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Abstract

We present a new module system for Java that improves
upon many of the deficiencies of the Java package system
and gives the programmer more control over dynamic
linking. Our module system provides explicit interfaces,
multiple views of modules based on hierarchical nesting,
and more flexible name-space management than the Java
package system. Relationships between modules are ex-
plicitly specified in module description files. We provide
more control over dynamic linking by allowing import
statements in module description files to require that
imported modules be annotated with certain properties,
which we implement by digital signatures. Our module
system is compatible enough with standard Java that we
have implemented it as a source-to-source and bytecode-
to-bytecode transformation wrapped around a standard
Java compiler, using a standard JVM.

1 Introduction

The traditional method of providing software-based
protection within a program is by using abstract data
types and information hiding. These methods have been
used extensively to make sure that objects can be written
in ways that allow outsiders only carefully controlled
access to their implementation details.

We argue that the building blocks of today’s object-
oriented software systems, however, are not objects or
classes but modules. Modules must provide a framework
for information hiding and should help structure the
interaction between different parts of a program. They
must do this not only to protect programs from non-
malicious mistakes made by other parts of the same
software system, but also to protect the entire software

system from malicious attack.

The Java package system [GJS96] is a module sys-
tem, but its notions of information hiding and access
control leave much to be desired, especially in hostile
environments. Java packages have limited ability to
control access to their member classes, they don’t have
explicit interfaces, and they don’t support multiple views
of modules. These limitations make packages too weak
to be used as an information-hiding mechanism.

An additional problem confronts dynamically linked
programs: a piece of code is designed to behave properly
only when its unresolved symbols are matched against
the particular set of external objects with which the
author intended his module to be linked [Car97]. But
since linking is often not under the control of the
programmer who wrote the module—as in the Java
virtual machine, for example—steps must be taken to
ensure that after linking a program will behave in a
manner consistent with the programmer’s intentions.
Type checking guarantees that the types of symbols
in the interfaces between modules match, but it does
nothing else to ensure that the objects with which
a program links will behave in the manner that the
programmer expects.

Some languages, such as Standard ML [MTH90] with
its associated Compilation Manager [BA99], develop the
idea of module-level information hiding by providing the
facility for structuring modules hierarchically. Lower
levels in a module hierarchy can communicate across
more expressive interfaces; higher levels can enforce
more restrictive ones.

We present an ML-style hierarchical module system
that improves upon Java packages by providing explicit
interfaces, multiple views of modules based on hierarchi-
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Figure 1: The code-generation module from a compiler.

cal nesting, and more flexible name-space management.
Building on this framework, we give the programmer
more control over what external modules his code can
be linked with. We use digital code signing in a
more meaningful way than previous approaches. The
details of the linking process remain abstract to the
programmer, and the linking specifications are simple
and declarative.

Our module system is compatible enough with
standard Java that we have implemented it as a
source-to-source and bytecode-to-bytecode transforma-
tion wrapped around a standard Java compiler and a
standard JVM.

2 An Example

Our module system, like Java packages, groups classes
into larger units. A module in our system consists of
a set of source files and a module description file. The
module description file consists of three parts:

• an export interface;

• a membership list;

• a set of import statements.

The example in Figure 1 shows what the code-
generation module of a compiler might look like.

The export interface of the module is a filter that
allows only select classes to be visible externally. In
this example, the class Codegen is listed in the export
interface, which means that it can be accessed by other
modules, rather than just from the source code of the

current one. Any classes that are not listed in the export
interface remain internal to the module, as if they were
declared package-scope.

The source files that comprise the module are listed
in the membership list. Every class that needs to be
part of the module must be defined in one of these
source files. In this case, the membership list includes
the source file Codegen.java which defines the Codegen

class. Explicitly keeping track of the members of a
module is useful both from a software engineering and a
security standpoint.

The only way to reference classes that are not in the
module is through the import interface, which introduces
new Java identifiers that are bound to external modules,
packages1, or classes. In our example, the Codegen class
needs to reference class InstrList from the module
located in directory ../Assem/. The import interface
therefore introduces the new identifier Assem and binds
it to the required module. All the classes that are
listed in the export interface of this module can now
be referenced by prefixing their names with Assem; e.g.,
Assem.InstrList. The names of the identifiers and
directories listed in the import interface in this example
match only out of convenience; no feature of the module
system compels them to do so.

