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Abstract

We define a Concurrent Separation Logic with first-class locks and

threads for the C language, and prove its soundness in Coq with re-

spect to a compilable operataional semantics.

We define the language Concurrent C minor, an extension of the

C minor language of Leroy. C minor was designed as the highest-level

intermediate language in the CompCert certified ANSI C compiler, and

we add to it lock, unlock, and fork statements to make Concurrent C

minor, giving it a standard Pthreads style of concurrency. We define a

Concurrent Separation Logic for Concurrent C minor, which extends

the original Concurrent Separation Logic of O’Hearn to handle first-

class locks and threads.

We then prove the soundness of the logic with respect to the opera-

tional semantics of the language. First, we define an erased concurrent

operational semantics for Concurrent C minor that is a reasonable ab-

straction for concurrent execution on a real machine. Second, we define

a new modal substructural logic which we use as the model for as-

sertions in Concurrent Separation Logic. Third, we define an unerased
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concurrent operational semantics for Concurrent C minor that keeps

track of additional bookkeeping to demonstrate the programs are well-

behaved. Fourth, we define an oracle semantics that is a thread-local se-

mantics of Concurrent C minor; this allows us to separate the metathe-

ory of sequential and concurrent computation from each other. Fifth, we

give a new semantics to the Hoare tuple using our modal substructural

logic that connects Concurrent Separation Logic to our oracle semantics

and then connect our oracle semantics to our concurrent semantics.

Our soundness proofs are largely implemented in 60,000 lines of

Coq; our modular proof design allows us to largely reuse a significant

portion of the soundness proofs of the sequential subset of Concurrent

Separation Logic developed by Appel and Blazy. Our ability to reuse

those proofs gives us confidence that we will be able to modify the

CompCert compiler proofs to handle Concurrent C minor in the future.
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7.1 Näıve assertion model . . . . . . . . . . . . . . . . . . . . . 

7.2 Sketch of substructural modal model . . . . . . . . . . . . . 

7.3 Increasing approximation . . . . . . . . . . . . . . . . . . . . 

7.4 Interface to substructural modal model . . . . . . . . . . . . 

7.5 Models of logical assertions . . . . . . . . . . . . . . . . . . 

7.6 Models of modal assertions . . . . . . . . . . . . . . . . . . . 

7.7 Models of substructural assertions . . . . . . . . . . . . . . . 

7.8 Rules for reasoning in the modal substructural logic . . . . . 

7.9 Models of Concurrent Separation Logic assertions . . . . . . 

7.10 Logical implication in the logic . . . . . . . . . . . . . . . . 

7.11 Extensionality, validity, precision, and tightness . . . . . . . 

7.12 Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

8.1 Simplified subset of sequential step relation . . . . . . . . . 

8.2 The consult relation of the sequential submachine . . . . . . 

8.3 Sequential steps in the concurrent step relation . . . . . . . 

xiii



8.4 Fully concurrent steps in the concurrent step relation . . . . 

9.1 The oracle allows for reasoning after a concurrent instruction 

9.2 Oracular projection . . . . . . . . . . . . . . . . . . . . . . . 

9.3 Running the other threads . . . . . . . . . . . . . . . . . . . 

9.4 The oracular consult relation . . . . . . . . . . . . . . . . . . 

10.1 Oracular safety . . . . . . . . . . . . . . . . . . . . . . . . . 
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Chapter 1

Introduction

1.1 Concurrency and Multiple Cores

Since the 1960s, programmers have utilized concurrency to make their

programs faster and to better interact with the external world; however,

concurrent programs have been notoriously difficult to develop. In the

1970s, Dijkstra and Hoare proposed constructs such as semaphores to

handle the resulting difficulties in [Dij68, Hoa74, Hoa78], but even with

them writing concurrent software was extremely time-consuming and

error-prone. Therefore people avoided writing concurrent programs as

long as computer manufacturers were able to relentlessly crank out

chips that could run sequential code faster and faster.

Unfortunately, starting in 2003, manufacturers found it difficult to

continue to increase the clock speed, due to factors such as heat re-

tention. To continue to improve the processing power of their chips,


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manufacturers began to incorporate multiple CPU cores into a single

chip. Simply stated, the idea was that a two-core chip would be able

to execute as many instructions as a single-core chip executing at twice

the clock speed. Since 2003 it appears to be easier to increase the num-

ber of cores than to increase the clock speed, multi-core processors are

expected to be pervasive in the future.

However, there are significant problems involved in using a multi-

core system as opposed to a single-core one. First, even in the best of

cases, there is overhead for communication between the multiple cores,

so that in fact, even under ideal conditions, a two-core system will

perform worse than a single-core system with twice the clock speed.

This problem, while annoying, is not fatal. A more severe problem is

that to really take advantage of multiple cores, one must write highly

concurrent programs.

Since historically programmers avoided concurrency, when computer

manufacturers began to incorporate dual-core processors into their con-

sumer product lines in 2005, the second core was noticably underuti-

lized. Manufacturers’ plans to offer chips with 256 or more cores seemed

unjustified, given the low utilization of the multiple cores. For any large

number of cores to be useful, programs will have to utilize substantially

more concurrency.

What makes concurrent programs so hard to develop is that the

threads of control interact with each other in unpredictable ways. This

behavior makes it very hard for programmers to reason about how the
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program will behave. Moreover, testing is very difficult, since typically

concurrency bugs are not reproduceable due to the interaction with the

scheduler, which is usually nondeterministic.

The first techniques to handle the difficulties of concurrent pro-

gramming were various programming disciplines. The earliest of these

were monitors, introduced by Hoare [Hoa74] and Hansen [Han93], and

semaphores, introduced by Dijkstra [Dij68]. Other common program-

ming disciplines and techniques include condition variables, channels,

CSP, message passing, RPC, rendezvous, etc. These methods are good

in practice as long as the discipline is maintained, but in large software

systems, maintained over long periods by many different people, they

tend to break down.

1.2 Formal Methods

One family of techniques to help programmers write better quality soft-

ware is formal methods, such as model checking, programming lan-

guages, type theories, and verification. As compared to testing, these

methods require more theoretical and engineering machinery, but they

can provide stronger guarantees, ensuring that programs behave prop-

erly even in tricky corner cases.

Each method has strengths and weaknesses. A typical model-checking

method enumerates all possible scenirios under a certain size to produce

a bound on program behavior. To reach a conclusion in a reasonable
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amount of time, a model-checker makes various kinds of simplifying

assumptions that are unsound in certain, weakening the guarantees

provided. New programming languages can be devised to help pro-

grammers write better code, but generally speaking, programmers are

very reluctant to adopt new languages, or even new features in old ones.

Type systems, in which the types produce a conservative approxima-

tion for the result of the program, can have the major advantage of

being almost entirely automated (that is, the computer can apply the

type system without significant help from the programmer). However,

type systems seldom provide the strongest kinds of guarantees. Finally,

verification, a technique whose end goal is a formal mathematical proof

that a program meets its specification, can produce the most expres-

sive and powerful guarantees about system behavior, but can be very

labor-intensive to do.

1.2.1 By Hand or Machine

Reasoning about real code is very complex, frequently requiring dozens

of special cases, exceptions, and assumptions to guarantee the desired

behavior. Even for purely sequential programs, to apply a given formal

method to a computer system can be quite difficult. There are two basic

strategies for doing so.

The first strategy is to abstract the “core” of the system, such as the

key algorithm, and produce a proof by hand that it meets its specifica-

tion. If the core is not too complex, then this proof will be trustworthy.
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One obvious problem is that features in the core can interact with other

“noncore” features in surprising ways, meaning that properties proven

to hold for the core might not hold for the whole system. This is a

serious concern, although generally people are good at understanding

which parts of the system are vital to the proof of the desired prop-

erty. The real challange lies in implementing the system. Naturally,

one takes as much care as possible to implement it correctly and avoid

bugs. Unfortunately, if the system is of any significant size, it will have

many bugs; one is hopeful, however, that they will not be too numer-

ous or serious, and with careful testing one can have a program that is

well-behaved most of the time.

The second strategy is to try to prove something about the actual

code of the computer system. The challange is then to deal with all

of the special cases, exceptions, assumptions, and other complexities

involved in real code. The details can quickly become overwhelming

if one is writing traditional pen-and-paper proofs. There is another

possibility, however, which is to use a computer to help with the process.

Although there are many automated theorem checkers in existence,

including Coq, Isabelle/HOL, and Twelf, using a computer to develop

and check proofs is not easy. Generally speaking, a computer is better

at proof checking than proof development (e.g., type checking is simpler

than type inference). Some formal methods, such as the simpler type

systems or model checking, have very significant automation possibil-

ities, where the computer can do most or even all of the work. Other
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methods, such as verification, tend to only use automation to check

proofs; fully automatic generation of verification proofs tends to be too

difficult.

The advantage of using a computer to check that a property has

been demonstrated is that computers are very good at handling the

bulk of detail associated with real code, so that one can apply formal

techniques to the actual program and still be confident about the re-

sult. The disadvantage of automated techniques is that the parts that

require human input can be very laborious. Indeed, the endeavor be-

comes similar to building a large software project, and quite unsupris-

ingly “proof engineering” becomes very important. For example, good

machine-checked proofs, like good software, should be modular so that

parts can be re-used in other systems.

1.2.2 Source vs. Target

One major problem for formal methods is that the analysis tends to be

done on source code, whereas the code that actually runs on the chip

is machine code. In between sits the compiler, a very large software

engineering artifiact. Any bug in the compiler could cause the machine

code to behave in a different way from the source code, invalidating

any property guaranteed. Since compilers can easily be hundreds of

thousands of lines long, most have many bugs, even when they have

been extensively tested.

Until a few years ago, this problem was considered so difficult that
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no-one knew how to handle it satisfactorially. One technique that works

in limited cases is to analyze the machine code directly. The problem has

been that most real systems are not developed in assembly language,

making those techniques useful only in rare circumstances. However,

in recent years people have been improving compiler technology, for

example with Proof-Carrying Code (PCC), developed in [Nec97], in

the hope of addressing this issue.

1.2.3 Certified Compilers, CompCert, and

Sequential Separation Logic

Most proof-carrying code systems do not guarantee the correct behav-

ior of the compiled code, but instead guarantee that certain incorrect

behaviors can never occur. That is, they produced a safety guarantee,

not a correctness guarantee. However, in order to soundly apply more

general kinds of reasoning at the source level to code at the machine

level, a correctness guarantee—that is, a guarantee that source code was

correctly translated into machine code by the compiler—was required.

Compilers with this guarantee are called certified. With certified com-

pilers it becomes feasible to connect correctness proofs at the source

language to guarantees about how the hardware will actually behave

when running the compiled code.

One of the first certified optimizing compilers from a realistic source

language to a realistic assembly language was the CompCert compiler,

developed by Leroy in [Ler06], which translates a language called C
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minor to the Power PC. CompCert has a correctness proof, machine-

checked in Coq, that proves that the compiler translates programs cor-

rectly.

Leroy found that using operational semantics was the most con-

vienent for proving his compiler correct. However, when verifying a

concrete program, it is frequently more convienent to use an axiomatic

semantics, such as Hoare logic [Hoa69]. Separation logic is a variant

of Hoare logic that includes elegant rules for reasoning about pointers

[Rey02]. Since the focus of this thesis is on concurrency, we will refer

to a separation logic for a sequential language as seqential separation

logic (SSL).

Appel and Blazy developed a version of SSL for C minor, and con-

structed a machine-checked soundness proof for it in Coq [AB07]. A

soundness proof for an axiomatic semantics demonstrates the connec-

tion between that axiomatic semantics and the underlying operational

semantics. In other words, if one has a program verified with SSL to

have certain properties, the soundness proof demonstates that the pro-

gram actually has those properties. Depending on the complexities of

the desired axiomatic semantics, and the underlying operational seman-

tics, it can be quite difficult to establish soundness.

The result is an end-to-end system: one can take a source program,

prove properties about it using the axiomatic semantics, and then have

a guarantee about how the actual machine code will execute. As sig-

nificant as systems such as CompCert have been, however, one major
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shortcoming has been the lack of support for concurrency—all certi-

fied compilers in existence have focused on purely sequential settings

[LPP05, Ler06, Moo89].

1.2.4 Formal Methods for Concurrency

As previously discussed, verification even in a purely sequential set-

ting is difficult enough; adding in concurrent language features usu-

ally requires significantly more effort on the part of the verifier. Clas-

sic techniques have required verifiers to reason about the state of all

the other threads at each program point, which can easily require an

exponentially-sized proof.

The proof becomes unmanageably large beacause in a concurrent

program different sections of the code interact (typically via shared

memory and synchronization operations) despite the lack of explicit

connectives such as function calls. This kind of global, whole-program

behavior has made it very difficult to reason locally or to use simpler,

sequential-style techniques. This is particularly frusterating, since real

concurrent systems tend to have large portions of purely sequential

code, where the interleaving should not have any important effect on

the result. Those sequential portions are often difficult to reason about

on their own, and it is painful to be forced to reason simultaneously

about some complex sequential feature such as function call and some

concurrent feature such as context switching.

In fact, the typical situation is that there is an existing sequen-
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tial system, comprising both implementation (code) and verification

(proof), and the desire is to add concurrency to that system. However,

not only does one have to modify the code to take advantage of con-

currency, but also one must modify the proofs, even for those parts of

the code that are unchanged and that “should” not be interacting with

the concurrency additions.

1.2.5 Concurrent Separation Logic

Recently, O’Hearn developed Concurrent Separation Logic (CSL), a

Hoare-style logic designed to verify concurrent programs [O’H07]. CSL

has two major properties that help solve many of the problems typi-

cally associated with the verification of concurrent programs. First, it

modularly isolates the different threads of execution from each other,

so that when when reasoning about a given thread, one does not have

to consider the states of all the other threads, i.e., one can use thread-

local reasoning. Second, the rules of CSL are a proper superset of the

rules of SSL. Thus if one has laboriously verified a program with SSL

and wishes to add concurrency, all of the parts of the code that have

not changed will have exactly the same verification.

As groundbreaking as CSL was, as originally proposed it had sev-

eral drawbacks. First, some of the language features supported were

nonstandard, e.g., for example the treatment of shared local variables.

Second, and more worryingly, O’Hearn did not have a soundness proof.

The lack of standard language features prevents programming with
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standard alogrithms or techniques. Some of these ommissions, such as

the lack of functions, were done simply to make an attempt at a sound-

ness proof simpler (that is, functions were not considered to be part of

the “core” of the problem1). Other features, such as allowing for the

dynamic creation and destruction of locks, were missing because it was

quite unclear how to prove them sound.

Even with significant simplifications, it was quite difficult to prove

CSL sound. Due to the complex nature of concurrency and to a number

of subtle issues involving resource invariants, the soundness of CSL was

doubted for some time until Brookes developed a soundness proof for

it [Bro07]2.

1.3 The Goal of Oracle Semantics

The goal of this thesis is to support the verification of concurrent pro-

grams in a way that is natural to the end-user and allows for substan-

tial re-use of existing sequential code and associated machine-checked

proofs; using this semantics we prove the soundness in Coq of a new

concurrent separation logic with first-class locks and threads. The key

technical advance is to isolate proofs about sequential language features

and proofs about concurrent language features from each other. This

1In the case of first-order functions, it is true that they are noncore; first-class
functions, however, are another story.

2“At that time I had no model and was scared about soundness. Then John
Reynolds showed surprising subtleties regarding soundness, and we were facing an
extremely difficult problem in the semantics of concurrency. We needed expert help,
and it arrived in Steve Brookes who rode in and saved the day (and the whole
approach).” [O’H]
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substantially simplifies the reasoning for each part, since when reason-

ing about complex sequential features one does not have to worry about

the issues typically associated with concurrency, and when reasoning

about complex concurrent features one does not have to worry about

all of the messy details involved in pure sequential control flow. This

isolation also makes the resulting system more robust, since changes to

one part of the system do not require changes in the other.

The key technical advances are

1. A powerful new concurrent language, Concurrent C minor, which

is related to to a certified compiler.

2. A new Concurrent Separation Logic with first-class locks and

functions.

3. A series of modules and other engineering developments to add

concurrency to a certified compiler.

4. A new modal substructural logic, used for the assertions of CSL.

5. A novel concurrent operational semantics that uses the logic in

its operational semantics to guarantee lock invariants are obeyed.

6. A new pseudosequential oracle semantics that gives a sequential

view of concurrent computation.

7. A new Hoare tuple that allows for assertions to be directly em-

bedded into syntax.
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8. A soundness proof of CSL with respect to the concurrent opera-

tional semantics.

Note about proofs and Coq. This thesis is about two related

but distinct developments. First, it is about a series of mathematical

ideas developed to prove a soundness result. Second, it is about the

engineering work required to make a 60,000 line soundness proof check

in the Coq theorem prover. From time to time, the two developments

have influenced each other, sometimes leading to new mathematics or

better engineering. When the presentation here diverges from the Coq

development there are two likely causes. First, in general our mathe-

matical understanding is ahead of our Coq implementation; therefore,

from time to time in the text we present a cleaner or more elegant def-

inition than the one in the Coq proof. Second, we frequently simplify

some of the significant complexities from the Coq definitions so that

the kernel of the mathematical idea is clear. When we diverge from the

Coq implementation we try to mention this fact in the text.

1.4 Structure of Thesis

First, since the verification of concurrent programs is a fairly exten-

sive goal, a major part of the research is learning about existing systems

that support parts of that goal, so that they can be connected together.

Since the ideal end-goal is to have guarantees about the machine code

that actually executes, we develop our system in Coq for the C minor
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language, to enable a connection to Leroy’s CompCert certified com-

piler. This and other related work is introduced in chapter 2.

Second, since C minor is a sequential language, we add concurrent

statements to create the new language Concurrent C minor. We add

the standard concurrency primitives lock and unlock, and we allow

the kind of dynamic lock creation and destruction that programmers

are used to. We also add a fork statement to start a new thread of exe-

cution. Together, these statements allow for a familiar, well-understood

concurrency setting in the style of Pthreads. The full details of Con-

current C minor language are discussed in chapter 3.

Third, we extend and modify O’Hearn’s CSL to reason about our

new language. First-class locks and functions (that is, locks that can

guard function pointers and function pointers that can take locks as ar-

guments) turn out to be a significant technical advance, and were one

of the substantial challanges in building the model. Our new CSL is

similar to the one independently developed by Gotsman et al, indicat-

ing that it is the natural way to extend CSL to handle Pthreads-style

concurrency. Our version of CSL is developed in chapter 4.

Fourth, we define a simple concurrent operational semantics for

Concurrent C minor called the erased concurrent operational seman-

tics to demonstrate that we have a realistic operational semantics for

concurrency. The erased concurrent operational semantics is presented

in chapter 5.

Fifth, we explain the modularization developed to isolate the se-
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quential and concurrent features of the language from each other. The

modularization also isolates the concurrency system from being depen-

dent on the C minor language, which will be helpful when extending

the CompCert compiler. The modularization is explained in chapter 6.

Sixth, to develop the semantic model for invariants, we develop a

modal logic. This logic allows us to reason elegantly about different

requirements in an orthogonal, modular fashion, allowing us to build

up our different invariants cleanly. Our modal logic is quite powerful,

allowing for contravariant recursion, impredicative quantification over

both values and predicates, function pointers, and other features re-

quired for handling programs with abstraction. After we model our

invariants using our modal logic, we must next develop a model for

our modal logic, which we do in the style of Appel, Mellies, Richards,

and Vouillon [AMRV07]. Our modal logic and the associated semantic

model is presented in chapter 7.

Seventh, we define a more complex concurrent operational seman-

tics called the unerased concurrent operational semantics. The new se-

mantics does substantial additional bookkeeping that guarantees that it

gets stuck on ill-synchronized programs; if we can show that a program

does not get stuck, then we know that it is well-synchronized. We prove

an erasure theorem that guarantees that if the unerased machine is not

stuck then the erased machine is not stuck. The unerased concurrent

operational semantics of Concurrent C minor is presented in chapter 8.

Eigthth, to gain confidence that our new CSL is well-defined, we
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must develop a soundness proof for it, connecting it to our concurrent

operational semantics. However, connecting it directly is messy. Instead,

we define a new oracular semantics, which looks and behaves sequen-

tially, but is able to proceed at concurrent instructions. This semantics

will be so sequential that we will be able to use definitions and proofs

developed in purely sequential settings with it, and properties proven

in the oracular setting will then carry over into the concurrent one. The

oracle semantics and its soundness proof is developed in chapter 9.

Nineth, we connect our new CSL to our oracle semantics. To do

this we must define the Hoare triple in terms of the oracular opera-

tional semantics, and then prove the CSL axioms as lemmas from that

definition. We are greatly aided by being able to connect to the oracle

semantics, which lets us largely re-use a definition for the Hoare triple

first developed in the sequential setting by Appel and Blazy. Using

this imported definition we are able to recycle their proofs of all of the

rules of CSL that come from SSL (which constitute a majority of the

rules of CSL). For the rules about the concurrent features, such as the

lock rule, we develop the proof from scratch but are able to ignore the

sequential features while arguing about concurrent behavior. Our defi-

nition of the Hoare triple and the proofs of the CSL rules is presented

in chapter 10.

Tenth, we present areas for future research. These include modi-

fying the CompCert compiler to handle concurrency, developing tech-

niques to reason about lock-free algorithms of various kinds, and reason-
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ing in the presence of weak memory models. We conclude by observing

that this system would allow for end-to-end reasoning of programs, from

the source code to the machine code, all in a machine-checked manner.

Our view on future work and concluding thoughts are contained in

chapter 11.





Chapter 2

Related Work

2.1 Hoare logic and separation logic

Hoare logic is a verification technique developed by Hoare and Floyd

to verify the behavior of a program [Flo67, Hoa69]. A Hoare triple is a

judgement of the form {P} c {Q}, where P and Q are assertions and c

is a command. Assertions are formulas in some logic, and the command

c is a statement in a programming language. P is usually called the

precondition, and Q the postcondition. The informal meaning of a Hoare

triple is “If P holds, then after one executes c, Q will hold.”

A Hoare logic is a set of triples, called axioms or rules. Typically

these contain free variables, which are universally quantified. For ex-

ample:

{P} skip {P}

This rule, the skip axiom, indicates that for any precondition P , if


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one runs the command skip, then P will hold afterwards1. Another

common rule is the sequence axiom:

{P} c1 {R} {R} c2 {Q}

{P} c1;c2 {Q}

The sequence rule says that it is valid to chain together sequences of as-

sertions, allowing for pre- and postconditions for groups of statements,

functions, and whole programs. It certainly seems like a reasonable

rule—however, it is usually not true in concurrent setings! Another

thread could modify the state after c1 has executed, invalidating the

postcondition R, thus invalidating any guarantee about the state after

c2 executes. This is an indication of why moving from sequential to

concurrent settings is difficult.

2.1.1 Soundness for a Hoare Logic

If a Hoare logic is simply a set of axioms, how does one determine which

sets of axioms are reasonable? In other words, consider the following

two possible axioms:

axiom 1
{x = 0} x++ {x = 1}

axiom 2
{x = 0} x++ {x = 2}

1The command skip does nothing.
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Which one is correct? On first inspection, the first one seems much

more likely to be correct than the second. However, the true answer

depends on what it means for an assertion such as {x = 0} to hold,

what pre- and postconditions are, and the result of the command x++.

For example, many garbage-collected languages use a “tag bit”: that

is, if the lowest bit in an integer value is 0, then that value is regular

data; if on the other hand the lowest bit is 1, then that value is a

pointer. In that case, all integer calculations would be carried out using

only the upper 31 bits. If the logic was designed to reason about this

issue (which would be important if one was trying to verify the garbage

collector in question), then in fact axiom 2 would be the correct rule.

Perhaps for simple languages, one can simply “eyeball” the rules, but

for languages with complex features more is required.

A soundness proof is needed to demonstate that a particular set of

axioms is valid. A soundness proof of an axiomatic semantics like Hoare

logic is a connection between the definitions of “assertion,” “precondi-

tion,” “postcondition,” and the operational semantics of the language

in question. To make this connection, a formal definition is given to the

Hoare triple, and the Hoare axioms are proven as lemmas from that

definition.

Despite the importance of establishing soundness, hereafter, for ease

of presentation, statements have the “obvious” semantics unless other-

wise specified.
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2.1.2 Separation Logic

One problem with Hoare logic is that it is difficult to use it to reason

about pointers, due to aliasing. Consider the judgment:

{x 7→ 0 ∧ y 7→ 0} [x] := 1 {???}

Here, the notation a 7→ b means that a is a pointer and is pointing to

a memory location that contains the value b. The question is, what is

the correct postcondition? One obvious candidate is x 7→ 1 ∧ y 7→ 0,

but it is not the only candidate: there is also x 7→ 1 ∧ y 7→ 1, since x

and y could be aliased—that is, they could point to the same location

in memory. In that case, updating [x] would also update [y]. This

ambiguity causes the logic to be unsound (that is, a property “proven”

using the logic might not actually hold when the program is executed).

This is exactly the kind of subtle problem a soundness proof prevents.

There are a variety of possible solutions to the problem of aliased

pointers. For example, one could include the explicit requirement that

x and y not be aliased:

x <> y

{x 7→ 0 ∧ y 7→ 0} [x] := 1 {x 7→ 1 ∧ y 7→ 0}

The benefit of this approach is that with the restrictions on aliasing

in place, the logic becomes sound once again. However, the number of

aliasing constraints grows quadratically with the number of locations. In
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some contexts this may not be a problem, but often the detail becomes

overwhelming.

Separation logic, developed by Reynolds and O’Hearn, gives a more

abstract, cleaner view of the problem2 [Rey02, IO01]. The key idea is

to add a new operator, the separating conjunction ∗, to the assertion

logic. P ∗ Q means that P and Q hold on disjoint sections of memory.

This means that updates to the part of memory described by P cannot

affect the validity of Q, and vice versa. Using this new operator, we can

phrase our initial axiom in a different way:

{x 7→ 0 ∗ y 7→ 0} [x] := 1 {x 7→ 1 ∗ y 7→ 0}

The advantage of presenting things this way is that the aliasing con-

straints are bundled up in the ∗ operator, and thus do not overwhelm

the reasoning.

The key to understanding the power of the separating conjunction

is the frame rule:

{P} c {Q}

{P ∗ F} c {Q ∗ F}

The frame rule says that if one has proven the validity of some state-

ment “in a vacuum,” then it is valid to add it to a larger program, even

if the other parts of the program place restrictions on parts of memory

untouched by the statement in question. It thus supports local reason-

2As mentioned in chapter 1, since this work focuses on concurrency, separation
logic that does not handle concurrency will be called sequential separation logic

(SSL).
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ing by allowing verifiers to concentrate on the parts of the state being

modified by the statements under consideration. One critical point is

that the frame rule is not true if one substitutes the normal conjunction

for the separating one:

{P} c {Q}

{P ∧ F} c {Q ∧ F}

This rule is unsound because F could be describing some of the same

memory described by P and modified by c.

2.2 Concurrent Separation Logic

Another problem with Hoare logic is that it is difficult to use it to

reason about concurrency. Consider again the sequence rule:

{P} c1 {R} {R} c2 {Q}

{P} c1;c2 {Q}

As mentioned above, this rule is usually false in a concurrent setting

because the action of other threads executing between c1 and c2 can

invalidate the postcondition R of c1 before c2 can execute. If R does not

hold, then there is no gurantee that c2’s will result in the postcondition

Q, making this rule unsound. A soundness proof would prevent subtle

problems resulting from such a rule.

As with aliasing, there are several possible approaches to solve this

issue. One possibility, somewhat analogous to the solution to the alias-
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ing problem, is to add complicated premises that argue about the state

of all of the other threads. The problem is that if done näıvely the proof

grows rapidly with the size of the program.

