e ⇓s ⌊b⌋ to denote that in contextF (a set
of primitive expressions)e evaluates in states to boolean value
b. F ⊢ e ⇓s none meanse is undefined in states and con-
text F . We write e ⇓s ⌊b⌋ when the context is understood. Let-
ting states be partial functions from local variables to booleans
(more realistically, states mightincludestores that are partial func-
tions from local variables to booleans), we can encode local vari-
ables in this abstract framework with a special primitive expres-

sionevar(x)
def
= λs. s(x). By the rule for primitive expressions,

primexpr(evar(x))⇓s ⌊b⌋ wheneverx is defined to equalb in state
s.

Definition 1 (Generic Operational Semantics). A generic opera-
tional semanticsis a triple S = (S,U, F), whereS is the type of
states of the programming language,U ⊆ P(S × S) is a set of bi-
nary relations onS modeling the set ofprimitive commands, and
F ⊆ P(S ⇀ bool) is a set of partial functions modelingprimitive
expressions.

The syntax of languages in this framework is given in Figure 4.
primcom(u) denotes primitive commandsu ∈ U . In the rest of

c ::= primcom(u)

| skip

| c1; c2
| if e then c1 else c2

| while e do c.

Figure 4: Syntax of the While-language

this paper, we use the syntaxu : U andu ∈ U interchangeably

to denote thatu is of typeU or thatu is an element ofU . skip
andseq denote nops and the sequential composition of commands,
respectively. Conditionals and while loops are standard.

Following Appel and Blazy [3], we separate data from control
by defining the step relation of generic operational semantics in
continuation-passing style (Figure 5).

Step Relation 〈s, κ〉 〈s′, κ′〉

〈s, skip · κ〉 〈s, κ〉

〈s, (c1; c2) · κ〉 〈s, c1 · c2 · κ〉

〈s, primcom(u) · κ〉 〈s′, κ〉 if u ∈ U and s
u
7→ s′

〈s, (if e then c1 else c2) · κ〉 〈s, c1 · κ〉 if F ⊢ e⇓s ⌊true⌋

〈s, (if e then c1 else c2) · κ〉 〈s, c2 · κ〉 if F ⊢ e⇓s ⌊false⌋

〈s, while e do c · κ〉
 〈s, (if e then (c; while e do c) else skip) · κ〉

Figure 5: Operational Semantics in the context ofS

We write s
u
7→ s′ to denote that(s, s′) is a state transition

permitted byu. That is,(s, s′) ∈ u. Note that although we writeu
in lower-case to distinguish it fromU , u is itself a set. A controlκ
is eitherKstop, which indicates the successful end of execution, or
Kseq(c, κ) (writtenc ·κ), which first runs statementc in the current
state, then in the resulting state continues execution with controlκ.

Configurations〈s, κ〉 of the operational semantics, which we
also call continuations or programs, are tuples of a state and the
current control. Note that only primitive commands can modify the
data component of a configuration; all other operational rules up-
date just the control. Also, the only way to introduce nondetermin-
ism in this framework is via primitive commands.

As an example of a primitive command, assume states are tu-
ples of a store and a heap, where stores and heaps are just par-
tial functions from program variables (resp. addresses) to values.
In this setup, we can define theassign primitive command as

assign(x, e)
def
= λσ. λσ′. ∃b. e ⇓σ ⌊b⌋ ∧ σ′ = (σs[x ←

b], σh). That is,assign(x, e) evaluates expressione in the cur-
rent state to valueb, then updates program variablex to b. σs and
σh project the store and heap components of stateσ.

4.1 Safety

We now define a notion ofsafetysemantically with respect to
generic operational semantics. Safety is used to define the Hoare
triple of our separation logic. Intuitively, a program issafe in a
generic operational semantics if either the program 1) infinitely
loops, or 2) terminates normally, that is, without going wrong in
some way. Calcagno et al. model wrong behavior with a distin-
guishedfault state. We take a slightly more operational approach
in this work and say that a program issafe if no terminating execu-
tion of the program getsstuck. Stuckness is defined in the standard
way (i.e. a program isstuck if it can’t take a step in the operational
semantics).

Definition 2 (Immediate Safety). A program〈s, κ〉 is immediately
safe iff

κ = Kstop

or

∃s′. ∃κ′
. 〈s, κ〉 〈s′, κ′〉.

Definition 3 (Safety). A program〈s, κ〉 is safe iff for all s′, κ′,

〈s, κ〉 ∗ 〈s′, κ′〉

immediately safe 〈s′, κ′〉.

This definition corresponds to the informal definition of safety
we gave above: if a program〈s, κ〉 is safe, it may either infinitely
loop or terminate safely, but safety ensures it willnever get stuck.

It follows immediately from the definition of safety thatsafe
configurations can only step tosafe configurations.

Lemma 1 (Step Safety). For all safe configurations 〈s, κ〉,
〈s, κ〉 〈s′, κ′〉 implies that〈s′, κ′〉 is safe. �

The natural converse theorem, that configurations stepping to
safe configurations are themselvessafe, is true, however, only
when the initial configuration is deterministic.

Definition 4 (Deterministic Configuration). A configuration〈s, κ〉
is deterministic iff

〈s, κ〉 〈s′, κ′〉 ∧ 〈s, κ〉 〈s′′, κ′′〉 → s
′ = s

′′ ∧ κ
′ = κ

′′
.

Lemma 2 (Deterministic Step Safety). For all safe configura-
tions 〈s′, κ′〉 anddeterministic configurations〈s, κ〉, 〈s, κ〉
〈s′, κ′〉 implies that〈s, κ〉 is safe. �

Lemma 2 is useful for showing that control steps, all of which
aredeterministic, preserve safety.

Finally, we prove that is a compatible relation, in the sense
of [5], p. 50. Intuitively, compatibility means that executing a com-
mand to completion in one step in the empty continuation is the
same as executing that command to completion in any larger con-
tinuation. We use compatibility later on to prove a convenient in-
troduction rule in our separation logic for primitive commands.