3 Description

The source files in our module system are standard Java
source files, with a few exceptions:

• package and import declarations are omitted;

• the public and package-scope access modifiers in
class declarations are ignored (but these access
modifiers work as before for field and method
declarations);

• symbols defined in the module description file may
be used in the source code as identifiers;

• references to classes external to the module are al-
lowed only via the identifiers defined in the module
description file.

Java maintains separate name spaces for types, meth-
ods, and variables. The name space of types in which the

1For compatibility with software written in Java that does not
use our module system.
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source files are compiled and executed is composed of all
the classes that are defined within the current module
and all classes imported through the module description
file.

The syntax of module description files is given by this
grammar:

Module | Library
[ classname | classAlias ] +

is

filename *
[ imports

ImportStatement * ]

ImportStatement:
moduleAlias packagename |
moduleAlias location [ property [ , property ]∗] |
classAlias moduleAlias .classname

where classname is the simple name of a Java interface
or class (e.g., Codegen), filename is the name of a Java
source file, location is a relative or absolute pathname
that must end with a path separator (e.g., ../Assem/),
and moduleAlias and classAlias are Java identifiers.

A typical module description file begins with the
the keyword Module. The keyword Library indicates
that the JAR file (containing the compiled classes, the
module description file, and some extra information)
produced by compiling the current module should in-
clude the compiled versions of all of the modules on
which the current one depends.2 Otherwise, it would
contain the compiled versions of only the classes defined
by the current module.

The keyword Module or Library is followed by a list
of exported symbols. Each exported symbol is a class
name, either from the set of locally defined classes or
one that has been imported and aliased in the imports
section of the module description file.

The keyword is concludes the list of exported symbols
and starts the enumeration of the classes that comprise
the module.

The optional imports section can be used to establish
bindings to any external classes that are to be visible
to the source code of the module. Each import state-
ment introduces a new Java identifier (moduleAlias or

2Our module system permits modules to import standard Java
packages. The linkage specifications and security features of our
module system, however, do not apply to them.

classAlias). A moduleAlias can be bound to a package
or module, a classAlias to a particular class or interface
from a module or package that has already been assigned
an alias. Import statements refer to modules by their
locations. A location could be a directory or a URL,
though our system currently supports only directories.
An import statement that binds a moduleAlias to a
directory may optionally require that the module be
annotated with one or more properties (see Section 5).

The aliases introduced by the module description file
can be used in the source code of the module to reference
classes from imported modules. The aliases may not
occur bound in the source code of the module.

Modules compile into JAR files, which can be digitally
signed to ensure that their contents cannot be tampered
with.

4 Fixing Java Packages

Our module system contains a number of features
that are missing or insufficiently developed in the Java
package system. The most important are explicit export
interfaces and membership lists, hierarchical scalability
and multiple interfaces, and convenient name-space
management. These will be useful not only for software
engineering but will also enhance the security of software
systems developed in Java.

Export Interfaces and Membership Lists A well-
established principle of software engineering is that
the interface of a module should be separate from its
implementation. This enables a client of a module to
be written and type-checked against the interface before
the module’s implementation is written, and allows the
module’s implementation to be type-checked against
the same interface to ensure that the implementation
adheres to its own specification. Separating the interface
from the implementation also aids in the construction of
ADTs by making it clear which parts of the ADT form
its public interface and which should remain private.

Some programming languages provide adequate sup-
port for this model of programming. C [KR88] allows
the separation of interfaces from implementations and
even the hiding of representations [Han96], though
without enforcing it as programming discipline. Modula-
3 [Nel91] and Standard ML [AM94] do a good job of
both separating interfaces from implementations and
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supporting ADTs. Java, in its native form, is lacking
in both respects.

Java supports modular programming at both the class
level and the package level. At the class level the
interface facility of the language provides support for
the model of modular programming in which interfaces
are separate from their implementations. It has some
notable deficiencies, such as the inability to describe
constructors or static methods, but, mainly, classes are
too fine-grained a structure to be particularly suitable
as units of modularity for traditional modular program-
ming.

Java uses the package mechanism to provide support
for modularity above the class level. Java packages
do not separate interface from implementation – the
interface is derived implicitly from public keywords
sprinkled throughout the implementation.