O’Hearn developed an alternative approach, concurrent separation

logic (CSL) [O’H07]. The key idea is embedded in the parallel rule:

{P1} c1 {Q1} {P2} c2 {Q2}

{P1 ∗ P2} c1 ‖ c2 {Q1 ∗ Q2}

Here, c1 ‖ c2 indicates that the statements c1 and c2 are to be executed

concurrently. If each thread is operating on its own part of memory

(which is guaranteed by the separating conjunction), then it is valid to

reason about them independently.

CSL includes all of the rules of SSL for verifying the individual

threads—that is, the rules of SSL are a proper subset of the rules of

CSL. This means that CSL includes the sequence rule, which typically

is unsound in concurrent settings. Informally, the sequence rule is sound

because all the threads are operating on disjoint parts of memory. Thus,

when executing the sequence c1;c2, any postcondition R of c1 cannot

be invalidated by the action of any other thread, meaning that it will

be valid to use R as the precondition of c2.

Verifying a program with CSL not only allows local reasoning, thereby

avoiding significant space blow-up, but also allows for the direct re-use

of SSL verifications, since all of the rules of SSL are in CSL. This second

benefit is a significant advantage, since verification can be extremely
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labor-intensive.

2.2.1 Thread Communication

The parallel rule allows two processes to run independently, but says

nothing about how processes collaborate. To achieve collaboration, which

is an important part of concurrent programming, additional rules and

semantics are needed.

The synchronization device used in CSL is the lock, also called a

resource. In O’Hearn’s CSL, resources are declared statically at the

beginning of a program, and in the verification each resource r is asso-

ciated with a resource invariant RI r.

To use the resource r, O’Hearn provides the critical section rule:

{(P ∗ RI r) ∧ B} c {Q ∗ RI r}
No other process modifies variables free in P or Q

{P} with r when B do c endwith {Q}

When inside the critical section, the code may use not only the thread’s

private memory, but also the memory controlled by the resource. The

critical region c can proceed only when it has exclusive access to the

resource r and the boolean value B is true. The side condition involv-

ing other processes may seem very strong; it is necessary because in

O’Hearn’s CSL, local variables are shared between processes. The sep-

arating conjunction ensures that memory is divided appropriately, but

does not say anything about the local variables.
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2.2.2 Limitations to the Approach

Despite the significant advantages of the approach, as originally pre-

sented, CSL had several drawbacks. First, several of the features of the

language for which CSL was developed were not standard. The parallel

composition operator ‖ and the critical section construct are more static

and less general than dynamic commands such as fork to start paral-

lel computation in an open-ended manner, and lock and unlock for

synchronization purposes. In other words, it is straightforward to use

fork, lock, and unlock to implement ‖ and with-when-do; however

it is not obvious how to do the opposite.

Second, the idea of sharing local variables between threads is prob-

lematic. Local variables are typically compiled to registers, and registers

are not shared between threads by the context-switching mechanism.

This makes shared local variables in a language questionable. In ad-

dition, one unfortunate result of sharing local variables is the second

premise of the critical section rule, which places requirements on other

processes and therefore has more of a global flavor than might be hoped.

Third, CSL lacked first-class locks. As mentioned above, in O’Hearn’s

CSL, all locks are statically declared at the beginning of the program,

and cannot be created once the program has begun. Programming in

this style is frequently unnatural, and in many real programming lan-

guges, particularlly in object-oriented languages, locks are created and

destroyed constantly as programs execute. Dynamic first-class locks

were not included in CSL because it was unclear how to prove them
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sound; indeed they were regarded as a significant technical challenge,

as indicated by Bornat et al. [BCOP05]:

...the idea of semaphores in the heap makes theoreti-

cians wince. The semaphore has to be available to a shared

resource bundle: that means a bundle will contain a bundle

which contains resource, a notion which makes everybody’s

eyes water. None of it seems impossible, but it’s a significant

problem, and solving it will be a small triumph.

Fourth, CSL did not have function pointers. Actually, the original

CSL did not even have functions! First order functions (i.e., functions

that could not be passed as arguments or protected by locks) would not

cause any fundamental problems, but it was thought [O’H07, §4] that

they would complicate the soundness proof, a good example of why

a machine-checked proof is so important when reasoning about more

realistic systems. However, first class functions and function pointers

are a considerably harder problem for the same kinds or reasons that

first-class locks are a harder problem than static locks.

2.2.3 Brookes’s Soundness Result

When CSL was developed there were serious doubts about the sound-

ness of the whole approach [O’H]. Reynolds concocted a clever example

in which a typical rule of separation logic, the conjunction rule, did not

hold [O’H07]. An additional technical requirement on resource invari-
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ants called precision seemed to help, but it was unclear if other troubles

were lurking.

Fortunately, Brookes was able to develop a soundness proof for CSL

[Bro07], in which he uses a local interpretation of program traces to

model the semantics of CSL. Brookes was aided by some of the simpli-

fications of CSL, particularlly including the lack of first-class locks and

functions, but it was still a very noteworthy development. Although we

depart from Brookes’s model in many respects, there are several ideas

in common, including the idea of modeling a race condition as a fatal

error in the program execution.

2.2.4 Summary of Concurrent Separation Logic

As mentioned, there were several limitations and drawbacks to the ap-

proach as originally stated. However, the basic idea—that threads usu-

ally execute on private data, and communicate via special synchroniza-

tion primitives such as locks, which control access to shared resources—

is both natural and powerful. Moreover, the ability to re-use verification

results from sequential separation logic is a powerful advantage.

2.3 Rely/Guarantee

The idea of verifying concurrent programs by relying on noninterference

was introduced by Owicki and Gries [OG76]. However, their method

was not compositional. Jones introduced the rely/guarantee method



 CHAPTER 2. RELATED WORK

[Jon83], which has a more modular design. Each thread is given a pair of

assertions, one of which is the rely for that thread and the other of which

is the guarantee. The thread is allowed to assume that the rely always

holds, and must never break the invariants of the guarantee. Other

threads will then be able to rely on the current thread’s guarantee, and

will be responsible themselves for guaranteeing the current thread’s

rely.

Rely/guarantee allows for relatively modular reasoning at the thread

level, but one major drawback is that the flavor of the rely/guarantee

assertions is quite global. However, it is quite good at reasoning about

interference between threads. In contrast, concurrent separation logic

allows for much more local reasoning, but to reason about thread inter-

ference can require large numbers of auxiliary variables and unnatural

proofs.

It is natural to hope to combine the two approaches, and Vafeiadis

and Parkinson [VP07] demonstrate how to do so. Their combination

allows a verification to contain the local reasoning typical of concurrent

separation logic for most of the program, as well as the more global

rely/guarantee reasoning for those parts of the program that require it,

and thereby enjoy the benefits of both.
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a := id local variable
| id = a variable assignment
| op(~a) constants and arithmetic
| load(chunk , a) memory load
| store(chunk , a1, a2) memory store
| call(sig , a,~a) function call
| a1 && a2 sequential boolean “and”
| a1 || a2 sequential boolean “or”
| a1 ? a2 : a3 conditional expression
| let a1 in a2 local binding
| n reference to let-bound variable

Figure 2.1: Leroy’s C minor expressions

2.4 C minor and CompCert

The CompCert system was one of the first optimizing compilers to

be proved correct with a machine-checked proof [Ler06]. CompCert

consists of a definition of the C minor language, a certifying compiler,

and that compiler’s correctness proofs.

2.4.1 The C minor language

C minor is a simple imperative language based on C. It is intended

to be the highest intermediate-level language in a compiler, but is ele-

gant enough that one could write programs directly in C minor (e.g.,

a garbage collector). C minor contains expressions, statements, func-

tions, and programs, composed in the standard way. The full grammar

for the original C minor expressions is given in figure 2.1. Like expres-

sions in C, expressions in C minor can have side effects and can contain

function calls. C minor supports the full memory model of ANSI C,
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s := a; expression evaluation
| s1; s2 sequence
| if a {~s1} else {~s2} conditional
| loop {~s} infinite loop
| block {~s} delimited block
| exit n; block exit
| return; | return a; function return

Figure 2.2: Leroy’s C minor statements

including such features as pointer arithmetic and loading and storing

variously-sized data from memory (the chunk parameter specifies data

size). Unlike C, C minor requires explicit conversions and does not

overload arithmatical operators. C minor expressions also include some

features more commonly found in functional languages, such as local

variable binding.

The full grammar for the original C minor statements is given in

figure 2.2. Since expressions have side effects, most computation is done

with a sequence of expressions. Control flow is given by a combination

loop, if-else constructs, and block constructs. The exit n statement

prematurely terminates the n enclosing block constructs. There is no

general goto statement.

As originally presented, C minor was given a big-step structured op-

erational semantics. The semantics was completely deterministic. Ex-

pressions evaluate to values v, which can be 32-bit integers, 64-bit floats,

pointers, or a special undef value, used for unitialized values. C minor

has no statements for input or output, so all computation is done start-

ing from the initial contents of memory, and the result of the program
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is the final contents of memory, plus a value returned from the special

function main. One negative consequence of the choice of big-step se-

mantics is the inability to reason about nonterminating computations

and the difficulty in extending the semantics to handle concurrency.

2.4.2 The CompCert system

The CompCert compiler translates C minor into PowerPC assembly

code. The translation is via several intermediate languages, with nu-

merous optimizations and transformations, e.g. constant propagation,

common subexpression elimination, register allocation, etc. Generally

speaking, performance of compiled code is adequate, and compilation

time is reasonable.

What was novel about the CompCert compiler, however, was that

the system includes a proof of correctness, stating that the compiled

code was a faithful translation of the source code. In other words, the

compiler has no bugs that compromise correctness of the generated

code3.

The compiler itself is only about 13% of the total code. The remain-

ing code is the proof of correctness. This includes (1) the specification

of compiler correctness, including the formal syntax and semantics of C

minor and the PowerPC (8%), (2) statements of intermediate theorems,

supporting lemmas, and associated definitions (22%), (3) proof scripts

for generating the proofs (50%), and (4) custom tactics for the proof

3Unlike for correctness, there is no formal guarantee of the performance of the
generated code. However, in tests CompCert code was competitive with gcc -O1.
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scripts (7%). Note that the Trusted Computing Base of the system (1)

is thus slightly over half of the size of the compiler itself. However,

as the compiler becomes more complicated, for example by introduc-

ing new optimizations, the specification of the system should not grow

significantly.

Still, there is an interesting observation to be made: the specification

and proofs of correctness of the compiler were approximately eight times

larger than the implementation of the compiler. Beyond illustrating

the the importance of good proof engineering, it is clear that when

one wishes to modify the CompCert compiler, it is very important to

consider the effects the change will have on the associated proofs.

This reality means that some changes can be much easier to make

than others, even if both require roughly the same amount of modifi-

cation to the compiler. This is particuarlly noticable for those kinds of

changes that break invariants assumed by the correctness proofs.

One shortcoming of the CompCert system is that it is not obvious

how to extend it to handle concurrency. In fact, the extension to con-

currency is exactly the kind of extension that is so difficult, since the

concurrency breaks many of the assumptions used by the proof. Iron-

ically, changing the compiler itself to handle concurrency is probably

fairly simple4 – almost all of the difficulty is expected to be in modifying

the proof of correctness.

4Changing the compiler is relatively simple because although CompCert is an
optimizing compiler it does not do the kinds of aggressive optimizations that would
be unsound in a concurrent setting, and can simply compile purely concurrent in-
structions like lock as if they were function calls to an external library.
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2.5 Separation Logic for C minor

Another issue with the CompCert system is that while the system does

guarantee that the target code has the same behavior as the source

code, it does not provide an easy way to determine exactly what the

behavior of the source code is. As mentioned above, the CompCert

compiler is specified and proven correct with respect to the operational

semantics of C minor and PowerPC. However, when verifying concrete

source programs, it is usually simpler to use some kind of axiomatic

semantics, such as sequential separation logic.

This was the major problem that Appel and Blazy [AB07] solved

when they defined a separation logic for C minor, and proved it sound in

Coq. As a key part of that work, they made many modifications to the

C minor language and its semantics to better support the separation

logic and future developments involving the C minor universe. The key

changes to C minor developed by Appel and Blazy, in consultation with

Leroy, are:

1. Modifying C minor to be more machine-independent

2. Modifying C minor to be a better target language for ML and

Object Oriented languages

3. Changing the operational semantics from big-step to small-step

4. Modifying the semantics to better match a clean axiomatic se-

mantics (sequential separation logic)
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The first two changes substantially enhanse the ability of C minor

and CompCert to be used more broadly, connecting more source lan-

guages to more target machines. This is quite important for the system

as a whole, but it is the second two changes that are of primary concern

to people who wish to add concurrency to the CompCert system.

2.5.1 A small-step relation for C minor

The third change, moving from a big-step semantics to a small-step one,

is obviously useful for reasoning about concurrency. With only a big-

step semantics, it is impossible to reason about partial computations,

and the key point about concurrent computation is that communication

between interacting threads always happens at midway points in the

computation.

The small-step C minor step relation developed by Appel and Blazy

has the form:

(σ, κ) 7−→ (σ′, κ′)

where, σ is a state and κ is a control. A state σ in Appel and Blazy’s

C minor is a tuple σ = (Ψ, sp, ρ, φ, m), where:

• Ψ is a pair of program (mapping of addresses to function bodies)

and global variable bindings (mapping of identifiers to addresses)

• sp is the stack pointer

• ρ is the local environment (mapping from local names to values)
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e ::= val (v) values, including constants
| var (id) local variable
| op (op, ~e) arithmetic; op is the opcode
| load (ch, e) memory load; ch is the data size
| condition e et ef conditional expression (?: operator)
| let e1 e2 local binding
| letvar n reference to let-bound variable

s ::= id := e local variable assignment
| [e1]ch :=e2 memory store; ch is the data size
| loop s infinite loop
| block s declared block
| exit n break out of nth enclosing block

| ~id := callΣ e~e function call6

| return el function return
| s1; s2 sequence
| if e then s1 else s2 conditional
| skip do nothing

Figure 2.3: Appel and Blazy’s C minor

• φ is a new component added by Appel and Blazy, the footprint,

which is a mapping from addresses to permissions, explained be-

low

• m is the memory (mapping from addresses to values)

A control κ is a stack of the current instructions to be executed, block

exit points, and function return points. Using their small-step relation,

Appel and Blazy define safe(σ, κ) in the usual way – that the continu-

ation (σ, κ) will never get stuck5.

5As is common in formal methods, when a program enters an error state or
has undefined behavior we say that the program “gets stuck”. The major goal of a
safety proof is to guarantee that programs do not get stuck.

6Σ indicates which parameters are integers and which are floating-point, and
helps the compiler allocate registers for function calls properly.
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The fourth change, modifying the semantics to better match a clean

separation logic, involved many changes; a grammer of the new lan-

guage is given in figure 2.3. Some, such as changing expressions to be

side-effect free, are relatively simple, but simplify reasoning by mak-

ing side-effects more explicit. A much more complex change was the

addition to the semantics of a new component, the footprint.

2.5.2 Footprints, introduced

As presented by Appel and Blazy, a footprint φ is a map from memory

addresses to permissions. Memory access outside the footprint causes

the semantics to get stuck. The simplest model for permissions is a

boolean value, with true representing an address which is safe to access

and false representing an address which is not. Footprints also come

with a join operation, which states which permissions are compatible.

The join operation on footprints is a kind of separation algebra, as

explained in section 4.4. The existence of footprints in the semantics

became quite important when developing the semantics of Concurrent

C minor.

2.5.3 Separation logic for C minor

In addition to the changes to the C minor language and semantics, Ap-

pel and Blazy designed a separation logic that could handle the control

flow and other complex features of C minor. Assertions in separation
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emp
sem
= λσ. φσ = ∅

P ∗ Q
sem
= λσ. ∃φ1.∃φ2.

φσ = φ1 ⊕ φ2 ∧ P (σ[:= φ1]) ∧ Q(σ[:= φ2])

P ∨ Q
sem
= λσ. Pσ ∨ Qσ

P ∧ Q
sem
= λσ. Pσ ∧ Qσ

P ⇒ Q
sem
= λσ. Pσ ⇒ Qσ

¬P
sem
= λσ. ¬(Pσ)

∃z.P
sem
= λσ. ∃z. Pσ

[A]Coq
sem
= λσ. A where σ does not appear free in A

true
syn
= [True]Coq

false
syn
= [False]Coq

e ⇓ v
syn
= emp ∧ [pure(e)]Coq ∧ (λσ. σ ⊢ e ⇓ v)

⌈e⌉expr
syn
= ∃v. e ⇓ v ∧ [is true v]Coq

defined(e)
syn
= ⌈e

int
== e⌉expr ∨ ⌈e

float
== e⌉expr

e1
ch
7→ e2

syn
= ∃v1. ∃v2.

(e1 ⇓ v1) ∧ (e2 ⇓ v2) ∧ defined(v2) ∧

(λσ. mσ ⊢ v1
ch
7→ v2 ∧ v1 ∈

ch

store φσ)

Figure 2.4: Models of the Sequential Separation Logic Operators
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logic are modelled as predicates on state, written in Coq as:

Definition assert : Type := state -> Prop.

Prop, here, is the Coq-level proposition7. One major advantage of defin-

ing assertions this way is that one can develop a shallow embedding,

which means that when reasoning about the assertions in the Coq the-

orem prover, one is able to use standard Coq tactics, greatly saving

engineering effort. Appel and Blazy define the standard operators of

separation logic, as well as several operators more specific to C minor,

as given in figure 2.4.

To handle function calls, global variables, function return, and break-

ing out of multi-level block statements, the Hoare triple is augmented

with additional parameters Γ (for globals and functions), R (for the

assertion that must be satisfied on function return, and which is a

function from the results of the function to assert), and B, a list of the

assertions that must be satisfied to exit out of various levels of blocks (a

function from the naturals to assert). Therefore, the Hoare judgement

for C minor has the following form:

Γ; R; B ⊢ {P} c {Q}

7As elegant as this definition is, there is one unfortunate problem with it: since
assertions are predicated on states, and states include Ψ, and Ψ includes a function
whose range is code (syntax), it is impossible to embed these assertions directly in
program syntax. For sequential C minor this was only modestly limiting (for exam-
ple, it prevents defining an assert statement that takes a real semantic assertion),
but when concurrency was added this caused some severe difficulties. In chapter 10
we will show how to solve this problem.
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P ⊓⊔A κ = ∀σ. (A ∗ P ) σ ⇒ safe(σ, κ)
R r⊓⊔A κ = ∀~v. R(~v) ⊓⊔A return ~v · κ
B b⊓⊔A κ = ∀n. B(n) ⊓⊔A exit n · κ

frame (Γ, A, s) = Γ ∗ closemod (s, A)
Γ; R; B ⊢ {P} c {Q} = ∀A, κ. (Q ⊓⊔frame (Γ,A,s) κ) ∧

(R r⊓⊔frame (Γ,A,s) κ) ∧
(B b⊓⊔frame (Γ,A,s) κ) ⇒

(P ⊓⊔frame (Γ,A,s) c · κ)

Figure 2.5: Continuation-passing style definition of Hoare tuple

The Appel and Blazy definition of the Hoare tuple is given in figure

2.5. An assertion P guards a control κ in frame A, written P ⊓⊔A κ, if

whenever A ∗ P holds, it is safe to execute κ. Using the basic guard,

they define derivative guards for function return and block exit. Then

the Hoare tuple is defined using the various guards in a continuation-

passing style8. There are many details here, which is common when

building machine-checked proofs of large, realistic systems, but in sim-

ple terms, the Hoare tuple says that for any continuation κ, if the post-

condition Q ensures the safety of κ, then the precondition P ensures

the safety of c followed by κ.

Using this definition, Appel and Blazy prove, in Coq, soundness of

the rules of sequential separation logic given in figure 2.6. The rules

for skip, sequenceb, assignment, and loop are standard. The rule for

storing the the heap requires that e and e2 be pure—that is, not read

from the heap. Appel and Blazy demonstrate how to accommodate

impure expressions by applying local program transformations. The

if-then-else rule also requires that e be pure, which can be handled in

8closemod (s, A) closes the assertion A over any variables modified by s.
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Γ; R; B ⊢ {P} skip {P}

Γ; R; B ⊢ {P} s1 {P ′} Γ; R; B ⊢ {P ′} s2 {Q}

Γ; R; B ⊢ {P} s1; s2 {Q}

ρ′ = ρσ[x := v] P = (∃v. e ⇓ v ∧ λσ. Q σ[:= ρ′])

Γ; R; B ⊢ {P} x := e {Q}

pure (e) pure (e2) P = (e
ch
7→ e2 ∧ defined(e1))

Γ; R; B ⊢ {P} [e]
ch

:=e1 {e
ch
7→ e1}

pure (e) Γ; R; B ⊢ {P ∧ e} s1 {Q} Γ; R; B ⊢ {P ∧ ¬e} s2 {Q}

Γ; R; B ⊢ {P} if e then s1 else s2 {Q}

Γ; R; B ⊢ {I} s {I}

Γ; R; B ⊢ {I} loop s {false}

Γ; R; Q · B ⊢ {P} s {false}

Γ; R; B ⊢ {P} block s {Q}

Γ; R; B ⊢ {B(n)} exit n {false}

Figure 2.6: Axiomatic Semantics of Separation Logic (without call and
return)

the same way. The block and exit rules enable reasoning for nonlocal

control flow. Not pictured are the standard rules of separation logic

such as the rule of consequence and the frame rule; also missing are the

rules for call and return. For a full description of all of the rules and the

consequences for sequential control flow we refer the reader to [AB07].

The proofs of these rules with respect to the definition of the Hoare

tuple is done in Coq [AB07]. The most difficult rule to prove was the

loop rule, which interacted complexly with the block and exit rules.

The full proof base for Appel and Blazy is 23,557 lines. 37% is
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the memory model, and basic definitions, all of which are shared with

CompCert. 19% is the definition of the C minor language and the model

for permissions. 2% is the operators and rules of sequential separation

logic, and the final 42% is the proofs of soundness for those rules.

Like the correctness proofs of the compiler, the proofs of the sound-

ness of the separation logic rules make a number of assumptions about

the underlying semantics. Unfortunately, just as in the compiler correct-

ness proofs, several of the assumptions used, such as determinancy of

the step relation, are typically false in a concurrent setting. The chal-

lenge when adding concurrency will be in a large part how to adapt

these sequential-language proofs to a concurrent language.

In the remainder of this thesis, since the focus is not on sequen-

tial control flow, both the R and B parameters will be elided from the

presentation. However, their existance forms a part of the motivation

to design the concurrency system cleanly, which is why they were pre-

sented in full detail here: the Hoare tuple is complex enough to begin

with, and there is every reason to avoid making it any more complicated

than it already is.

2.5.4 End to end

With the combination of Appel and Blazy with the work of Leroy, it

is possible to create an end-to-end guarantee: properties proven of the

source code using separation logic will hold on the code that executes on

the machine. Moreover, since the entire system is machine-checked end-
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to-end, there is very high assurance that the actual program written,

when run through the actual compiler used, will actually behave as

specified in the source code.

2.6 Generation of proofs in CSL

One issue not yet discussed is where the proofs in CSL come from. One

obvious possibility is that they are generated by humans, ideally in

some machine-checked setting, as the code is being written. However,

this can involve a great deal of additional effort if it is done directly,

even considering that the amount of debugging time is dramatically

less.

Appel [App06] presents one way to make the process simpler by

giving a series of custom Coq tactics for reasoning about C minor pro-

grams in Coq. Using these tactics it is possible for a human to generate

a proof more easily.

Another approach is given by Gotsman et al. [GBCS07]. Gotsman

develops a separation-logic-based shape-analysis algorithm that can au-

tomatically generate correctness proofs for certain classes of simple con-

current programs.

Mansky [Man08] uses both approaches. First he takes a relatively

complex example and proves it correct in Coq by hand, and then he

implements the algorithm described in [GBCS07] in Coq, and uses it

to examine simpler programs.
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In general humans are able to verify very complex programs, but it

takes an enormous amount of effort. In contrast, automatic techniques

can only handle relatively simple cases, but are able to do so with great

efficiency. Clearly a reasonable approach is to combine the two, letting

humans handle the difficult parts of a program while using powerful

inference techniques to automate the analysis of the simpler parts, but

exactly how to do make everything fit together is an open problem.

2.7 Gotsman et al.’s CSL

Gotsman et al. independently developed a version of concurrent sepa-

ration logic [GBC+07]. Their CSL is similar to ours, indicating that we

have independently discovered the natural extension of CSL to first-

order locks. Key differences between their work and ours include:

1. Our assertion language is more powerful, providing support for

features such as impredicative quantification, higher-order recur-

sion, and first-class function pointers. We are able to use this

power to define very powerful assertions, such as the Hoare tuple,

and check programs in a more modular way.

2. We can embed our assertions directly into the syntax of programs,

while they must utilize a global table on the side.

3. We have a 60k line machine-checked soundness proof in Coq. The

realities of engineering such a large system have forced us to de-
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velop our system in a highly modular way: the sequential reason-

ing is isolated from the concurrent reasoning in the model, and

the isolation is strong enough to make the proof in Coq tractable.

This modularization leads to a very different flavor of soundness

proof: while they argue via predicate transformers, we establish

soundness in a more operational style.

4. We have a strategy for connecting to an existing certified com-

piler, and a thesis for why our results should hold on a machine

with a weak memory model, thereby achieving an end-to-end sys-

tem.

5. Gotsman’s system is designed to connect to the shape analysis

tool presented in [GBCS07].

6. Gotsman also presents a method for guaranteeing that all locks

have been freed by the end of the program.

We suspect that it would not be difficult to extend our work to

support (6). One interesting avenue for future work would be to combine

the positive aspects of the two approches, thereby achieving both (4)

and (5) and an even larger end-to-end system.
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2.8 Miscellaneous related work

2.8.1 A very modal model

Our semantic model for assertions was built on top of ideas first devel-

oped for the Princeton Foundational Proof-Carrying Code project for

modeling mutable references [AM01, AAV02, AAV03, Ahm04]. Appel

et al. [AMRV07] re-engineered this model by developing a modal logic

with an underlying Kripke model to achieve greater modularity.

2.8.2 The C0 compiler

Leinenbach et al. [LPP05] developed the C0 certified compiler. C0,

like C minor, is a simplified version of the C language, and the C0

compiler translated C0 into the DLX machine language. This compiler

was part of the larger Verisoft project, which built an entire machine-

verified hardware/software stack, from the gate level through a TCP/IP

stack. The verification was done in Isabelle/HOL. In comparison to the

CompCert compiler, the C0 compiler is simpler, supporting very few

optimizations.

2.8.3 Release Consistency

Release consistency, proposed by Gharachorloo et al. [GLL+90], is a

memory consistency model first proposed in the systems/architecture

community in 1990. This work was one of the first to demonstrate the
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benefits of distinguishing lock/unlock memory accesses from ordinary

loads and stores; we follow them in this regard.

Synchronization actions are guaranteed to be sequentially consis-

tent, while normal accesses are not, with the exception that they must

execute with respect to synchronization actions in program order. As-

suming proper synchronization (similar in nature to that required by

CSL), release consistency is consistent with sequential consistency; our

thesis for why our system should be sound in the presence of weak

memory models is similar.



Chapter 3

Concurrent C minor

Concurrent C minor is a new high-level intermediate language suitable

for writing concurrent programs. Here we present the new language,

give an informal semantics, and present an example. Later we give three

different formal semanics for Concurrent C minor. First, in chapter 5,

we give a simple concurrent operational semantics to demonstrate that

we support a standard model for concurrent programming. Second,

in chapter 8, we present a more complicated concurrent operational

semantics that does additional bookkeeping to allow us to prove strong

properties. Last, in chapter 9, we give an oracular semantics, which is

a thread-local semantics for concurrent execution1.

