
Lightweight Lemmas in λProlog

Andrew W. Appel
Bell Laboratories and Princeton University

Amy P. Felty
Bell Laboratories

May 14, 1999

Abstract

λProlog is known to be well-suited for expressing and
implementing logics and inference systems. We show
that lemmas and definitions in such logics can be imple-
mented with a great economy of expression. The terms of
the meta-language (λProlog) can be used to express the
statement of a lemma, and the type checking of the meta-
language can directly implement the type checking of the
lemma. The ML-style prenex polymorphism of λProlog
allows easy expression of polymorphic inference rules,
but a more general polymorphism would be necessary to
express polymorphic lemmas directly. We discuss both
the Terzo and Teyjus implementations of λProlog as well
as related systems such as Elf.

1 Introduction

It has long been the goal of mathematicians to minimize
the set of assumptions and axioms in their systems. Im-
plementers of theorem provers use this principle: they use
a logic with as few inference rules as possible, and prove
lemmas outside the core logic in preference to adding new
inference rules. In applications of logic to computer secu-
rity – such as proof-carrying code [Nec97] and distributed
authentication frameworks [AF99] – the implementation
of the core logic is inside the trusted code base (TCB),
while proofs need not be in the TCB because they can be
checked.

Two aspects of the core logic are in the TCB: a set of
logical connectives and inference rules, and a program in
some underlying programming language that implements
proof-checking – that is, interpreting the inference rules
and matching them against a theorem and its proof.

Proof Theorem

Logic

A
C

M
E

LEMM
A

C
O

Def'n
Lemma
Lemma

Trusted code base

Figure 1: Lemma machinery is inside the TCB.

Definitions and lemmas are essential in constructing
proofs of reasonable size and clarity. A proof system
should have machinery for checking lemmas, and apply-
ing lemmas and definitions, in the checking of proofs.
This machinery also is within the TCB; see Figure 1.

Many theorem-provers support definitions and lemmas
and provide a variety of advanced features designed to
help with tasks such as organizing definitions and lem-
mas into libraries, keeping track of dependencies, and
providing modularization etc.; in our work we are particu-
larly concerned with separating that part of the machinery
necessary for proof checking (i.e., in the TCB) from the
programming-environment support that is used in proof
development. In this paper we will demonstrate a defini-
tion/lemma implementation that is about two dozen lines
of code.

1

kind form type.
kind proof type.

type eq A→A→form.
type and form→form→form.
type imp form→form→form.
type forall (A→form)→form.

type proves proof→form→o.

infixl and 7.
infixr imp 8.
infix proves 5.

type assume form→o.

type initial proof.
type and_l form→form→proof

→proof.
type and_r proof→proof→proof.
type imp_r proof→proof.
type imp_l form→form→proof→proof

→proof.
type forall_r (A→proof)→proof.
type forall_l (A→form)→A→proof

→proof.
type cut proof→proof→form

→proof.
type congr proof→proof

→(A→form)→A→A→proof.
type refl proof.

Program 2: Type declarations for core logic.

The λProlog language [NM88] also has several fea-
tures that allow concise and clean implementation of log-
ics, proof checkers, and theorem provers [Fel93]. We use
λProlog [NM88], but the ideas should also be applicable
to logical frameworks such as Elf/Twelf [Pfe91, PS99].
An important purpose of this paper is to show which
language features allow a small TCB and efficient rep-
resentation of proofs. We will discuss higher-order ab-
stract syntax, dynamically constructed clauses, dynam-
ically constructed goals, metalevel formulas as terms,
prenex and non-prenex polymorphism, nonparametricity,
and type abbreviations.

2 A core logic

The clauses we present use the syntax of the Terzo im-
plementation of λProlog [Wic99]. λProlog is a higher-
order logic programming language which extends Prolog
in essentially two ways. First, it replaces first-order terms
with the more expressive simply-typed λ-terms. Both
Terzo and Teyjus [NM99] (which we discuss later) extend
simple types to include ML-style prenex polymorphism
[DM82], which we make use of in our implementation.
Second, it permits implication and universal quantifica-
tion over objects of any type.

We introduce new types and new constants using kind
and type declarations, respectively. For example, a new
primitive type t and a new constant f of type t → t → t
are declared as follows:

kind t type.
type f t -> t -> t.

Capital letters in type declarations denote type variables
and are used in representing polymorphic types. In pro-
gram goals and clauses, tokens with initial capital letters
will denote either bound or free variables. All other to-
kens will denote constants. λ-abstraction is written us-
ing backslash \ as an infix operator. Universal quantifica-
tion is written using the constant pi in conjunction with
a λ-abstraction, eg., pi X\ represents universal quantifi-
cation over variable X. The symbols , and => represent
conjunction and implication, respectively. The symbol:-
denotes the converse of => and is used to write the top-
level implication in clauses. The type o is the type of
clauses and goals of λProlog. We usually omit universal
quantifiers at the top level in definite clauses, and assume
implicit quantification over all free variables.

We will use a running example based on a tiny core
logic of a sequent calculus for a higher-order logic, il-
lustrated in Program 2 and 3. We call this the object
logic to distinguish it from the metalogic implemented by
λProlog.

To implement assumptions (that is, formulas to the left
of the sequent arrow) we use implication. The goal A =>
B adds clause A to the Prolog clause database, evaluates
B, and then (upon either the success or failure of B) re-
moves A from the clause database. It is a dynamically
scoped version of Prolog’s assert and retract. For
example, suppose we use imp_r(initial) to prove

2

A,Γ � A

initial proves A :- assume A.

Γ � A Γ � B
Γ � A ∧ B

(and_r Q1 Q2) proves (A and B) :-
Q1 proves A, Q2 proves B.

A,Γ � B
Γ � A → B
(imp_r Q) proves (A imp B) :-

assume A => Q proves B.

A,B,Γ � C
(A ∧ B),Γ � C

(and_l A B Q) proves C :-
assume (A and B),
assume A => assume B => Q proves C.