Aside from the traditional software engineering goals,
module systems have recently been asked to fulfill addi-
tional roles as well. With the widespread use of mobile
code (e.g., applets, plugins) it has become necessary
to protect systems from damage that malicious mobile
code might inflict, as well as to provide environments
in which mutually untrusted groups of mobile code can
run simultaneously but without danger of unwanted
interaction. Since mobile applications (in Java) typically
consist of several classes, it is natural that they be
organized in modules. Even when this is not done
explicitly, a collection of classes that comprises a mobile
application is likely to share the same set of security
properties and will, from the standpoint of the system
within which it is running, in many respects be treated
as a de facto module. If mobile code systems are to rely
on modules to organize code, it is important for module
systems to assist in providing the security functionality
needed for mobile code, or at the very least not to
interfere with other mechanisms used to provide security.

The Java package system is unsuited for this role. The
combination of implicit interfaces and the lack of explicit
membership lists makes it easy for a malicious attacker
to take advantage of a system for running mobile code
that bases its security facilities on Java packages.

Let us consider an example. Suppose a particular
mobile application (i.e., package) is trusted by the
system on which it is running. The application controls
access to its components by declaring certain sensitive

Module

Graph

Node

NodeList

is

Graph.java

FlowGraph.java

Node.java

NodeList.java

FlowNode.java

GraphUtils.java

Figure 2: The module description file of a submodule of
a register allocator.

classes package-scope and letting clients access them
only through public classes which filter out any unde-
sired uses of the private classes. The deficiencies of the
Java package system make this insecure. An attacker
could write a class that declared itself to be part of the
same package as the trusted application—this is possible
because Java packages don’t have membership lists—
which could then directly access the private classes of the
trusted application, circumventing the filtering provided
by the public classes, and use them to malicious ends.3

Our module system prevents any such security breach
by using module description files which explicitly specify
both the membership of a module and its public interface
by listing all the classes that belong to each.

There are other ways of solving the security problem
posed by this example; for instance, by stack inspection
[WF98]. A disadvantage of most of these schemes is
that they require dynamic run-time checking and that
they are needlessly restrictive. Our scheme, on the other
hand, would prevent a hostile applet such as the one
described from even linking with the trusted application.

The module description file in Figure 2 demonstrates
the use of explicit export interfaces and membership
lists. Only classes defined in the listed source files are
considered to be part of the module. The module defines
several classes, but only Graph, Node, and NodeList are
visible to clients outside the module.

Though a significant improvement from the stand-

3Since separate applets are normally loaded by different class
loaders they reside in different name spaces. For the attack to
work as described, the malicious class would have to be loaded by
the same class loader that loaded the victim application.
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point of information-hiding and program organization,
the interfaces of our module system don’t address the
issue of separate compilation. The interfaces are merely
lists of classes and do not describe their types, so an
implementation cannot be type-checked against them.
They present an improvement over the Java package
system’s implicit interfaces by allowing the programmer
to specify the sets of classes that form a module and its
public interface. We do not see a suitably non-intrusive
way of adding support for separate compilation to Java,
but as our primary goal was to explore the security
aspects of modular programming, we decided against
extending and complicating our module system in an
attempt to solve this problem.

Our approach to organizing modules is similar to,
though simpler than, the mechanism for defining units in
MzScheme [FF98], which does support separate compi-
lation. But whereas the primary motivation in that work
is extensibility and code reuse, we are more concerned
with the security aspects of modular programming.

Hierarchical Scalability and Multiple Interfaces
The basic ways in which our modules support informa-
tion hiding are not dissimilar from those offered by Java
packages. Java’s module interfaces are implicit; ours are
explicit, but our interface descriptions consist only of
classes, and don’t describe public fields and methods of
classes which are also part of a full interface. Though our
module system is not powerful enough to fully describe
the types of modules, it makes it simpler to control and
enforce the visibility of member classes. The interfaces of
both systems have similar access control capabilities: a
class can be either publicly visible or visible only to other
classes inside the same module. The feature that sets our
module system off from Java packages, however, is the
ability to structure modules so as to provide different
views to different clients.