1Portions of this chapter have been published before as [HAZ08a] and [HAZ08b].


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3.1 The Concurrent C minor language

The Concurrent C minor language is built on top of the (sequential)

C minor language first developed by Leroy [Ler06] and then modified

by Appel and Blazy [AB07]. The sequential features include: complex

control flow, such as function calls and multi-exit loops; support for

the full ANSI C memory model, including pointer arithmeric and the

ability to work with variable-sized data2; and certain other features

useful in an intermediate language such as locally nameless variables.

In figure 2.3 we gave the grammar of Appel and Blazy’s version of C

minor, which we extend here.

We extend C minor with five statements to construct Concurrent C

minor :

s ::= . . .

| lock e lock e

| unlock e unlock e

| fork e (~e) start a child process

| make lock e R create the lock e with invariant R

| free lock e free the lock e

Unlike function calls, loops, and so forth, each of these statements is

straightline, meaning that none of them result in nonlocal control flow

in the thread that employs them; instead, after they complete, control

2We use “variable-sized data” to mean data that can be 8 bits long (byte), 32
long bits (word), etc.
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always passes to the next statement in the program.

The lock (e) statement evaluates e to an address v, then waits until

it acquires lock v. The unlock (e) statement evaluates e to an address

v and then releases the lock v. A lock at location v is locked when the

memory contains a 0 at v and unlocked when memory contains a 1 at

v.

Each lock comes with a resource invariant R which is an asser-

tion that explains how the lock should be used and which addresses in

memory it owns. R must hold before unlocking a lock, which means the

next thread to grab the lock will know that R holds. This is standard

in CSL [O’H07], but we go further and use the invariants at a crucial

point in our unerased concurrent operational semantics to guarantee

the absence of race conditions.

The unerased concurrent operational semantics checks the truth of

lock invariants when unlocking a lock; failure of this check causes the

operational semantics to get stuck, as explained in in chapter 8. The

language of these assertions contains the full power of logical propo-

sitions (Coq’s Prop), so the operational semantics is nonconstructive,

i.e., it is given by a classical relation3.

The set of memory locations controlled by a lock need not be static;

it can change over time depending on the state of memory (e.g., one can

say, “this lock controls that variable-sized linked list”). As explained in

section 2.5.2, if a thread tries to access memory it does not own, it gets

3We use a small, consistent set of classical axioms in Coq: extensionality, propo-
sition extensionality, dependent unique choice, and relational choice.
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stuck. This protocol ensures the absence of read/write or write/write

race conditions.

The statement make lock e R takes an address e and a lock invariant

R, and declares e to be a lock with the associated invariant. make lock

will get stuck if memory location e does not contain a 0, meaning that

the lock is created in the locked state. The address is turned back

into an ordinary location by free lock e, which also requires the location

e to contain a 0. Both instructions are thread-local, i.e., they don’t

synchronize with other threads or the scheduler. It is illegal to apply

lock or unlock to nonlock addresses, or to apply ordinary load or store

to locks.

The fork statement spawns a new thread, which calls function e on

arguments ~e. No variables are shared between the caller and callee ex-

cept through the function parameters. All functions in Concurrent C

minor are given pre- and postconditions, and the parent passes to the

child a portion of the memory it controls, specified by the precondition

of the child. This portion typically contains visibility of some locks so

that the two threads can communicate. Just as the operational seman-

tics gets stuck at unlock if the lock invariant does not hold, it will get

stuck at fork if the child’s precondition does not hold. A thread exits

by returning from its top-level function call.

We have not added a join operator since the Concurrent C minor

programmer can implement join using a lock that is passed from parent

to child and unlocked by the child just before exiting.
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Although the syntax of Concurrent C minor requires the user to

specify lock invariants and function pre- and postconditions, these can

be taken directly from a program proof in concurrent separation logic.

Therefore, if the author of a Concurrent C minor program wishes to

develop a verified program, it is not an extra burden to augment the

source code with the appropriate invariants.

3.2 Programming with locks

To illustrate programming in Concurrent C minor, we give an exam-

ple program in figure 3.1. Here we explain the program’s behavior and

present an informal proof that it is bug-free. For cross-referencing pur-

poses we number both the lines of the program in figure 3.1 and the

informal proof.

i. Every program in Concurrent C minor has a special function

main, where the program begins. In Concurrent C minor, at func-

tion declaration it is necessary to give pre- and postconditions.

In the example program, main is declared in line 1, and both

the pre- and postconditions are declared to be emp. The asser-

tion language for pre- and postconditions is explained in section 4;

the emp precondition indicates that main can be run at any time,

and the emp postcondition indicates that when main terminates

it has freed up all of its resources4.

4This understanding of the postcondition is not quite accurate; a fuller expla-
nation of this issue will be given in section 4.9.2.
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1 void main() with pre:{emp} and post:{emp} {
2 L := call malloc and zero(4);
3 i := 0;
4 make lock L R(L);
5 fork f(L);
6 *(L+3) := 1;
7 block {loop {
8 if (*(L+3)==0) exit 0 else skip;
9 *(L+1) := i; *(L+2) := i;
10 unlock L;
11 i := i+1;
12 lock L;
13 }}
14 free lock L;
15 if (*(L+1)==*(L+2)) skip
16 else get stuck;
17 call free(L,4);
18 return ();
19 }
20

21 void f(l) with pre:{l
◭⊲

; R(l)} and post:{emp} {
22 loop {
23 lock l;
24 *(l+1) := *(l+1) * 2;
25 *(l+2) := *(l+2) * 2;
26 if (*(l+1) > 10) {
27 *(l+3) := 0;
28 unlock l;
29 return ();
30 } else skip;
31 unlock l;
32 }}

Figure 3.1: Sample concurrent program
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l lock
l + 1 data
l + 2 data
l + 3 continue?

Figure 3.2: Informal description of R(l)

ii. In line 2, the program allocates and initializes a 4-word block of

memory5. The local variable i is initialzied to 0 in line 3.

iii. In line 4, the bookkeeping instruction make lock turns memory

location L from a normal memory location into a lock with an

invariant R(L); see figure 3.2 for a schematic of the invariant. In-

formally, the invariant says that the lock L guards the next three

locations in memory. The first two locations contain data values

which are supposed to be equal. The last location contains a “con-

tinue” flag; a 1 indicates that the child thread is still computing,

whereas a 0 indicates that it has completed. In section 4.9 we will

formally discuss the exact invariant used. Like all locks, the lock

is created in the locked state.

iv. In line 5, the function f is spawned as a child thread, and is passed

the parameter L, the address of the still-locked lock.

v. In line 6, the continue field is set to 1, meaning that the child

has not finished computing. Even though the child has already

been started, this is safe because the child is not able to see the

5In the implemented Concurrent C minor, memory is byte-addressed; locks are
word-sized and must be word-aligned. We simplify the presentation by assuming
word addressing.
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continue field until it grabs the lock L, which is currently being

held by the parent.

vi. In lines 7–13, the main thread loops. First, in line 8, it checks to

see whether the continue flag has been reset to 0; if so, it breaks

out of the loop. Then, in line 9, it modifies the data cells by setting

them equal to the local variable i, before unlocking the lock in

line 10. Then it increments i in line 11, grabs the lock again in

line 12, and loops back around.

vii. Control reaches line 14 after the child process has set the continue

flag to 0, indicating that it has completed. Accordingly, it should

be safe to convert the location L from a lock back into a regular

piece of memory, so we use the bookkeeping instruction free lock .

viii. In lines 15–16, there is a test that checks whether the two data

cells contain the same value; if they do not, then the program

gets stuck. Since both threads write to both data cells, it is not

obvious whether this test will succeed. However, lines 9 and 24–

25, where the data fields are mutated, shows that as long as as the

values are identical before they are modified, they will be identical

afterwards. Since they both start as 0, we can informally conclude

that they will be equal at this point in the program. In 4.9.2 we

will formally prove that they are equal.

ix. In lines 17–18 main cleans up. First, in line 17 the program frees

the memory used, and then, in line 18, it exits by returning from
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main.

x. Line 21 declares the child process f. The precondition of the func-

tion f is that the argument l is a lock with invariant R(l), while

the postcondition emp indicates that when the child terminates

it will have given up all of its resources (including the lock passed

as an argument).

xi. In lines 22–29, the child loops. It grabs the lock on line 23, and

then modifies the protected data in lines 24–25. On line 26, the

child tests to see if the first data cell is larger than 10; if so, it

sets the continue flag to 0 in line 27, unlocks the lock in line 28,

and exits the thread by returning from the function in line 29.

Otherwise, the thread unlocks the lock in line 31, and loops back

around.

The explanation given above indicates what the example program

does and why it is correct. In section 4.9 we give parts of the formal

proof of correctness. Mansky provides a fully systematic proof of cor-

rectness in Coq using our Concurrent Separation Logic in [Man08].





Chapter 4

Concurrent Separation Logic

Concurrent Separation Logic for Concurrent C minor is a new program

logic for reasoning about the correctness of programs written in Con-

current C minor. Here we present the assertions of the logic, give the

Hoare rules using those assertions to reason about the concurrent lan-

guage features, and demonstrate the power of the system by verifying

the example program presented in section 3.2. The semantics of asser-

tions and the Hoare tuple are quite complicated and so are deferred

until chapters 7 and 10, respectively1.

4.1 Basic assertions

To support reasoning in Concurrent Separation Logic, we have many

of the usual assertions of Hoare logic: true and false; conjunction ∧

and disjunction ∨; universal and existential quantifiers ∀ and ∃; equire-

1Portions of this chapter have been published before as [HAZ08a] and [HAZ08b].


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cursive assertions µF ; assertions in the base (Coq) logic [A]Coq; and

assertions that a C minor expression e evaluates to a value v, e⇓ v. C

minor expressions can read the heap but not write to it. Most of our

separation logic operators take only pure expressions, i.e., those that do

not read the heap. Appel and Blazy [AB07, §4] show how to bridge the

pure-impure gap in Separation Logic by local program transformations.

We support impredicative quantification—that is, our universal and

existential quantifiers range over all types, including assertions them-

selves. This powerful form of quantification is useful for reasoning about

complex language features such as objects, higher-order functional pro-

grams, and generics.

We do not expose full implication to the user, since it interacts

complexly with the underlying model. We do support many kinds of

limited implication, however. Similarily, we do not expose full negation.

The problems surrounding implication are explained in section 7.3.7.

4.2 Sequential separation logic assertions

To these Hoare logic assertions we add the standard assertions of sepa-

ration logic: the empty heap emp, which gives no permission to access

memory; the singleton “maps-to” e 7→ v, which gives permission to

access the location e, and asserts that location e currently contains the

value v2; and the separating conjunction P ∗ Q, which says that the

2Since C minor allows for variable-sized data, the actual relation used in the
proofs also handles the size of the data, but this detail has been elided for the
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memory can be divided (not necessarily uniquely) into two parts, the

first of which satisfies P and the second of which satisfies Q. We aug-

ment the maps-to assertion with the concept of fractional ownership.

4.3 Fractional ownership

First-class locks are only useful if more than one thread has the ability

to try to grab the lock at the same time. Fractional ownership allows

the the ownership of an address to be split into pieces. With partial

ownership of a standard location, reading from that location is allowed

but writing to it is not. With partial ownership of a lock location, trying

to acquire the lock is allowed.

Fractional ownerships also enable the verification of concurrent algo-

rithms that utilize a multiple-reader, single-writer protocol; moreover,

they can also simplify sequential reasoning. For example, at a function

call, a caller can pass just the read permission for an address to the

callee. After the callee returns, the caller will know that the callee did

not modify the address (but could have read it)3.

We augment the maps-to relation with the additional parameter π,

which is a share, resulting in e
π
7→ v. A share indicates how much of the

location is owned; we require that any share in a maps-to assertion be

nonempty.

presentation.
3Further applications of fractional ownership can be found in Boyland [Boy03]

and Bornat et al. [BCOP05].
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Shares come with a join relation π1 ⊕ π2 = π, which indicates

that the shares π1 and π2 combine to form the new share π. Not every

pair of shares π1 and π2 join—often there is no π that will serve. We

write πa ⊥ πb to mean that πa and πb join; that is, ∃πc. πa ⊕ πb = πc.

Conversely, we write πa ⊥� πb to mean that πa and πb do not join; that

is, πa ⊥� πb ≡ ¬ (πa ⊥ πb). We write πa ⊂ πc to mean that πa joins with

some other share πb to equal πc; that is, πa ⊂ πc ≡ ∃πb. πa ⊕ πb = πc.

4.4 Stratified separation algebras

Our shares and the join relation are similar to the notion of a separation

algebra as defined by Calcagno et al. [COY07]. A separation algebra is

a partial commutative monoid with a cancellation property. That is, a

separation algebra has the following properties:

1. Determinism: (πa ⊕ πb = π1) ⇒ (πa ⊕ πb = π2) ⇒ π1 = π2

2. Associativity: (π1 ⊕ π2 = πa) ⇒ (πa ⊕ π3 = π) ⇒

∃πb. (π1 ⊕ πb = π) ∧ (π2 ⊕ π3 = πb)

3. Commutativity: (π1 ⊕ π2 = π) ⇒ (π2 ⊕ π1 = π)

4. Cancellation: (π1 ⊕ πa = π) ⇒ (π2 ⊕ πa = π) ⇒ π1 = π2

5. Identity: ∃πe. ∀π. πe ⊕ π = π

(1)–(5) gives a clean, standard definition, and it is possible to develop

a model for shares with it (the identity is the empty share). However,
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it will not be sufficient when the join relation is extened to resource

maps in chapter 7, since the model presented there has multiple distinct

empty resource maps. From an engineering perspective the generaliza-

tion to multiple identity elements is simpler if it is done uniformly, since

it means a lemma library needs to be developed only once. Accordingly,

we replace (5) with (6), which swaps the order of the quantifiers:

6. Multiple identities: ∀π. ∃πe(π). πe(π) ⊕ π = π

The idea of multiple identity elements in a commutative setting is

unusual, since there is a standard proof that in such a setting, if two

identity elements join with each other then they must be equal.

Lemma 4.1. If πe1 and πe2 are identity elements, and if

πe1⊥πe2 then πe1 = πe2.

Proof. πe1⊥πe2 means that there exists π such that πe1 ⊕

πe2 = π. Since πe1 is an identity, we know that πe1 ⊕ πe2 =

πe2. By cancellation, π = πe2. By commutativity, we know

πe2 ⊕ πe1 = π. Since πe2 is an identity, πe2 ⊕ πe1 = πe1. By

cancellation, we know that π = πe1. Thus, by transitivity of

equality, πe1 = πe2. Proved in Coq.

However, join is a partial function, which means that not every element

must join with a given identity. Therefore, it is reasonable to imagine

a set of identity elements, each of which can join with certain other

elements. Since if two identity elements join they must be the same
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element, this means that the sets of elements that join to particular

empty elements form an equivalence class.

Lemma 4.2. If π ⊕ π = π, then π is an identity.

Proof. Let πe be the identity for π; thus πe ⊕ π = π. By

cancellation, πe = π. Therefore, π is an identity. Proved in

Coq.

This idea leads to a clean definition of identity: identity π ≡ π⊕ π = π.

Lemma 4.3. If identity π, and π ⊥ π′, then π ⊕ π′ = π′.

Proof. By lemma 4.2, π is an identity. Let π′
e be the identity

for π′; thus π′
e ⊕ π′ = π′. By commutativity, π′ ⊕ π′

e = π′.

By π ⊥ π′, there exists π′′ such that π ⊕ π′ = π′′. By

commutativity, π′ ⊕ π = π′′. By transivitity, π ⊥ π′
e. By

lemma 4.1, π = π′
e. By substitution, π ⊕ π′ = π′. Proved

in Coq.

One additional property that we want for our join relation is

7. Split identities: ∀πa, πb, πe. (πa ⊕ πb = πe) ⇒ identity πe ⇒

identity πa

This property says that if two elements join to an identity element, then

both must be an identity element as well; it is a kind of monotonicity

property. Property (7) is not true for all separation algebras (e.g., Z

with addition); however, it is true for common examples of separation

algebras (e.g., sets of N with the disjoint union operation), and does not
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pose serious difficulties in a model. Accordingly, for us, a join relation

has properties (1)–(4) and (6)–(7); it is a separation algebra with the

pathological4 combination of multiple and split identities, which we call

a stratified separation algebra5. We call a type with a join relation that

obeys the stratified separation algebra axioms a joinable type. Our Coq

development has many different examples of joinable types.

4.5 Additional properties for shares

A share and its join operation must satisfy the properties of a joinable

type from section 4.4. In addition a share must have some additional

properties that are not always true for all separation algebras or sepa-

ration logics:

8. Nonoverlapping: ∀πa, πb, πc. (πa ⊕ πb = πc) ⇒ ¬identity πa ⇒

πa ⊥� πc

9. Splittability: there is a named total function split, which takes a

share and returns a pair of shares, and obeys the following rule:

∀π, π1, π2. split(π) = (π1, π2) ⇒

π1 ⊕ π2 = π ∧

¬identity π ⇒ (¬identity π1 ∧ ¬identity π2)

4This term is a mathematician’s joke.
5In the Coq development, an uglier set of axoims is used. The equivalence of

the presented axioms has been proven in Coq.
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10. Intersection: πa ⊕ πb = π ∧ πc ⊕ πd = π ⇒

∃πac, πad, πbc, πbd.

π πa πb

πc πac πbc

πd πad πbd

πac ⊕ πad = πa

πbc ⊕ πbd = πb

πac ⊕ πbc = πc

πad ⊕ πbd = πd

These axioms are provided so that the user of CSL is able to develop

more modular proofs. Property (8) gives the user a finer ability to

distinguish shares from one another6. Property (9) allows the user to

develop proofs of modules without the need to handle a share that

cannot be further split. Property (10), illustrated in the diagram above,

guarantees a more subtle kind of splitting, and helps the user develop

more modular proofs.

Properties (8)–(10) could probably be included in the definition of

a joinable type instead of being guaranteed only for shares7. However,

shares have two fundemental properties that distinguish them from

other joinable types:

11. Full share: ∃πf . ∀π. π ⊂ πf

12. Nontrivial: ∃π. ¬identity π

6The usefulness of this ability is discussed in section 4.6. Property (8) is similar
in some ways to property (7) in that both in some sense constrain the existance
of inverses, but the precise relationship of property (7) to property (8) is not fully
clear.

7That (8)–(10) are defined only for shares, while (7) is defined for all joinable
types could very well be historical accident relating to how the proof was developed;
for some future work it might be useful to determine whether (8)–(10) should be
moved to joinable, or perhaps whether (7) should be moved to shares.
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Property (11) implies that shares have a partial order, with a (unique)

top element, the full share. The partial ordering also guarantees the ex-

istence of a unique bottom element, the empty share8. Finally, property

(12) guarantees that the system is nontrivial and completes the axiomi-

tization. Accordingly, in our system, shares have properties (1)–(4) and

(6)–(12)9.

Lifting joinability from shares to assertions. Given the above

properties for shares, we can model the separating conjunction as a

join relation in a more general way than Appel and Blazy. Two maps-

to assertions e
π17→ v and e

π27→ v separate if and only if π1 ⊥ π2. Two

maps-to assertions about different locations always join. The assertion

emp is the identity element.

4.6 Share models

The simplest model for fractional permissions is a rational number in

[0, 1]. A 0 means that neither reading nor writing are allowed; any

nonzero means that reading is allowed; and a 1 gives permission to

write—so permission for writing implies permission for reading. In this

simple model, the join relation is addition if the total is less than or

equal to 1, and two shares which sum to more than 1 do not join.

8The existence of the unique identity element has been proven in Coq.
9Just as with joinable types, in the Coq development, an uglier set of axoims

than (8)–(12) is used. It has been proven in Coq that the presented axioms imply
the ones used in the Coq development, with one minor exception: in the Coq devel-
opment, the full and empty shares are explicitly constructed, instead of being shown
to exist existentially. This explicit construction is useful for engineering purposes.
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As Parkinson explains in [Par05, ch. 5], this simple share model is

not really sufficient for many applications. Among other problems, we

cannot distinguish which half of the interval [0, 1] is owned because two

shares both equal to the same rational number are indistinguishable.

To model this finer distinction, Parkinson proposed that a share

be a subset of the natural numbers. The full share is then N, and

the empty share the empty set. The join relation becomes the disjoint

union operation10. Using this model, one can easily distinguish partial

shares—two shares are equal only if the underlying sets are equal.

One drawback to using Parkinson’s model for our work is that it

does not support the splitting axiom, since Parkinson allows finite sub-

sets. The natural strategy for modifying Parkinson’s model to support

the splitting axiom is to require that shares be infinite subsets of the

naturals. Unfortunately, infinite subsets of the naturals do not support

the intersection axiom, since the intersection of two infinite sets can be

finite.

One mathematically elegant solution is to define a share to be an

equivalence class of sets of real numbers taken from the interval [0, 1],

where two sets are in the same equivalence class if their symmetric

difference has Lebesgue measure of 0. The join relation of two shares

π1 and π2 is defined as long as

∃S1 ∈ π1, S2 ∈ π2. S1 ∩ S2 has measure 0.

10That is, two shares only join if they are disjoint; the result of a successful join
is their union.
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If we write π to be the equivalence class containing S1 ∪ S2, then π1 ⊕

π2 = π. The join relation defined in this way will have all of the desired

properties.

The problem with this model is that although it is mathematically

clean, it would require developing measure theory in Coq, which is a

sizable amount of work. A somewhat mathematically uglier technique

is to define a share as the disjoint union of half-open intervals (open

at the top) with rational endpoints drawn from the set [0, 1), and to

define the join operation as the disjoint union operation on sets. One

advantage of this model is that it only uses the reals implicitly, since

it manipulates only the rational endpoints. However, it still proved

difficult to implement in Coq11.

A third similar idea to use equivalence classes of reals where two sets

are equivalent if their symmetric difference is countable. This is prob-

ably sufficient, but it was never implemented in Coq due to a general

desire to avoid utilizing the real numbers unless absolutely necessary.

Using equivalence classes of naturals where two sets are equivalent if

their symmetric difference is finite might also work, but has not been

extensively developed.

Dockins [Doc08] developed a share model in which a share is mod-

eled by a binary-tree data structure. Models developed from a computer

science perspective are sometimes easier to model in Coq than models

11In fact, it was so painful that for most of the development time shares were
simply infinite subsets of the naturals, even though this meant that the intersection
property was false.
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developed from a mathematical perspective. Dockins’s model satisfies

all of our axioms, and is currently being used in the Coq development.

To simplify the remainder of the presentation we will use the follow-

ing convention. ◭◮ indicates the full share12, and ⊳⊲ indicates an empty

share. Given a share π, we write ⌊π⌋ to indicate the “left half” of split(π)

and ⌈π⌉ to indicate the “right half”; by the splitting rule, as long as π

is not the empty share, then neither are ⌊π⌋ or ⌈π⌉. The left and right

halves of the empty share are the empty share13: ⌊⊳⊲⌋ = ⌈⊳⊲⌉ = ⊳⊲.

For the convienece of notation, we will write ◭⊲ for ⌊◭◮⌋ and ⊳◮ for

⌈◭◮⌉. Therefore,

◭⊲ ⊕ ⊳◮ = ◭◮ .

4.7 New assertions for CSL

To reason about first-class locks, we introduce the new assertion e
π

; R,

read “e is a lock with share π and invariant R”. It means that the

expression e evaluates to a memory location l containing a lock that is

associated with an assertion (in CSL) R, called the resource invariant

of l. Just as with a maps-to assertion, we require that the share π

be nonempty. A location cannot be both a normal memory cell and a

lock. This restriction is enforced by not allowing a lock assertion and a

maps-to assertion about the same address to separate from each other.

12That is, any share that satisfies property (11); since the top element is unique
this is sufficient. As noted in footnote 9, in the Coq development the full share is
given a name.

13This is guaranteed by property (7).
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4.7.1 Resource invariants

The resource invariant R of a lock l must hold before a thread can

unlock the lock l, or the machine will get stuck. This means that the

next thread to lock l will know that R holds. Locks are an exclusive

form of access control, meaning that only one thread can hold a lock

at a given time. Therefore, the thread that grabs the lock will know

that no other thread will be able to touch the resource until the lock is

unlocked again.

Resource invariants for locks must be closed to local variables, pre-

cise, and valid. An invariant R is closed to local variables when R does

not depend on the values of the C minor locals. Since local variables

are not usually shared in concurrency, this restriction is natural14.

An invariant R is precise when for all Q, the separating conjunction

can only divide R ∗ Q in one way. An example of a precise predicate

is a maps-to predicate. Requiring precision substantially simplifies the

reasoning and lets the system be deterministic15, and moreover is part

of the standard presentation of CSL [O’H07].

The notion of validity is technical and will be deferred until chapter

7. However, in practice validity is not a difficult requirement to satisfy

14On the other hand, Concurrent C minor can express the idea of memory-
resident local variables, by permitting each function invocation to have a stack-
allocated memory block. Locations in these blocks can be addressed using
load/store, and can be the subject of “maps-to” assertions. Stack-allocated ad-
dresses can be shared via the resource invariants of CSL. Before returning from
a function, the thread must reclaim exclusive ownership of its stack block or the
return command will get stuck.

15It is unclear what kinds of trade-offs are possible if one wishes to relax the
precision requirement; Gotsman has recently been working in this area [Got08].
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because all the operators mentioned above as being exposed to the user,

as well as all the operators presented in section 4.7 are valid.

If an assertion R is closed, precise, and valid, then we say that R is

tight. But how should we ensure that the user of our concurrent separa-

tion logic will always provide tight predicates? One choice is having side

conditions, but this turns out to be annoying in the proofs. Instead, we

utilize the new operators close, precisely, and validly. For all R, close R

is closed, and moreover if R is closed, then close R = R. If R is not

closed, then the meaning of the assertion close R depends on R and can

be difficult to predict; in many cases it becomes false. precisely R and

validly R are defined similarly with respect to precision and validity.

The formal definitions of close, precisely, and validly are technical and

so are deferred until section 7.3.8.

We define tightly as the composition of validly, close, and precisely:

tightly R = validly (close (precisely R)). As expected, for all R, tightly R

is tight, and tightly R = R if and only if R is tight16.

Using these definitions, it is possible to avoid stating explicit side

conditions in the following way: when a lock with invariant R is un-

locked, tightly R must hold; the next locking thread will then know

tightly R holds after sucessfully acquiring the lock. If R is not tight,

then the meaning of tightly R depends on R and is difficult to predict.

Frequently it will be equal to false; in this case it will be impossible to

16The definition of tightly is somewhat subtle; for example, exchanging the order
of the composition leads to a bad definition, because precision is a less orthogonal
property than one might hope for.
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unlock the lock.

4.7.2 Holds

Partial ownership of a lock is sufficient to attempt to lock it. A thread

that succeeds in locking a lock also gains the additional permission

hold e R, which means that the expression e evaluates to a lock location

l, with associated invariant R, and that the lock l is held by the thread

in whose proof the hold assertion appears17.

The simplest way to guarantee that the permission hold e R is re-

quired to unlock e is to require that all lock invariants R satisfy the

relation R = (hold e R)∗S for some additional assertion S. The simplest

way to get this property is via the recursion operator µ:

R = µα. (hold e α) ∗ S.

Because hold e R is always closed and precise, as long as S is closed

and precise then (hold e R) ∗ S is as well. In other words, S is tight if

and only if (hold e R)∗S is tight. One advantage of this approach is that

lock invariants cannot be emp, a fact that is useful when establishing

soundness18. See section 4.9.1 for a sample resource invariant created

with the recursion µ operator.