Γ � A B,Γ � C
(A → B),Γ � C

(imp_l A B Q1 Q2) proves C :-
assume (A imp B), Q1 proves A,
assume B => Q2 proves C.

Γ � A(Y) for any Y not in the conclusion
Γ � ∀x. A(x)

(forall_r Q) proves (forall A) :-
pi Y\ ((Q Y) proves (A Y)).

A(T),Γ � C
(∀x. A(x)), Γ � C

(forall_l A T Q) proves C :-
assume (forall A),
assume (A T) => Q proves C.

Γ � A A,Γ � C
C

(cut Q1 Q2 A) proves C :-
Q1 proves A,
assume A => Q2 proves C.

Γ � X = Z Γ � H(Z)
Γ � H(X)

(congr Q P H X Z) proves H X :-
Q proves (eq X Z), P proves (H Z).

Γ � X = X
refl proves (eq X X).

Program 3: Inference rules of core logic.

((eq x y) imp (eq x y)); then λProlog will ex-
ecute the (instantiated) body of the imp_r clause:

assume (eq x y) =>
initial proves (eq x y)

This adds assume (eq x y) to the database; then the
subgoal

initial proves (eq x y)

generates a subgoal assume (eq x y) which
matches our dynamically added clause.

In our forall_r, forall_l, and congr rules for
universal quantification and congruence we take advan-
tage of λProlog’s higher-order data structures. That is, in
the formula forall A, the term A is a lambda expres-
sion taking a bound variable and returning a formula; in
this case the bound variable is intended to be the quanti-
fied variable. An example of its use is

forall (X\ forall (Y\
(eq X Y) imp (eq Y X)))

The parser uses the usual rule for the syntactic extent of a
lambda, so this expression is equivalent to

forall X\ forall Y\ eq X Y imp eq Y X

This use of higher-order data structures is called higher-
order abstract syntax [PE88]; it is very valuable as a
mechanism for avoiding the need to describe the mechan-
ics of substitution explicitly in the object logic [Fel93].

We have used λProlog’s ML-style prenex polymor-
phism to reduce the number of inference rules in the TCB.
Instead of a different forall constructor at each type –
and a corresponding pair of inference rules – we have a
single polymorphic forall constructor. Our full core
logic (not shown in this paper) uses a base type exp of
machine integers, and a type exp→exp of functions,
so if we desire quantification both at expressions and at
predicates we have already saved one constructor and two
inference rules! But the user of our logic may wish to
construct a proof that uses universal quantification at an
arbitrary higher-order type, so we cannot possibly antic-
ipate all the types at which monomorphic forall con-
structors would be needed. Therefore, polymorphism is
not just a syntactic convenience – it makes the logic more
expressive.

3

We have also used polymorphism to define a general
congruence rule on the eq operator, from which many
other desirable facts (transitivity and symmetry of equal-
ity, congruence at specific functions) may be proved as
lemmas.

Theorem 1 shows the use of our core logic to check a
simple proof.

(forall_r I\ forall_r J\ forall_r K\
(cut
(imp_r
(imp_r
(congr
(congr initial refl (eq K) J K)
(congr initial refl (eq I) J I)
(eq I)
K
J)))

(imp_r
(and_l (eq J I) (eq J K)
(imp_l (eq J I) (eq J K imp eq I K)

initial
(imp_l (eq J K) (eq I K)

initial
initial))))

(eq J I imp eq J K imp eq I K)))
proves
forall I\ forall J\ forall K\

(eq J I and eq J K) imp (eq I K).

Theorem 1. ∀I∀J∀K(J = I ∧ J = K) → I = K.

Adequacy. It is important to show that our encoding
of higher-order logic in λProlog is adequate. To do
so, we must show that there is a one-to-on mapping be-
tween proof trees in higher-order logic using the infer-
ence rules of Figure 3 and our encoded proof terms of
type proof. Showing the existence of such a mapping
should be straightforward. In particular, since we have
encoded our logic using prenex polymorphism, it requires
expanding out instantiated copies of all of the polymor-
phic expressions in terms of type proof; the expanded
proof terms will then map directly to sequent proof trees.

type lemma
(A→o)→A→(A→proof)→proof.

(lemma Inference Proof Rest) proves C :-
pi Name\
(valid_clause (Inference Name),
Inference Proof,
Inference Name => (Rest Name) proves C).

Program 4: The lemma proof constructor.

3 Lemmas

In mathematics the use of lemmas can make a proof more
readable by structuring the proof, especially when the
lemma corresponds to some intuitive property. For au-
tomated proof checking (in contrast to automated or tra-
ditional theorem proving) this use of lemmas is not essen-
tial, because the computer doesn’t need to understand the
proof in order to check it.

But lemmas can also reduce the size of a proof (and
therefore the time required for proof checking): when a
lemma is used multiple times it acts as a kind of “subrou-
tine.” This is particularly important in applications like
proof-carrying code where proofs are transmitted over
networks to clients who check them.

The heart of our lemma mechanism is the logic rule
shown in Program 4. The proof-constructor lemma takes
three arguments:

1. an inference rule Inference (of type A→o,
where o is the type of Prolog goals and A is any type)
parameterized by a proof-constructor (of type A);

2. a higher-order Proof (of type A) built from core-
logic proof constructors (or using other lemmas);

3. and a proof of the main theorem C that is
parametrized by a proof-constructor (of type A).

For example, we can prove a lemma about the symme-
try of equality:

Lemma symmx:
B = A
A = B

.

The proof uses congruence and reflexivity of equality:

4

pi P\ pi A\ pi B\
P proves (eq B A) =>
(congr P refl (eq A) B A)

proves (eq A B).

This theorem can be checked as a successful λProlog
query in the logic of Programs 2 and 3: for an arbitrary
P, add (P proves (eq B A)) to the logic; checking
the proof of congruence will need to use this fact.

The syntax F => G means exactly the same as G :- F ,
so we could just as well write this query as

pi P\ pi A\ pi B\
(congr P refl (eq A) B A)

proves (eq A B) :-
P proves (eq B A).