We often come across situations in which we would
like a module to export a richer interface to a few select
modules and a more restrictive one to everyone else.
In a language like Standard ML a module can supply
different export interfaces to different clients. Modula-
3 also has that ability, though module interfaces in
Modula-3 may not overlap in the sets of members they
expose [Nel91]. Java’s methods of controlling accessi-
bility (through making classes and their fields private,
protected, package-scope, or public) aren’t expressive

enough, so Java resorts to using a security manager
to determine at run time whether a client is allowed
to access a particular restricted class. The security
manager suffers from a number of problems, from run-
time overhead to its ability to interact only with the
owner of the virtual machine and not the executing
program. Its complexity and ambiguities have made it
vulnerable to security breaches and made it difficult to
reason about and form security policies [DFWB97].

Suppose that there are to be two views of module M :
view V1 providing access to classes A,B,C, and V2 pro-
viding A,D. In our module system this is accomplished
by making a module M0 containing (and exporting)
A,B,C,D; a module M1 that imports (and re-exports
via aliasing) M0.A,M0.B,M0.C; and a module M2 that
imports and re-exports M0.A,M0.D. There are no
wrapper classes: the class M2.A is the same class as
M1.A.

This is an instance of hierarchical modularity, which
is the idea of grouping several modules and attaching
to each group its own interface. The group is itself
a module whose publicly visible members can be im-
ported by other modules. The members of the group
can communicate among themselves through their own
interfaces, which can be much less restrictive than the
group’s top-level interface. This approach can be applied
repeatedly to create a hierarchy of modules. For a
comprehensive treatment of hierarchical modularity see
Blume and Appel [BA99]. We use a similar approach for
Java.

Our module system supports hierarchical modularity
by allowing modules to explicitly list the sub-modules
on which they depend. Modules can export not only
classes that have been defined in their own source files,
but also classes that have been defined in imported
modules. When its module description file begins with
the keyword Library, compiling a module produces a
JAR file that includes the bytecode of all the imported
modules, which are then kept hidden by the export
interface.

Figure 3 is a module description file of the main mod-
ule of a compiler; it illustrates this approach. The main
module imports all the sub-modules that implement
different parts of the compiler and defines only a few
classes that tie the sub-modules together into a working
system. One of the modules it imports is Codegen, the
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Library

Main

is

Main.java

NullOutputStream.java

imports

Codegen ../Codegen/

RegAlloc ../RegAlloc/

Absyn ../Absyn/

Tree ../Tree/

...

Types ../Types/

Util ../Util/

Figure 3: The module description file of the top-level
module of a compiler.

code-generation module. Codegen defines and exports
the classes Access, AccessList, Codegen, Frame, and
Proc. Though these are visible to the source code of the
top-level module, they are not publicly accessible. Only
the class Main, the top-level interface to the compiler,
is left visible as the export interface of the group. The
hierarchical structure is transparent to a user; he has no
way of knowing that the compiler module is composed
of sub-modules.

Apart from the need for modules to support multiple
interfaces, there is another reason for introducing hierar-
chical modularity. Windows 95 has over 10,000,000 lines
of code [BP98]. If it were structured in just a two-level
framework of classes and modules, either there would
be more than 1,000 modules or each module would have
more than 10,000 lines. This strongly suggests that a
hierarchy of modules is necessary.

Name-Space Management An additional software
engineering benefit is our module system’s flexible and
convenient name-space management scheme. Although
the naming convention used with Java packages suggests
that they support a hierarchical naming scheme, pack-
ages with names like java.awt and java.awt.color

have no more in common than packages with completely
different names.

One of the reasons for grouping code into packages
is to avoid name clashes between classes. But Java
packages are themselves named, so that merely lifts
the problem to the package level. Instead of a name

clash between two classes called Parser, we might
have a clash between two classes called Util.Parser.
The accepted way of solving this problem is to give
packages long, unique names. This isn’t a particularly
appealing solution, however, since it interferes with the
package system’s ability to provide convenient name-
space management; classes must now either be referred
to individually using their cumbersome package name
(e.g., java.awt.image.renderable.RenderableImage)
or be imported en masse using the * notation, which
again introduces the possibility of name clashes because
the names of the imported classes are stripped of their
unique package prefixes.

Our modules, on the other hand, are not named,
so they don’t suffer from this problem. Modules are
assigned names only via import statements of individual
module description files; this type of name-space thin-
ning makes it easy to keep their names short and simple.
In source code the names of external classes are prefixed
with the name of their module, so name clashes between
classes with same names are easily avoided.