17Fractional ownership of the hold permission is possible, but does not seem to
be very useful.

18In fact, an alternative way of getting soundness is to do away with hold

altogether, and simply to require that lock invariants be nonempty. The problem
with allowing lock invariants to be empty is that it allows a thread to unlock a lock
twice.
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4.7.3 Functions

We reason about first-class functions with the assertion f : {P}{Q},

which means that the expression f evaluates to a function pointer that

points to a function with precondition P and postcondition Q. A pre-

condition P of a function is actually a map from function arguments ~e

to an assertion; similarly, the postcondition Q is a map from the val-

ues returned by the function to an assertion19. To allow a function’s

pre- and postconditions to be related to each other (e.g., function f re-

turns an integer twice as large as its input), there is also an additional

parameter for both P and Q. The ability to relate postconditions to

preconditions is not so interesting for spawnable functions since the

spawned functions never return to their parent. Therefore in this pre-

sentation we elide this extra parameter; see Appel and Blazy [AB07] for

a discussion of how it is used for reasoning about sequential function

call.

Since C minor separates the “data memory” from the “program

memory,” functions do not have shares, and every function is visible

to every thread20. A function can either be called (within the current

thread) or spawned (as a new thread). We require that the precon-

ditions of functions that will be spawned be precise. We enforce this

requirement with the validly and precisely operators analogously to our

use of tightly for lock invariants. This way it is simple to determine

19Our version of C minor supports multiple return values.
20If one wished to verify self-modifying code, for example, functions would need

shares.
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make lock
Γ ⊢ {e

◭◮

7→ 0} make lock e R {e
◭◮

; R ∗ hold e R}

free lock
Γ ⊢ {e

◭◮

; R ∗ hold e R} free lock e {e
◭◮

7→ 0}

lock
Γ ⊢ {e π

; R} lock e {e π

; R ∗ tightly R}

unlock
R = (hold e R ∗ S)

Γ ⊢ {tightly R} unlock e {emp}

fork
Γ ⊢ {f : {P}{Q} ∗ validly precisely P (~e)} fork f ~e {f : {P}{Q}}

Figure 4.1: Concurrent Separation Logic

which resources the parent process gives to its new child.

4.8 Concurrent separation logic Hoare

rules

One of the most important aspects of O’Hearn’s CSL is that it includes

all of the rules of standard separation logic [O’H07]. Similarily, our CSL

rules are a superset of the rules of Appel & Blazy presented in figure

2.6. Our new concurrent rules are presented in figure 4.1.

To use the make lock rule to reason about making a lock with in-

variant R at location e, full ownership of e is required. Moreover, that

location must contain a 0; the operational semantics described in sec-
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tion ?? will get stuck if these conditions are not met. Since a lock is

considered to be locked when its location contains a 0, it is therefore

created in the locked state, and the postcondition includes both the full

visibility of the lock e
◭◮

; R and the holding of the lock hold e R.

Both e
◭◮

; R and hold e R are required to reason about freeing a

lock using the free lock rule. Since a thread can have a hold permission

only if the lock is locked, this means that the location associated with

the lock contains a 0.

To use the lock rule to reason about locking a lock e with associated

invariant R, a thread needs to own some (typically partial) share π of

e. After locking, the thread still has the same visibility of the lock as

before, and in addition gains the assertion tightly R. If R is tight, then

tightly R is equal to R.

The precondition for using the unlock rule for reasoning about un-

locking a lock is tightly R. We also require as a side condition that the

lock invariant R be equal to (hold e R) ∗S for some S21. Again, as long

as R is tight (which is true if and only if S is tight) then the precon-

dition is equal to R. If R is not tight, then tightly R is equal to false,

meaning that the unlock statement cannot be proven to be safe using

CSL.

The rule for fork is somewhat analogous to the rule for unlock. This

is natural since in both cases resources are being transferred from the

21In the Coq development, this property is enforced not by a side condition but
instead by using another operator like tightly; the presentation here is equivalent
and cleaner.
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current thread into the lock for unlock or into the child thread for

fork. The precondition requires a function e with precondition P and

postcondition Q. Just as for unlock, we apply an operator to force the

precondition to have the desired property, in this case only precision22.

Since the precondition P is a map from the arguments ~e to an as-

sertion, the precondition of the fork rule requires that the assertion

precisely P (~e) hold. Just as in the case of unlock, if P (~e) is precise,

precisely P (~e) = P (~e); otherwise it will be equal to false, meaning

that the fork statement in question cannot be proven to be safe us-

ing CSL. After the fork statement, the parent thread loses the asser-

tion precisely P (~e). The child process will then start with the assertion

precisely P (~e) when it starts.

4.9 Applying CSL to the example

program

We demonstrate the usefulness of our CSL by demonstrating how to

apply it to critical parts of the example program from section 3.2.

4.9.1 The resource invariant R(l)

The key resource invariant is given in figure 4.2. It is divided into two

parts: S(l, P ) and R(l). In effect, S(l, P ) is specialized to each lock,

22In the Coq development, precision is guaranteed with a side condition; the
presentation here is equivalent and more consistent with the other rules.
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l lock
l + 1 data
l + 2 data
l + 3 continue?

1 S(l, P ) = (∃v.l + 1
◭◮

7→ v ∗ l + 2
◭◮

7→ v) ∗

2 ((l + 3
◭◮

7→ 1) ∨ ((l + 3
◭◮

7→ 0) ∗ l
◭⊲

; P ))

3 R(l) = µP. (hold l P ) ∗ S(l, P )

Figure 4.2: Resource invariant for example program

while the R(l) definition is boilerplate. The convention used when defin-

ing S(l, P ) is that l is the address of the lock and P is the lock’s in-

variant, which will include S(l, P ). Because we are using the recursion

operator µ to form resource invariants, S(l, P ) must be contractive in

P ; as long as P is used inside a lock or hold assertion then this re-

quirement is easily satisfied. The formal definition of contractiveness is

technical and is deferred until section 7.3.9.

In line 1, S(l, P ) implies that the locations l + 1 and l + 2 are fully

owned and point to the same value. In line 2, S(l, P ) also implies that

the location l+3 is owned, and is being used as a signal to communicate

that the child thread is done processing. While the child is working, l+3

is set to 1, to indicate that it is continuing to compute. When the child

is done, it sets l+3 to 0, and gives up the location l, which is a lock with

invariant P (fufilling the convention for the boilerplate), and which is

partially owned with the left half of the full share. This allows the child

to return all of its resources to its parent cleanly, and thus exit holding
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no resources.

S(l, P ) is contractive in P since P is only used inside a lock invari-

ant. S(l, P ) is precise since the separating conjunction of two precise

predicates is precise and since exactly one half of the disjunction on line

2 is true at any time. Moreover, S(l, P ) is valid since it is built from

the operators presented in sections 4.1 and 4.7. By inspection, S(l, P )

is closed to local variables. Therefore S(l, P ) is tight.

The boilerplate definition for R(l) is given on line 3. It uses the

recursive operator µ to tie the knot and ensures that the lock invariant

implies that the lock is held, as required for the unlock rule. Since S(l, P )

is contractive, µ is well-defined. Since S(l, P ) is tight, so is R(l).

4.9.2 Verification of selected instructions

Here we show how to apply the rules of CSL to verify parts of the exam-

ple program. For cross-referencing purposes, we use the same numbering

here as in section 3.2. For clarity we omit the use of Γ (the map from

functions to specifications) in the presentation of our rules.

i. The pre- and postconditions of main are emp. Since emp is the

identity element, a precondition of emp indicates that main can

be called at any time. The postcondition of emp indicates that

when it exits, main will no longer own any resources. In tradi-

tional separation logic this would mean that all of the resources

allocated by main had been freed. However, in CSL it is possi-

ble for resources to be allocated and then given away in a lock;
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this means that a postcondition of emp is not strong enough to

guarantee that all resources have been freed on program termina-

tion. There are several approaches to guaranteeing this stronger

property, such as requiring certain programming disciplines, or,

alternatively, forcing lock invariants to have certain properties,

an approach utilized by Gotsman et al. in [GBC+07].

ii. Lines 2 and 3 of the example program require only standard sep-

aration logic. It is important that L be initialized to 0 for (iii).

iii. The make lock in main turns location L into a lock with invariant

R(L). The postcondition of line 3 is

{ i = 0 ∗ L
◭◮

7→ 0 ∗ L + 1
◭◮

7→ 0 ∗ L + 2
◭◮

7→ 0 ∗ L + 3
◭◮

7→ 0 }.

Using the frame rule, we abstact away everything except

{ L
◭◮

7→ 0 }.

Then we are able to use the rule for make lock:

{ L
◭◮

7→ 0 }

make lock L R(L)

{ L
◭◮

; R(L) ∗ hold LR(L) }

The lock invariant is not yet satisfied, but it need not be satisfied

until the lock is unlocked.
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iv. When function f is spawned, main passes to f half of the visibility

of lock L, as stated in f’s precondition on line 21. The relevant

postcondition from the previous line (omitting the rest of the

frame) is

{ L
◭◮

; R(L) }.

Function assertions f : {P}{Q} are kept in the global environ-

ment Γ. We are allowd to borrow them from Γ as long as we

return them23. We borrow from Γ the specification of f, leading

to

{ f : {L
◭⊲

; R(L)}{emp} ∗ L
◭◮

; R(L) },

which is equal to

{ f : {L
◭⊲

; R(L)}{emp} ∗ L
◭⊲

; R(L) ∗ L
⊳◮

; R(L) }.

Again using the frame rule, we are able to abstract to

{ f : {L
◭⊲

; R(L)}{emp} ∗ L
◭⊲

; R(L) }.

Since L
◭⊲

; R(L) is valid and precise24, this is equal to

{ f : {L
◭⊲

; R(L)}{emp} ∗ precisely L
◭⊲

; R(L) },

23For full details on the rules for borrowing from Γ, see [AB07].
24Like a maps-to assertion, the “is a lock with invariant R” assertion is valid and

precise.
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which allows us to use the fork rule as follows:

{ f : {L
◭⊲

; R(L)}{emp} ∗ precisely L
◭⊲

; R(L) }

fork f(L)

{ f : {L
◭⊲

; R(L)}{emp} }

Therefore, the spawned child thread is given the left half of lock

L, and the parent retains the right half. We then return the spec-

ification of f to Γ.

v. Although the assignment on line 6 was worrisome in the informal

presentation, in the formalism it is quite straightforward. A part

of the frame from (iv) that comes from (iii) is

{ L + 3
◭◮

7→ 0 },

which the standard separation logic rule for store instructions

relates to postcondition

{ L + 3
◭◮

7→ 1 }.

vi. The full precondition of the loop is

{ i = 0 ∗ L + 1
◭◮

7→ 0 ∗ L + 2
◭◮

7→ 0 ∗ L + 3
◭◮

7→ 1 ∗

L
⊳◮

; R(L) ∗ hold LR(L) },
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which by fold-unfold is equal to

{ i = 0 ∗ L
⊳◮

; R(L) ∗ R(L) },

which implies the loop invariant of

{ i = ∗ L
⊳◮

; R(L) ∗ R(L) }.

We write “ ” to indicate that i has some arbitrary value. The

postcondition of the loop is

{ i = ∗ (∃k. (L + 1)
◭◮

7→ k ∗ (L + 2)
◭◮

7→ k) ∗ (L + 3)
◭◮

7→ 0 ∗

L
◭◮

; R(L) ∗ hold LR(L) }.

On line 8, the test *(L+3) == 0 is done to break out of the loop.

Given that the precondition of line 8 is the loop invariant, if the

test succeeds, then the postcondition of the loop will hold by fold-

unfold. If the test fails, then the state will not change, and the

loop invariant will hold after line 8. If R(L) holds before line 9,

then it will hold afterwards. Therefore the precondition to the

unlock statement on line 10 is

{ i = ∗ L
⊳◮

; R(L) ∗ R(L) }.
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Using the frame rule, we abstract to

{ R(L) }.

Since R(L) is tight, this is equal to

{ tightly R(L) }.

Since the side condition of the unlock rule proceeds from the def-

inition of R(L), we can apply the rule as follows:

{ tightly R(L) }

unlock L

{ emp }

Line 11 is straightforward, and has the postcondition

{ i = ∗ L
⊳◮

; R(L) }.

After applying the frame rule to get

{ L
⊳◮

; R(L) },
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we can apply the lock rule for line 12:

{ L
⊳◮

; R(L) }

lock L

{ L
⊳◮

; R(L) ∗ tightly R(L) }

By the tightness of R(L) this is equal to

{ R(L) },

and by adding the frame back in we can prove the loop invariant.

vii. The postcondition of the loop given in (vi) implies that main

has reacquired the full ownership of lock L. Accordingly, after

abstracting away the frame we can apply the free lock rule:

{ L
◭◮

; R(L) ∗ hold LR(L) }

free lock L

{ L
◭◮

7→ 0 }

viii. The postcondition of the loop given in (vi) also implies that L+1

and L + 2 point to the same value, so the test on 15 will always

succeed and the program will not get stuck on line 16.

ix. The cleanup on lines 17–18 follows from the standard rules of

separation logic, and implies the postcondition emp of main.

x. The precondition of f was discussed above in (iv), and the mean-
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ing of emp as a postcondition was discussed in (i).

xi. The precondition and loop invariant of the loop starting on line

22 is

{ L
◭⊲

; R(L) }.

The postcondition of the loop is emp. The lock on line 23 is

straightforward:

{ L
◭⊲

; R(L) }

lock L

{ L
◭⊲

; R(L) ∗ tightly R(L) }

By the tightness of R(L), this is equal to

{ L
◭⊲

; R(L) ∗ R(L) }.

On line 24, the loop invariant R(L) is temporarily broken; L +

1 does not point to the same value as L + 2. However, this is

permitted since the lock invariant does not have to hold while

the lock is held. On line 25, the invariant is restored, leading to

a postcondition of

{ L
◭⊲

; R(L) ∗ R(L) }.
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If the test on line 26 succeeds, we reach line 27 with precondition

{ L
◭⊲

; R(L) ∗ R(L) }.

Unfolding R(L), we get

{ L
◭⊲

; R(L) ∗ (∃k. (L + 1)
◭◮

7→ k ∗ (L + 2)
◭◮

7→ k) ∗

((L + 3
◭◮

7→ 1) ∨ ((L + 3
◭◮

7→ 0) ∗ l
◭⊲

; P )) ∗ hold L R(L) }.

Since L
◭⊲

; R(L) does not join with itself, we know that we have

the left half of the disjunct, yielding

{ L
◭⊲

; R(L) ∗ (∃k. (L + 1)
◭◮

7→ k ∗ (L + 2)
◭◮

7→ k) ∗

(L + 3
◭◮

7→ 1) ∗ hold LR(L) }.

The assignment on line 27 then results in postcondition

{ L
◭⊲

; R(L) ∗ (∃k. (L + 1)
◭◮

7→ k ∗ (L + 2)
◭◮

7→ k) ∗

(L + 3
◭◮

7→ 0) ∗ hold LR(L) },

which via fold is equal to

{ R(L) }.

By the tightness of R(L), this is equal to

{ tightly R(L) },
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which lets us use the unlock rule for line 28:

{ tightly R(L) }

unlock L

{ emp }

This gives us the postcondition emp, which satisfies the postcon-

dition given in line 21, so we can safely return on line 29.

Notice that the child thread gave up all its resources before re-

turning. It did so by unlocking the lock L. However, one of the

resources it gave up by unlocking L was the visibility of L itself!

In general we want every thread to give up all resources before

exiting, and in general it must do so by unlocking a lock. We

accomplish this by taking advantage of the recursion operator as

demonstrated above.

Now the main thread can safely dispose the lock L, as explained

in (vii).

If the test on line 26 does not succeed, state is not modified on

line 30, giving a precondition of

{ L
◭⊲

; R(L) ∗ R(L) }

for the unlock on line 31. Applying the frame rule followed by the
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unlock rule results in a postcondition of

{ L
◭⊲

; R(L) },

which implies the loop invariant.

In [Man08], Mansky verifies this program with our CSL in Coq; in

addition to filling in various details omitted above, he gives a sense for

the process of verifying a program in Coq. Furthermore, taking a lesson

from Knuth, he actually implemented the algorithm in C (with POSIX

threads) and tested it.

4.10 Conclusions

We have presented a new concurrent separation logic. The logic includes

many powerful assertions, including impredicative quantification, recur-

sive invariants, fractional permissions, and first-class locks and function

pointers.

We have given Hoare rules for using these assertions to reason about

Concurrent C minor programs, including rules for lock, unlock, and

fork. We have developed new operators such as tightly to express

those rules cleanly. Finally we have demonstrated how to use these

rules and operators to verify the example program from section 3.2.

In the remainder of this thesis we will present a soundness proof of

our concurrent separation logic with respect to Concurrent C minor.





Chapter 5

Erased Concurrent

Operational Semantics

In chapter 3 we introduced Concurrent C minor, and in chapter 4

we gave it an axiomatic semantics, Concurrent Separation Logic. This

chapter gives Concurrent C minor a formal concurrent operational se-

mantics, which we call an erased semantics. In chapters 8, 9, and 10, we

will prove the soundness of CSL with respect to the erased semantics1.

The erased concurrent operational semantics justifies the claim that

Concurrent C minor has a reasonable model of conventional concur-

rency. It is not easy to prove properties about the erased semantics.

It is easier to reason about an unerased semantics, which tracks addi-

tional bookkeeping information (see chapter 8). In section 8.6 we prove

an erasure theorem that says that the unerased semantics is a con-

1Portions of this chapter have been published before as [HAZ08a] and [HAZ08b].


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servative approximation to the erased semantics given here. Then in

chapter 9 we define an oracular semantics that is suitable for reasoning

about one thread at a time. In chapter 10 we model our CSL on that

oracular semantics, and prove that properties proved with the oracular

semantics holds on the unerased concurrent operational semantics. The

erasure theorem then guarantees that the properties hold on our erased

semantics.

One problem with the erased semantics given here is that it does

not compose well with the compiler correctness proofs. If we erase too

soon, at the source language, then the compiler will not be able to rely

on the bookkeeping features of the unerased semantics in its proofs; as

discussed further in section 8.6, the correct time to erase is at the very

end of compilation, on the machine code.

In section 5.1 we give a vastly simplified semantics for sequential C

minor because the complexities of the sequential language are not the

focus of this thesis; in the Coq development we utilize the full C minor

of Appel and Blazy [AB07]. In section 5.2, we give the erased concurrent

step relation to show that we have a reasonable model for concurrency.

Our concurrent semantics has an unusual interleaving model; in section

5.3 we discuss why the interleaving model is reasonable.
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5.1 Erased sequential step relation

Here we present a highly simplified version of sequential C minor; the

Coq development uses the full sequential C minor of Appel and Blazy,

which is given in figure 2.3.

The syntax of simplified C minor is given by the following grammar:

v : value := n

s : statement := [v1]:=v2

call f ~v

s1; s2

make lock v P

free lock v

lock v

unlock v

fork f ~v

A value v is a natural number n. There are eight different kinds of

statements: three sequential statements, given as simplified examples

of the kinds of statements in C minor, and five concurrent statements.

The store statement [v1]:=v2 updates the memory at location v1 to

have value v2. The call statement call f ~v starts a subroutine function

f , passing arguments v. The sequence statement s1; s2 runs the state-

ment s1 followed by the statement s2. The make lock statement and

the free lock statement are bookkeeping statements and do not change
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er-sstep-update
m′ = [v1 7→ v2] m

Ψ ⊢ ((ρ, m), [v1]:=v2 · κ)
e
77−→ ((ρ, m′), κ)

er-sstep-call
Ψ ⊢ ((ρ, m), call f ~v · κ)

e
77−→ ((ρ, m), (Ψ(f) ~v) · κ)

er-sstep-seq
Ψ ⊢ ((ρ, m), s1; s2 · κ)

e
77−→ ((ρ, m), s1 · s2 · κ)

er-sstep-makelock
Ψ ⊢ ((ρ, m), make lock v P · κ)

e
77−→ ((ρ, m), κ)

er-sstep-freelock
Ψ ⊢ ((ρ, m), free lock v · κ)

e
77−→ ((ρ, m), κ)

Figure 5.1: Erased sequential step relation

the state. The lock statement waits until the lock v is unlocked, and

then locks the lock. The unlock statement unlocks the lock v. The fork

statement starts a new thread with a function call to f .

A sequential computation state, also called an erased world w, is a

pair of locals ρ (a map from identifiers to values) and memory m; in

our simplified syntax, ρ is unused, but it is used in the full C minor

and so is included here.

A control contains program syntax and has the following grammar:

κ : control := s · κ

Kstop

A function body is a map from arguments ~v to statement s. A program

Ψ is a function from addresses to function bodies.

In figure 5.1, we define our erased sequential step relation with five
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cases. The first case, er-sstep-update, handles the store statement by

updating the memory at location v1 to have value v2 and advancing to

the next statement κ. The second case, er-sstep-call, performs a func-

tion call by replacing the call statement with the body of the function

Ψ(f) and applying the arguments ~v. The third case, er-sstep-seq, takes

apart a sequence statement. The fourth case, er-sstep-makelock, and

fifth case, er-sstep-freelock, do nothing other than advance to the next

statement κ.

For the fully concurrent instructions lock, unlock, and fork, the

erased sequential step relation gets stuck.

5.2 Erased concurrent step relation

A schedule ℧ is a finite list of natural numbers that act as thread-IDs.

The number at the head of the schedule tells the concurrent operational

semantics which thread to execute next. When the schedule runs out,

the concurrent machine safely halts computation.

With a fixed schedule, our semantics is fully deterministic, which

simplifies the proofs, particularly proofs about sequential features that

assume determinacy. Of course, concurrent systems are not usually con-

sidered to be deterministic. We ensure that the proved properties hold

regardless of the way threads interleave by universally quantifying over

all schedules.

We use a finite schedule because it allows us to do induction easily.
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We do not restrict the length of a schedule, so when we quantify over

all schedules we include schedules of arbitrary length. Therefore our

proved properties will be true for any finite amount of time.

A thread θ is a pair of local state (locals ρ) and concurrent control

κ̂. We do not put the memory in a thread because all the threads must

share the same memory. A concurrent control κ̂ contains the code (i.e.,

the program syntax) of the thread, defined as follows:

κ̂ : concurrent control = Krun κ

| Klock v κ.

Krun κ means that the thread is in a runnable state, with κ as the next

control to execute. Klock v κ means that the thread is waiting on a lock

at address v; after acquiring the lock it will continue with κ.

We denote a thread list by ~θ, and the ith thread by ~θi. A concurrent

state S is a tuple of schedule ℧, thread list ~θ, and memory m.

In figure 5.2 we present our erased concurrent step relation with

seven cases.

The first case, er-cstep-seq, covers running a sequential statement

(including make lock and free lock). We select thread i, add the memory

m, and run the sequential step relation; afterwards we put the thread

back into place with new locals ρ′ and control κ′ and continue stepping

with new memory m′. We do not change the schedule, and so do not

context switch.

The second case, er-cstep-texit, covers what happens when we run
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er-cstep-seq

~θi = (ρ, Krun κ)

Ψ ⊢ ((ρ, m), κ)
e
77−→ ((ρ′, m′), κ′)

~θ′ = [i 7→ (ρ′, Krun κ′)] ~θ

Ψ ⊢ (i :: ℧, ~θ, m)
e

Z=⇒ (i :: ℧, ~θ′, m′)

er-cstep-texit
~θi = (ρ, Krun (Kstop))

Ψ ⊢ (i :: ℧, ~θ, m)
e

Z=⇒ (℧, ~θ, m)

er-cstep-prelock

~θi = (ρ, Krun lock v · κ)
~θ′ = [i 7→ (ρ, Klock v κ)] ~θ

Ψ ⊢ (i :: ℧, ~θ, m)
e

Z=⇒ (℧, ~θ′, m)

er-cstep-nolock
~θi = (ρ, Klock v κ) m(v) = 0

Ψ ⊢ (i :: ℧, ~θ, m)
e

Z=⇒ (℧, ~θ, m)

er-cstep-lock

~θi = (ρ, Klock v κ)
m(v) = 1 m′ = [v 7→ 0] m

~θ′ = [i 7→ (ρ, Krun κ)] ~θ

Ψ ⊢ (i :: ℧, ~θ, m)
e

Z=⇒ (i :: ℧, ~θ′, m′)

er-cstep-unlock

~θi = (ρ, Krun unlock v · κ)
m(v) = 0 m′ = [v 7→ 1] m

~θ′ = [i 7→ (ρ, Krun κ)] ~θ

Ψ ⊢ (i :: ℧, ~θ, m)
e

Z=⇒ (℧, ~θ′, m′)

er-cstep-fork

~θi = (ρ, φ, Krun fork v ~v · κ)
~θ′ = [i 7→ (ρ, Krun κ)] ~θ

~θ′′ = ~θ′ + ((ρ0, Krun (call v ~v · Kstop)) :: nil)

Ψ ⊢ (i :: ℧, ~θ, m)
e

Z=⇒ (℧, ~θ′′, m)

Figure 5.2: Erased concurrent step relation
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out of statements in a thread; in this case we switch to another thread

by removing the head of the scheduler. We do not delete thread θi from

~θ, so threads never change position in line. If the thread is selected

again, we will just context switch again.

The third case, er-cstep-prelock, covers what happens when a thread

wants to start grabbing a lock. We move to the Klock v ctl state and

context switch so that other threads have a chance to grab the lock.

The fourth case, er-cstep-nolock, covers the “spin” case of the spin

lock. In the memory m lock value is 0, indicating that the lock is locked

by some other thread. We context switch and keep waiting for the lock.

The fifth case, er-step-lock, covers the case when we grab the lock.

In the memory m the lock has value 1, indicating that it is unlocked,

and so we switch it to value 0, so that no other thread can grab the

lock. At a lower level of the compiler this will become a test-and-set or

compare-and-swap instruction, making the load from m and the store

to m′ atomic at all intermediate compiler levels. We then transition to

the runnable Krun κ state and start running the thread.

The sixth case, er-step-unlock, covers the case when we release a

lock. In the memory m we test to make sure that the lock is currently

locked, and then update it so that it is unlocked. We context switch

after an unlock so that other threads can tell that we have released it.

The seventh case, er-step-fork, covers the case when we fork a child

thread. In that case we add the new thread to the thread list and

context switch so that it has a chance to run.
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5.3 Reasonableness of interleaving model

Our semantics has a nonpreemptive thread model. We chose this con-

currency model because a sequentially consistent interleaving model is

inappropriate for our context.

Sequentially consistent interleaving is too weak because actual pro-

cessors go beyond interleaving at every step. They have weak memory

models, where instructions are dynamically reordered by the processor

in a way that is sequentially undetectable. Unfortunately, in the con-

text of concurrency, the weak memory models can change the behavior

of a program and thereby cause particularly wicked bugs.

On the other hand, sequentially consistent interleaving models make

us do more work than required. The key is that we are not consider-

ing all programs, but only programs that are data-race free, i.e., well-

synchronized and verifiable in CSL. For well-synchronized programs

interleaving only at concurrent instructions is equivalent to full inter-

leaving; this was the key idea behind Dijkstra’s invention of semaphores.

In fact, we interleave the minimum number of times that preserves the

semantics of a full-interleaving semantics. For example, in case er-step-

prelock, we context switch even if the lock was already unlocked to let

the other threads have a chance to grab it.

In future work we plan to extend our proofs to cover weak memory

models. However, it is a mistake to prove that code at the C minor

level obeys weak memory models. Instead, we will preserve our “rarely

interleaving” semantics all the way through the compiler until we reach
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machine code; only then will we prove the correctness of our semantics

for well-synchronized programs executing on a machine with a weak

memory model.