Now, suppose we abstract the proof (roughly,
congr P refl (eq A) B A) from this query:

(Inference =
(Proof\ pi P\ pi A\ pi B\

(Proof P A B) proves (eq A B) :-
P proves (eq B A)),

Proof =
(P\A\B\ congr P refl (eq A) B A),

Query = Inference(Proof),
Query)

The solution of this query proceeds in four steps: the vari-
able Inference is unified with a lambda-term; Proof
is unified with a lambda-term; Query is unified with the
application of Inference to Proof (which is a term
β-equivalent to the query of the previous paragraph), and
finally Query is solved as a goal (checking the proof of
the lemma).

Once we know that the lemma is valid, we make a
new Prolog atom symmx to stand for its proof, and we
prove some other theorem in a context where the clause
Inference symmx is in the clause database; remem-
ber that Inference symmx is β-equivalent to

pi P\ pi A\ pi B\
(symmx P A B) proves (eq A B) :-
P proves (eq B A).

This looks remarkably like an inference rule! With this
clause in the database, we can use the new proof construc-
tor symmx just as if it were primitive.

(lemma
(Proof\ pi P\ pi A\ pi B\

(Proof P A B) proves (eq A B) :-
P proves (eq B A))

(P\A\B\(congr P refl (eq A) B A))
symmx\

forall_r I\ forall_r J\
imp_r (symmx initial J I)

)
proves
forall I\ forall J\ eq I J imp eq J I.

Theorem 2. ∀I∀J∀K.I = J → J = I.

To “make a new Prolog atom” we simply pi-bind it.
This leads to the recipe for lemmas shown in Program 4
above: first execute Inference Proof as a query, to
check the proof of the lemma itself; then pi-bind Name,
and run Rest (which is parameterized on the lemma
proof constructor) applied to Name. Theorem 2 illustrates
the use of the symmx lemma.

The symmx lemma is a bit unwieldy, since it requires A
and B as arguments. We can imagine writing a primitive
inference rule

pi P\ pi A\ pi B\
(symm P) proves (eq A B) :-
P proves (eq B A)

using the principle that the proof checker doesn’t need to
be told A and B, since they can be found in the formula to
be proved.

Therefore we add three new proof constructors – elam,
extract, and extractGoal – to the logic, as shown
in Program 5.

These can be used in the following stereotyped way to
extract components of the formula to be proved. First bind
variables with elam, then match the target formula with
extract. For example, see Theorem 3.

The extractGoal asks the checker to run Prolog
code to help construct the proof. Of course, if we want
proof-checking to be finite we must restrict what kinds
of Prolog code can be run, and this is accomplished by
valid_clause. The proof of lemma def_l in Sec-
tion 4 is an example of extractGoal.

Of course, we can use one lemma in the proof of an-
other.

5

type elam (A→proof)→proof.
type extract form→proof→proof.
type extractGoal o→proof→proof.

(elam Q) proves B :- (Q A) proves B.

(extract B P) proves B :- (P proves B).
extractGoal Goal P proves B :-

valid_clause Goal, Goal, P proves B.

Program 5: Proof constructors for implicit arguments of
lemmas.

(lemma
(Proof\ pi P\ pi A\ pi B\
(Proof P) proves (eq A B) :-

P proves (eq B A))
(P\ elam A\ elam B\ extract(eq A B)
(congr P refl (eq A) B A))

symm\

forall_r I\ forall_r J\
imp_r (symm initial)

)
proves
forall I\ forall J\ eq I J imp eq J I.

Theorem 3. ∀I∀J∀K.I = J → J = I.

3.1 Dynamic clauses and goals

Our technique allows lemmas (and, as we will show in the
next section, definitions) to be contained within the proof.
We do not need to install new “global” lemmas and defini-
tions into the proof checker. If, for example, symmwere a
global atom instead of a locally bound variable, it would
presumably need a global type declaration; how would
this be installed and removed? The dynamic scoping also
means that the lemmas of one proof cannot interfere with
the lemmas of another, even if they have the same names.

Our lemma machinery uses several interesting features
of λProlog:

Metalevel formulas as terms. The expression
Inference, which equals

(Proof\ pi P\ pi A\ pi B\
(Proof P A B) proves (eq A B) :-

P proves (eq B A))

is just a data structure (parameterized by Proof);
it does not “execute” anything, in spite of the fact
that it contains the Prolog connectors :- and pi
(and similar data structures containing comma and
semicolon can also be built). The type of the term
Inference(Proof) is just o, the type of Pro-
log goals; but even so no execution is implied. It is
only when Inference(Proof) appears in “goal
position” that it becomes the current subgoal on the
execution stack. This gives us the freedom to write
lemmas using the same syntax as we use for writing
primitive inference rules.

Dynamically constructed goals. When the lemma
proof-constructor checks the validity of a lemma
by executing the goal Inference(Proof), we
are executing a goal that is built from a run-time-
constructed data structure. This is an important fea-
ture of λProlog for our lemma system.

Dynamically constructed clauses. When, having suc-
cessfully checked the proof of a lemma, the lemma
clause executes

Inference Name => (Rest Name) proves C

it is adding a dynamically constructed clause to the
Prolog database. This feature – distinct from dynam-
ically constructed goals and perhaps especially hard
to implement in a compiled λProlog system – is also
important for our lemma machinery.

Section 5 will show how we can relax the requirements
on dynamically constructed clauses and goals, respec-
tively.

3.2 Valid clauses.

Since the type of Inference(Proof) is o, the
lemma Inference might conceivably contain any Pro-
log clause at all, including those that do input/output.
Such Prolog code cannot lead to unsoundness – if the re-
sulting proof checks, it is still valid. But there are some
contexts where we wish to restrict the kind of program
that can be run inside a proof. For example, in a proof-
carrying code system, the code consumer might not want
the proof to execute Prolog code that accesses private lo-
cal resources.