The module system we present, of which the name-
space management scheme is a part, is patterned upon
the module system of Standard ML of New Jersey
[BA99]. Transplanting such a module system to Java
required some extensions over the SML-NJ module
system. Java, for example, does not support in its core
language the renaming of imported structures, this task
had to be passed on to the module system. The ability
of SML-NJ to provide fully-defined, rich interfaces is
mostly a feature of the core language, and we could not
reproduce it in our module language without making it
undesirably complex. Our module system consequently
lacks separate compilation and SML’s powerful module-
level ADTs.

Writing secure applications in Java involves limiting
the visibility of classes and preventing run-time inspec-
tion of objects by methods such as cloning, serialization,
and deserialization [MF98b]. Our module system is a
significant improvement over the Java package system
in addressing the first issue.

5 Secure Linking

The behavior of a program fragment depends not only
on its own code but also on the libraries with which
it is linked. Under the static linking model, compiling
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and linking a piece of code generates an executable that
is fully self-contained. The libraries with which the
program is linked, as well as the finished product, are
available for the programmer’s perusal. He therefore has
good reason to expect that the self-contained executable
will behave in the desired manner, even if it is executed
on a machine that has a different software environment
and a different set of libraries.

Today most executables aren’t fully self-contained,
but need to dynamically link with system libraries when
they are executed. This provides us with the flexibility
to update or change parts of all programs on a system
simply by swapping in a new module. Should we swap in
a new I/O library to replace an old one, all executables
that use that library will automatically have access to
the updated code. If the executables were statically
linked, on the other hand, we would have to relink each
of them—inefficient and inconvenient, at best.

Dynamic linking has become very popular, especially
with languages such as Java, which adopt it as a
key feature [LY99]. But despite the proliferation of
dynamic linking, only a few attempts have been made to
extend the model of correctness that holds for statically
linked code [Dea97, Dea99]. Programmers believe that
programs will behave in their intended manner even
though much of the programs’ behavior depends on the
system libraries of foreign and unknown systems.

This belief is based mostly on the existence of stan-
dards that seek to ensure the uniformity of library code
(e.g., all Java virtual machines and their associated
system classes are expected to meet Sun’s standard).
There are very few guarantees, however, about adher-
ence to a standard that are expressed in a way that
programs can understand. The guarantees are largely
implicit and informal or written in English, and can’t be
reasoned about or manipulated at the level of program
code. Additionally, standardization does not apply when
linking with third-party libraries. The only widely
used method of ensuring safe linking, and the method
used by Java, is type-checking the interfaces between
program fragments. Recent research has formally shown
that strongly typed mobile code has desirable security
properties [LR98] and provided ways of ensuring that
type safety is preserved by the linking process [GM99].
Still, though type-checking is useful in ensuring that
programs and libraries at least agree on the types they
are using, it falls far short of guaranteeing that code will

behave in the expected manner.

Stronger guarantees are needed, especially when a sys-
tem must trust the behavior of a particular executable,
such as an applet. Java often uses code signing for such
purposes [PD98, MF98a]. But what is the meaning
of a signature on an applet? In Sun’s system, from
the signature of code C by key KA we can reasonably
conclude that A signed C, and nothing more. We don’t
know what properties A is claiming about C. However,
code signing does provide a way to identify the author
of a piece of code, and thus to attribute blame after the
fact.

While providing some protection to the virtual ma-
chine against code that runs on it, code signing provides
no guarantees to code about the virtual machine, nor
to different code fragments about each other. Ironically,
current code signing practices allow a programmer to
be held responsible for the behavior of his code, while
not providing him with the means of ensuring that the
system on which his code is running is itself behaving in
the expected manner.

We allow the programmer to require certain properties
of the modules on which his code depends. If the
required properties are not present, our system will
not allow the program to link or execute. If they are
present, the programmer can more realistically expect
that his program, once linked, will behave in the desired
manner. Furthermore, the programmer can annotate his
own module with certain guarantees which are held to be
valid once linking has succeeded. These annotations are
added to a module, and digitally signed, after it has been
compiled. We thus establish a system in which a module
can assert that if the modules it imports can guarantee
certain behavioral properties, then it, too, will behave
in a certain manner.