Lemma 3 (Step Compatibility). 〈s, c · Kstop〉 〈s′, Kstop〉 →
〈s, c · κ〉 〈s′, κ〉. �

5. Stratified Semantics
Generic operational semantics are adequate for modeling programs
in a single language. However, we’re interested in something more:
showing that programs in the object (concrete) language refine pro-
grams in an abstract language operating on worlds of the program
logic, at least up to erasure. It’s for this purpose that we introduce
the notion ofstratified semantics.

Informally, one can think of a stratified semantics as the Carte-
sian product of two generic operational semantics. The construction
is as follows: let(W,V,G) and (S,U, F) be generic operational
semantics.(S,U, F) defines the object language while(W,V,G)
defines a corresponding abstract programming language operating
on worldsW . The resulting stratified semantics, to a first approxi-
mation, is the structure(W,S, εVU , εGF), whereεVU : P(V ×U)
andεGF : P(G × F) aresetsof command and expression pairs,
respectively. The way to think aboutεVU andεGF is aspredicates
defining the primitive commandsv : V andu : U that can be run
in the same control.

This really is just a first approximation, however. In particular,
taking anyεVU : P(V × U) or εGF : P(G × F) isn’t quite
right, since a particular set of state transitionsvload : V (modeling
all possible load operations in the abstract semantics) may not cor-
respond to another set of state transitionsustore : U (modeling all
possible stores in the concrete semantics). In this case, we wouldn’t
expectvload to makeustore safe, since the resource requirements of
loads are clearly different from those of stores.

The solution to this problem is to require that the pairs of rela-
tions inεVU satisfyerasureandsafetyproperties, as we described
in Section 3. The pairs of functions inεGF must satisfy correspond-
ing expression erasureandexpression safetyproperties.

But to formalize these properties we first need to equip stratified
semantics with a little more structure: an erasure function mapping
worldsW to statesS. We’ll call this functionworld erasureand
we’ll write ε(w) = s to denote that worldw erases to states.

We are justified in requiring that world erasure betotal because
we expect that worlds contain at least as much structure as states;
each world should be able to reconstruct a corresponding state of
the concrete semantics. We are justified in requiring that world
erasure befunctionalbecause we don’t expect more than one state
to correspond to a single world.2 We formalize these notions here.

Definition 5 (Primitive Command Erasure,(v, u) : εVU). v erases
to u iff

ε(w) = s w
v
7→ w′ s

u
7→ s′

ε(w′) = s′.

Primitive command erasure requires that executions of primitive
command pairs in stratified semantics preserve world erasure; this
is a type of monotonicity property. An important consequence of
this property is the fact that primitive commands, and by extension
the step relation, of the concrete semantics must be deterministic.
This follows from the fact thatε is a function.

Definition 6 (Primitive Command Safety,(v, u) : εVU). v makes
u safe iff

ε(w) = s w
v
7→ w′

∃s′. s
u
7→ s′.

That is, primitive command executions in the abstract semantics
imply the existence of corresponding (nonstuck) primitive com-
mand executions in the concrete semantics.

Primitive expressions must satisfy corresponding erasure and
safety properties.

Definition 7 (Primitive Expression Erasure,(g, f) : εGF). Primi-
tive expressiong erases tof iff

ε(w) = s primexpr(g)⇓w ⌊b1⌋ primexpr(f)⇓s ⌊b2⌋

b1 = b2

Definition 8 (Primitive Expression Safety,(g, f) : εGF). Primi-
tive expressiong makesf safe iff

primexpr(g)⇓w ⌊b1⌋ ε(w) = s

∃b2. primexpr(f)⇓s ⌊b2⌋

Primitive expression erasure and safety are especially important
for preserving control flow during program erasure.

Definition 9 (Stratified Semantics). The tupleWS = (W,S, εVU ,
εGF , ε) is astratified semanticswhen

1. W = (W,V,G) is a generic operational semantics;
2. S = (S,U, F) is a generic operational semantics;
3. εVU : P(V ×U) gives the pairs of corresponding abstract and

concrete primitive commands;
4. εGF : P(G×F) gives the pairs of corresponding abstract and

concrete primitive expressions;
5. ε : W → S is a world erasure function;
6. Pairs (v, u) : εVU satisfy primitive command erasureand

primitive command safetywith respect toε; and
7. Pairs (g, f) : εGF satisfy primitive expression erasureand

primitive expression safetywith respect toε.

2 In most cases we wouldn’t expect world erasure to be injective: many
worlds might map to the same state if, for example, worlds trackedinfinitely
splittable read shares at heap cells while states tracked only a single read
permission, as in CompCert. Also, we believe world erasure could be
generalized torelationson worlds and states, although we have no reason
to do so in this paper since our applications are to deterministic languages
(e.g. sequential Cminor). Generalizing world erasure to relations would
require a full bisimulation proof in Corollary 3 instead of the unidirectional
simulation presented there, among other changes.

Note that although we use lower-case letters forv and u to
distinguish them from the setsV andU , v andu are themselves
sets of world and state transition pairs (that is, relations on worlds
and states). Also note that becauseεVU : P(V × U), v : V and
u : U .

In the context of a stratified semantics, the following theorems
are simple corollaries of primitive command and expression erasure
and safety.

Corollary 1 (Primitive Command Erasure and Safety). Given a
stratified semanticsWS and a primitive command pair(v, u) :
εVU ,

ε(w) = s w
v
7→ w′

∃s′. s
u
7→ s′ ∧ ε(w′) = s′.

�

Corollary 2 (Primitive Expression Erasure and Safety). Given a
stratified semanticsWS and a primitive expression pair(g, f) :
εGF ,

primexpr(g)⇓w ⌊b⌋ ε(w) = s

primexpr(f)⇓s ⌊b⌋

�

5.1 Program Erasure and Refinement

In this section, we define what it means for an abstract program
to correspond to a concrete one by defining an erasure relation on
program syntax. Then, we extend the erasure and safety proper-
ties satisfied by primitive commands and primitive expressions to
the step relations of generic semantics (step erasure and safety).
Finally, we prove as a corollary of step erasure and safety that con-
crete programs simulate corresponding abstract programs.

Let W andS be generic operational semantics defining (resp.)
abstract and concrete programming languages. LetWS be a strati-
fied semantics deriving fromW andS, in the sense of Definition 9.
Abstract program〈w, κw〉 erases to concrete program〈ε(w), κw〉
under the following conditions.