5.4 Conclusion

In chapter 3 we introduced Concurrent C minor. Here we gave Con-

current C minor a formal erased concurrent operational semantics. Our

erased semantics is a reasonable model for conventional concurrency.

It is not easy to prove properties about our erased semantics. It is

easier to reason about the unerased semantics defined in chapter 8. In

section 8.6 we prove an erasure theorem that says that the unerased

semantics is a conservative approximation to the erased semantics given

here. In chapter 9 we define an oracular semantics that is suitable for

reasoning about one thread at a time. In chapter 10 we model our

CSL on that oracular semantics, and prove that properties proved with

the oracular semantics hold on the unerased concurrent operational

semantics. The erasure theorem then guarantees that the properties

hold on our erased semantics.



Chapter 6

Engineering Isolation

In chapter 3 we presented the Concurrent C minor language and gave

an example program in 3.2. Then in chapter 4 we developed a new

concurrent separation logic and demonstrated its power by using it to

verify an example program.

In the remainder of this thesis we will present a soundness proof of

our Concurrent Separation Logic with respect to the operational seman-

tics of Concurrent C minor. Since the soundness proof is developed in

Coq it has aspects of both a mathematical proof and also an engineered

software artifact. These aspects have influenced each other: part of the

difficulty in developing the mathematical ideas was that they had to

integrate cleanly into existing Coq proofs; conversely, at times the engi-

neering process became too difficult and new mathematical techniques

had to be developed to simplify the engineering task.

In this chapter, we focus particularly on engineering design choices


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that allow for greater modularity in the mechanized Coq proof1. The

material in this chapter has not been fully integrated into our Coq de-

velopment, which uses a somewhat less modular design; work is ongoing

to bring the Coq development into closer agreement. In chapter 7, we

will develop the modal substructural logic underlying CSL assertions.

In chapter 8 we will explain the operational semantics of Concurrent

C minor. In chapter 9 we will introduce the oracle semantics for Con-

current C minor. Finally, in chapter 10, we will construct a modular

proof of the soundness of Concurrent Separation Logic using the oracle

semantics.

Note to readers uninterested in engineering a large proof

in Coq. Readers who are largely uninterested in or unfamiliar with

Coq engineering efforts should read section 6.1, and then may skip this

chapter until section 6.6, where we define the notation and briefly cover

the ideas we will use in the rest of the thesis.

6.1 Modularization Goals

Modules are an engineering technique that isolate parts of a software

system from each other. By dividing up the system into isolated compo-

nents, it becomes easier to understand, maintain, upgrade, and re-use.

In our work, we use modules to isolate the sequential and concurrent

parts of the system from each other. In general, reasoning about sequen-

tial features or concurrent features is complicated enough; to reason

1This chapter has not been previously published.
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about both simultaneously would be very difficult. Also, if our isola-

tion is strong enough, it will be easier to modify the CompCert compiler

to compile Concurrent C minor since the existing sequential proofs will

not have to be changed very much.

6.1.1 Core, glue, and extension

Core Glue Extension

Figure 6.1: An extensible language

Languages like C minor have many complex features. At the level

of syntax, adding new features is generally done by directly adding new

statements into the set of statements already in the language. However,

this is not very modular, as many proofs are done using case analysis,

and all such proofs must be redone when new statements are added.

Moreover, the semantics of the new language cannot be directly built

from the semantics of the old language.

Instead of directly mixing features, we design a “glue” interface

layer that allows a core language to be extended with new features.

The glue combines the syntax and semantics of the core and extension

to build a new language. The relationship between the core, glue, and

extension is illustrated in figure 6.1. Since the glue isolates the core and

extension from each other, the glue allows us to re-use proofs about the

component parts as lemmas in proofs about the combined language.
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Language level Language Glue Extension

Source C minor GlueC minor ExtensionC minor

Intermediate 1 RTL GlueRTL ExtensionRTL

Intermediate 2 LTL GlueLTL ExtensionLTL

Intermediate 3 Mach GlueMach ExtensionMach

Target PowerPC GluePowerPC ExtensionPowerPC

Table 6.1: Näıve application of glue to compiler

We will take as the core the C minor of Appel and Blazy [AB07] and

as the extension a semantics of the concurrent statements make lock,

free lock, lock, unlock, and fork. We glue these together to make Con-

current C minor.

6.1.2 Level independence

A major goal of our Concurrent C minor project is to extend the cor-

rectness proofs of the CompCert compiler [Ler06] from the sequential

case to the conccurent one. The CompCert compiler translates C mi-

nor through several intermediate languages to PowerPC. A näıve way

to apply the glue and extension technique to such a system is illus-
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trated in table 6.1. From the source language of C minor to the target

language of PowerPC, each sequential language is attached to some

semantics of concurrency specialized to that language with its own

language-dependent glue.

While this method would work, it would require much more sub-

stantial modifications to the CompCert compiler and correctness proofs

than ideal, since the reasoning about the statements would have to be

done differently for each intermediate language. This would also mean

that a change to the new statements would require changing all of the

proofs about the intermediate languages. One question is how well the

glue isolates the core and extension from each other, and also how much

the glue depends on the two of them.

Ideally, the core and extension could be so isolated from each other

that each language could use the same extension to add new behavior,

as illustrated in table 6.2. To do this, the new statements must fit uni-

formly into all of the intermediate languages of the CompCert compiler.

While this does make the initial engineering work harder, the benefit

should be a substantially easier time modifying the compiler to handle

new extensions2.

2Since the compiler has not yet been modified, it is quite likely that some addi-
tional engineering work beyond what is presented in this chapter will be necessary
for that process. In particular, there are concerns that the “oracle” used to build
the concurrency extension is not fully level independent. Hopefully, however, this
material will provide a good start in the proper direction.
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Language level Language Glue Extension

Source C minor Glue∀ Extension∀

Intermediate 1 RTL Glue∀ Extension∀

Intermediate 2 LTL Glue∀ Extension∀

Intermediate 3 Mach Glue∀ Extension∀

Target PowerPC Glue∀ Extension∀

Table 6.2: Level independence

6.2 Shared definitions for glue

We now present an extension system which takes a “core” small-step

semantics and extends with certain additional instructions. We will

then use this extensible semantics to build Concurrent C minor on top

of the C minor of Appel and Blazy[AB07], and then later use it again

build an oracular semantics for Concurrent C minor.

6.2.1 Basic definitions

All of the languages of the CompCert compiler share certain common

definitions, including those given in figure 6.23.

3Coq code shown in this chapter has been simplified for the presentation.
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1 (* Definitions shared in all CompCert languages *)

2

3 (* Memory addresses *)

4 Definition addr := Z * Z

5

6 (* Identifiers *)

7 Definition ident := nat.

8

9 (* Values *)

10 Inductive val :=

11 | Vundef: val

12 | Vint: int -> val

13 | Vfloat: float -> val

14 | Vptr: addr -> val.

15

16 Definition globals := ident -> option addr.

17

18 Definition locals := ident -> option val.

19

20 (* Lines 21 - 53 are explained in section 5.2.2 *)

21 (* Permissions *)

22 Parameter resource : Type.

23

24 (* A map from address to permissions *)

25 Parameter rmap : Type.

26-53 (see figure 5.5)

54

55 Definition mem := address -> val.

56

57 Definition world :=

58 globals * locals * rmap * mem.

59 Definition predicate := world -> Prop.

60

61 Definition ext_fun := ident.

Figure 6.2: Shared definitions in all CompCert languages
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Addresses are pairs of integers, which give a block and offset; this

allows for greater modularity in the compiler. Identifiers (names of

variables) are natural numbers. There are four kinds of values: int,

float, pointer, and undefined4. A mapping from identifiers to addresses

allows global variables to be used.

Locals. Local variables are tricky to handle uniformly, since each

CompCert language has its own representation. To allow reasoning to

operate more smoothly with the languages at each level in the compiler,

we define a level-independent definition of locals as a map from N to

value. Then, each language’s glue will be responsible for converting its

own private representation of local variables into the shared one when

required.

Resource map. A resource map is a generalization of the footprint

defined by Appel and Blazy [AB07]. Recall from section 2.5.2 that a

footprint is a map from addresses to permissions. For Appel and Blazy,

a permission was simply a binary value, where true meant that mem-

ory access to that address was allowed and false meant that memory

access was forbidden. In our setting, resource maps and permissions are

more complex and are explained in section 6.2.2. Like the rest of the

shared definitions, the model of resource maps does not depend on any

particular program syntax, meaning that every language in CompCert

can use the same definition.

Memory. One of the major triumphs of the CompCert system is

4For example, storing a word and then reading a byte from the same address
results in an undefined value, per the ANSI C standard.
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that the same memory model is used for the source, target, and all

intermediate languages. For this presentation we simplify the CompCert

memory model so that memory is a map from addresses to values;

Leroy et al. [LB08, Ler06] explain the CompCert memory model in

more detail.

World, Predicate. We call the tuple of globals, locals, resource

map, and memory a world. A predicate is a function from a world

to a proposition in the calculus of co-inductive constructions (Coq’s

Prop). All of the assertions of separation logic developed in chapter

4 are predicates. A major advantage of defining things in this way is

that since all of the components in a world are level-independent, so

are predicates. Therefore, all of our separation logic assertions are well-

defined and indeed have the same definition for all of the languages in

CompCert.

External functions. Finally, one of the few statement types that

is shared by all of the CompCert languages is the idea of an external

function call, such as a library call, trap to the operating system, or

other similar situation. Each external function is given a unique identi-

fier, and a global table maps identifiers to the proper calling convention

at each level in the compiler. There is therefore a uniform way to rep-

resent external function calls for all CompCert languages, and we will

use this infrastructure to build our extension system.
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6.2.2 Resource maps

Informally, a resource map, like the footprint of Appel and Blazy, is a

map from an address to a permission, which we call a resource. As in

Appel and Blazy’s setting, using memory without the correct permis-

sion causes the machine to get stuck.

The formal definition of resource maps is technical and will be cov-

ered in chapter 7. In figure 6.3 we present an “axiomatic” view of the

core definitions.

As explained above, a resource is a kind of permission, and a re-

source map is a function from addresses to resources. Given a resource

map rm one uses resource at to determine the resource at a given ad-

dress addr. Since this is the primary use for a resource map, we define

the notation @; this means:

rm @ addr = resource at rm addr

A nonempty fractional share, as defined in section 4.5, has type pshare.

Resources have a kind, which is an inductive type that has five

constructors: kVAL (regular data), kFUN (functions), kLK (locks), kRES,

and kCT. Both kRES, and kCT are related to the C minor memory model

and are explained in section 6.3.2.

We provide two pseudoconstructors for building resources: NO and

YES. Both take a resource map as the first parameter; the reason for

this parameter will be explained in chapter 7. For the purposes of this
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21 (* Permissions *)

22 Parameter resource : Type.

23

24 (* A map from address to permissions *)

25 Parameter rmap : Type.

26

27 (* How to get from an rmap to a resource *)

28 Parameter resource_at: rmap -> address -> resource.

29 Infix "@" := resource_at (at level 50,no associativity).

30

31 (* Fractional ownership - nonempty share *)

32 Parameter pshare : Type.

33

34 (* Resource kinds *)

35 Inductive kind :=

36 kVAL | kFUN | kLK | kRES | kCT.

37

38 (* Resource abstract pseudoconstructors *)

39 Parameter NO : rmap -> resource.

40 Parameter YES : rmap -> kind -> pshare ->

41 (list predicate) -> resource.

42

43 (* Resource pseudoconstructors *)

44 Definition VAL (rm: rmap) (sh: pshare) :=

45 YES rm sh kVAL nil.

46 Definition FUN (rm: rmap)(sh: pshare)(P Q:predicate) :=

47 YES rm fullshare kFUN (P :: Q :: nil).

48 Definition LK (rm: rmap) (sh: pshare) (R: predicate) :=

49 YES rm sh kLK (R :: nil).

50 Definition RESERVED (rm: rmap) :=

51 YES rm fullshare kRES nil.

52 Definition CT (rm: rmap) (sh: pshare) :=

53 YES rm sh kCT nil.

Figure 6.3: Axiomatic presentation of resources and resource maps
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chapter, this parameter is not important.

NO rm indicates that all forms of access to that memory location are

forbidden5. YES rm k sh LP indicates that the memory location permits

certain kinds of access, the exact nature of which is determined by the

kind k, share sh and list of predicates LP.

Using YES we define five different resources: VAL, FUN, LK, RESERVED,

and CT. VAL rm sh indicates that the location is owned with (positive)

fractional ownership sh. Partial ownership will give permission to read

from memory; full ownership will give permission to both read from

and write, and so we define readable and writable as:

Definition readable res := exists phi, exists sh,

res = VAL phi sh.

Definition writable res := exists phi,

res = VAL phi fullshare.

FUN rm P Q indicates that the address contains a function with pre-

condition P and postcondition Q; in other words, if P is satisfied just

before jumping to the address, then Q will be satisfied after the function

returns. FUN uses fullshare for its share; we will use a special resource

map called the function pool to make sure that all threads have access

to the functions6.

LK rm sh R indicates that the address is partially owned with share

5Another way to think about resource maps is that they are partial functions;
in this case NO rm indicates that the location is not in the domain.

6Recall that in section 4.7.3 the CSL function assertion does not have a share.
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sh, and contains a lock with associated invariant R; in other words,

locking the lock will result in gaining the invariant R. RESERVED rm and

RESERVED rm sh are related to the C minor memory model and are

explained in section 6.3.2.

There are three important points to note. First, these “constructors”

are semantic, meaning that new kinds of resource can be defined at

any time; accordingly, if one has a resource, it does not follow that it

is one of these five. In fact, the underlying model is strong enough to

allow for an open-ended number of resource kinds, although in the Coq

development we only have the five explained above.

Second, these pseudoconstructors are not fully invertible; i.e., from:

YES rm k sh LP = YES rm’ k’ sh’ LP’

we can conclude that k = k’ and that sh = sh’; however it is invalid

to conclude that rm = rm’ or that LP = LP’; in chapter 7 we will

explain exactly what can be concluded about these parameters.

Third, eagle-eyed readers may have noticed that the definition of YES

on lines 40–41 takes a list of predicates as parameters, but predicate

is not defined until line 59 (in figure 6.2). In general, this is a problem.

The definition of predicate given on line 59 is correct. In chapter 7

we will show that in fact resource, rmap, and predicate are all defined

simultainously in a noncircular way. For the purposes of this chapter,

we will ignore this issue and therefore remain slightly informal.
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6.3 An Extensible Semantics

Consider a small-step operational semantics of the form

Ψ ⊢ σ1 7−→ σ2,

where Ψ is a global environment (mostly the syntax of the running

program) and σ is a state. We require that σ be isomorphic to a tuple

of (φ, m, ς), where φ is a resource map, m is the memory, and ς is other

kinds of state, such as in C minor the stack pointer, local variables, and

control (code, i.e., program syntax). We distinguish the memory and

resource map because the types of these are the same in every language

in the CompCert stack. Other components of the state are unique to

each language and are bundled into the core state ς.

We show the Coq interface axiomatizing these ideas in figure 6.47.

Of course, each language has its own type of syntax, which in the mod-

ule is called the program. Each language also has its own state, denoted

σ, which is isomorphic to a triple of rmap φ, mem m, and core ς. Re-

quiring an isomorphism instead of requiring state to be a triple gives

the languages additional flexibility in their definitions. We require that

the core contain some represention of local variables.

Extensibility is given by the parameter at external. While the

program is executing normal instructions, at external returns None.

When control reaches an external function call it transforms its private

7Proven in Coq: C minor satisfies the interface.
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62 Module Type EXTENSIBLE_SEMANTICS.

63

64 (* Syntax *)

65 Parameter program : Type.

66

67 (* Level-dependent representation *)

68 Parameter state : Type.

69

70 (* Level-dependent data *)

71 Parameter core : Type.

72

73 Parameter from_state : state -> rmap * mem * core.

74 Parameter to_state : rmap * mem * core -> state.

75 Parameter core_locals: core -> locals.

76

77 Parameter at_external: core ->

78 option (ext_fun * locals * predicate).

79 Parameter after_external: locals-> core-> option core.

80

81 Definition genv: Type := (program * globals).

82

83 Definition filter (ge: genv) (st: state) : world :=

84 match (from_state st) with (rm, m, c) =>

85 (snd ge, core_locals c, rm, m)

86 end.

87

88 (* call main *)

89 Parameter initial_core: val -> list val -> core.

90

91 Parameter step: genv -> state -> state -> Prop.

92

93 (* Axioms about the step relation *)

94-152 (* See figures 5.7, 5.8, and 5.9 *)

153

154 End EXTENSIBLE_SEMANTICS.

Figure 6.4: Interface for extensible semantics
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representation of that call into a language-independent representation.

In a language-independent representation, an external function call

has three components. First, an identifier that specifies which function

call, for example a 0 for lock or a 1 for unlock. Second, a set of locals,

which become the parameters to the external function. Finally, exter-

nal function calls are also able to take a predicate; this is required so

that we can handle make lock, which takes a resource invariant (predi-

cate) as a parameter; it would also be useful if one wished to define an

assert statement that took a real separation logic assertion instead of

an expression.

Once the external function call is in the language-independent rep-

resentation, an extension is able to provide the proper semantics. The

extension is allowed to modify both the resource map and the memory

as it executes, but is not allowed to modify the language-dependent

core state. When the extension wishes to return control to the core, it

places the return value of the function into a locals type and uses the

after external parameter to resume the core semantics.

Global data genv, denoted Ψ, is a tuple of two components: a

language-depenent program, which contains the syntax of the code,

and a language-independent global map, which maps global names to

addresses.

Since each language has a different representation of state, the def-

inition filter is provided so that the same predicate can be applied

regardless of the details of the current language in the compilation pro-
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cess. To apply the predicate Q in the context of language L1 to the state

σ1 of type L1.state, one writes in Coq:

Q (L1.filter ΨL1 σ1)

Then if one later wants to apply the same predicate in the context of a

different language L2, to the state σ2 of type L2.state, one writes in

Coq:

Q (L2.filter ΨL2 σ2)

The ability to use the same predicate Q with different languages should

significantly simplify modifications to the compiler, since it means that

the compiler will not have to manipulate predicates as it compiles code

from one language to the next.

Although the internals of core vary significantly between the lan-

guages, all of the languages support the idea of creating an initial, sim-

ple core, typically for program start with call main(). The parameter

initial core is provided for that purpose.

Most importantly, a language has a step relation (i.e., 7−→), which

gives its actual small-step semantics.

For a given state, there does not always exist a subsequent state that

the given state steps to. Typically this means that the semantics has

gotten stuck, but in this case there is another possibility: the control in

question is not part of the core language, and should be handled by the

extension system. A simple example of a non-core instruction would be
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a trap to the operating system; in Concurrent C minor the extension

instructions are the concurrent instructions make lock, free lock, lock,

unlock, and fork.

6.3.1 Axioms and basic definitions

The EXTENSIBLE SEMANTICS module type also contains certain axioms

and basic definitions about the step relation that must be satisfied;

these are largely given in figure 6.5. Axioms are part of the module

type to isolate and centralize the dependencies between the core and

extension8.

The axiom step obeys rmap on lines 96–102 expresses the major

reason to include resource maps (or footprints) in the semantics. The

key is on lines 100–101: for each address, either the address is writable

(i.e., VAL fullshare) or the value in memory before and after steping

are equal9.

The axiom step preserves resource on lines 104–121 details how

the step relation is allowed to change the resource map. In fact, very

little is allowed to change. If the value was empty before stepping,

then it must be empty afterwards (line 117). If not, then there are two

possibilities; by far the most common is that if the value was a YES

value, then it is preserved with the same kind, share, and predicate list

8While it has been shown in Coq that C minor satisfies all of the axioms pre-
sented; it has not yet been shown that these are all of the axioms required by
the concurrency proofs, since the process of rebuilding the proof using this cleaner
design is ongoing.

9In the existance of byte-addressed memory, this property is more complicated.
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93 (* Axioms about the step relation *)

94

95 (* Memory does not change except for fully-owned data *)

96 Axiom step_obeys_rmap: forall ge st st’,

97 step ge st st’ ->

98 match (from_state st, from_state st’) with

99 ((rmap, m, _),(_, m’, _)) =>

100 forall addr, (writable (rmap @ addr)) \/

101 (m addr = m’ addr)

102 end.

103

104 (* Required for CompCert memory model *)

105 Definition rmap_memory_model_rmap_ok (phi phi’: rmap) :=

106-111 (* See figure 5.8 *)

112

113 Axiom step_preserves_resource: forall ge st st’,

114 step ge st st’ ->

115 match (from_state st, from_state st’) with

116 ((rmap, _, _),(rmap’, _, _)) => forall addr,

117 (rmap @ addr = NO rmap -> rmap’ @ addr = NO rmap’) /\

118 ((forall sh k LP, rmap @ addr = YES rmap k sh LP ->

119 rmap’ @ addr = YES rmap’ k sh LP) \/

120 (rmap_memory_model_rmap_ok rmap rmap’))

121 end.

122

123 (* Determinism *)

124 Axiom step_fun: forall ge st st1 st2,

125 step ge st st1 -> step ge st st2 -> st1 = st2.

126

127 (* Required for model of resource maps *)

128 Axiom step_not_any_younger:

129 (* See section 6.XX *)

130

131 Axiom step_allocpool: forall ge st st’,

132-134 (* See figure 5.8 *)

Figure 6.5: Axioms for Extensible Semantics
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(lines 118–119); the other possibility (lines 104–111 and 120) is related

to the C minor memory model and is covered in section 6.3.2.

The axiom step fun on lines 124–125 says that the step relation

must be deterministic. This property is heavily used in both the Com-

pCert compiler proofs and the soundness proofs of sequential separation

logic developed by Appel and Blazy.

The axiom step not any younger is a technical axiom required by

the model of resources, resource maps, and predicates, and will be ex-

plained in chapter 7.

6.3.2 Definitions and axioms for the C minor

memory model

Here we give a brief explanation of some definitions and axioms re-

quired by the CompCert memory model; Leroy et al. [LB08, Ler06]

give a fuller explanation of the memory model and the reasons behind

its design decisions.

The resource RESERVED is used to indicate memory locations that

have not been allocated, but can be allocated in the future. The resource

CT is used because C minor is byte-addressed; accordingly, since locks

are four bytes long, the first byte has resource LK and the next three

have resource CT.

There are two major additions to the step relation axioms due to

the memory model; these are given in figure 6.6.
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104 (* Required for CompCert memory model *)

105 Definition rmap_memory_model_rmap_ok (phi phi’:rmap) :=

106 forall addr,

107 (phi @ addr = RESERVED phi pfullshare /\

108 ((phi’ @ addr = VAL phi’ pfullshare) \/

109 (phi’ @ addr = NO phi’))) \/

110 (phi @ addr = VAL phi pfullshare /\

111 phi’ @ addr = NO phi’).

...

131 Axiom step_allocpool: forall ge st st’,

132 step ge st st’ ->

133 ((allocpool * TT) (filter ge st) ->

134 (allocpool * TT) (filter ge st’)).

Figure 6.6: Axioms for C minor memory model

The definition rmap memory model rmap ok on lines 104–111 gives

two additional ways the resource map is able to change. In the first,

on lines 107–109, resource is allowed to change from RESERVED to VAL

or NO; this happens when memory is allocated. In the second, on lines

110–111, resource is allowed to change from VAL to NO; this happens

when memory is deallocated.

The axiom step allocpool on lines 131–134 is an elegant way of

expressing that one never “runs out” of allocatable memory. Instead of

expressing this fact directly, the axiom is defined in terms of a predicate

allocpool, which must be a satisfied by some portion of the resource

map (TT is the predicate true). The definition of allocpool is both

technical and not relevant to concurrency, and so we do not present it

here.
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135 Inductive stepstar (ge:genv): state-> state-> Prop :=

136 | stepstar_0: forall st,

137 stepstar ge st st

138 | stepstar_S: forall st1 st2 st3,

139 step ge st1 st2 ->

140 stepstar ge st2 st3 ->

141 stepstar ge st1 st3.

142

143 Inductive immed_safe (ge : genv) (st: state) : Prop :=

144 | immed_safe_step: forall st’,

145 step ge st st’ ->

146 immed_safe ge st

147 | immed_safe_rmap:

148 ... level of resource map is 0; see chapter 6 ... ->

149 immed_safe ge st.

150

151 Definition safe (ge: genv) (st: state) : Prop :=

152 forall st’, stepstar ge st st’ -> immed_safe ge st’.

Figure 6.7: Basic definitions for Extensible Semantics

6.3.3 Common definitions for core semantics

Finally, there are some common definitions for all core semantics which

are given in figure 6.7. stepstar is defined in the standard inductive

way to allow for finite composed applications of step. On lines 144–146,

immed safe says that a state is immediately safe if it can take a step; on

lines 147–149 there is an additional way to be immediately safe, which

is if the “level” of the resource map in the state is 0; this is required

for the model of resource maps and will be explained in chapter 7.

Lastly, safe is defined in the standard way: a state σ is safe if, for

any reachable state σ′, σ′ is immediately safe.
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6.4 Building an extension

Once we have a core language, such as the C minor of Appel and Blazy,

we want to extend it, for example with concurrency primatives. By

using a “bolt-on” model for extensions, we can ensure that changes to

the core semantics do not affect the extensions and vise versa.

6.4.1 Examples of extensions

Here we discuss different examples of extensions definable in our setting.

The null extension

One very simple extension is the null extension, which is the extension

that does not implement any functionality. In this case the combination

of the core language and the extension is equivalent to just the core

language.

The operating system extension

A more complex extension is the simple operating system extension.

This extension implements three external functions: read, which gets

input from the user; write, which sends output to the user; and exit,

which terminates the program and returns control to the operating

system.
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The sequential sub-machine extension

To define the semantics of Concurrent C minor we will build two differ-

ent concurrency extensions. In chapter 8, we will build a small exten-

sion called the sequential sub-machine extension that only knows how

to execute the concurrent instructions make lock and free lock, getting

stuck on lock, unlock, and fork. We will use this extension to build the

concurrent operational semantics of Concurrent C minor.

The oracular concurrency extension

Later, in chapter 9, we will build a more powerful extension using the

concurrent operational semantics, called the oracular concurrency ex-

tension. That extension will be able to execute all five of the concurrent

instructions, and we will use it to prove our CSL sound.

6.4.2 The EXTENSION module type

An extension must satisfy the module type given in figure 6.8. Unlike

the core, extensions are quite simple. There is a type oracle (in mathe-

matical notation Ω), which acts as “private data” for the extension and

is hidden from the core semantics. The oracle type must be inhabited,

so we provide a witness, an oracle.

The point of an extension is to handle external function calls. How-

ever, any given extension need not handle all external functions; it is

useful to be able to query the extension to determine which external

functions it handles. The parameter handles gives an easy test for this.



6.4. BUILDING AN EXTENSION 

155 Module Type EXTENSION.

156 Parameter oracle: Type.

157 Parameter an_oracle: oracle.

158

159 Parameter handles: external_function -> bool.

160

161 Parameter consult: external_function ->

162 (oracle * world * predicate) ->

163 option (oracle * world) -> Prop.

164

165 Axiom consult_obeys_rmap: forall c o1 w1 P o2 w2,

166 consult c (o1, w1, P) (o2, w2) ->

167 match (w1,w2) with ((_,_,rmap,m),(_,_,rmap’,m’)) =>

168 forall addr, (readable (rmap @ addr) /\

169 readable (rmap’ @ addr)) ->

170 (m addr = m’ addr))

171 end.

172

173 (* Determinism *)

174 Axiom consult_fun: forall c a b1 b2,

175 consult c a b1 -> consult c a b2 -> b1=b2.