The properties our system supports are keywords
that represent statements made by an author about the
behavior of his code. Our property-annotation frame-
work does not attempt to relate the claimed properties
to actual program behavior, nor does it attempt to
classify properties or regulate their assignment. What
we provide is a mechanism which allows statements
about program behavior to be mechanically attached to
modules and allows intermodule linking to be contingent
upon the presence of such statements.

A programmer, for example, may want a com-
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piler that he is writing to have the property
DoesNotPopUpAnyMisleadingDialogBoxes. His com-
piler, however, uses several third-party modules, one of
which is the parser module. The programmer does not
have access to the source code of the parser; even if
observational evidence were to suggest that the parser
behaves in the desired manner, there is no guarantee
that the compiler might not eventually be executed on
a host where it would link with a different third-party
parser which might exhibit different behavior.

The module description file of the top-level module of
his compiler (Figure 4) can specify that it should link
with the parser only if the parser is also annotated with
the DoesNotPopUpAnyMisleadingDialogBoxes prop-
erty. If the parsing module is not annotated with that
property, the compiler will not link or execute. Now
it is reasonable to annotate the top-level module’s JAR
file with the DoesNotPopUpAnyMisleadingDialogBoxes
property.

Our property tool will take a JAR file, property
name, and private key. It will cryptographically hash
the < byte code, module description, property name >,
sign with the key, and add this certificate to the JAR
file. Thus, the JAR can accumulate certificates of the
form “key K says the module has property P .”

A hierarchical module system is integral to our scheme
of attaching properties to modules. Structuring modules
in dependency graphs makes it possible for a top-level
module to unambiguously declare which properties it
requires of its subordinate modules in order to be able
to provide certain properties of its own. A hierarchically
built system also makes it much easier to reason about
the properties of modules by allowing the problem to
be subdivided into a number of smaller ones. Explicit
module descriptions are important to this scheme be-
cause they provide a centralized framework for requiring
subordinate modules to hold certain properties.

Our property and signature system is a small step in
the right direction; but we imagine that one might trust
certain signers for some properties and not others. We
are working on a more powerful calculus of signers and
properties.

Our use of explicit import interfaces restricts the
flexibility of dynamic loading. In Java it is possible,
at run time, to load classes whose names are unknown
at compile time. Explicit import interfaces require

Module

Main

is

Main.java

NullOutputStream.java

imports

...

Parse ../Parse/ DoesNotPopUpAnyMisleadingDialogBoxes

...

Figure 4: The module description file of the top-level
module of a compiler, annotated with additional linkage
directives.

the programmer to specify, prior to compilation, the
locations of the modules on which his code depends.
Though class names do not have to be specified in the
import interface, the locations of the modules, at least,
need to be known at compile time, which precludes some
interesting uses of dynamic loading.

6 Implementation

We have implemented a prototype that illustrates the
features of our module system. Our prototype can be
used with existing Java compilers and virtual machines.

Our modules can be translated into Java packages.
Some of the features of our module system, however—
in particular its ability to place various constraints on
linking—cannot be expressed just using Java bytecode.
Because of this, our prototype implementation needs to
provide additional features both to the compiler and to
the virtual machine.

Compilation The compilation phase of our imple-
mentation is a wrapper around a standard Java compiler
that consists of a preprocessing and a postprocessing
step.

The job of the preprocessing phase (Figure 5, trans-
form A) is to translate the source code used in our
module system into equivalent standard Java source
code. The first step of this process is to represent our
modules as Java packages. Each module is assigned an
artificially generated package name, mapping the hierar-
chical set of modules into a flat name space of packages.
We rely on the assignment of artificial package names
to avoid name clashes. In addition to assigning each
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Figure 5: The implementation of our system.

module a package name and adding appropriate package
declarations to source files, this step must also translate
class references made through identifiers introduced in
the module description file (henceforth called symbolic
names) into class references that can be interpreted
by a Java compiler (henceforth called actual names).
Because identifiers in Java are classified into several
name spaces, and to detect and avoid conflicts with
locally bound identifiers, we have to parse the source
code to determine which tokens need to be changed.
As qualified names from the original source code are
resolved by replacing identifiers introduced in module
description files with the package names of the modules
they represent, our compilation manager ensures that
the restrictions imposed by export interfaces and digital
signature requirements are obeyed.

At this point our modules have been translated into
ordinary Java source code and can be compiled with
any standard Java compiler, without the loss of any
functionality added by our module system.