Definition 10 (Program Erasure). Program erasureis the least
relation satisfying:

〈w, κw〉 = 〈ε(w), κw〉.

Here, we overload· to denote program erasure and control
erasure. We define control erasure, in terms of command erasure,
as follows:

Definition 11 (Control Erasure). Control erasureis the least rela-
tion satisfying:

Kstop = Kstop

c · κ = c · κ

Definition 12 (Command Erasure). Command erasureis the least
relation satisfying:

primcom(v) = primcom(u) ((v, u) : εVU).

We elide the standard structural rules forskip, seq, conditionals,
andwhile. Expression erasuree = e′ is defined in the obvious way.
Primitive expressions erase when(g, f) : εGF . Other rules are the
expected search rules.

Now that we’ve defined program erasure, we can extend erasure
and safety to the step relations of abstract and concrete semantics.

Lemma 4 (Step Erasure).

〈w, κw〉 = 〈s, κs〉 〈w, κw〉 〈w
′, κ′

w〉 〈s, κs〉 〈s
′, κ′

s〉

〈w′, κ′
w〉 = 〈s′, κ′

s〉

Proof. By case analysis on , primitive command erasure and
expression erasure.

Lemma 5 (Step Safety).

〈w, κw〉 = 〈s, κs〉 〈w, κw〉 〈w
′, κ′

w〉

∃s′. ∃κ′

s. 〈s, κs〉 〈s
′, κ′

s〉

Proof. By case analysis on , primitive command safety and ex-
pression safety.

Step erasure and safety are used in the soundness proof of our
Hoare logic rule for primitive commands. The idea is straightfor-
ward: because abstract commands imply corresponding concrete
commands are safe and because abstract commands commute un-
der erasure with corresponding abstract commands, one can prove
the soundness of a Hoare rule for aconcretecommand just by
showing that itsabstractcounterpart meets the intended specifi-
cation.

As a corollary of step erasure and safety, we show that programs
in the concrete semantics simulate corresponding abstract ones.
The statement of the simulation theorem is most easily given as
a commutative diagram.

Corollary 3 (Refinement Simulation). The following diagram
commutes:

〈w, κw〉 〈w′, κ′

w〉

〈s, κs〉 〈s′, κ′

s〉

∗

ε ε

∗

Proof. By induction on ∗, and Lemmas4 and5.

Refinement simulation states that for any execution in the ab-
stract semantics, there is an execution in the concrete semantics
that commutes with erasure. (In the diagram,ε is overloaded to de-
note program erasure.) Because the concrete semantics is required
to be deterministic by primitive command erasure, this commuting
execution is the only such execution.

6. Stratified Semantics with Separation
The stratified semantics we’ve considered so far were derived from
generic semanticsW andS. We said thatS modeled programs of an
object language, one we’d like to reason about, whileW modeled
programs of an abstract language whose states were alsoworldsof
a program logic—more precisely, a separation logic. The product
of these two generic semantics was the structureWS, a stratified
semantics. Such a structure was useful for proving simulation prop-
erties but lacked the scaffolding necessary to construct a separation
logic.

In this section, we show how to addseparation algebrasto
stratified semantics in order to constructstratified semantics with
separation. A stratified semantics with separation can be used to
mechanically derive a separation logic forS (§ 7).

Adding Separation to WS. We first define the set ofseparation
algebra elementsby providing a type,A. On top ofA we define a
partial join operator,⊕, satisfying the separation algebra axioms:

x⊕ y = z1 → x⊕ y = z2 → z1 = z2

x1 ⊕ y = z → x2 ⊕ y = z → x1 = x2

x⊕ y = z → y ⊕ x = z

x⊕ y = a → a⊕ z = b → ∃c. y ⊕ z = c ∧ x⊕ c = b

∀x. ∃u. u⊕ x = x

a � emp iff a ⊕ a = a

a � true iff always

a � false iff never

a � P ∗Q iff ∃a0. ∃a1.

a0 ⊕ a1 = a ∧ a0 � P ∧ a1 � Q

a1 � P −−∗ Q iff ∀a0. ∀a.
a0 ⊕ a1 = a→ a0 � P → a � Q

a � P ∧Q iff a � P and a � Q

a � P → Q iff a � P → a � Q

a � ∃b. P iff ∃b. a � P (b)

a � expr eval(e, b) iff e⇓a ⌊b⌋

a � safe expr(e) iff a � ∃b. expr eval(e, b)

a � assert expr(e) iff a � expr eval(e, true)

Figure 6: Forcing Semantics of Separation Logic Assertions (excerpted)

That is,⊕must be functional, cancellative, commutative, and asso-
ciative, and every element ofA must have a unitu.

Next, we define aprojectionα : W → A mapping worlds
W to SA elements, and a set of primitive expressions,H ⊆
P(A ⇀ bool). The primary purpose ofH is to support separation
logic assertions, such asassert expr(e), that deal with expression
evaluation. The meaning of the assertionassert expr(e) is “in
the current world (more precisely, theα-projection of the current
world), e is not stuck and evaluates to a true value.”

We’d like thee’s in such assertions to correspond to expressions
actually evaluated in the object language. In the proof of the Hoare
rule for conditionals, for example,assert expr(e) (and symmetri-
cally,assert expr(¬e)) must imply that evaluating some expression
e′ in the object language program in a corresponding control is safe,
and produces the left (or right) branch of the conditional. For this
purpose, we introduce a predicateεHG : P(H×G) very similar to
the εGF predicate of stratified semantics that determines whether
two primitive expressionsh andg can be evaluated in the same con-
trol. Pairs(h, g) : εHG must satisfy the same primitive expression
erasure and safety conditions satisfied by pairs(g, f) : εGF . We
define the transitive closure ofεHG andεGF (εHF) in the standard
way.

The final, somewhat unwieldy structure is:WSA = (W,S,A,
εVU , εGF , εHG, ε, α,⊕).

Definition 13 (Stratified Semantics with Separation). A stratified
semantics with separationis a tupleWSA = (W,S,A, εVU , εGF ,
εHG, ε, α,⊕) s.t. (W,S, εVU , εGF , ε) is a stratified semantics,
(A,⊕) is a separation algebra,α : W → A is a projection
mapping worlds to SA elements, andεHG : P(H × G) is a
predicate defining the set of corresponding primitive expression
pairs (h, g). H ⊆ P(A ⇀ bool).