176

177 (* Required for model of resource maps *)

178 Axiom consult_not_any_younger:

179 (* See section 6.XX *)

180

181 (* Required for CompCert memory model *)

182 Axiom consult_allocpool: forall c ora w P ora’ w’,

183 consult c (ora, w, P) (Some (ora’, w’)) ->

184 ((allocpool * TT) w ->

185 (allocpool * TT) w’).

186

187 End EXTENSION.

Figure 6.8: Interface for extension
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To actually handle the external function call, the extension provides

a consult relation, which takes an external function (i.e. a natural

number that encodes which function is being called), a tuple (Ω, w, P ),

which are the arguments to the external call, and an option of tuple

(Ω, w), which are the results.

In general, consult only modifies world, since world is exactly the

part of the state that is shared between all of the languages of the

CompCert compiler. However, the extension is allowed to use some

auxiliary private state in the oracle. In the operating system extension

this would encapsulate the state of the operating system; in the oracular

concurrency extension it encapsulates the state of the other threads.

The predicate P in the consult function is used to implement

make lock. It would also be useful to implement an assert function

that took a predicate instead of an expression.

Like step, the consult relation is partial and can get stuck. When

consult returns None, the result is not that the consult failed, but that

control never returns. Two examples of this result would be modeling

the exit system call in the operating system extension and modeling

the lock instruction, where e.g. the call can deadlock, in the oracular

concurrency extension. When consult returns a new oracle and world,

the world is passed back to the core semantics and the oracle is provided

as a parameter on the next consult, thereby allowing the extension to

use the oracle as shared state. In general the oracle is able to return a

completely different world (memory, resource map, etc.) than the one
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it was given.

In addition, like the core semantics, an extension must satisfy a vari-

ety of axioms10. The key axiom is consult obeys rmap, which is given

on lines 165–171. This axiom is somewhat different from the one defined

for the core on lines 96–102 in figure 6.5. Instead, this one guarantees

that as long as an address is readable both before and after consulting

then the memory at that address is unchanged by the consult.

All of the other axioms are very similar to the ones given for the

core in figures 6.5 and 6.6.

6.5 Gluing a core and extension together

Once one has built a core semantics and an extension, one would like to

glue them together to have a complete semantics. We define a functor

Oraclize in Coq that takes two modules as arguments, the first of

module type EXTENSIBLE SEMANTICS, and the second of module type

EXTENSION. This functor then builds a step relation of the following

form:

Ψ ⊢ (Ω, σ) 77−→ (Ω′, σ′)

The Coq implementation of the oracular step relation is in figure 6.9.

The oracular step has three cases. Case one is given on lines 4–8.

First, in line 5 we ensure that the state is not at an external function

10Just as with the core axioms, it has been shown in Coq that the concurrency
extension meets these axioms, but it is unclear if other axioms are required as the
proof is being re-engineered into this format.
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Module Oraclize (Core: EXTENSIBLE_SEMANTICS) (Ext: EXTENSION).

...

1 Inductive oracle_step

2 (ge: genv) (ora1 : oracle) (st1 : state)

3 (ora2: oracle) (st2: state) : Prop :=

4 | step_core:

5 at_external (snd (snd (from_state st1))) = None ->

6 ora1 = ora2 ->

7 step ge st1 st2 ->

8 oracle_step ge ora1 st1 ora2 st2

9 | step_external_Some:

10 forall phi m core f vargs P rho’ rho’ core’,

11 st1 = to_state (phi, m, core) ->

12 at_external core = Some (f,vargs,P) ->

13 consult f (ora1,(snd ge,vargs,phi,m), P)

14 (Some (ora2,(_,rho’,phi’,m’))) ->

15 after_external rho’ core = Some core’ ->

16 st2 = to_state (phi’,m’,core’) ->

17 oracle_step ge ora1 st1 ora2 st2

18 | step_external_None:

19 forall phi m core f vargs P,

20 st1 = to_state (phi, m, core) ->

21 at_external core = Some (f,vargs,P) ->

22 consult f (ora1,(snd ge,vargs,phi,m),P) None ->

23 ora1 = ora2 ->

24 st1 = st2 ->

25 oracle_step ge ora1 st1 ora2 st2.

...

End Oraclize.

Figure 6.9: Coq oracular step relation
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call; in this case line 6 ensures that the oracle is constant since the core

semantics is not allowed to modify the it. On line 7, the core semantics

steps, and on line 8 the parts are put back together.

Both cases two and three deal with external function calls. Case two

is given on lines 9–17, and handles the case when the external function

returns. We verify that the state is at an external function call on line

12. On lines 13–14, we consult the oracle using the extension. After

consulting we reconstruct the state on lines 15–16, and on line 17 the

parts are put back together.

Case three is given on lines 18–25 and handles the case when the

external function never returns control. We verify that the state is at

an external function call on line 21. On line 22, we consult the oracle

using the extension, and receive None back as the return, indicating

that the extension never releases control back to the core. In this case,

the semantics loops around forever by setting the next state and oracle

to be equal to the previous one on lines 23–24, and then putting the

parts back together on line 25. Since the third case results in an infinite

loop, it is trivially safe.

Along with this definition, the Oracalize functor has a number of

lemmas about the relation, which are proven from the axioms on the

core and extension.
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6.6 Notation for the rest of the thesis

We have now given an explanation of how to modularize an extensible

semantics in Coq. To simplify the presentation in the rest of the thesis,

we will do the following. First, we will assume that the core semantics

is “hardwired” to the C minor of Appel and Blazy. The core semantics

will have a step relation given by

Ψ ⊢ σ1 7−→ σ2,

Where a state σ is a pair of world w (that is, those parts of state that do

not include program syntax: locals ρ, resource map φ, and memory m)

and control κ (the parts of the state that do include program syntax).

Appel and Blazy define several different controls, but for this pre-

sentation we only s · κ and Kstop, as defined in chapter 5.

Second, we will pretend that the new concurrent statements make lock,

free lock, lock, unlock, and fork are just normal statements added to se-

quential C minor, instead of extended function calls. These statements

take values instead of expressions as parameters for simplicity.

Third, we will hide most of the modularization between core and ex-

tension. To build an extension, one constructs a partial function consult:

consult : program × oracle × state → option(oracle × state),

where a program Ψ, an oracle Ω and a state σ are the input to the
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Core Step
Ψ ⊢ σ1 7−→ σ2

Ψ ⊢ (Ω, σ1) 77−→ (Ω, σ2)

Oracle Step
consult (Ψ, Ω1, σ1) = Some (Ω2, σ2)

Ψ ⊢ (Ω1, σ1) 77−→ (Ω2, σ2)

Oracle Diverges
consult (Ψ, Ω, σ) = None

Ψ ⊢ (Ω, σ) 77−→ (Ω, σ)

Note: at most one case applies at a time.

Figure 6.10: Oracular step relation

consultation, and an oracle Ω′ and state σ′ are the optional output.

Using this partial function, one defines the oracular step with three

cases as given in figure 6.10. The first case covers the situation when

the core semantics is stepping. The second case covers when the oracle

is taking control for an extended statement, but eventually returning

control to the core. The third case is for when the extension does not re-

turn control to the core semantics, and therefore the program enters an

infinite loop. For our work, the third case is only used when a deadlock

occurs during the execution of a lock statement.





Chapter 7

A Modal Substructural Logic

In chapter 4 we defined Concurrent Separation Logic, and in sections

6.2.1–6.2.2 we axiomatized resource and rmap and explained that the

assertions of CSL were modeled as predicates.

In section 7.1 we explain the difficulties in providing a model for

CSL assertions. In section 7.2 we explain the stratification technique

that allows us to provide a sound definition for resources and resource

maps. Finally, in section 7.3 we explain how to use a modal logic to

reason cleanly about the underlying model and define the assertions of

CSL1.

1Portions of this chapter have been published before as [HAZ08a], [HAZ08b],
[DAH08], and [BDH+08].


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7.1 Modelling difficulties

In section 6.2.1 we explained that a predicate is a function from a

tuple of globals, locals, resource map, and memory to a proposition

in the Calculus of Co-Inductive Constructions (Coq’s Prop). Though

the ability to judge globals is important for developing proofs in CSL,

modeling assertions about them is not difficult, so for the rest of this

chapter, we elide globals to simplify the presentation; we also elide

issues related to the C minor memory model outlined in section 6.3.2.

In section 6.2.1, it was also explained that neither resource maps nor

memories depend on the syntax of programs and so can be used with

any CompCert language, which further justifies using them whenever

possible to express invariants in the soundness proof.

7.1.1 Semantic vs. Syntactic

There are two basic approaches to programming language research. The

first, more common today, is syntactic, where objects are uninterpreted

symbols and are defined by judgements showing how they are to be

used. The second, which is the approach we have taken, is semantic,

where objects are given formal definitions and judgements showing how

they should be used are proved from those definitions as lemmas.

We initially chose to give a semantic definition for our separation

logic—instead of defining it syntactically and proving soundness via

metaproofs—for three reasons. First, semantic systems are more ex-
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tensible than syntactic ones. It is easy to define a new assertion, and

unless the underlying semantics of the language must be changed to

accomodate that assertion, all of the previously proved facts still hold

automatically. Therefore in section 6.2.1 we were able to give a subset

of the assertions of our CSL, including “maps-to” e 7→ v and “is a lock

with invariant R” e
π

; R, without worrying that we were leaving any-

thing out. If a user decides we have left out a useful assertion, he can

define it himself.

Second, after examining the Princeton Foundational Proof-Carrying

Code (FPCC) project [App01] we found evidence that semantic meth-

ods scaled better than syntactic ones in large, machine-checked, realistic

systems [BDH+08].

Third, we had more experience with semantic methods in the con-

text of a large project. Partially as a result of this experience, we find

semantic proofs more natural than syntactic ones, and easier to con-

struct.

Fourth, although we do not have any hard evidence for this opinion,

we believe that semantic methods are less brittle than syntactic proofs

when confronted with the kinds of engineering changes common in a

large project.

7.1.2 A näıve model for assertions

The recursive nature of first-class locks makes them very difficult to

model semantically since it is easy to slip into Cantor’s paradox. We
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kind = kVAL + kLK + kFUN

resource ≈ NO +
YES(kind × pshare × list(predicate))

rmap ≈ address → resource

world = locals × rmap × mem

predicate = world → Prop

Figure 7.1: Näıve assertion model

want a model that is something like the one in figure 7.1, where + and

× are the sum and product type constructors and we write ≈ to mean

“we wish we could define things this way”.

The idea is that a resource can either be NO, which indicates that

the location cannot be used, or YES, which indicates that the resource

can be used in some way. A YES resource takes a kind, which can be

one of three choices: kVAL, which indicates that the location contains

data; kLK, which indicates that the location is a lock; and kFUN, which

indicates that the location contains a function. A YES resource also

takes an pshare and list(predicate). As explained in section 6.2.2, a pshare

is a nonempty share as defined in section 4.5. The “high-level” resource

pseudoconstructors VAL, LK, and FUN are defined in terms of YES.

An rmap associates every location in memory with a resource. As

explained in section 6.2.1, locals, rmap, and mem are bundled together

into a world. A predicate then is a function from world to Prop.

To see where the difficulty lies, let us examine the pseudodefinition
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of the YES constructor:

resource ≈ NO +

YES(kind × pshare × list(predicate)).

First we will unfold the definition of predicate to get

resource ≈ NO +

YES(kind × pshare × list(world → Prop)),

then the definition of world to get

resource ≈ NO +

YES(kind×

pshare×

list((locals × rmap × mem) → Prop)),

and then the pseudodefinition of rmap to get

resource ≈ NO +

YES(kind×

pshare×

list((locals × (address → resource) × mem) → Prop)).

This definition would be possible if and only if the following much

simpler, related definition were possible

resource ≈ resource → Prop.
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In both cases, there is a contravariant occurrence of resource within

its own definition. In other words, the cardinality of resource is strictly

larger than the cardinality of resource, a contradiction even in untyped

set theory. Thus these definitions are unsound.

7.1.3 From mutable references to lock invariants

To provide a sound definition we adapt techniques developed for mod-

eling mutable references in the FPCC project [AAV03, Ahm04]. It was

surprising to us that the semantics of mutable references were relevant

to the semantics of first-class locks. However, reading from a mutable

reference is similar to locking a lock, in the sense that both actions are

a way of getting information from the outside world. Analogously, stor-

ing to a mutable reference is similar to unlocking a lock, in the sense

that both actions are a way of notifying the outside world of a change

of state.

The indexed model developed for modelling mutable references in

FPCC was extremely difficult to explain and very complex to use. It was

developed in higher-order logic (HOL) encoded in the Twelf theorem

prover; limitations on the expressiveness of HOL required extensive,

very heavyweight Gödelization techniques to define the model and prove

it sound, resulting in more than 20,000 lines of proof for this part of

the model alone. Also, the underlying model was exposed to the rest of

the proof of the type system in various unpleasant ways.

Appel et al. substantially redesigned the indexed model [AMRV07],



7.2. A SUBSTRUCTURAL MODAL MODEL 

to create a modal model. This model was defined and proved sound

in Coq in approximately 1,000 lines. The enormous difference in size is

due to a combination of several factors: first, substantial redesign of the

definitions and better proof techniques; second, the natural difference

in size between using proof scripts instead of explicitly writing out full

proofs; and third, the use of dependent types to avoid the Gödelization

techniques. Moreover, Appel et al. used a modal logic to hide the un-

derlying model from the remainder of the proof.

7.2 A substructural modal model

The sketch of the modal substructural model given in figure 7.2 is di-

vided into three parts. The first section shows how we provide a sound

definition in the presence of contravariance in a way that preserves im-

predicativity. The second section shows how dependent types can hide

the stratification in the underlying model. The third section gives some

definitions that are useful when translating the dependent model into

the underlying stratified model2.

In the Coq development, some definitions are hidden from the rest

of the proofs with a module type. We use •= to mean that the definition

is completely invisible to the proofs outside the construction of the

model. We use ◦= to mean that the definition is opaque to the rest of

2For further details of the stratification and soundness of the construction we
refer to Appel et al. [AMRV07] and Richards [Ric08]; both refer to the 1,000 line
Coq development cited earlier. Appel [App08] has also illustrated some of the mod-
ifications required to support substructural reasoning.
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Impredicative Stratified Model

kind = kVAL + kLK + kFUN

predicate0 •= unit

resourcen •= NOn +
YESn(kind × pshare × list(predicaten))

rmapn •= address → resourcen

worldn •= locals × rmapn × mem

predicaten+1 •= predicaten × (worldn → Prop)

Dependent Model

resource ◦= Σn : N. resourcen

rmap ◦= Σn : N. rmapn

world = locals × rmap × mem

predicate = world → Prop

Relating the Dependent and Stratified Models

level : rmap → N

•= λ{n, φn}. n

stratify : Πn : N. predicate → predicaten

•= fix stratify λn. λP. if (n = 0) then (tt : unit)
else (stratify (n − 1) P,

λv : worldn−1. P (v.1, {n − 1, v.2}, v.3))

Figure 7.2: Sketch of substructural modal model
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the proof; that is, the rest of the proof knows that the definition exists,

but is not able to “look inside” and see the details of the definition. We

use = to mean that the definition is completely public, and that the

rest of the proof is able to use it directly.

There are a number of differences between the presentation here

and the Coq development. The most important ones are these:

1. Here predicates judge only locals, resource maps, and memory;

as explained in section 6.2.1, in the Coq development, predicates

also judge globals.

2. Here we ignore issues related to byte addressability. In the Coq

development, we must handle this issue. In particular, we need to

ensure that the first byte of a lock cannot be separated from the

following three bytes. We do this by maintaining validity predi-

cates about valid resource maps.

3. As explained in section 4.7.3, in the presentation we do not sup-

port the relation of function preconditions to function postcon-

ditions; i.e., we do not have a way of expressing that a call to

an increment function returns a value exactly one larger than its

parameter. In the actual Coq development, both our CSL and

the underlying model support this additional expressiveness. In

the model this is done by parameterizing predicate lists over an

additional type and value parameter.
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4. Here we use the → type constructor to construct the types of

rmapn and rmap. In the Coq development we use a quasifunctor

called Joinmap that helps preserve certain separation properties.

5. Our presentation here is less modular than the Coq development.

6. It is nontrivial to produce definitions that will be acceptable to

the Coq theorem prover from the definitions as given in the pre-

sentation, largely due to the heavy use of dependent types in the

model. In appendix A we give a very compact Coq development

that implements the core ideas presented in figure 7.2; this minia-

ture development should help a reader who wishes to understand

(or build) a larger Coq implementation. In the real Coq develop-

ment, the entire modal substructural model has been completely

defined and proved sound.

7.2.1 An impredicative stratified model

The idea is that we will stratify predicates, resources, and rmaps; we

write predicaten to mean a predicate at level n, resourcen to mean a

resource at level n, and rmapn to mean a resource map at level n.

To ensure a well-founded construction, we define predicate0 as unit.

A resource at level n is only allowed to contain predicates of level n;

similarly, a resource map at level n is a map from address to resourcen.

As discussed in section 6.2.1, we bundle locals, resourcen, and memory

together into a worldn. A predicate at level n + 1 is a pair of predicaten
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and a map from worldn to Prop. Thus, a predicate at level n+1 contains

a list of predicates for all levels between n and 0, in addition to the map

from worldn to Prop. As an example, consider n = 3:

predicate3 = (unit× (world1 → Prop)) × (world2 → Prop).

We define predicaten as a pair because it lets us define “aging” the

predicate in section 7.2.4 in a relatively simple way.

By stratifying in this manner we make the definitions well-defined.

The stratified construction was one of the major technical accomplish-

ments of the indexed model for mutable references that Ahmed et. al

[AAV03, Ahm04] developed for the FPCC project.

One major advantage of this construction over previous models

[AM01, AAV02] is that it supports impredicative quantification. That

is, since the result type of predicaten is Prop (as opposed to, e.g., some

kind of stratified Propn), it is possible to define universal and existential

quantifiers for predicaten that can quantify over all of the types in Coq,

even including predicaten. This is much stronger and more useful than

predicative quantification, where a predicaten could at most quantify

over predicaten−1.

One major drawback in the model developed for FPCC is that the

indexes in the model “leak out”, meaning that the entire type soundness

proof in the FPCC system must explicitly deal with the indexes. In our

model this is not the case, and we have used •= to define predicaten,
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resourcen, worldn, and rmapn, indicating that the rest of the proof cannot

see the underlying stratification.

7.2.2 Dependent types to hide stratification

The second section in figure 7.2 contains one of the major insights in

the modal model of Appel et. al [AMRV07], namely the ability to hid

the underlying indexes in the model from the rest of the proof by using

dependent types. Explicit reasoning about the indexes can therefore be

contained to a small part of the overall soundness proof.

We use both sum (Σ) and product (Π) dependent types in our def-

initions. An element s : Σα. (β : α → Type) is a dependent pair,

written s = {a : α, b : β(a)}, where the type of the second component

depends on the value of the first component3.

An element f : Πα. (β : α → Type) is a dependent function

f = λa : α.(b a) : β(a), where b : α → β(a). Thus, the type of the

function’s result depends on the value of the function’s parameter. One

way to interpret this is that the Π type operator defines a family of

related types, indexed by the value.

Using the Σ dependent type constructor, we are able to define

resource as a dependent pair of a natural n and a stratified resourcen at

level n. Similarily, we define rmap as a dependent pair of a natural n

and a stratified rmapn at level n. These definitions elegantly hide the

underlying stratification by bundling it into a dependent pair, and are

3To express a normal pair we use the typical notation (a, b); the notation {a, b}
is reserved to indicate the presence of dependent types.
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the definitions axiomatized in section 6.2.2. Finally, predicate is defined

as was promised in section 6.2.1, as a function from a pair of rmap and

mem to Prop.

We have used ◦= to define resource and rmap, indicating that they are

opaque to the rest of the proof. The rest of the Coq development does

not know that the underlying model uses dependent types. When the

rest of the soundness proof wishes to use resource and rmap, it must use

the axioms exposed by the module, such as NO and YES as defined in

section 7.2.6. Therefore the rest of the proof can be blissfully unaware

of the stratification going on under the hood.

In contrast, we have used = to define world and predicate, indicating

that those definitions are fully exposed to the rest of the proof.

7.2.3 Relating the models

The definitions in the third section of figure 7.2 are used only under

the hood. However, as we shall see in section 7.2.6 they are critical to

defining some parts of the interface that the rest of the proof does use,

such as the YES pseudoconstructor.

Within the model, often it is useful to know the amount of strati-

fication in a given rmap. The function level allows just that, taking a

rmap and returning the value of its first component.

Another thing the model must be able to do is take an external

view of the model (i.e., a predicate) and translate it into the stratified

construction (i.e., a predicaten). A predicate in some sense is infinitely
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stratified; accordingly, it is important to be able to project a predicate

down into the finitely stratified model.

This is the job of the stratify operator4. The stratify operator takes

a natural n and a predicate P , and produces a predicaten Pn, which is P

stratified to level n. It does this by using the recursion operator fix in

the Calculus of Constructions to recursively define the nested structure

of the stratified predicate.

As explained above, a stratified predicate at level 0 is has type unit;

the value tt has the unit type. A stratified predicate at level n+1 is a

pair of a stratified predicate at level n and a function from a pair of rmap

at level n and mem to Prop. The first component of this pair is defined

by the recursive call to the stratify operator. The second component is

more interesting, since it is the essential point of the stratification:

λv : worldn−1. P (v.1, {n − 1, v.2}, v.3)

By the definition of predicaten, this must have type worldn−1 → Prop,

and accordingly the parameter v has type worldn−1. Recall that worldn−1 =

locals× rmapn−1 ×mem. The result type must be Prop, which is simple

enough to satisfy on its own (e.g., with true), but the goal is to build

the stratified Pn from P .

Given that we have a stratified rmapn−1 as the second component

of v, we can build an rmap with the dependent pair {n − 1, v.1}. By

4Appel et al. [AMRV07] write this operator as ⌊·⌋n, and is define it in a more
mathematical style as definition 29.
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projecting out the first and third components of v as well we are able

to build a world, to which we can apply the predicate P .

Since P is being applied to a rmapn−1 of level n − 1, it will only be

able to judge properties involving the rmap that are no more than n−1

levels of stratification deep. As an example, consider the value

stratify 1 P.

Simplifying the definition yields

(tt, λv : (locals × rmap0 × mem). P (v.1, {0, v.2}, v.3)).

Unfolding the definition of rmap0 yields

(tt, λv : (locals×(address → resource0)×mem). P (v.1, {0, v.2}, v.3)).

A resource0 is either NO0 or YES0(k, π, ~P0). However, predicate0 is equal

to unit, so the list ~P0 is a list of elements of type unit. Of course,

one unit is much like another; this means that stratify 1 P cannot

distinguish two YES0 resources by examining their predicates.

The inability to fully distinguish YESn resources by examining their

predicates has significant implications for inversion. Suppose we have

two predicates P and Q, and we know that for a given k

stratify k P = stratify k Q.
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What can we conclude? Certainly not P = Q, since perhaps at some

greater level of stratification k′ > k the two predicates will differ. In

fact, in the worst case k = 0, and we have the horrible-looking fact that

stratify 0 (λw. true) = stratify 0 (λw. false),

since, of course, tt = tt.

The best we can do is prove that

stratify k P = stratify k Q

if and only if the following characterization (C1) holds:

(C1) ∀j < k, φj, ρ, m. P (ρ, {j, φj}, m) ↔ Q(ρ, {j, φj}, m).

In other words, stratify k P = stratify k Q if and only if P and Q are

equivalent for all rmaps with stratification level strictly less than k.

7.2.4 Characterizing Increasing Approximation

The problem with (C1) is that it both exposes the inner workings of

the stratified model by universally quantifying over φj and exposes

the inner workings of the dependent model by explicitly constructing

the rmap {j, φj}. As a characterization of the behavior of the stratify

operator it is not ideal, since the rest of the proof will not be able to

use it.
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Increasing Approximation in Stratified Model

age1 predicaten+1 : predicaten+1 → predicaten

•= λ(Pn, Pn+1). Pn

age1 resourcen+1 : resourcen+1 → resourcen

•= λξn+1. match ξn+1 with
| NOn+1 ⇒ NOn

| YESn+1(k, π, ~Pn+1) ⇒

YESn(k, π, map age1 predicaten+1
~Pn+1)

end

age1 rmapn+1 : rmapn+1 → rmapn

•= λφn+1.

λ(a : address). age1 resourcen+1(φn+1(a))

Increasing Approximation in Dependent Model

age1 : rmap → option(rmap)
◦= λ{n, φn}. match n with

| 0 ⇒ None
| m + 1 ⇒ Some {m, age1 rmapm+1 φn}

end

age : N → rmap → option(rmap)
= fix age λn. λφ. match (n, age1 φ) with

| (0, ) ⇒ Some φ

| ( , None) ⇒ None
| (m + 1, Some φ′) ⇒ age m φ′

end

Figure 7.3: Increasing approximation
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Since the idea behind (C1) is that P and Q are equivalent for all

rmaps with stratification level strictly less than k, it seems reasonable to

characterize this property in a way that does not expose the underlying

model.

In figure 7.3 we build the machinery to do just that. First we define

three operators, age1 predicaten+1, age1 resourcen+1, and age1 rmapn+1

that remove one level of stratification from predicaten+1, resourcen+1,

and rmapn+1, respectively, by “forgetting” some stratification. A point

to note is that age1 predicaten+1, which causes the actual information

loss, has a very simple definition due to the pair structure of predicaten.

All three of these operators are undefined on stratification level 0, and,

since all of the operators expose the underlying stratification, we wish

to completely hide them from the rest of the proof.

Now that we have defined aging on the stratified model, we extend it

to the dependent model with the age1 operator, which simply unpacks

the dependent pair and then uses the age1 rmapn+1 operator. Since we

would like age1 to be defined for all rmaps, we have it return None if

j = 0. Since age1 is actually removing structure, it is irreflexive, i.e.,

∀φ, φ′. age1 φ = Some φ′ → φ 6= φ′

The age1 operator is opaque; the rest of the proof can see that it exists,

but is only allowed to use it via axioms defined in the module type.

Finally, we define the age operator, which is just the nth composition
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of age1. For all n > 0, age is irreflexive5.

Now that we have defined age, we can use it to characterize the

stratify operator by observing that

stratify k P = stratify k Q

is equivalent to (C1), which is in turn equivalent to

(C2) ∀φ, n, φ′, ρ, m.

(level φ = k) → (age (n + 1) φ = Some φ′) →

(P (ρ, φ′, m) ↔ Q(ρ, φ′, m)).

This is a much better characterization of stratify because it does not ex-

pose the stratified construction. However, it is not ideal, since it requires

exposing the private level function. We will see a still more elegant way

of expressing this property in section 7.3.

7.2.5 Stratified separation algebras for the model

In section 4.4 we defined a stratified separation algebra by building on

the ideas of Calcagno et al. [COY07]. In section 4.5 we explained that

shares are such an algebra. Here we will show how to lift the separation

algebra on share to resource, rmap, and world.

5For comparison with previous work [AMRV07], the relation R(φ, φ′) =
∃n. (age (n + 1) φ = Some φ′) is irreflexive, transitive, and Noetherian, and moves
between the worlds in the underlying Kripke model.
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Join relations for the stratified model

We define the join relation ⊕n of resourcen as follows. Two YESn re-

sources join

YESn(k, Some π1, ~Pn)⊕n YESn(k, Some π2, ~Pn) = YESn(k, Some π3, ~Pn)

if and only if

π1 ⊕ π2 = π3.

In other words, for two YESn resources to join, they must be the same

kind, have shares that join, and have identical predicate lists. NOn is

the identity element for level n. Two resourcen at different levels never

join.

From the join relation on resourcen we can build the join relation on

rmapn by lifting the relation pointwise6. That is, for φa φb φc : rmapn,

we define

φa ⊕n φb = φc

if and only if

∀l. φa(l) ⊕n φb(l) = φc(l).