The compilation phase also has a post-compilation
step (Figure 5, transform B). Our modules can export
symbols that have been defined in imported modules, so
it is possible that several module description files need
to be traversed to discover to which class a qualified
identifier is pointing. This resolved name is the one
used when the code is being compiled. Consequently,
the bytecode of one module can depend on the source
code of several; from a viewpoint that favors separate
compilation, this is undesirable.

To allow separate compilation of modules, we replace
the resolved references in the compiled bytecode with
their symbolic names. Thus all external references
are again made only through identifiers defined in the
module description files, releasing each compiled module
from unwanted dependencies on the source code of
others.

module A module B module C

...

Util = B

...

Foo = C.Bar

... ...

... ...




Figure 6: Resolving class references.

There are cases, unfortunately, in which it is difficult
to restore a resolved identifier to its original name. A
particular module description file, for example, might
bind two different identifiers to the same class. Pre-
processing would replace the two different identifiers
with the same new one. After compilation, we might
not be able to discover which of the two is which. In
this situation our compilation manager arbitrarily picks
one and adds an annotation to the module’s JAR file.
This annotation can later be used to check whether the
bindings that were used at compile time are still valid,
and otherwise warn that recompilation is necessary.

Figure 6 shows an example of name rewriting. To re-
solve the reference to Util.Foo, module A first consults
its module description file to discover that the identifier
Util is bound to module B. From module B’s description
file we learn that class Foo is reexported rather than
defined in B, and that the real name of the class is
C.Bar. The reference to Util.Foo is replaced by a
reference to C.Bar. But since module C is part of the
hidden implementation of module B, it is possible that
it may change after module A has been compiled. After
compiling module A, therefore, the rewritten reference
is returned to its original name, Util.Foo.
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Execution in the Virtual Machine Dynamic link-
ing in the Java virtual machine is managed by class
loaders. Class loaders were intended to be extensible to
allow the virtual machine to load bytecode from sources
other than the local file system. They can also be
modified, however, to support arbitrary mappings from
class names to objects, or even modify the bytecode of
the classes they load. These features makes them useful
for adding advanced language features to Java without
modifying the virtual machine. [AFM97]

Each module description file sets up a mapping from
identifiers to the classes they represent. The same
identifier can therefore represent different classes in
different modules. A request to load a certain class,
too, may be allowed or denied depending on whether
the class is signed by the digital signature required by
the calling module. To deal with this issue, we have
to provide the Java virtual machine with the ability to
answer loadClass requests differently depending on the
module from which they originate, which it otherwise
has no way of doing.

Since loadClass requests are handled by the class
loader that loaded the class that is making the call,
our solution is to extend the ClassLoader class with
the functionality we desire. We instantiate a new copy
of this class loader for every module that is loaded
by the virtual machine. Our class loader uses the
module description file to set up the appropriate class
environment and control linking in the manner specified
by export filters and digital signature requirements.
After the virtual machine is initialized, a wrapper class
loads our customized class loader, which then loads the
modules to be executed.

Each of our class loaders has direct access only to
its own module description file. When a class requests
that a class from a different module be fetched, the
requestor’s class loader passes the request to the appro-
priate module’s class loader. That class loader, in turn,
verifies whether the request can be fulfilled vis-à-vis that
module’s export interface and property requirements.
If the requested class is merely being reexported, the
request will be passed on to the next class loader in the
chain; otherwise, the requested class will be returned.

Name Hacking The process we described for run-
ning code written using our module system isn’t quite
complete. The ability to customize class loaders can

easily be misused. If a class loader, for example, was
asked twice to fetch the same class and returned two
different objects, the type system would be broken
and the security of the system would be compromised
[Dea97, Dea99]. Newer Java virtual machines have
instituted stricter name-space management policies to
guard against such breaches. [LB98]

The full name of every compiled class is encoded in
its bytecode. Among other restrictions, new virtual
machines verifiy that the encoded name of a class
returned in response to a loadClass request matches
the name with which loadClass was invoked. Class
names in our module system contain identifiers defined
in module description files; these names may bear little
relation to the actual package names assigned to the
classes they reference. With the new security checks, it is
no longer possible for our class loader to naively redirect
loadClass requests to classes whose names don’t match
the requested ones.