Now that we’ve equipped stratified semantics with a separation
algebra, we can give the forcing semantics of some common sepa-
ration logic assertions (Figure 6).expr eval(e, b) asserts that in the
α-projection of the current world, expressione evaluates to boolean
valueb. safe expr(e) asserts that evaluation ofe in theα-projection
of the current world will not get stuck. Theb in the assertion∃b. P
quantifies over any Coq type, not just values. The other assertions
are standard.

7. A Separation Logic forS
We now have all the machinery we need to construct a separation
logic for S. The construction is asemanticone: the Hoare triple

⊢ {P} c {Q} is interpreted semantically as a proposition of
higher-order logic. Inference rules of the form

⊢ {Pi} ci {Qi}

⊢ {P} c {Q}

are then proved as derived rules from this interpretation.
We follow Appel and Blazy [3] in giving the interpretation

of the Hoare triple in continuation-passing style. In outline, we
first define what it means for a separation logic predicateP to
guard a control; then, we give the semantics of the Hoare triple
⊢ {P} c {Q} in terms ofguards. Finally, we prove the soundness
of some common inference rules of separation logic with respect to
this interpretation.

7.1 Guards

Definition 14. A predicateP guards concrete controlκ iff

∀w. α(w) � P → safe 〈ε(w), κ〉.

α(w) is theα-projection of abstract worldw; hence the forcing
assertionα(w) � P is well-defined. Remember thatε(w) erases
worldw to a states : S.

7.2 The Hoare Triple ⊢ {P} c {Q}

We give a semantic interpretation of⊢ {P} c {Q} in terms of
guards:

Definition 15. ⊢ {P} c {Q} iff

∀κ. ∀F. (Q ∗ F) guards κ→ (P ∗ F) guards (c · κ).

Unpacking the definitions, it should be clear that this interpre-
tation of the Hoare triple is satisfied by nonterminating executions
of c for any preconditionsP and postconditionsQ. Proof: nonter-
minating executions aresafe, thusc · κ is safe, for all κ.

What should also be clear is that because the predicateF is uni-
versally quantified in the definition of the triple, and because we
require thatF be separating conjoined with the pre- and postcon-
ditions in the guards, the frame rule is sound for every command
with a valid Hoare triple in the logic:

Theorem 1 (Soundness of the Frame Rule). For all commandsc
and framesF ,

⊢ {P} c {Q}

⊢ {P ∗ F} c {Q ∗ F}.

Proof. By associativity of∗ in theguards predicates.

One implication of this theorem is that primitive commands
primcom(u) with a valid axiomatic semantics satisfy the frame
rule. That is, if we can prove⊢ {P} primcom(u) {Q} for someP
andQ, then it immediately follows that⊢ {P∗F} primcom(u) {Q∗
F} by the soundness of the frame rule. There is no trickery here:
the proof thatprimcom(u) is local is just built in to the soundness
proof of⊢ {P} primcom(u) {Q}.

Since the frame rule is sound forprimcom(u), we are justified
in callingprimcom(u) a local action. When all the primitive com-
mandsu : U of a stratified semantics with separation are local in
this way, we say that the semantics is a stratified local action se-
mantics.

Definition 16. A stratified local action semanticsis a stratified
semantics with separationWSA deriving fromW and S s.t. all
primitive commandsu : U are local actions.

7.3 Functional Correctness Specifications

The semantic interpretation we gave the Hoare triple⊢ {P} c {Q}
in Section 7.2 was for safety and not functional correctness. That

is, ⊢ {P} c {Q} did not imply thatQ held afterc was executed
in states satisfyingP . It just said thatc was safe in any state
satisfyingP . This contravenes the usual functional correctness
interpretation of Hoare triples in separation logic. Appel and Blazy
hinted at how functional correctness properties could be proved in
their separation logic for Cminor, but didn’t make the connection
between proofs of safety and proofs of full functional correctness
explicit.

We demonstrate here that safety is in fact enough to achieve
functional correctness. First, we take a slight detour to show that
the primitive command mechanism of our framework is powerful
enough to support semantic, even noncomputable assertions in the
syntax of programs.

Primitive Assertions. Although the syntax of our while-language
is limited, the primitive command mechanism—which makes it
possible to inject arbitrary relations into the syntax of programs—is
quite powerful. For example, we can easily define a semantic asser-
tion statement for any given model of the framework. A semantic
assertion is like a Cassert statement except that the assertion lan-
guage is the language of propositions of the metalogic instead of
C expressions; and instead of producing a runtime error when an
asserted expression evaluates to 0, as in C, semantic assertions get
stuck when they are not satisfied by the state in which they are as-
serted.

The construction is as follows: letWSA be a stratified semantics
with separation deriving fromW andS. Defineassert(P) in the
abstract semantics asprimcom(v) andassert(P) in the concrete
semantics asprimcom(u) s.t.

v
def
= λw. λw′. α(w) � P ∧ w = w′, and

u
def
= λs. λs′. s = s′.

It should be clear from these definitions thatv will get stuck in
any world w whoseα-projection doesn’t satisfyP , and thatu
is equivalent toskip. It should also be clear that becauseP is a
proposition of the metalogic (i.e. Coq), the commandv need not be
computable. Fortunately, we can always erasev to u.

Theorem 2. v erases tou and makesu safe. Furthermore, the
construction given here generalizes to any stratified semantics with
separation.

Proof. Erasure: We assume world erasure holds for initial worldw
and initial states. Therefore, erasure must hold forw′ ands′ since
w = w′ ands = s′. Safety:skip is never stuck. Generality: We
make no assumptions aboutWSA.

Such assertions are sufficient for proving functional correctness
properties: the idea is simply to sequentially compose assertions
with commands. For example, if⊢ {P} c {Q}, then we can prove
that executingc in states satisfyingP does actually result in states
satisfyingQ (assumingc terminates) by proving the slightly more
involved triple⊢ {P} c; assert(Q) {Q}. If c results in a state that
does notsatisfyQ, assert(Q) will not be safe and the extended
Hoare triple will be unsound. If the Hoare tripleis sound, then we
know that the propositionQ holds immediately afterc is executed
(again assumingc terminates).