As with resourcen, two rmapn at different levels do not join.

From the join relation on rmapn, we define the join relation on worldn

by requiring the rmapn to join and all other members of the tuple to be

6In the presentation we “overload” the ⊕n and ⊕ symbols, using the same
symbol for resource, rmap, etc.
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equal:

(ρ, φa, m) ⊕n (ρ, φb, m) = (ρ, φc, m)

if and only if

φa ⊕n φb = φc.

Join relations for the dependent model

Once we have defined the join relation ⊕n on elements ξa ξb ξc :

resourcen, we can define the join relation ⊕ on resource by saying that

{n1, ξa} ⊕ {n2, ξb} = {n3, ξc}

if and only if

n1 = n2 = n3 ∧ ξa ⊕n ξb = ξc.

We can then define the join relation on rmap by lifting the join

relation on resource pointwise, i.e.,

φa ⊕ φb = φc

if and only if

∀l. (φa @ l) ⊕ (φb @ l) = (φc @ l).

Finally, we can define the join relation on world by requiring the
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rmaps to join and all other members of the tuple to be equal:

(ρ, φa, m) ⊕ (ρ, φb, m) = (ρ, φc, m)

if and only if

φa ⊕ φb = φc.

Stratified separation algebras

When the join relation is defined in this way, resourcen, resource, rmapn,

rmap, worldn, and world become stratified separation algebras as defined

in section 4.4; proved in Coq7.

The join relations for resourcen, rmapn, and worldn and the proof that

they form stratified separation algebras are completely hidden from

the rest of the proof. However, the join relations for resource, rmap,

and world and the fact that they form stratified separation algebras

are exposed to the rest of the proof and are used to reason about the

substructural elements in the model.

7.2.6 The public interface

The rest of the CSL soundness proof should never see the internals of the

stratification. Instead, the rest of the proof should treat the definitions

of resource and rmap as opaque and handle elements of type resource

and rmap by using a carefully designed interface.

7In the actual Coq development, a special kind of function constructor, called a
Joinmap, was used to lift the separation algebra properties from resource to rmap.
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That interface consists of three parts. The first is a number of func-

tions whose existence and type signature are exported to the rest of the

proof but whose internals are hidden by the module type. The second

is a series of helper definitions which are defined in terms of the opaque

functions and are fully visible to the rest of the proof. We have already

discussed the age1 and age operators, which were given in figure 7.3.

The first of these is an opaque definition; the second is a helper defi-

nition. The third part of the interface is a long series of axioms which

show how the opaque functions behave. For example, one exported ax-

iom involving age1 is

∀φ, φ. age1 φ = Some φ′ → φ 6= φ′.

In other words, age1 is irreflexive.

Figure 7.4 gives some of the most important opaque functions, with

the definitions of resource at and the pseudoconstructors NO and YES.

These have the types given in figure 6.3 and explained in section 6.2.2.

In that section we also explained how to build up the other pseudocon-

structors such as LK from YES.

The join relation ⊕ was discussed in section 7.2.5. To reason about

the join relation we export all of the axioms of a stratified separation

algebra given in section 4.4, as well as property 8 from section 4.5.

The resource at function takes an rmap and an address and returns

the resource associated with that address. As mentioned in section 6.2.2,
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Opaque Interface to Modal Substructural Model

⊕ : rmap × rmap × rmap → Prop

◦= As defined in section 7.2.5

resource at : rmap → address → resource
◦= λ{n, φn}. λl. {n, φn(l)}

NO : rmap → resource
◦= λφ. {level φ, NOn (level φ)}

YES : rmap × kind × pshare × list(predicate)
→ resource

◦= λ(φ, k, π, ~P ).

{level φ, YESn(k, π, map (stratify (level φ)) ~P )}

Transparent Interface to Modal Substructural Model

⊥ : rmap × rmap → Prop

= λ(φ1, φ2). ∃φ3. φ1 ⊕ φ2 = φ3

same age : rmap × rmap → Prop

= λ(φ1, φ2). ∃φe. φ1 ⊥ φe ∧ φ2 ⊥ φe

Figure 7.4: Interface to substructural modal model
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resource at is usually written infix using the @ symbol, a convention we

will follow in this presentation as well.

The NO pseudoconstructor takes an rmap φ; out of this it extracts

the level n and constructs the dependent pair {n, NOn}, which has

type resource. The YES pseudoconstructor takes an rmap φ, a kind k, a

pshare π, and a list of predicates ~P , extracts the level n from φ, maps

the stratify function at level n over ~P to get ~Pn, and constructs the

dependent pair {n, YESn(k, π, ~Pn)}, which also has type resource.

We are now in a position to understand the ramifications for in-

verting the YES pseudoconstructor, as promised in section 6.2.2. By

examining the definitions and understanding the results of inverting

the stratify function, it is clear that

YES(φ, k, π, ~P ) = YES(φ′, k′, π′, ~P ′),

if and only if level φ = level φ′, k = k′, π = π′, and the predicates in ~P

and ~P ′ are equivalent up to stratification level φ.

Unfortunately this characterization of YES inversion exposes the

underlying model. When we define our modal substructural logic it will

be possible to express this property in a very elegant way (see section

7.3.10).

We also give the helper definitions ⊥ and same age. ⊥ is defined

exactly as explained in section 4.3. The same age relation, which is

defined in terms of the join relation, states that two resource maps are
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in the same equivalence class, as explained in section 4.4. There is a

convenient connection between the public same age relation and the

private level function:

same age(φ, φ′)

if and only if

level φ = level φ′.

7.3 Reasoning about the model with a

modal substructural logic

We have now given an explanation of the underlying stratified separa-

tion algebra, and have explained how one can use dependent types to

hide the stratification from the rest of the proof. However, even reason-

ing about the dependently typed model can be laborious.

The second major insight of the modal model of Appel et al. [AMRV07]

was that one can define a modal logic for reasoning about the model.

Various operators in the modal logic will reason about different aspects

of the model. The modal logic then becomes a clean interface to the

opaque dependent model, which itself is a clean interface for the ugly

details of the stratification.

In the Coq development we take this idea a step further [DAH08].

In general we have found that when we get to a point in the Coq de-

velopment where the way forward is difficult or unclear, the solution
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is to redefine the problem in terms of our modal substructural logic,

frequently with the aid of a new operator. Since our logic has an under-

lying semantics, adding a new operator is quite easy. Reformulating a

problem in the modal logic often allows the correct solution to become

more apparent.

7.3.1 Assertions in the modal substructural logic

An assertion in the modal substructural logic is just a predicate. Ac-

cordingly one defines it by giving a function from world to Prop. We

say that a world w forces a predicate P , written

w |= P,

when P w holds. Often we wish to say that one assertion P implies

another one Q, i.e.,

∀w. w |= P → w |= Q.

We will use the notation

P ⊢ Q

to mean this kind of implication. When P = true, we will simply write

⊢ Q.
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Since our assertions are just functions from world to Prop, we have

what is called a shallow embedding of our modal substructural logic

in Coq. This would not be the case if we defined our own proposition

language (calling it, e.g., nuProp) and used it instead of Coq’s Prop.

The shallow embedding significantly simplifies the process of creating

the machine-checked proofs. We are able to use tactics developed for

Prop with our predicates; for example, we can use the destruct tactic

to break apart the conjunction in our modal logic. Also, we are able

to use Coq’s native variable-binding mechanisms, thereby avoiding the

binder issues raised in the POPLmark quagmire [ABF+05].

Almost all of our assertions are public in the sense that the remain-

der of the proof can see and use the definitions to reason about the

underlying model. One exception is the definition of higher-order re-

cursion operator µHO, which is opaque; the rest of the proof is given

fold-unfold rules to reason about that operator as explained in section

7.3.9.

In the rest of this chapter we will give a selection of operators in

our logic, explain their use, and provide their models.

7.3.2 Logical operators

In figure 7.5 we give some basic logical operators and their models.

[A]Coq indicates that the base (Coq) logic assertion A holds; A does not

depend on the value of the world w. We do not have to put restrictions

that w is free in A since our higher-order shallow embedding ensures
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[A]Coq = λw. A

true = [true]Coq

false = [false]Coq

P ∧ Q = λw. P w ∧ Q w

P ∨ Q = λw. P w ∨ Q w

∀v.P (v) = λw. ∀v. P (v) w

∃v.P (v) = λw. ∃v. P (v) w

exactly φ = λ(ρ, φ′, m). φ = φ′

Figure 7.5: Models of logical assertions

that we avoid variable capture.

[·]Coq useful because it ensures that the entire expressive power of

Coq is available in the logic. The simplest use of [·]Coq is to define the

predicates true and false8. We will see a more powerful use of [·]Coq

when we define the precisely operator in section 7.3.8.

One of the advantages of our approach is that it is easy to define

new operators in terms of old ones; we have done this in the definitions

of true and false. Although both are predicates—that is, functions

from world to Prop—their definition does not contain a λ; instead they

utilize the λ in [·]Coq.

8To avoid “symbol explosion” in the presentation, we overload many symbols
to operate both at the Prop and predicate levels. Since the two have different types
in Coq, only one will be possible in any given context.
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Conjunction ∧ and disjunction ∨ are defined by lifting the opera-

tions defined on Prop. We also lift the universal and existential quan-

tifiers ∀ and ∃. Since we use the quantifiers at the Prop level in the

definitions of universal and existential quantification in our logic, we

have full impredicative quantification: v can thus range over values,

predicates, worlds, shares, and any other types definable in Coq.

We define the operator exactly so that we can precisely specify the

resource map if we wish; exactly is not particularly useful in the CSL

correctness proofs of programs, but is used in both the soundness proofs

and in defining the concurrent operational semantics in chapter 8.

7.3.3 Modal operators

In figure 7.6 we give some modal operators and their models9. Recall

that a world is a tuple of locals ρ, resource map φ, and memory m. The

modal operators enable us to reason cleanly and orthogonally about

these elements.

The simplest modal operator is close, which is used to remove the

effect of the locals ρ on a predicate’s behavior by universally quantifying

over them. Thus, for any predicate P , close P ignores the locals ρ. If P

already ignores ρ, then close P = P and we say that P is closed.

We include three operators to reason about the resource map φ:

approximately P , which we write as ⊲P ; necessarily P , written �P ; and

9Dockins et al. [DAH08] discuss the reason for calling these operators “modal”;
the idea is that a modal operator is an operator that describes a relation in an
underlying Kripke models.
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close P = λ(ρ, φ, m). ∀ρ′.

P (ρ′, φ, m)

⊲P = λ(ρ, φ, m).
∀n, φ′. (age (n + 1) φ = Some φ′) →
P (ρ, φ′, m)

�P = P ∧ ⊲P

= λ(ρ, φ, m).
∀n, φ′. (age n φ = Some φ′) →
P (ρ, φ′, m)

©P = λ(ρ, φ, m).
∀φ′. same age(φ, φ′) →
P (ρ, φ′, m)

!P = λ(ρ, φ, m). ∀m′.

P (ρ, φ, m′)

Figure 7.6: Models of modal assertions

fashionably P , written ©P . In previous work [AMRV07] approximately

was called later, and for this reason the Coq development refers to

this operator as later. Each quantifies over the resource map φ in a

different way. Unlike with the locals ρ, we cannot simply use universal

quantification over all possible φ, since the underlying model does not

allow a stratified resource map φn to say anything meaningful about

stratified resource maps φn+m+1 of higher stratification.

While a stratified resource map φn cannot say anything meaningful

about resource maps of higher stratification, it can describe properties

of resource maps of lesser stratification φn−m−1. This was the underlying
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idea behind the approximation operator agen defined in section 7.2.4.

The ⊲P operator models the central idea of that section as a modal

operator. If (ρ, φ, m) |= ⊲P , then P may or may not hold on (ρ, φ, m),

but will hold on all φ′ strictly more approximate than φ: (ρ, φ′, m) |= P .

Since all that is required for close P = P is that P not depend on

local variables, it is natural to wonder which P have the property that

⊲P = P . Due to the irreflexivity of age (n + 1), ⊲P = P is a very

strong requirement; in fact

⊲P = P

if and only if

P = true.

This makes sense, since the most approximate predicate—that is, the

one that gives the least information—is true. The essentially irreflexive

nature of the ⊲ operator was a key technical insight of the modal model

of Appel et al. [AMRV07], and we will see its expressive power when

we see how to invert YES in section 7.3.10.

In the modal logic, ⊲ serves two purposes. The first is to give a

compact characterization of approximation, which it does very well.

The second is somewhat different; it is to restrict the “wildness” of

terms in the underlying stratified model. There is a natural idea that

if w |= P , and if w′ is a more approximate version of w, then w′ |= P .

In informal terms, if w is “good enough” to guarantee P , then if w
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becomes a little more approximate, it should be even easier for it to

guarantee P . Reformulated in the modal logic, we would very much like

our P to have the property that

P ⊢ ⊲P,

a property we call necessary. Unfortunately, there are some predicates

P for which this property is not true. For example, consider

Pwild = λ(ρ, φ, m). level φ > 5.

This will be true as long as φ has level greater than 5, but false as φ

nears level 0.

The modal operator necessarily P , written �P , forces predicates to

be necessary. In figure 7.6 we give two equivalent defintions for �P .

The first is that �P = P ∧⊲ P . From this definition it is easy to show

�P ⊢ P

and

� P ⊢ ⊲P.

From these properties we can redefine necessary in terms of �P : P is

necessary if and only if

�P = P.
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The second definition of � in figure 7.6 shows that it is very similar to

a reflexive version of ⊲, and leads naturally to the proof that for all P ,

�P = � �P.

Since �P is idempotent, the property

�P = P

is not particularly restrictive; P is necessary as long as it does not try

to expose the underlying stratified construction. In fact, almost all of

the operators presented here are necessary automatically, or become

necessary when applied to necessary predicates. Therefore, as long as

we build our CSL proofs using the operators presented here, we can

ignore the existence of unnecessary predicates. One major exception is

that implication is not automatically necessary even when applied to

necessary predicates; this is discussed in section 7.3.7.

The modal operator fashionably P , written ©P , quantifies over the

φ in the world in a different way. While ⊲P and �P were primarily

concerned with reasoning about the underlying stratified construction,

©P is used to force P to ignore φ, similar to the way that close P is

used to force P to ignore ρ.

Unlike in close P , where we quantify over all possible ρ, in ©P we

cannot quantify over all possible φ, since resource maps of level n are not

able to say anything meaningful about resource maps of level n+m+1.
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Accordingly, we quantify over all resource maps of the same level; this is

the strongest meaningful quantification possible. Put another way, ©P

is only allowed to utilize one fact about the resource map φ, which is

its level. If we want to quantify over all resource maps at this level of

stratification and lower, we combine �P and ©P to get �©P .

We use the modal operator everywhere P , written !P , to quantify

over the memory m. The definitions of !P and close P are similar, since

the memory m is similar to the locals ρ in the sense that neither has a

particularly complicated structure that interferes with the model. If a

predicate P ignores the memory, then

!P = P,

and we say that P is ubiquitous. Just as there are many closed predi-

cates, there are many ubiquitous ones.

7.3.4 Substructural operators

In figure 7.7 we give three basic substructural operators and their mod-

els. The assertion emp holds if the resource map φ only contains NO

resources. Recall from section 7.2.6 that NO takes a resource map φ

as a parameter and creates a resource stratified to the same level as

φ, which it packages up into a dependent pair. Since a predicate is a

function from world, we can use the resource map contained in the world.

The assertion l ◦◦ (k, π, ~P ) holds when the resource map φ contains
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emp = λ(ρ, φ, m).
∀l. φ @ l = NO φ

l ◦◦ (k, π, ~P ) = λ(ρ, φ, m).
(∀l′. l 6= l′ → φ @ l = NO φ) ∧

φ @ l = YES φ k π ~P

P ∗ Q = λw. ∃w1, w2.

w1 ⊕ w2 = w ∧ P w1 ∧ Q w2

Figure 7.7: Models of substructural assertions

YES φ k π ~P at location l and NO elsewhere. YES then creates a list of

predicates stratified to level φ; we will take advantage of this in section

7.3.10 when we express what can be concluded from

YES φ k π ~P = YES φ′ k′ π′ ~P ′.

The requirement that all other locations are NO is standard for separa-

tion logic; larger structures are built with the separating conjunction.

Since we have defined our join relations as a stratified separation

algebra, we model the separating conjunction P ∗Q in a way similar to

Calcagno et al. [COY07]. When

w |= P ∗ Q,

then w can be split into two subworlds w1 and w2 such that

w1 ⊕ w2 = w
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and

(w1 |= P ) ∧ (w2 |= Q).

Using the separating conjunction it is possible to describe complex sub-

structural properties of the underlying model in an elegant way.

7.3.5 Reasoning in the modal substructural logic

The motivation for defining the modal substructural logic is that we

have found it much easier to reason about the model using the logic

than to reason on the underlying model directly. The proofs of the

soundness of CSL can become very complicated, and it is not unusual

to have 50 or more premises leading to a goal. In that context, it is

vital to be able to express properties concisely in order to reason about

them with minimal mental overhead.

One advantage of using our logic is that we can prove a large number

of lemmas describing how the logic behaves; a small subset of them are

pictured in figure 7.8. Most of the lemmas take the form of equalities in

the logic, which is quite convenient since we can use powerful rewrite

tactics in Coq.

A very useful strategy we used while developing the soundness proof

was to express the premises and goal of a lemma in the logic, and then

use the kinds of rules given in figure 7.8 to prove the goal from the

hypothesis. Sometimes it was not possible complete the proof entirely

in the logic, in which case we had two choices: to define a new logic



 CHAPTER 7. A MODAL SUBSTRUCTURAL LOGIC

�P = ��P

�⊲P = ⊲�P

�⊲P = ⊲P

⊲©P = ©⊲ P

! ⊲P = ⊲! P

! ©P = ©! P

P ∧ Q = Q ∧ P

⊲(P ∧ Q) = (⊲P ) ∧ (⊲Q)

©(P ∧ Q) = (©P ) ∧ (©Q)

! (P ∧ Q) = (! P ) ∧ (! Q)

∀v. ⊲(P (v)) = ⊲(∀v. P (v))

� emp = emp

�(l ◦◦ (k, π, ~P )) = l ◦◦ (k, π, ~P )

(P ∧ P ′) ∗ (Q ∧ Q′) = (P ∗ Q) ∧ (P ′ ∗ Q′)

(⊲P ) ∗ (⊲Q) = ⊲((�P ) ∗ (�Q))

Figure 7.8: Rules for reasoning in the modal substructural logic
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operator to express the property and then continue to reason in the

logic, or to dip briefly out of the logic and reason instead directly on

the underlying model. The choice made depended on the difficulty of

proving the underlying fact and a guess as to the amount of use the

new operator would have. Dockins et al. [DAH08] discuss this in more

detail.

To give an example of reasoning in the modal logic, we prove that

�©P = ©�P.

For comparison, the equivalent statement on the model is

∀ρ, φ, m.
(

∀n, φ′. (age n φ = Some φ′) →

(∀φ′′. same age(φ′, φ′′) → P (ρ, φ′′, m))
)

↔
(

∀φ′. same age(φ, φ′) →

(∀n, φ′′. (age n φ′ = Some φ′′) → P (ρ, φ′′, m))
)

First we unfold the definition of necessarily on the left-hand side to

get

(©P ) ∧ (⊲©P ) = ©�P,

and then rewrite ⊲©P using a rule in figure 7.8 to get

(©P ) ∧ (©⊲P ) = ©�P.



 CHAPTER 7. A MODAL SUBSTRUCTURAL LOGIC

l
π

7→ v = l ◦◦ (kVAL, π, nil) ∧
λ(ρ, φ, m). m(l) = v

l
π

; R = l ◦◦ (kLK, (project π into ⊳◮), R :: nil)

hold l R = l ◦◦ (kLK, ◭⊲, R :: nil)

f : {P}{Q} = f ◦
◦ (kFUN, ◭◮, P :: Q :: nil)

Figure 7.9: Models of Concurrent Separation Logic assertions

Next we rewrite again using the rule for fashionable intersection to get

©(P ∧ ⊲P ) = ©�P,

which by the definition of necessarily is equal to

©�P = ©�P.

Of course, this can be proved directly on the underlying model, but

the details and multiple quantifiers can quickly overwhelm an under-

standing of what is going on, particularly in the context of a larger

proof, leading to a considerably longer and more frusterating proving

experience.
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7.3.6 Modelling the assertions of Concurrent

Separation Logic

We are now in a position to model the assertions of CSL given in chapter

4. Their definitions, given in figure 7.9, are quite straightforward since

we can take advantage of the operators defined so far.

The “maps-to” assertion of separation logic l
π

7→ v means that the

resource map contains a YES at location l whose kind is kVAL. The as-

sociated share is π, and the associated predicate list is nil. In addition,

the memory contains the value v at location l.

The “is a lock” assertion of Concurrent Separation Logic l
π

; R

means that the resource map contains a YES at location l whose kind

is kLK. The share π is projected into the right half of the full share in

the style of the isomorphism noted by Parkinson [Par05]. In our share

models there is an isomorphism between any two nonempty shares, and

project uses that isomorphism to squeeze π into ◭⊲. For example,

project ◭◮ into ⊳◮ = ⊳◮,

project ◭⊲ into ⊳◮ = ⌊⊳◮⌋,

and

project ⊳◮ into ⊳◮ = ⌈⊳◮⌉,

Finally, we put the lock invariant R into the predicate list.

The hold l R assertion is defined quite similarly to the lock assertion,
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Dangerous Implication

P ⇒ Q = λσ. Pσ ⇒ Qσ

¬P = P ⇒ false

Safe Implication

P ⊂ Q = �©!(P ⇒ Q)

P ∼= Q = (P ⊂ Q) ∧ (Q ⊂ P )

Figure 7.10: Logical implication in the logic

with the exception that its share is the entire left half of the full share

◭⊲. Accordingly to have the full share of a lock location l, so that it is

safe to destroy it, one needs to have both l
◭◮

; R and hold l R, or, more

concisely, l
◭◮

; R ∗ hold l R.

Finally, the “is a function” assertion f : {P}{Q} means that the

resource map contains a YES at location f whose kind is kFUN. The

share is ◭◮, and the predicate list contains the pre- and postconditions

P and Q.

7.3.7 Logical Implication

Almost all of our operators are suitable for use in a CSL proof about

programs. However, there are a few operators that we do recommend

avoiding in that context, particularly full logical implication, which
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interacts complexly with the underlying stratified model, and which

was conspicuously missing from the basic logical operators defined in

figure 7.5. We define four related implication operators in figure 7.10;

the first two are dangerous in the sense that if not used carefully they

will expose wild predicates in the underlying model.

Of course nothing prevents the use of the dangerous forms of impli-

cation; since the system is semantic instead of syntactic, an end-user

can utilize any operator he wishes. However, full implication can be

more difficult to use than expected, and so we recommend that CSL

proofs avoid it. Full implication is largely used in the soundness proofs

of the model itself, indicating that it can be useful in carefully con-

trolled situations. For most situations, however, we reccomend the use

of the safer, more restricted forms of implication given in the second

part of figure 7.10.

The problem with unrestricted implication is that it is not always

necessary in the sense given in section 7.3.3, even when it is applied to

necessary predicates; in other words,

¬
(

∀P, Q. �(�P ⇒ �Q) = �P ⇒ �Q
)

.

Since implication is inherently contravariant in its antecedent, it inter-

acts badly with the stratified construction.

Of course, for certain P and Q, the unrestricted implication P ⇒ Q

is necessary. In general, as long as P avoids mentioning the stratified
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construction10, and Q is necessary, then P ⇒ Q will be necessary.

Accordingly, we sometimes use unrestricted implication in the proof

when these conditions are met. The assertion ¬P is defined in terms of

unrestricted implication and is likewise dangerous to use.

One can apply the � operator to an implication to make it necessary

(recall that ∀P. ��P = �P ), but this can be quite problematic. If the

implication P ⇒ Q is not necessary to begin with, then the meaning

of �(P ⇒ Q) is extremely difficult to understand; in many cases it

becomes false, but depending on P and Q it might have other behavior.

A better approach in many cases is to use the P ⊂ Q operator.

This is an implication protected by the modal operators �, ©, and !.

Because we use the � operator, P ⊂ Q is necessary. Because we use

the © operator, the predicates P and Q will not be able to expose wild

terms in the underlying stratification.

Translated into informal language, the unrestricted implication P ⇒

Q means, “If P holds on world (ρ, φ, m), then Q holds on world (ρ, φ, m).”

The trouble is that P ⇒ Q does not say anything about the relationship

P and Q will have as the resource map φ becomes more approximate.

In contrast, the subset implication means, “For this and any more

approximate resource map, whenever P holds, Q will hold.” Often this

is exactly what is needed to express a desired property, and it plays

nicely with the model.

We define the equality relation on predicates P ∼= Q to be the

10e.g., any time P uses the l ◦◦ (k, π, ~P ), then ~P = nil.
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conjunction of P ⊂ Q and Q ⊂ P ; informally it means, “On this any

any more approximate resource map, P and Q are identical.” Another

way to think about the meaning of P ∼= Q is:

(ρ, φ, m) |= P ∼= Q

if and only if

stratify (level φ + 1) P = stratify (level φ + 1) Q.

We take advantage of this insight when we invert the YES pseudocon-

structor in section 7.3.10.

7.3.8 Extensionality, validity, precision, and

tightness

In section 4.7.1 we presented the notions of closure to local variables,

validity, precision, and tightness, and informally explained the related

operators close, validly, precisely, and tightly. We are at last ready to

provide their models, which we do in figure 7.11.

The extensionally P operator is similar in some ways to the ! P op-

erator in the sense that they both quantify over memories and thereby

restrict the ability of P to depend on memory. However, while the ! P

operator does not allow P to use any part of memory, extensionally P

does allow P to use certain parts of memory.
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extensionally P = λ(ρ, φ, m). ∀m′,
(

∀l, π, v.

(ρ, φ, m) |= true ∗ l
π

7→ v →
(ρ, φ, m′) |= true ∗ l

π

7→ v
)

→
(ρ, φ, m′) |= P

validly P = � extensionally P

precisely P = P ∧ �© ! ∀φ, φ′.
(

((P ∧ exactly φ) ∗ true) ∧
((P ∧ exactly φ′) ∗ true)

)

⇒
[φ = φ′]Coq

tightly P = validly close precisely P

Figure 7.11: Extensionality, validity, precision, and tightness

In particular, extensionally P allows P to use any part of memory

that P has permission to use. What we want to eliminate are predicates

such as

P = λ(ρ, φ, m). m(3) = 2.

The problem is that there is no restriction on φ to ensure that mem-

ory location 3 can be accessed. This is in contrast to our definition of

maps-to in figure 7.7, where we are very careful to place restrictions on

the resource map φ. Predicates that are well-behaved in this sense are

called extensional. The extensionally P operator forces predictes to be

extensional; if P is already extensional then

extensionally P = P ;
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if not then

extensionally P = false.

We define validly P as � extensionally P , and we say a predicate P

is valid when

validly P = P.

In other words, a predicate is valid when it ignores memory outside its

resource map and is well-behaved under the approximation operation.

In section 4.7.1 we introduced the idea of a precise assertion. Recall

that an assertion P is precise if for any predicate Q, the separating

conjunction can only divide resources in a single way. The precisely P

operator expresses this idea and forces a predicate to be precise in a

way that is well-behaved under the approximation operation, and if P

is precise then

precisely P = P.

A sharp-eyed reader may notice the use of the dangerous implication

operator in the definition of precisely, but since it is guarded by the �

and © operators, it is safe and precisely is necessary.