Our solution is to rewrite the bytecode of com-
piled modules, replacing symbolic names (those defined
through module description files) with actual ones.
This is done while a class is being loaded into the
virtual machine, before linking or bytecode verification
(Figure 5, transform C). The procedure for resolving
symbolic names is virtually identical to the one we use
during preprocessing when source code is rewritten.

Since modules may reexport classes, resolving sym-
bolic names requires tracing through module description
files to locate the module in which a given class is
defined. This is necessary in order to find which package
name has been assigned to the module to which that
class belongs. An unfortunate consequence, therefore,
of the bytecode rewriting is a slight restriction on the
laziness of dynamic linking. A Java virtual machine
might delay the loading and linking of a referenced class
until the point of execution at which the class is actually
needed. Our rewriting technique, on the other hand,
resolves all references at load time, so at that point it
must access the module description files of all referenced
modules. Since it doesn’t need to actually load classes
from the referenced modules, the chain of modules that
need to be accessed for a particular reference to be
resolved ends as soon as the module that defines the
referenced class has been found.

An alternative, simpler implementation might involve
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changing the virtual machine to remove the security
checks that make rewriting bytecode necessary. Care
would have to be taken, however, to prevent the security
problems against which these measures guard. Our
approach doesn’t involve modifying the Java virtual
machine itself, which makes it portable across different
implementations.

The Reflection API Unsurprisingly, our system in-
teracts badly with Java’s reflection API [Mic98]. The
purpose of the reflection API, including the getName

and forNamemethods of java.lang.Class, is to discern
run-time information about classes that may not be
available at compile time. Regardless of our module
system, it is dubious whether such a facility should be
available for use by untrusted applets. Though it is often
convenient for the programmer, use of the reflection
API undermines the goals of programming with ADTs,
revealing information that may be purposefully hidden
by subclassing and the use of Java interfaces.

The security features of class loaders require that the
implementation of our naming scheme differ consider-
ably from the view presented to the programmer. This
effectively renders the forName and getName methods
useless. The former is used to create new instances of
classes with a given name. But the name a programmer
would use in source code has been changed during
compilation and kept hidden. Even though a class loader
could resolve the requested name to its new version,
the security restrictions placed on class loaders would
prevent it from returning the correct object. getName,
on the other hand, would reveal the internal names of
objects. Classes that form the interface of a module may
be either local or imported from elsewhere; revealing one
or the other would be a breach of security.

Redirecting method calls from forName, getName,
and other methods of the reflection API to specialized
functions that would prevent certain information from
being revealed might restore most of the functionality
of the API. It would require extensive bookkeeping
and indirection, however, and would not be completely
transparent to the user. For the time being we have
decided to set aside concerns about reflection.

7 Conclusions and Future Work

Our module system is based on explicit module de-
scriptions. Membership lists and explicit export in-
terfaces protect module integrity. Unnamed modules
and declarative import statements provide simple and
convenient name-space management. Variable levels of
access to modules are supported by arranging modules in
hierarchies. Increased control over the linking process,
implemented by allowing import statements to require
modules to have specific properties, helps ensure correct
program behavior in the presence of dynamic linking.

Any attempt to develop a secure programming en-
vironment is likely to be based on a module system.
In the case of Java, a module system should provide
modularity at the level of Java packages, but should
also provide explicit interfaces, which Java packages do
not. Explicit module descriptions seem to be a very
useful feature, both for providing an increased level of
security and for simplifying the task of designing and
understanding modular software systems. Class loaders
play a key role in security; our module system uses
them in a principled and declarative way to enforce
information-hiding. We have demonstrated that the
Java virtual machine is sufficiently powerful to support
such an advanced module without modification.

The reflection API is a serious obstacle to sophisti-
cated module systems that support nesting and reex-
porting and have opaque interfaces. Although there may
be ways to limit the impact of the reflection API on
the security of such systems, the purpose of the API is
contradictory to the goals of using ADTs, and it would
be preferable if its necessary features were provided in a
different way.

Dynamic linking is an area that deserves more study.
It is important to provide guarantees—ones that pro-
grams can reason about—about the behavior of dynam-
ically linked libraries. Only thus can we trust programs
that rely on them to behave in their intended manner.
Our module system provides a good framework for
annotating code with such guarantees. We demonstrate
a method for allowing interrelated modules to require
certain rudimentary properties of each other. We plan
to continue work on making these linking requirements
more expressive and giving modules even more control
over the linking process.
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