6

type valid_clause o→o.
valid_clause (pi C) :-

pi X \ valid_clause (C X).
valid_clause (A,B) :-

valid_clause A, valid_clause B.
valid_clause (A :- B) :-

valid_clause A, valid_clause B.
valid_clause (A => B) :-

valid_clause A, valid_clause B.
valid_clause (P proves F).
valid_clause (assume _).

Program 6: Valid clauses.

To limit the kind and amount of execution possible in
the executable part of a lemma, we introduce the notion
of valid clauses (Program 6).

A clause is valid if contains pi, comma, proves,
assume, :-, =>, and nothing else. Of course, a proves
clause contains subexpressions of typeproof andform,
and an assume clause has a subexpression of typeform,
so all the connectives in proofs and formulas are also
permitted. Absent from this list are Prolog input/output
(such as print) and the Prolog semicolon (backtracking
search).

3.3 Doing without lemmas

In principle, we do not need lemmas at all. The lemma

pi P\ pi A\ pi B\
(symm P) proves (eq A B) :-
P proves (eq B A)

can be expressed as a single formula,

forall A\ forall B\ eq B A imp eq A B

This formula can be proved, then cut into the proof of
a theorem using the ordinary cut of sequent calculus.
To make use of the fact requires two forall_l’s and
an imp_l. This approach adds a significant amount of
complexity to proofs, which we wish to avoid.

Soundness and adequacy. One way to extend sound-
ness and adequacy to the system with lemmas is to show
that it is possible to replace any lemma with a cut-in for-
mula in the way we have discussed

lemma
(Define\ pi F\ pi P\ pi B\
Define F P proves B :-
pi D\ assume (eq D F) => P D proves B)

(F\P\ cut refl (P F) (eq F F))
define\

lemma
(Def_l\ pi Name\ pi B\ pi Q\

pi D\ pi F\ pi A\
Def_l Name B Q proves D :-

assume (B Name),
assume (eq Name F),
assume (B F) => Q proves D)

(Name\B\Q\ elam F\
extractGoal (assume (eq Name F))
(cut
(congr (symm initial)

initial B F Name)
Q
(B F)))

def_l\

lemma
(Def_r\ pi Name\ pi B\ pi P\ pi F\

Def_r Name B P proves B Name :-
assume (eq Name F), P proves B F)

(Name\B\P\ elam F\ extract (B Name)
(extractGoal (assume (eq Name F))
(congr initial P B Name F)))

def_r\

Program 7: Machinery for definitions.

4 Definitions

Definitions are another important mechanism for struc-
turing proofs to increase clarity and reduce size. If some
property (of a base-type object, or of a higher-order ob-
ject such as a predicate) can be expressed as a logical for-
mula, then we can make an abbreviation to stand for that
formula.

For example, we can express the fact that f is an asso-
ciative function by the formula

∀X∀Y∀Z. f X (f Y Z) = f (f X Y)Z

or in λProlog notation,

7

forall X\ forall Y\ forall Z\
eq (f X (f Y Z)) (f (f X Y) Z)

We can abstract this formula over f to make a predi-
cate:

F\ forall X\ forall Y\ forall Z\
eq (F X (F Y Z)) (F (F X Y) Z)

A definition is just an association of some name with
this predicate:

eq associative
(F\ (forall X\ forall Y\ forall Z\
eq (F X (F Y Z)) (F (F X Y) Z)))

To use definitions in proofs we need three new proof
rules:

define to bind a (higher-order) formula to a name,

def l expand a definition (or, in sequent logic terms, to
replace a use of the defined name on the left of the
sequent arrow with the formula it stands for), and

def r turn a proof of a formula into a proof of the defi-
nition that stands for it.

All three of these proof-constructors are just lemmas
provable in our system using congruence of equality, as
Program 7 shows.

To check a proof

define Formula (Name\ RestProof(Name))

the system interprets the pi D within the define
lemma to create a new Prolog atom D to stand
for the name of the definition. It then adds
assume(eq D Formula) to the Prolog clause
database. Finally it substitutes D for Name within
RestProof and checks the resulting proof. If there
are occurrences of def_r D or def_l D within
RestProof(D) then they will match the newly added
clause.

To check that

(def_r associative (A\ A f) P)
proves (associative f)

the prover first checks that
(A\ A f)(associative) matches
(associative f) and that

assume (eq associative Body)

is in the assumptions, for some formula, predicate, or
function Body. Then it applies (A\ A f) to Body, ob-
taining the subgoal Body(f), of which P is required to
be a proof.

To check that

def_l associative (A\ A f) P

proves some formula D, the checker first cal-
culates (A\ A f)(associative), that is,
associative f, and checks that

assume(associative f)

is among the assumptions in the Prolog database. Then it
verifies that

assume(eq associative Body)

is in the assumption database for some Body. Finally the
checker introduces

assume(Body f)

into the assumptions and verifies that, under that assump-
tion, Q proves D.

5 Dynamically constructed clauses
and goals

Teyjus λProlog [NM99] restricts the form of clauses dy-
namically introduced using => and :-, of goals with vari-
able head, and of syntactic terms of type o. In this section
we show how these restrictions, and other similar restric-
tions not necessarily imposed by Teyjus, can be evaded.

5.1 Dynamically constructed clauses

Teyjus doesn’t allow programs to construct arbitrary
clauses and add them dynamically—because it would re-
quire invocation of the compiler at runtime—but does
allow at least the dynamic construction and addition of
clauses with a constant at the head. It is still possible
to implement lemmas fairly directly as in Section 3 by
implementing a meta-interpreter. The code for the meta-
interpreter and the modified clause for checking lemmas
is in Program 8.

8

(lemma Inference Proof Rest)
proves Seq :-

pi Name\
(valid_clause (Inference Name),
Inference Proof,
cl (Inference Name) =>

(Rest Name) proves Seq).

backchain G G.
backchain G (pi D) :-

backchain G (D X).
backchain G (A,B) :-

backchain G A; backchain G B.
backchain G (H :- G’) :-

backchain G H, G’.
backchain G (G’ => H) :-

backchain G H, G’.

P proves F :-
cl Cl, backchain (P proves F) Cl, !.