8. Inference Rules
We could derive Hoare rules⊢ {P} primcom(u) {Q} for prim-
itive commandsu directly from the definition of the Hoare triple.
This would involve unpacking the definitions of the Hoare triple
and guards and then proving thatα(w) � P impliesprimcom(u)
can step froms, whereε(w) = s, to some states′ such that
ε(w′) = s′ andα(w′) � Q, for somew′. Such proofs would be
tedious.

We have a more direct way of deriving⊢ {P} c {Q}, however:
exhibiting a primitive commandv in the abstract semantics with a
parallel specification. Indeed, this is one of the primary reasons we
constructed an abstract semantics in the first place.

For this purpose, we define a new version of the Hoare triple,
called theprimitive Hoare triple. This Hoare triple is in direct
style and is used only to derive standard Hoare triples for primitive
commands. We give its definition here.

Definition 17 (Primitive Hoare Triple). ⊢prim {P} v {Q} iff
∀w. ∀F.

α(w) � P ∗ F

∃w′. w
v
7→ w′ ∧ α(w′) � Q ∗ F.

With this definition in hand, we can state the introduction rule
for primitive commands quite directly.

Theorem 3(Primitive Command Introduction (Primcom)).

(v, u) : εVU ⊢prim {P} v {Q}

⊢ {P} primcom(u) {Q}

Proof. By step erasure, step safety, and step compatibility.

Figures 7 and 8 present the inference rules (excerpted) of the
separation logic forS, including the introduction rule for primitive
commands. All of the rules in the figures except the rule for while-
loops are proved sound in Coq w.r.t. the semantic interpretation of
the Hoare judgment given in§ 7. We have proved the Hoare rule for
while-loops sound informally and do not expect the formal proof
will cause much trouble since we have already formally proved a
more general rule for loops with arbitrary block nesting and breaks
in the context of the larger program logic for Cminor. Rules in
Figure 7 are proved directly from the definition of the Hoare triple.
Rules in Figure 8 are proved as derived lemmas from the rules in
Figure 7. In the proof rules prefixed withP (e.g.PConj 1), ⌈· ⌉
denotes pure predicates, that is, propositions lifted into the domain
of predicates via the lifting functionλA. λa. A.

Most of the inference rules in the figures are straightforward. In
the rules for while loops and conditionals,intuitionistic e means
evaluation of expressione is invariant under extensions of the state.
intuitionistic e holds for the various expression operators, e.g.¬,
&&, ||, if their operands are intuitionistic but must be proven for
each primitive expression.e = e′ denotes the transitive closure of
expression erasure underεHF .

9. A Concrete Model
In this section we construct a model of the framework for a sim-
ple programming language with external function calls, and use
this model to build the core of a variables-as-resources [19] separa-
tion logic. A variables-as-resources separation logic is one in which
program variables are modeled as separating resources, much like
heap cells in a conventional separation logic. The primary advan-
tage of a variables-as-resources logic is that it permits the concise
statement of inference rules without side conditions concerning
program variables. We model the following primitive commands:
assign, load, store, andext funR, and one primitive expres-
sion:evar, the purpose of which is to look up variables in the local
environment. Although this language is extremely simple, its for-
mulation touches on every aspect of the framework.

9.1 Concrete StatesΣ

In order to express the operational behavior of the primitive com-
mands and ofevar, we first need to construct a concrete memory

(v, u) : εVU ⊢prim {P} v {Q}

⊢ {P} primcom(u) {Q}
Primcom

⊢ {P} skip {P}
Skip

⊢ {P} c1 {P ′} ⊢ {P ′} c2 {Q}

⊢ {P} c1; c2 {Q}
Seq

⊢ {P ∧ assert expr(e)} c1 {Q} P ⇒ safe expr(e) e = e′ intuitionistic e ⊢ {P ∧ assert expr(¬e)} c2 {Q}

⊢ {P} if e′ then c1 else c2 {Q}
Conditional

⊢ {P ∧ assert expr(e)} c {P} P ⇒ safe expr(e) e = e′ intuitionistic e

⊢ {P} while e′ do c {P ∧ assert expr(¬e)}
While

P ⇒ P ′ ⊢ {P ′} c {Q′} Q′ ⇒ Q

⊢ {P} c {Q}
Consequence

⊢ {P} c {Q}

⊢ {P ∗ F} c {Q ∗ F}
Frame

⊢ {P1} c {Q} ⊢ {P2} c {Q}

⊢ {P1 ∨ P2} c {Q}
Disj

⊢ {P} c {Q}

⊢ {⌈A⌉ ∧ P} c {⌈A⌉ ∧Q}
PConj1

Figure 7: Core Inference Rules in the context ofWSA (excerpted)

⊢ {⌈A⌉ ∧ P} c {⌈A⌉ ∧Q} A

⊢ {P} c {Q}
PConj2

⊢ {P1} c1 {Q1} ⊢ {P2} c2 {Q2}

⊢ {P1 ∗ P2} c1; c2 {Q1 ∗Q2}
Compose

⊢ {P} c {Q} Q ⇒ A

⊢ {A ∧ P} c {A ∧Q}
Conj

Figure 8: Derived Inference Rules in the context ofWSA (excerpted)

evar(x)
def
= λσ. σs(x)

assign(x, e)
def
= λσ. λσ′. ∃b. e⇓σ ⌊b⌋ ∧ σ′ = (σΩ, σs[x← b], σh)

load(x, l)
def
= λσ. λσ′. ∃b. σh(l) = ⌊b⌋ ∧ σ′ = (σΩ, σs[x← b], σh)

store(l, x)
def
= λσ. λσ′. ∃b. ∃b′. σs(x) = ⌊b

′⌋ ∧ σh(l) = ⌊b⌋ ∧ σ′ = (σΩ, σs, σh[l← b′])

ext funR
def
= λσ. λσ′. σ

R
7→ σ′

Figure 9: Concrete Primitive Commands andevar

ˆevar(x)
def
= λσ̂. case σ̂s(x) of ⌊(b, π)⌋ ⇒ ⌊b⌋ | none⇒ none

ˆassign(x, e)
def
= λσ̂. λσ̂′. ∃b. ∃b′. e⇓σ̂ ⌊b

′⌋ ∧ σ̂s(x) = ⌊(b,⊤)⌋ ∧ σ̂′ = (σΩ, σ̂s[x← (b′, ⊤)], σ̂h)