Program 8: A meta-interpreter for dynamic clauses.

As before, the clauses representing lemmas that occur
inside proofs are used in two ways. Lemmas are checked
by presenting them as goals and they are also used dur-
ing the checking of the rest of the proof. The difference
now is that in the latter operation they are not used di-
rectly as clauses by λProlog. Instead, we view them as
terms of type o with no special meaning and write code
to manipulate them ourselves. First, we add a new pred-
icate cl of type o→o used for adding our new clauses
as atomic clauses of λProlog. Note that this predicate is
used in the last line of the modified lemma clause. The
remaining code implements their use in checking proofs
that use the lemmas. The last clause in the figure is a new
clause for the proves predicate which is required for
nodes representing lemma applications. The (cl Cl)
subgoal looks up the lemmas that have been added one at
a time and tries them out via the backchain predicate.
This predicate processes the clauses in a manner similar
to the λProlog language itself.

5.2 Dynamically constructed goals

Note that in the last two clauses for backchain in Pro-
gram 8, the goal G’ which appears as an argument inside

the head of the clause also appears as a goal in the body
of the clause. Teyjus prohibits this kind of goal forma-
tion. To run our lemma system under Teyjus, we have
implemented an interpreter that handles solving of goals
as well as backchaining over clauses.

We implement a predicate solvegoal of type o→o
and invoke (solvegoal G’) instead of simply G’ in
the last clause of backchain in Program 8. We omit the
details here.

5.3 Metalevel formulas as terms

Our system takes advantage of the ability to use metalevel
formulas as terms. For example the symm lemma

(Proof\ pi P\ pi A\ pi B\
(Proof P) proves (eq A B) :-

P proves (eq B A))

uses the data constructors :- and pi which are normally
used to construct λProlog programs. Teyjus prohibits the
operators :- and => as data constructors. This forces us
to write lemmas using some other operator, which is easy
enough for the backchain predicate to interpret, but is
an inconvenience for the user, who must use different syn-
tax in lemmas than in inference rules.

Uninterpretable cut. Although we have shown that it is
possible to interpret dynamically constructed metasyntax
even though it cannot be executed, the special Prolog cut
! operator cannot be implemented this way. We could
certainly have the following clause in the interpreter,

solvegoal ! :- !.

but the behavior would not be as desired. The backtrack-
ing behavior of the goal (G1, !, G2) is different from
that of the goal

solvegoal G1, solvegoal !, solvegoal G2.

The lack of Prolog cut does not affect proofs themselves
– which don’t need it – but it will certainly affect the im-
plementation of theorem provers, which may rely on it
heavily.

9

6 Meta-level types

ML-style prenex polymorphism has been important in the
encoding of our object logic, in particular, in the imple-
mentation of the forall_r and congr rules in Pro-
gram 3 and in implementing lemmas as shown in Pro-
gram 4. In this section we discuss the limitations of
prenex polymorphism for implementing lemmas which
are themselves polymorphic; and we discuss ways to
overcome these limitations.

6.1 Non-prenex polymorphism and lemmas

We can generalize prenex polymorphism by removing the
restriction that all type variables are bound at the outer-
most level and allow such binding to occur anywhere in a
type to obtain the second-order lambda calculus. We start
by making the bindings clear in our current version by
annotating terms with fully explicit bindings and quan-
tification. The result will not be λProlog code, as type
quantification and type binding are not supported in that
language. So we will use the standard λProlog pi and
\ to quantify and abstract term variables; but we’ll use
Π and Λ to quantify and abstract type variables, and use
italics for type arguments and other nonstandard con-
structs.

type congr ΠA. proof→proof→(A→form)→
A→A→proof.

type forall_r ΠA. (A→proof)→proof.

ΠA. pi Q: proof\ pi P: proof\
pi H: A→form\ pi Z: A\ pi X: A\

(congr A Q P H X Z) proves (H X) :-
Q proves (eq A X Z), P proves (H Z).

ΠT. pi Q: T→proof\ pi A: T→form\
(forall_r T Q) proves (forall T A) :-

pi Y:T\ ((Q Y) proves (A Y)).

Every type quantifier is at the outermost level of its clause;
the ML-style prenex polymorphism of λProlog can type-
check this program. However, we run into trouble when
we try to write a polymorphic lemma. The lemma itself is
prenex polymorphic, but the lemma definer is not.

Figure 9 is pseudo-λProlog in which all type quanti-
fiers and type bindings are shown explicitly. The cru-
cial point is that the line marked here contains a lambda-

type lemma ΠA. (A→o)→A→(A→proof)
→proof.

lemma A Inference Proof Rest proves C :-
pi Name:A\
(valid_clause (Inference Name),
Inference Proof,
Inference Name => (Rest Name) proves C).

(lemma
T
(Proof: ΠT. proof→proof \ ← here!

ΠT. pi P:proof\ pi A:T\ pi B:T\
(Proof T P) proves (eq T A B) :-

P proves (eq T B A))
(ΛT. P:proof\ elam A:T\ elam B:T\
extract(eq T A B)
(congr T P refl (eq T A) B A))

symm\

forall_r I:int\ forall_r J:int\
imp_r (symm int initial)

)
proves
forall I\ forall J\
(eq int I J) imp (eq int J I).

Figure 9: Explicitly typed version of Theorem 3.

expression, λProof.body, in which the type of Proof is
ΠT. proof→proof. Requiring a function argument
to be polymorphic is an example of non-prenex polymor-
phism, which is permitted in second-order lambda calcu-
lus but not in an ML-style type system.

Since type inference for such non-prenex polymor-
phism is undecidable, any fully polymorphic language
must have explicit type bindings and explicit type quan-
tification – although it may be possible to do partial type
inference to avoid the need for all type arguments to be
written explicitly [Pfe88].

Why did Theorem 3 work at all, if it uses a polymor-
phic lemma symm? The answer is that symm isn’t really
behaving polymorphically, as we can see from Theorem 6
which attempts to use it at two different types.