ˆload(x, l)
def
= λσ̂. λσ̂′. ∃b. ∃b′. ∃π. σ̂s(x) = ⌊(b, ⊤)⌋ ∧ σ̂h(l) = ⌊(b

′, π)⌋ ∧ σ̂′ = (σΩ, σ̂s[x← (b′, ⊤)], σ̂h)

ˆstore(l, x)
def
= λσ̂. λσ̂′. ∃b. ∃b′. ∃π. σ̂s(x) = ⌊(b

′, π)⌋ ∧ σ̂h(l) = ⌊(b, ⊤)⌋ ∧ σ̂′ = (σΩ, σ̂s, σ̂h[l← (b′, ⊤)])

ˆext fun
R̂

def
= λσ̂. λσ̂′. σ̂

R̂
7→ σ̂′

Figure 10: Abstract Primitive Commands and̂evar

h � l
π
7→ b

def
= ∀l′. if l = l′ then h(l′) = ⌊(b, π)⌋ else h(l′) = none

s � x
π
7→ b

def
= ∀x′. if x = x′ then s(x′) = ⌊(b, π)⌋ else s(x′) = none

s � ownπ(x)
def
= ∃b. s � x

π
7→ b

s � own(x)
def
= s � own⊤(x)

a � ↑sP
def
= as � P ∧ ah � emp

a � ↑hP
def
= as � emp ∧ ah � P

⊢ {↑sown(x) ∧ expr eval(e, b) ∧ ⌈e = e′⌉ ∧ ⌈intuitionistic e⌉} primcom(assign(x, e′)) {↑sx
⊤
7→ b}

⊢ {↑sown(x) ∗ ↑hl
π
7→ b} primcom(load(x, l)) {↑sx

⊤
7→ b ∗ ↑hl

π
7→ b}

⊢ {↑sx
π
7→ b′ ∗ ↑hl

⊤
7→ b} primcom(store(l, x)) {↑sx

π
7→ b′ ∗ ↑hl

⊤
7→ b′}

⊢ {Pext} primcom(ext funR) {Qext}

Figure 11: Forcing Semantics of Assertions, and Hoare Rules for the Primitive Commands in§ 9

modelΣ. The basic types of the concrete memory model are:

val
def
= bool

var, address
def
= N.

To keep the model simple, we assume boolean values and define
local variables and addresses as natural numbers.

Concrete Stores. Now, we can define stores simply as partial
maps from variables to values:

store
def
= var ⇀ val.

Note that in this store model, we don’t include anyshares—which
could be used to model the level of access to local variables—even
though the assertions of our variables-as-resources separation logic
will need to be able to express ownership of local variables. This is
because our concrete memory model represents states of theerased
semantics. Storing shares in theabstractstore will be sufficient for
proving the soundness of a Hoare rule for assignment in a variables-
as-resources style, i.e. without side conditions.

Heaps. Heaps in this simple model are just the same as stores,
except that we map addresses—instead of identifiers—to values:

heap
def
= address ⇀ val.

Concrete States. Concrete states are tuples of a heap, a store,
and special component that we call theoracle stateand denoteΩ.
The oracle state represents the state of the external world, or the
context in which concrete programs execute. Concrete programs
can compute with the oracle state through a special primitive com-
mand we callext funR, or external function call. The semantics of
ext funR is given by a relationR on concrete states. Although we
leaveext funR unspecified, the external function call mechanism
could be used to implement, e.g., the system calls of an operating
system, or preemptive context switching in a thread library.

Σ
def
= Ω× store× heap.

We equip our model with projectionsσΩ, σs, andσh for accessing
the oracle state, store, and heap components of concrete stateσ.

Concrete Primitive Commands. With these preliminary defini-
tions out of the way, we are ready to give the definitions of the
primitive commands (Figure 9). Readσs[x ← 3] as “set the value
of variablex in storeσs to 3”. We use the same notation for heaps.

assign(x, e) evaluatese in the current state and updatesx to
the resulting value.load(x, l) setsx to the current value at location
l. store(l, x) stores the value ofx at locationl. ext funR passes
control to the program context to execute a state transition speci-
fied by the relationR. ext funR takes no arguments; instead we
assume that the client and context have agreed on an ad hoc call-
ing convention in which the external function identifier, the argu-
ments to the external function, and its result are passed somewhere
in client-modifiable state, such as the store.

Note thatassign(x, e) will succeed only if it’s safe to evaluate
e in the current state;load(x, l) will succeed only if the heap is
defined atl; andstore(l, x) will succeed only ifx is defined and
the heap is defined atl. ext funR will succeed wheneverR is
defined in the state in which the external function is called.

We construct a generic semantics using these four commands.

Theorem 4(Concrete Semantics). LetU = {assign, load, store,
ext funR} andF = {evar}. (Σ, U, F) is a generic operational
semantics. �

9.2 Abstract Worlds Σ̂

Next, we construct an abstract memory modelΣ̂, redefine the
primitive commands and expressionevar in this model, and show

that the abstract commands andevar correspond to their concrete
counterparts.

Abstract Stores, Heaps, and Worlds. We let abstract stores and
heaps be partial maps from local variables (resp. locations) to
val× pshare:

ˆstore
def
= var ⇀ val× pshare;

ˆheap
def
= address ⇀ val× pshare.

Positive sharesπ : pshare range over nonempty shares;pshare
stands for “positive share.”

Shares represent the amount of access to a location in the heap,
or to a variable in the store in a variables-as-resources separation
logic, and are convenient for expressing sharing patterns among
threads, especially in proofs of concurrent programs. We require
shares at defined locations and in defined local variables to be
nonempty as a well-formedness condition. In the formalization, we
use the share model of Dockins et al.

Worlds σ̂ ∈ Σ̂ are just the products of oracle states, abstract
stores, and abstract heaps.

Σ̂
def
= Ω× ˆstore× ˆheap.

Note that we use the sameΩ in both the concrete and abstract
semantics. This is for convenience only; we could assume two
different types of oracle state and an erasure function relating them
but that would complicate the example presented here.