This proof fails to check in our implementation, be-
cause the first use of symm unifies its polymorphic type
variable with the type T of x, and then the use of symm at

10

(lemma
(Proof\ pi P\ pi A\ pi B\

(Proof P) proves (eq A B) :-
P proves (eq B A))

(P\ elam A\ elam B\ extract (eq A B)
(congr P refl (eq A) B A))

symm\

forall_r f\ forall_r g\ forall_r x\
imp_r
(imp_r
(and_r
(symm initial)
(symm initial)))

)
proves
forall f\ forall g\ forall x\

(eq f g) imp
(eq (f x) x) imp
((eq g f) and (eq x (f x))).

Theorem 6. ∀ f ,g,x. f = g → f (x) = x → (g = f ∧ x = f (x)).

type T→T fails to match in the proof checker.
Polymorphic definitions (using define) run into the

same problems and also require non-prenex polymor-
phism. Thus prenex polymorphism is sufficient for poly-
morphic inference rules; non-prenex polymorphism is
necessary to directly extend the encoding of our logic to
allow polymorphic lemmas, although one can get around
requiring such an extension to the meta-logic by always
duplicating each lemma at several different types within
the same proof.

Adequacy. Proofs in a nonprenex polymorphic calcu-
lus cannot, in general, be expanded out to monomorphic
proofs. Therefore we cannot prove adequacy with respect
to Church’s higher-order logic. Instead, we can view the
(nonprenex polymorphic) object logic as a sublogic of the
calculus of constructions [CH88], and prove the sound-
ness and adequacy of our system with respect to that logic
(although we have not done such a proof).

6.2 Should your metalanguage be typed?

The prenex-polymorphic λProlog language can represent
only a restricted set of lambda-expressions, sufficient for

polymorphic inference rules but not polymorphic lemmas
and definitions. Perhaps the problem lies in using a stat-
ically typed metalanguage. Lamport and Paulson [LP99]
have argued that types are not necessary to a logical met-
alanguage; the errors that would be caught by a static type
system will always be caught eventually because invalid
theorems simply won’t prove, and sometimes the types
just get in the way.

If we had a completely dynamically typed (or “un-
typed”) version of λProlog, we could represent fully poly-
morphic functions, and our proofs using polymorphic
lemmas would work immediately. Unfortunately, just
as untyped set theory is unsound (with paradoxes about
sets that contain themselves), the untyped version of our
higher-order logic is also unsound. The proof is simple: in
untyped λProlog we could represent the fixed-point func-
tion Y = (F\ (X\ F(X X))(X\ F(X X))) with
the theorem ∀ f .Y f = f (Y f). By applying Y to
(X\ X imp false) we can prove ∃x.x = (x → false)
from which anything can be proved.

Therefore, if we built our system in an untyped log-
ical framework then our checker would have to include
an implementation of static polymorphic typechecking of
object-logic terms. The machinery for typechecking the
object logic – written out as λProlog inference rules –
would be about as large as the proof-checking machin-
ery shown in Figure 3; it is this machinery that we avoid
by using a statically typed metalanguage.

6.3 Alternate encodings

There are also several ways to encode our polymorphic
logic and allow for polymorphic lemmas without going to
the extreme of eliminating types from the meta-language.
One possiblity is to encode object-level types as meta-
level terms. The following encoding of the congr rule
illustrates this approach.

kind tp type.
kind tm type.
type arrow tp→tp→tp.
type exp,form tp.
type eq tp→tm→tm→tm.
type congr tp→proof→proof

→(A→tm)→A→A→proof.

11

congr T Q P H X Z proves H X :-
typecheck X T, typecheck Z T,
Q proves (eq T X Z), P proves (H Z).

This encoding also requires the addition of explicit app
and abs constructors, primitive rules for β- and η-
reduction, and typechecking clauses for terms of types
exp and form, but not proof. To illustrate, the new
constructors and corresponding type checking clauses are
given below.

type app tp → tp → tm → tm → tm.
type lam tp → tp → (tm → tm) → tm.
typecheck (app T1 T2 F X) T2.
typecheck (lam T1 T2 F) (arrow T1 T2).

This encoding loses some economy of expression because
of the extra constructors needed for the encoding, and re-
quires a limited amount of type-checking, though not as
much as would be required in an untyped framework. For
instance, in addition to typechecking subgoals such as the
ones in the congr rule, it must also be verified that all
the terms in a particular sequent to be proved have type
form.

Another alternative is to use a similar encoding in a
metalanguage such as Elf/Twelf [Pfe91, PS99]. The ex-
tra expressiveness of dependent types allows object-level
types to be expressed more directly as meta-level types,
eliminating the need for any typechecking clauses. This
encoding still requires explict constructors for app and
abs as well as primitive rules for βη-reduction. The fol-
lowing Twelf clauses, corresponding to λProlog clauses
above, illustrate the use of dependent types for this kind
of encoding.

tp : type.
tm : tp -> type.
form : tp.
pf : tm form -> type.
arrow : tp→tp→tp.
eq : {T:tp}tm T→tm T→tm form.
congr : {T:tp}{X:tm T}{Z:tm T}

{H:tm T→tm form}
pf (eq T X Z)→pf (H Z)→pf (H X).

6.4 Type abbreviations

Regardless of whether prenex or full polymorphism is
used, a logical framework should allow type abbreviations

to be defined. The theorems we prove in our application
are from the domain of proof-carrying code, where we are
using the same kinds of higher-order types that show up
in traditional denotational semantics. Thus, we may have
the type exp of machine integers; machine memory is a
function exp→exp. In our formulation, an object type
ty is a three-argument predicate taking an allocated
predicate (exp→form), a memory, and an exp.

Therefore, the predicate hastype, which takes an
allocated predicate, a memory, and an exp, has the
following type:

kind exp type.

type store = exp→exp.
type allocated = exp→form.
type ty = allocated→store→exp→form.

type hastype
allocated→store→exp→ty→form.

However, λProlog does not have type abbreviations of
the form type regs = exp→exp, so our program is
full of declarations like this one:

type hastype
(exp→form)→
(exp→exp)→
exp→
((exp→form)→(exp→exp)→exp→form)
→form.

This is rather an inconvenience. ML-style (nongenera-
tive) type abbreviations would be very helpful in a logical
framework.

7 Other issues

Although we are focusing on the interaction of the meta-
level type system with the object logic lemma system,
there are other aspects of meta-language implementation
that are relevant to our needs for proof generation and
proof checking.

Arithmetic. For our application, proof-carrying code,
we wish to prove theorems about machine instructions

12

that add, subtract, and multiply; and about load/store in-
structions that add offsets to registers. Therefore we re-
quire some rudimentary integer arithmetic in our logic.

Some logical frameworks have powerful arithmetic
primitives, such as the ability to solve linear pro-
grams [Nec98] or to handle general arithmetic constraints
[JL87]; some have no arithmetic at all, forcing us to define
integers as sequences of booleans. On the one hand, linear
programming is a powerful and general proof technique,
but we fear that it might increase the complexity of the
trusted computing base. On the other hand, synthesizing
arithmetic from scratch is no picnic. The standard Pro-
log is operator seems a good compromise and has been
adequate for our needs.

Representing proof terms. Parametrizable data struc-
tures with higher-order unification modulo β-equivalence
provide an expressive way of representing formulas, pred-
icates, and proofs. We make heavy use of higher-
order data structures with both direct sharing and shar-
ing modulo β-reduction. The implementation of the meta-
language must preserve this sharing; otherwise our proof
terms will blow up in size.

Any Prolog system implements sharing of terms ob-
tained by copying multiple pointers to the same subterm.
In λProlog, this can be seen as the implementation of
a reduction algorithm described by Wadsworth [Wad71].
But we require even more sharing. The similar terms ob-
tained by applying a λ-term to different arguments should
retain as much sharing as possible. Therefore some
intelligent implementation of higher-order terms within
the meta-language—such as Nadathur’s use of explicit
substitutions [Nad97]—seems essential. Perhaps even a
more sophisticated representation like optimal reductions
[Lam90, AG98] will be useful.

Programming the prover. In this paper, we have con-
centrated on an encoding of the logic used for proof
checking. But of course, we will need to construct proofs,
too, which is sufficently difficult [Göd31] that the full
power of an imperative programming language (such as
λProlog with the cut (!) operator) seems necessary.

Our proof manipulation algorithms often need to walk
over arbitrary proof terms, an operation which is compli-
cated by our use of polymorphism. We illustrate by a very

simple example: a function that tells the arity (number of
function arguments) of an arbitrary value.

type arity A→int→o.
arity F N :- arity (F X) N1, N is N1 + 1.
arity X 0.

The first clause matches only when F is a function; the
second clause matches any value. An ML program of type
α → int would never be able to dispatch on the representa-
tion of its argument like this, because ML polymorphism
is based on the principle of parametricity: the behavior of
a polymorphic ML function is independent of the partic-
ular type at which it is used. This property is essential in
providing data abstraction [Rey83]. Without parametric-
ity, logic programming languages such as λProlog lose the
ability to do data abstraction, but nonparametricity is very
useful to us in manipulating polymorphic proof terms.

8 Comparison of existing logical
framework systems

We have used the Terzo λProlog system to build and
check proofs in a prototype system. There are other im-
plementations of λProlog as well as implementations of
other logical frameworks in which this work can be done.

Terzo [Wic99] is an intepreter for λProlog implemented
in Standard ML. Terzo permits metalevel formulas as
terms, dynamically constructed goals and clauses, non-
parametricity, and prenex polymorphism. Terzo uses
Wadsworth-style representation of lambda expressions,
rather than the potentially more efficient explicit substi-
tutions, so proof checking tends to use a lot of memory.
Terzo’s interpreter uses linear search to find a clause that
matches the current subgoal; this is another source of inef-
ficiency. The current implementation of Terzo is adequate
for prototyping, but might not support large-scale work in
proof-carrying code.

Teyjus [Nad99] is a new system under development at
the University of Chicago that compiles to bytecodes for
a higher-order variant of the Warren Abstract Machine
using explicit substitutions for representation of lambda
terms [Nad97]. It restricts the syntax of terms and the

13

use of dynamic clauses and goals, so we must implement
an interpreter as described in Section 5.

Both Terzo and Teyjus λProlog have prenex polymor-
phism but not full (nonprenex) polymorphism; neither
permits type abbreviations. Both support the Prolog is
for integer arithmetic. Both implementations support ba-
sic Prolog imperative constructs such as the cut ! and in-
put/output, which we have found useful in building a tac-
tical theorem prover.

The fact that Terzo is an interpreter, not a compiler, is
what allows it to so easily handle dynamically constructed
goals and formulas. Teyjus is implemented with many
techniques that should drastically improve its efficiency;
these include better data structures for finding clauses
that match (as manifested in the Warren Abstract Ma-
chine), better representations for higher-order data struc-
tures (i.e., explicit substitutions), and compilation to an
interpreted byte code (instead of interpreting abstract syn-
tax trees). For our application, since we will so frequently
introduce new clauses, an interpretation of AST’s might
be preferable to byte-code compilation. But many of the
techniques used in Teyjus (for efficient clause matching
and for substitution) would be useful even in an inter-
preter.

Elf [Pfe91] is an implementation of LF [HHP93], the
Edinburgh logical framework.

Elf 1.5 has full (nonprenex) statically checked poly-
morphism with explicit type quantification and explicit
type binding. Explicit quantification and binding is neces-
sary because type inference for full polymorphism is un-
decidable. However, Elf contains a partial type inference
algorithm that often permits the programmer to avoid pro-
viding all type arguments of polymorphic functions.

Elf has the nonparametricity we need to implement
meta-operations in the prover.

Elf has no built-in arithmetic at all, which is a severe
handicap.