Figure 10 presents the abstract primitive commands and expres-
sion ˆevar. These commands, like their concrete counterparts, form
a generic semantics.

Theorem 5(Abstract Semantics). LetV = { ˆassign, ˆload, ˆstore,
ˆext fun

R̂
} andG = { ˆevar}. (Σ̂, V,G) is a generic operational

semantics. �

9.3 A Stratified Semantics

Constructing a stratified semantics for(Σ, U, F) and(Σ̂, V,G) is
straightforward. We first define an erasure functionε : Σ̂ → Σ
mapping worlds to states:

ε(s)
def
= λx. case s(x) of ⌊(b, π)⌋ ⇒ ⌊b⌋ | none⇒ none

ε(h)
def
= λl. case h(l) of ⌊(b, π)⌋ ⇒ ⌊b⌋ | none⇒ none

ε(σ̂)
def
= (σ̂Ω, ε(σ̂s), ε(σ̂h))

ε is overloaded to operate on abstract stores and heaps as well as
worlds.

Next, we show that commands and expressions of the abstract
semantics satisfy erasure and safety when paired with correspond-
ing commands of the concrete semantics. The predicatesεVU and
εGF define when commands and expressions of the two semantics
correspond. For example,∀x. ∀e. ∀e′.

e = e
′ → (ˆassign(x, e), assign(x, e′)) : εVU

gives theεVU rule for assignment.εVU is defined inductively with
similar rules for loads and stores. The same is done forεGF (with
only one constructor). Erasure and safety follow, for each rule of
εVU andεGF except the one for external function calls, from the
definitions of the abstract and concrete primitive commands and
expressions. In the case of external function calls, we assume that
R̂ andR satisfy erasure and safety. This assumption is realistic: it
merely reflects the fact that̂R andR give consistent (abstract and
concrete) definitions of the environment.

Theorem 6. (Σ̂,Σ, εVU , εGF , ε) is a stratified semantics. �

9.4 Deriving a Separation Logic for(Σ, U, F)

All that’s left to do now is to construct a separation algebra(A, ⊕),
define a projection mapping worldŝΣ to elements ofA, and con-
struct the set of primitive expressionsH evaluated inA that corre-
spond to the expressions inG. We use these three components to
construct the structure(Σ̂,Σ, A, εVU , εGF , εHG, ε, α,⊕), a strat-
ified semantics with separation, and then derive a separation logic
for (Σ, U, F).

Let A = ˆstore × ˆheap. Let α : Σ̂ → A be the projection
λσ̂. case σ̂ of (, s, h) ⇒ (s, h). The oracle state is intended
to contain private implementation data like a thread schedule; we
don’t include oracle states in worlds of the program logic because
the user of the logic should not be able to define separation logic
predicates that refer to this private state. We define a new expression
evarA, evaluated inA and corresponding toˆevar, and defineεHG

in the obvious way (withH = {evarA}). Because the projection
α preserves the store component of worlds, expressions inH and
G satisfy primitive expression erasure and safety.

We define a separation algebra forA using the SA operators
of Dockins et al. Unpacking its definition, we know thatA =
(var ⇀ val × pshare) × (address ⇀ val × pshare). Therefore,
our goal is to construct a separation algebra that matches this type.
To do so, we first need to construct a separation algebra for the
type of data,option (val × pshare). In the Coq formalization, we
use the SA bijection operator to construct a separation algebra for
this type via a bijection withoption (val× share)+. The subscript
+ notation here indicates that we’re taking the subset of positive
(i.e. nonidentity) elements ofval × share. none then becomes our
distinguished unit. Once we’ve constructed a separation algebra for
the type of data, we can lift this SA to an SA on functions via
the usual extensional lifting. That is, two functionsf andg join
wheneverf(l) andg(l) join for everyl in the domain off andg.

With these constructions out of the way, we can now define a
stratified semantics with separation.

Theorem 7. (Σ̂,Σ, A, εVU , εGF , εHG, ε, α,⊕) is a stratified se-
mantics with separation. �

We give Hoare rules forassign, load, andstore in Figure
11. Since the external function call primitiveext funR is uninter-
preted, we just assume it has a valid specification⊢ {Pext}
ext funR {Qext} in the separation logic. Here,Pext gives the pre-
condition for making an external function call andQext gives the
external function call postcondition. To prove that aninterpreted
version ofext funR satisfies such a specification, one would have
to show, e.g., that⊢prim {Pext} R {Qext}. The framework gives
us the Hoare rules in figures 7 and 8 for free, as a consequence of
the fact that(Σ̂,Σ, A, εVU , εGF , εHG, ε, α,⊕) is a stratified se-
mantics with separation. In the figure,⊤ denotes the full share and
models exclusive access situations.↑s and↑h lift separation logic
predicates on stores and heaps (which are well-defined because we
defined separation algebras for stores and heaps in the process of
defining a separation algebra forA) to operate on elementsa ∈ A.
We overload the world projections defined above to operate ona’s.

Every primitive command inU has a specification in the sepa-
ration logic. Therefore:

Theorem 8. (Σ̂,Σ, A, εVU , εGF , εHG, ε, α,⊕) is a stratified lo-
cal action semantics. �

10. Related Work
Parkinson [18] makes the case for acore separation logicin which
it is possible to define new axiomatic semantics for new language
features without recourse to meta-theoretic arguments. He suggests
that deny-guarantee logics [11], which provide mechanisms for

dealing with arbitrary patterns of interference in a clean way, might
provide the right foundation for such an approach. Although we
agree in sentiment, we take a different approach in this work by
facilitating the construction of new separation logics from retar-
getable components such as command specifications given under
an abstract model of program state. One of our primary goals was to
prove our separation logics sound with respect to undecorated op-
erational semantics; Parkinson does not address this issue. Because
we never resort to proof-theoretic arguments in the soundness proof
of our general logic, our logic retains a measure of extensibility.