Twelf is the successor to Elf. Like Elf, it has higher-
order data structures with a static type system, but Twelf
is monomorphic. The lack of even prenex polymorphism
forces us to use the object-types-as-terms representation
described in Section 6.3. Twelf has no imperative con-
structs (such as the Prolog cut) which would allow the

implementation of specialized theorem provers.
Twelf allows definitions, which may help with imple-

menting lemmas and definitions for our logic. For exam-
ple, we can use the definitions of Twelf to name the proof
of the symmetry lemma and add it to the signature of our
core logic and then use it directly in subsequent proofs.

symmx: {X,Z:T} provable (eq Z X)
→provable (eq X Z)

= [X,Z:T][P:provable (eq Z X)]
(eq_congr Z X (eq X) P (refl X)).

Twelf will soon provide a complete theory of the ratio-
nals, implemented using linear programming [Pfe99].

9 Conclusion

The logical frameworks discussed in this paper are
promising vehicles for proof-carrying code, or in general
where it is desired to keep the proof checker as small and
simple as possible. We have proposed a representation
for lemmas and definitions that should help keep proofs
small and well structured, and it appears that each of these
frameworks has features that are useful in implementing,
or implementing efficiently, our machinery. But none of
these systems has all the features we need; it would be
interesting to design and construct a system with the best
features of all of them, or to modify one of the existing
frameworks.

Acknowledgements. We thank Robert Harper, Frank
Pfenning, Carsten Schürmann for advice about encod-
ing polymorphic logics in a monomorphic dependent-type
metalanguage; Doug Howe, David MacQueen, and Jon
Riecke for advice about recursive and nonrecursive defi-
nitions; Robert Harper and Daniel Wang for discussions
about untyped systems; Ed Felten, Neophytos Michael,
Kedar Swadi, and Daniel Wang for providing user feed-
back.

References

[AF99] Andrew W. Appel and Edward W. Felten. Proof-
carrying authentication. Technical report, Princeton
University Dept. of Computer Science, April 1999.

14

[AG98] Andrea Asperti and Stefano Guerrini. The Optimal
Implementation of Functional Programming Lan-
guages. Cambridge University Press, 1998.

[CH88] Thierry Coquand and Gérard Huet. The calcu-
lus of constructions. Information and Computation,
76(2/3):95–120, February/March 1988.

[DM82] Luis Damas and Robin Milner. Principal type-
schemes for functional programs. In Ninth ACM Sym-
posium on Principles of Programming Languages,
pages 207–12, New York, 1982. ACM Press.

[Fel93] Amy Felty. Implementing tactics and tacticals in a
higher-order logic programming language. Journal
of Automated Reasoning, 11(1):43–81, August 1993.

[Göd31] Kurt Gödel. Über formal unentscheidbare Sätze
der Principia Mathematica and verwandter Systeme
I. Monatshefte für Mathematik und Physik, 38:173–
198, 1931.

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A
framework for defining logics. Journal of the ACM,
January 1993. To appear. A preliminary version ap-
peared in Symposium on Logic in Computer Science,
pages 194–204, June 1987.

[JL87] Joxan Jaffar and Jean-Louis Lassez. Constraint
logic programming. In Proceedings of the SIGACT-
SIGPLAN Symposium on Principles of Programming
Languages, pages 111–119. ACM, January 1987.

[Lam90] John Lamping. An algorithm for optimal lambda
calculus reduction. In Seventeenth Annual ACM
Symp. on Principles of Prog. Languages, pages 16–
30. ACM Press, Jan 1990.

[LP99] Leslie Lamport and Lawrence C. Paulson. Should
your specification language be typed? ACM Trans.
on Programming Languages and Systems, to appear,
1999.

[Nad97] Gopalan Nadathur. An explicit substitution
notation in a lambdaProlog implementation.
http://www.cs.uchicago.edu/˜gopalan, December
1997.

[Nad99] Gopalan Nadathur. The Chicago Lambda Prolog sys-
tem. http://www.cs.uchicago.edu/˜gopalan, 1999.

[Nec97] George Necula. Proof-carrying code. In 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 106–119, New York,
January 1997. ACM Press.

[Nec98] George Ciprian Necula. Compiling with Proofs. PhD
thesis, School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA, September 1998.

[NM88] Gopalan Nadathur and Dale Miller. An overview of
λProlog. In K. Bowen and R. Kowalski, editors, Fifth
International Conference and Symposium on Logic
Programming. MIT Press, 1988.

[NM99] Gopalan Nadathur and Dustin. J. Mitchell. System
description: Teyjus — a compiler and abstract ma-
chine bases implementation of λProlog. In The 16th
International Conference on Automated Deduction.
Springer-Verlag, July 1999.

[PE88] Frank Pfenning and Conal Elliot. Higher-order ab-
stract syntax. In Proceedings of the ACM-SIGPLAN
Conference on Programming Language Design and
Implementation, pages 199–208, 1988.

[Pfe88] Frank Pfenning. Partial polymorphic type inference
and higher-order unification. In Proceedings of the
1988 ACM Conference on Lisp and Functional Pro-
gramming, pages 153–163, Snowbird, Utah, July
1988. ACM Press.

[Pfe91] Frank Pfenning. Logic programming in the LF logi-
cal framework. In Gérard Huet and Gordon Plotkin,
editors, Logical Frameworks, pages 149–181. Cam-
bridge University Press, 1991.

[Pfe99] Frank Pfenning. personal communication, March
1999.

[PS99] Frank Pfenning and Carsten Schürmann. System de-
scription: Twelf — a meta-logical framework for de-
ductive systems. In The 16th International Confer-
ence on Automated Deduction. Springer-Verlag, July
1999.

[Rey83] J. C. Reynolds. Types, abstraction, and parametric
polymorphism. In R. E. A. Mason, editor, IFIP Con-
ference, pages 513–24, 1983.

[Wad71] C. P. Wadsworth. Semantics and Pragmatics of the
Lambda Calculus. PhD thesis, Oxford University,
1971.

[Wic99] Philip Wickline. The terzo implementa-
tion of λProlog. http://www.cse.psu.edu/-
∼dale/lProlog/terzo/index.html, 1999.

15