Dinsdale-Young et al. [8] relate abstract module specifications
to concrete implementations of those modules. Unlike our own
work, which is more operational in nature, the translations of
Dinsdale-Young et al. are performed onaxiomatic descriptions
of the source and target languages expressed in terms ofcontext
algebras. Context algebras generalize separation algebras by defin-
ing a set ofstate contextsand two partial noncommutative binary
operators: acontext compositionoperator that inserts a context into
a one-hole context; and anapplicationoperator that inserts a state
into a one-hole context. They describe bothlocality-preservingand
locality-breakingmodule translations in this framework, the intu-
ition being that locality-preserving translations faithfully translate
footprints of an abstract module specification to footprints of a con-
crete implementation while locality-breaking translations do not. In
locality-preserving translations, frame rules that hold in the abstract
context are also sound in the implementation context. It could be in-
teresting in future work to experiment with context algebras in the
stratified framework we present here. In principle, context algebras
could be substituted relatively easily for the separation algebras of
stratified semantics with separation.

11. Application to CompCert
Appel, Hobor, and Zappa Nardelli [12] showed how a soundness
proof for a Concurrent Separation Logic for Cminor could be de-
composed into (1) soundness of a sequential separation logic for
a decorated operational semantics with (2) soundness of a concur-
rency oracle. By 2009 the first of these two proofs was complete
and machine-checked in Coq, and the second part was nearly com-
plete. But the operational semantics of the “real” CompCert Cmi-
nor is undecorated, not decorated. The present work closes the gap:
we have refactored the soundness proof for sequential separation
logic according to the recipe given here. The refactored proof is
more than 98% complete (measured by the number of admitted
lemmas in the approximately 40,000 line proof); we don’t foresee
any problems completing the final< 2% of the proof.

Acknowledgments
We would like to thank C.J. Bell, Lennart Beringer, Robert Dock-
ins, Christopher Monsanto, Cole Schlesinger, David Walker, and
the PLPV anonymous reviewers for invaluable suggestions and
comments on this work.

References
[1] A. Ahmed, M. Fluet, and G. Morrisett. A step-indexed model

of substructural state. InICFP ’05: Proceedings of the tenth
ACM SIGPLAN International Conference on Functional pro-
gramming, pages 78–91, 2005. ISBN 1-59593-064-7. doi:
http://doi.acm.org/10.1145/1086365.1086376.

[2] A. J. Ahmed. Semantics of Types for Mutable State. PhD thesis,
Princeton University, Princeton, NJ, Nov. 2004. Tech Report TR-713-
04.

[3] A. W. Appel and S. Blazy. Separation logic for small-step Cminor.
In 20th Int’l Conference on Theorem Proving in Higher-Order Logics,
pages 5–21, 2007.

[4] A. W. Appel, P.-A. Melliès, C. D. Richards, and J. Vouillon. A very
modal model of a modern, major, general type system. InProc.
34th Annual Symposium on Principles of Programming Languages
(POPL’07), pages 109–122, Jan. 2007.

[5] H. P. Barendregt.The Lambda Calculus: Its Syntax and Semantics.
North-Holland, Amsterdam, 1981.

[6] R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson. Permission
accounting in separation logic. InPOPL’05: The 32nd ACM Symp. on
Principles of Programming Languages, pages 259–270, 2005.

[7] C. Calcagno, P. W. O’Hearn, and H. Yang. Local action and abstract
separation logic. InLICS ’07: Proceedings of the 22nd Annual IEEE
Symposium on Logic in Computer Science, pages 366–378, 2007.
ISBN 0-7695-2908-9. doi: http://dx.doi.org/10.1109/LICS.2007.30.

[8] T. Dinsdale-Young, P. Gardner, and M. Wheelhouse. Abstraction
and refinement for local reasoning. InVSTTE’10: Verified Software:
Theories, Tools and Experiments, 2010.

[9] R. Dockins, A. W. Appel, and A. Hobor. Multimodal separation logic
for reasoning about operational semantics. In24th Conference on the
Mathematical Foundations of Programming Semantics (MFPS XXIV),
pages 5–20. Springer Electronic Notes in Theoretical Computer Sci-
ence (ENTCS), 2008.

[10] R. Dockins, A. Hobor, and A. W. Appel. A fresh look at separation
algebras and share accounting. InThe 7th Asian Symposium on
Programming Languages and Systems. Springer ENTCS, 2009. URL
http://msl.cs.princeton.edu/fresh-sa.pdf.

[11] M. Dodds, X. Feng, M. Parkinson, and V. Vafeiadis. Deny-guarantee
reasoning. InIn ESOP09: European Symposium on Programming,
volume 5502 of LNCS, pages 363–377. Springer, 2009.

[12] A. Hobor, A. W. Appel, and F. Zappa Nardelli. Oracle semantics for
concurrent separation logic. InProc. European Symp. on Program-
ming (ESOP 2008) (LNCS 4960), pages 353–367. Springer, 2008.

[13] A. Hobor, R. Dockins, and A. W. Appel. A theory of indirection via
approximation. InProc. 37th Annual ACM Symposium on Principles
of Programming Languages (POPL’10), pages 171–185, Jan. 2010.

[14] X. Leroy. Formal verification of a realistic compiler.Communications
of the ACM, 52(7):107–115, 2009.

[15] X. Leroy and S. Blazy. Formal verification of a C-like memorymodel
and its uses for verifying program transformations.J. Automated
Reasoning, 41(1):1–31, 2008.

[16] P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about pro-
grams that alter data structures. InCSL’01: Annual Conference of the
European Association for Computer Science Logic, pages 1–19, Sept.
2001. LNCS 2142.

[17] P. W. O’Hearn. Resources, concurrency and local reasoning. Theoret-
ical Computer Science, 375(1):271–307, May 2007.

[18] M. Parkinson. The next 700 separation logics. In G. Leavens,
P. OHearn, and S. Rajamani, editors,Verified Software: Theories,
Tools, Experiments, volume 6217 ofLecture Notes in Computer Sci-
ence, pages 169–182. Springer Berlin / Heidelberg, 2010.

[19] M. Parkinson, R. Bornat, and C. Calcagno. Variables as resource in
Hoare logics.Proc. of 21st Annual IEEE Symp. on Logic in Computer
Science, 0:137–146, 2006. ISSN 1043-6871.

[20] M. J. Parkinson.Local Reasoning for Java. PhD thesis, University of
Cambridge, 2005.

[21] H. Yang and P. O’Hearn. A semantic basis for local reasoning. In
Proc. of Foundations of Software Science and Computation Structures,
2002.