A predicate is tight if it is valid, closed, and precise, and we define

the tightly P operator as validly close precisely P . For all P , tightly P is

tight. If P is tight then

tightly P = P.
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Higher-order Recursion

contractiveHO : ∀α. ((α → predicate) → (α → predicate)) → Prop

= λf. ∀P, Q.

(∀a. ⊲(P a ∼= Q a)) ⊢ (∀a. (f P a) ∼= (f Q a))

falseHO : ∀α. α → predicate
•= λa. false

µHO : ∀α. ((α → predicate) → (α → predicate)) →
α → predicate

◦= λf. λa. λ(ρ, φ, m).

f (1+level φ) falseHO a (ρ, φ, m)

First-order Recursion

contractive : (predicate → predicate) → Prop

= λf. ∀P, Q.

⊲(P ∼= Q) ⊢ (f P ) ∼= (f Q)
= λf. contractiveHO unit (λg. λ(t : unit). f (g t))

µP = µHO unit (λP ′. λt : unit. P (P ′ t)) tt

Figure 7.12: Recursion

If P is not tight then the meaning of tightly P depends on the exact

nature of P , but is likely to be equal to false (which is very tight).

7.3.9 Higher-order recursion

Natural invariants frequently have a recursive structure; for example,

the invariant required for a linked list where each lock guards another
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linked list (except for the last lock, which guards nil). We also used the

recursion operator µ to define the example program’s resource invariant

in section 4.9.1, where it helped provide a natural way to satisfy the

precondition of the unlock CSL rule. In our work we will extend the

normal recursion operator µ to a higher-order version µHO, which will

be used to define our Hoare tuple in section 10.1.3.

The indexed models of Appel et al. [AM01] and Ahmed et al.

[AAV02, AAV03, Ahm04] and the modal model of Appel et al. [AMRV07]

all supported recursion. We employ a hybrid approach: we follow Ap-

pel et al. [AMRV07] by defining contractiveness using the approximately

operator, but our defintions of the recursion operator and our proofs

of the fold-unfold rules are closer to those in Appel et al. [AM01]. Our

defintions are given in figure 7.12.

Our semantic recursion operator is more powerful than the one de-

fined in the indexed and modal models because it is higher order. A

standard first-order recursion operator µ has the type

µ : (predicate → predicate) → predicate.

In contrast, our semantic higher-order recursion operator µHO is param-

eterized by an extra type parameter α:

µHO : Λα. ((α → predicate) → (α → predicate)) → α → predicate.

This more powerful recursion operator is used to define the Hoare tu-
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ple in chapter 10. Because the higher-order recursion operator µHO is

strictly more powerful than the first-order recursion operator µ, we can

define µ in terms of µHO. Still, in many situations, such as defining the

resource invariant in section 4.9.1, µ is powerful enough, and since it is

simpler to use we include it as well.

The rest of the proof does not see the definition of µHO, which is

a generalization of the first-order one found in Appel et al. [AM01].

Instead, the rest of the proof uses the following fold-unfold rule:

∀f. (contractiveHO f) → µHO f = f (µHO f).

Contractiveness is a requirement for defining recursive equations in

many contexts; here we build on the elegant definitions by Appel et

al. [AMRV07]. A function f is first-order contractive if for all predi-

cates P and Q that are approximately equivalent, f P is approximately

equivalent to f Q. Higher-order contractiveness is a generalization of

this idea, where we universally quantify over the additional parame-

ter a : α. As indicated by the second definition of contractive in figure

7.12, it is also possible to define first-order contractiveness in terms of

higher-order contractiveness.

The proof of the higher-order fold-unfold rule roughly follows the

one given in [AM01], although the induction hypotheses are more com-

plicated because they support the higher-order construction. From the

proof of the higher-order fold-unfold rule, it is trivial to prove the first-
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order rule

∀f. (contractive f) → µ f = f (µf),

given the second definition of first-order contractiveness.

7.3.10 YES inversion

We have defined and explained our modal substructural logic, so we

can finally characterize inverting YES. Here we show that

⊢
(

l ◦◦ (k, π, ~P ) ∼= l′ ◦◦ (k′, π′, ~P ′)
)

∼=
(

[l = l′]Coq ∧ [k = k′]Coq ∧ [π = π′]Coq ∧ ∀j. ⊲ (~Pj
∼= ~P ′

j)
)

.

First, we will state a more elegant characterization for the stratify

operator than could be given in section 7.2.4. In that section, we ob-

served that

stratify k P = stratify k Q

is equivalent to

(C1) ∀j < k, φj, ρ, m. P (ρ, {j, φj}, m) ↔ Q(ρ, {j, φj}, m),

which is in turn equivalent to

(C2) ∀φ, n, φ′, ρ, m.

(level φ = k) → (age (n + 1) φ = Some φ′) →

(P (ρ, φ′, m) ↔ Q(ρ, φ′, m)).
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Now we are in a position to state a characterization related to the

previous one using the operators of the logic:

(C3) ∀φ, ρ, m. level φ = k → (ρ, φ, m) |= ⊲ (P ∼= Q).

One of the advantages of giving this characterization is that it demon-

strates the power of expressing ideas in the modal logic, since it is

clearly more compact than the previous one. It is still not quite ideal,

however, since it still requires exposing the private level operator.

Recall from figure 7.7 that the ◦
◦ operator calls the YES pseudocon-

structor, passing the φ in the world it is passed as its first argument.

YES, in turn, then calls stratify to produce invariants stratified to level φ.

In other words,

(ρ, φ, m) |= l ◦◦ (k, π, ~P )

is calling stratify on the elements of the list ~P to produce a list of

stratified invariants of level φ.

The way we express inversion in the logic is to determine the nec-

essary and sufficient conditions for concluding

w |= l ◦◦ (k, π, ~P ) ∼= l′ ◦◦ (k′, π′, ~P ′).

Putting together the previous observations about characterizing stratify

and the understanding of the amount of stratification done by the ◦
◦
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operator, we are able to show that

w |= l ◦◦ (k, π, ~P ) ∼= l′ ◦◦ (k′, π′, ~P ′).

if and only if

l = l′ ∧ k = k′ ∧ π = π′ ∧ ∀j. w |= ⊲ (~Pj
∼= ~P ′

j).

This can be reformulated completely in our logic as

w |= [l = l′]Coq ∧ [k = k′]Coq ∧ [π = π′]Coq ∧ ∀j. ⊲ (~Pj
∼= ~P ′

j).

Now we have expressed both properties in terms of w. We can combine

them using the ∼= operator as follows:

w |=
(

l ◦◦ (k, π, ~P ) ∼= l′ ◦◦ (k′, π′, ~P ′)
)

∼=
(

[l = l′]Coq ∧ [k = k′]Coq ∧ [π = π′]Coq ∧ ∀j. ⊲ (~Pj
∼= ~P ′

j)
)

,

which leads naturally to the following final characterization:

⊢
(

l ◦◦ (k, π, ~P ) ∼= l′ ◦◦ (k′, π′, ~P ′)
)

∼=
(

[l = l′]Coq ∧ [k = k′]Coq ∧ [π = π′]Coq ∧ ∀j. ⊲ (~Pj
∼= ~P ′

j)
)

.

Expressed informally, l ◦◦ (k, π, ~P ) = l ◦◦ (k, π, ~P ′) if and only if the

predicate lists ~P and ~P ′ are approximately equal.
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7.4 Conclusions

We have now provided a sound definition for resource and rmap using a

stratification technique. The stratified model is hidden behind a cleaner

dependent model, which is in turn hidden behind a modal substructural

logic. By reasoning about the underlying models using this logic we can

express properties cleanly and reason about them more simply than if

we manipulated the models directly.

This logic forms the model for the assertions of CSL, which can

then utilize the logic’s full expressive power. The model for the Hoare

tuple itself will be deferred until chapter 10, since it depends first on

the concurrent operational semantics presented in chapter 8 and oracle

semantics presented in chapter 9.



Chapter 8

Concurrent Operational

Semantics

In chapter 3 we introduced Concurrent C minor, and in chapter 5 gave

it a formal erased concurrent operational semantics. The purpose of this

chapter is to give it an qunerased concurrent operational semantics1.

The concurrent operational semantics does additional bookkeeping and

is therefore easy to use for metatheoretical reasoning about concurrent

features such as locking a lock. The concurrent operational semantics

is not easy to use for metatheoretical reasoning about the equential

features of Concurrent C minor. In chapter 9, we define an oracular

semantics for Concurrent C minor that will be allow for straightforward

metatheoretical reasoning for the sequential features of Concurrent C

minor.

1Normally we leave off the word unerased and just say the concurrent opera-
tional semantics.


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In section 8.1 we outline the parts that make up the concurrent op-

erational semantics. In section 8.2 we define the sequential submachine,

which executes sequential code. In section 8.3 we define the state of a

concurrent computation, and in section 8.4 we give a set of consistency

properties for a concurrent machine state. In section 8.5 we define the

concurrent step relation. Finally, in section in section 8.6, we argue why

our concurrent operational semantics is a reasonable abstraction of a

real machine by showing that it is a conservative approximation to the

erased concurrent operational semantics defined in 52.

8.1 Architecture

The concurrent operational semantics has several distinct parts. The

first, called the “sequential submachine”, executes all of the statements

that do not depend on other threads, such as call, store, and loop.

We isolate all the properties of the sequential step relation on which we

rely using the interface discussed in section 6.3.1. The sequential sub-

machine is thus “resource map aware”, meaning that it gets stuck if it

attempts to access memory without the correct permission. In this way

we support half of our modularity principle by hiding the complexities

of sequential control- and data-flow from concurrent metatheoretical

reasoning; as explained in chapter 9, we hide the complexities of con-

current computation from sequential metatheoretical reasoning using

an oracle semantics.

2Portions of this chapter have been published before as [HAZ08a] and [HAZ08b].
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We combine the local states of many sequential submachines to get

threads and then add a schedule, lock pool, alloc pool, function pool,

and memory to get a concurrent machine state. Our concurrent state

has a complex set of consistency requirements that ensure that it is

well-formed.

We define a concurrent step relation that transforms concurrent

states into concurrent states in the context of a program Ψ. When a

thread wishes to execute a sequential instruction, the concurrent step

relation uses the sequential submachine. Fully-concurrent instructions

such as lock are handled by the concurrent step relation directly. Our

concurrent step relation has a number of unusual features, including de-

terminism, coroutine interleaving, and nonconstructive semantics. We

conclude by arguing why these features are reasonable abstractions for

reasoning about real machines.

8.2 Sequential submachine

The sequential submachine is the part of the concurrent operational

semantics that knows how to execute sequential instructions. The two

pseudoconcurrent statements, make lock and free lock do not interact

with the other threads and so are executed by the sequential subma-

chine as well. At the fully concurrent statements—lock, unlock, and

fork—the sequential submachine gets stuck.

We build it by extending the core semantics of C minor with with



 CHAPTER 8. CONCURRENT OPERATIONAL SEMANTICS

sstep-update

(ρ, φ, m) |= ∃v. v1
◭◮

7→ v
m′ = [v1 7→ v2] m

Ψ ⊢ ((ρ, φ, m), [v1]:=v2 · κ) 7−→ ((ρ, φ, m′), κ)

sstep-call
age 1 φ = Some φ′

Ψ ⊢ ((ρ, φ, m), call f ~v · κ) 7−→ ((ρ, φ′, m), (Ψ(f) ~v) · κ)

sstep-seq
Ψ ⊢ ((ρ, φ, m), s1; s2 · κ) 7−→ ((ρ, φ, m), s1 · s2 · κ)

Figure 8.1: Simplified subset of sequential step relation

an extension that knows how to execute the pseudoconcurrent instruc-

tions. When we defined the erased machine in chapter 5 we provided

the erased semantics for three sequential C minor statements in figure

5.1. For comparison, we give the unerased semantics for those core se-

quential instructions in figure 8.1. The semantics of these statements

have been significantly simplified in the presentation due to the removal

of nonlocal exits, stack allocated variables, and function return values.

The unerased sequential semantics are very similar to the erased

sequential semantics. We have added a resource map φ to the world

w. The sequence rule does not use it, but both the call rule and the

assignment rule do. All the call rule does to φ is age it once; this is

required for the semantic model of the Hoare tuple for reasons explained

in section 10.2.2. The assignment rule uses φ to check that the location

v1 is writable by requiring

(ρ, φ, m) |= ∃v. v1
◭◮

7→ v,
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that is, that the memory location v1 be fully owned by the resource

map φ. It is easy to show that the unerased sequential semantics is a

conservative approximation to the erased sequential semantics.

Lemma 8.1. If Ψ ⊢ (ρ, φ, m) 7−→ (ρ′, φ′, m′), then Ψ ⊢

(ρ, m)
e
77−→ (ρ′, m′).

Proof. Each case in the unerased sequential relation in fig-

ure 8.1 has a corrosponding case in the erased sequential

relation in figure 5.1 with a subset of the premises.

Recall from section 6.6 that to extend a core semantics one defines

an oracle type and then constructs a consult relation

consult : program × oracle × state → option(oracle × state),

which implements the extended statements. Recall that a state σ is

a pair of a world w and a control κ. A world is a level-independent

tuple of locals ρ, resource map φ, and memory m; it also contains a

map from global names to addresses, but this has been elided from the

presentation. A control contains the level-specific portions of the state,

primarily program syntax.

For the sequential submachine, the oracle type will be unit because

the make lock and free lock statements do not need any auxilary state.

Nontrivial oracles are needed only for interpreting the meaning of the

fully-concurrent instructions lock, unlock, and fork, which the sequential

submachine does not attempt to implement.
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(ρ, φ, m) |= v
◭◮

7→ 0 ∗ exactly φcore

(ρ, φ′, m) |= v
◭◮

; R ∗ hold v R ∗ exactly φcore

consult(Ψ, tt, ((ρ, φ, m), make lock v R · κ))=Some(tt, ((ρ, φ′, m), κ))

(ρ, φ, m) |= v
◭◮

; R ∗ hold v R ∗ exactly φcore

(ρ, φ′, m) |= v
◭◮

7→ 0 ∗ exactly φcore

consult (Ψ, tt, ((ρ, φ, m), free lock v · κ)) = Some (tt, ((ρ, φ′, m), κ))

Figure 8.2: The consult relation of the sequential submachine

We define consult in figure 8.2. To execute make lock v R, the ma-

chine ensures that the location is fully-owned data containing a zero,

and updates the resource map to treat the location as a lock with in-

variant R. The lock is created with 100% visibility and is also created

held. Since a lock at location l is “locked” if memory at l is zero, the

lock is created locked, and the make lock statement only changes the

resource map. We use the exactly predicate to make sure that the world

does not change in any other way.

To execute free lock v, the machine reverses make lock. First it ver-

ifies that the lock is entirely owned and held, and then updates the

resource map to show that the location is fully-owned data containing

a zero. Since the lock is held, the memory will contain a zero at v.

At any other instruction, consult is undefined. This is different from

relating a state to None, which is reserved for commands that do not

terminate, e.g., a lock that deadlocks. The sequential submachine either
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completes the execution of an extended statement or gets stuck.

Using the definitions given in section 6.6 we can build a step re-

lation
ss
77−→ for the sequential submachine using the core step relation

7−→ defined in figure 8.1 and the consult relation defined in figure 8.2.

This step relation will be a conservative approximation to the erased

sequential step relation
e
77−→.

Lemma 8.2. If Ψ ⊢ (ρ, φ, m)
ss
77−→ (ρ′, φ′, m′), then Ψ ⊢

(ρ, m)
e
77−→ (ρ′, m′).

Proof. There are three cases in figure 6.10. For the first

case, Core Step, we know Ψ ⊢ (ρ, φ, m) 7−→ (ρ′, φ′, m′) and

by lemma 8.1 we know Ψ ⊢ (ρ, m)
e
77−→ (ρ′, m′). The second

case, Oracle Step, means that our consult has succeeded, in

which case there are two subcases: one for make lock and

one for free lock. In both cases we do not change ρ or m

and transition to control κ. This is exactly what is done for

these statements in the erased sequential step given in figure

5.1. The third case, Oracle Diverges, is impossible because

our consult relation never returns None.

8.3 Machine state

A concurrent machine state S is a tuple

S = (℧, ~θ,L, φmp, φfp, m),
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where ℧ is a schedule, ~θ is a thread list, L is a lock pool, φmp is a memory

pool, φfp is a function pool, and m is a memory. The memory is exactly

the same as in the sequential semantics. Each of the other components

will be explained in sections 8.3.1–8.3.4 below. A concurrent machine

state also comes with a set of consistency requirements, as explained in

section 8.4. For this presentation, any concurrent machine state should

be considered consistent.

8.3.1 Schedule

A schedule ℧ is a finite list of natural numbers, which act as thread-

IDs. The number at the head of the schedule tells the concurrent op-

erational semantics which thread to execute next. When the schedule

runs out, the concurrent machine safely halts computation. Our reason

for quantifing over finite schedules was explained in section 5.2.

8.3.2 Threads

The purpose of a concurrent machine is to execute multiple threads of

control. A thread θ is a tuple (ρ, φ, κ̂), where ρ are local variables, φ is

a resource map, and κ̂ is a concurrent control, defined in section 5.2.

Since ~θ denotes a list of threads, we indicate the ith thread by ~θi.

Recall that a world w contains two “local” components, local vari-

ables ρ and resource map φ, and one “global” component, memory m.

Each thread gets its own private version of local variables ρ and re-
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source map φ; in contrast, m is not part of a thread because all threads

must use the same memory.

8.3.3 Lock pool

A lock pool L is a partial function from the addresses of unlocked locks

to resource maps. In our setting, every resource must be owned by

somebody at all times. Normally, resources are owned by the threads.

However, when a lock is unlocked, a thread gives up the resources (i.e.,

the resource map) associated with the lock. When a thread is unlocking

a lock we do not wish to make the thread wait for the next thread to

lock the lock. Therefore, we need a place to hold the resource map

associated with the lock; this place is the lock pool L. When the next

thread grabs the lock, we transfer the resources from the lock pool to

the next thread.

The look pool not simply a resource map. Instead, it is a partial

function from addresses to resource maps because this structure greatly

simplifies the proof by making it trivial to show that all the resource

maps associated with unlocked locks are disjoint.

8.3.4 Alloc and function pools

The alloc pool φmp and function pool φfp are resource maps that own

of two kinds of global resources. Each thread is given access to these

global resources as it executes and relinquishes them when it yields to

the next thread.
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The alloc pool is the owner of the unallocated but allocatable mem-

ory, and is used to allocate activation records on the stack at function

call. In the CompCert memory model there is an unlimited amount of

memory available for the stack3.

The function pool is the owner of all of the functions. In other words,

∀ρ, m. (ρ, φfp, m) |= f1 : {P}{Q} ∗ . . . ∗ fn : {P}{Q},

and all of the other resource maps in the system lack functions. The

function pool allows all of the threads to have access to all of the func-

tions. Passing the function pool around from thread to thread is not

particularly beautiful, but it does ensure that the functions are avail-

able for all threads in a standard way. Developing an elegant way to

guarantee global function availablity is suprisingly difficult, and thus is

left for future work.

8.4 Consistent machines

A concurrent machine state carries with it a set of consistency proper-

ties that ensure that it is well-formed. In Coq we ensure the consistency

3In a sequential program the alloc pool is a reasonable abstraction, as the op-
erating system will terminate any program whose stack space grows beyond the
available memory in the machine, and the CompCert compiler only makes partial
correctness guarantees. In a concurrent program the situation is more complicated,
since additional checks must be inserted in the function call to make sure that the
thread is not about to exceed its stack space. In a high-level language like Concur-
rent C minor, checks are inserted by the compiler when it compiles a function call
into lower-level languages; however this abstraction may not allow us to adapt our
concurrency system for lower compiler levels, an open problem for future work.
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of concurrent machine states with a dependently-typed record.

8.4.1 Existence of total resource map

The first property is the existence of a total resource map φT that is

the join of all of the resource maps in the threads ~θ, all the resource

maps in the lock pool L, the alloc pool φmp, and the function pool φfp:

φT = (
⊕

φi∈
~θi

φi) ⊕ (
⊕

φi∈L

φi) ⊕ φmp ⊕ φfp.

In other words, the individual resource maps combine into a cohesive

whole φT. This guarantees, for example, that two distinct threads can-

not have full ownership of a location at the same time. Thus, if a thread

can write to a memory location, then no other thread can read from it.

The remaining properties all use φT.

8.4.2 Sufficient schedule

The second property is that the schedule will outlast the approximation

level of φT, i.e.,

level φT < length ℧.

We will be trivially safe if we reach approximation level 0.
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8.4.3 Only waiting on locks

The third property is that if a thread’s concurrent control is Klock v κ,

then v is a lock in φT.

We use a function from resources to resource kinds:

rkind : resource → option(kind),

which is defined by the stratified model explained in chapter 7 as an

opaque definition, as follows:

rkind ◦= λ{n, ξn}. match ξn with

NOn ⇒ None

YESn k π ~P ⇒ Some k

end.

We use rkind instead of the YES pseudoconstructor because it lets us

ignore the pre- and postconditions of the function and so provide a

cleaner characterization. The advantage here is relatively minor, but as

explained in section 8.4.6, rkind also interacts better with age in the

presence of implication, and there it is vital.

Using rkind it is easy to define the property that threads can only

wait on locks, as opposed to, e.g., regular data:

rkind(φT @ v) = Some kLK.
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8.4.4 Well-formed alloc pool

The fourth property is that the alloc pool φmp is well-formed. We enforce

well-formedness by defining a predicate allocpool, which abstracts the

nature of the CompCert memory model, and express the property as

∀ρ. (ρ, φT, m) |= allocpool ∗ true,

where we use the memory m in the concurrent machine state.

8.4.5 Well-formed function pool

The fifth property is that the function pool φfp contains all of the func-

tions. First we split off the φfp from φT, as follows:

φfp ⊕ φnf = φT.

The resource mape φnf is everything in φT that is not a function.

Using rkind it is straightforward to express property P1, that φnf

does not contain any functions:

(P1) ∀l. ¬ (rkind(φnf @ l) = Some kFUN).

We can also use rkind to express property P2, that φfp contains only
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things of kind kFUN:

(P2) ∀l. (rkind(φfp @ l) = Some kFUN) ∨

(rkind(φfp @ l) = None).

The fifth property is just the conjunction of P1 and P2.

8.4.6 Well-formed lock pool

The sixth property is a series of requirements on the lock pool. This

turns out to be a bit trickier to define than expected. The most critical

property is that we would like something like the following, which we

call P1(φT,L):

P1(φT,L) = ∀l, π, R. φT @ l = YES φT kLK π (R :: nil) →

m(l) = lock unlocked →

∀ρ. (ρ,L(l), m) |= R.

In other words, for every lock in the total resource map φT, if that

lock is unlocked (i.e., if the memory at the lock location contains the

value lock unlocked, which is 1), then the lock invariant holds on the

associated resource map in the lock pool L.

The problem is that we need this property to be true even if the

total resource map φT is aged to some φ′
T. Since φT includes all of the

worlds in L, we would also have to age those worlds with the age lpool

operation, which extends age to lock pools by aging the range pointwise.
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Since L is contained in φT by property 1, L′ is contained in φ′
T. In other

words, we need the following:

P1(φT,L) →

age n φT = Some φ′
T →

age lpool n L = Some L′ →

P1(φ′
T,L′).

Unfortunately, as P1 is stated, this is simply not true.

The first problem is the existence of wild terms in the model. If

w |= R, it is not necessarily the case that w′ |= R for some more

approximate w′. In chapter 7 we introduced the concept “necessary” to

handle this issue. In chapter 4 we introduced the tightly operator, and

said that the precondition for unlocking a lock with invariant R was

tightly R. In section 7.3.8, we show that tightly is defined with the �

operator, and show that therefore tightly R is necessary. Therefore we

attempt to fix the problem with property P2(φT,L):

P2(φT,L) = ∀l, π, R. φT @ l = YES φT kLK π (R :: nil) →

m(l) = lock unlocked →

∀ρ. (ρ,L(l), m) |= tightly R.

Unfortunately, there is still a problem with this definition that prevents

it from ageing gracefully.

Recall from section 7.3.7 that because implication is contravariant

in its antecedent, it does not play nicely with approximation. Unfor-
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tunately P1 and P2 use the YES pseudoconstructor in an antecedent,

which in turn uses stratify, which approximates R. The solution is to

use rkind in the antecedent, since it does not require R, and to quantify

over the resource invariant existentially instead of universally, leading

to property P3(φT,L):

P3(φT,L) = ∀l. rkind(φT @ l) = Some kLK →

m(l) = lock unlocked →

∃π, R. YES φT kLK π (R :: nil) ∧

∀ρ. (ρ,L(l), m) |= tightly R.

P3 does behave gracefully under ageing, and, informally, means almost

the same thing as P1: In other words, for every lock in the total resource

map φT, if that lock is unlocked (i.e., if the memory at the lock location

contains the value lock unlocked, which is 1), then the lock invariant

holds on associated resource map in the lock pool L.

In the actual Coq development, we use a weaker variant of P3,

which we call P3′, and in which we only guarantee ⊲ tightly R instead

of tightly R:

P3′(φT,L) = ∀l. rkind(φT @ l) = Some kLK →

m(l) = lock unlocked →

∃π, R. YES φT kLK π (R :: nil) ∧

∀ρ. (ρ,L(l), m) |= ⊲ tightly R.

Since for all P , ⊲ P is strictly weaker than �P , P3′ is a weaker guar-
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antee than P3, meaning that it is easier to introduce but harder to use.

In future work we plan to move the Coq development from P3′ to P3.

In addition to P3′, we require that for each lock location l, memory

at l is either lock unlocked (1) or lock locked (0); we also require

that if a lock is locked, then l not be in the domain of the partial

function L.

8.5 Concurrent step relation

The full concurrent small-step relation is given in figures 8.3 and 8.4.

Figure 8.3 contains the portion of the step relation that is responsible

for executing sequential statements.

The key sequential rule is cstep-seq, which uses the core semantics

of the sequential submachine to perform a sequential step (recall from

section 6.6 how we construct the 77−→ relation from consult). The head

of the schedule is i, meaning that the next thread to execute is ~θi, which

is equal to (ρ, φ, Krunκ).

First the alloc and function pools are joined to φ to make φs, and

then we build a world (ρ, φs, m) and step in the sequential submachine

with that world and the control κ to a subsequent world (ρ′, φ′
s, m

′) and

control κ′. Since the sequential submachine’s oracle has type unit we

use the value tt as a parameter to the step relation.

After taking a step in the submachine, we split out new alloc and

function pools from φ′
s. The submachine is allowed to age the resource
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cstep-seq

~θi = (ρ, φ, Krunκ)
φs = φ ⊕ φmp ⊕ φfp

Ψ ⊢ (tt, ((ρ, φs, m), κ))
ss
77−→ (tt, ((ρ′, φ′

s, m
′), κ′))

φ′
s = φ′ ⊕ φ′

mp ⊕ φ′
fp

(ρ′, φ′
mp, m

′) |= allocpool
age n φfp = Some φ′

fp

age lpool n L = Some L′

age list n ~θ = Some ~θ′

~θ′′ = [i 7→ (ρ′, φ′, Krunκ′)] ~θ′

Ψ ⊢ (i :: ℧, ~θ,L, φmp, φfp, m) Z=⇒ (i :: ℧, ~θ′′,L′, φ′
mp, φ

′
fp, m

′)

cswitch

age lpool 1 L = Some L′

age list 1 ~θ = Some ~θ′

age 1 φmp = Some φ′
mp

age 1 φfp = Some φ′
fp

CSwitch (i :: ℧, ~θ,L, φmp, φfp, m) = (℧, ~θ′,L′, φ′
mp, φ

′
fp, m)

cstep-texit

~θi = (ρ, φ, Krun (Kstop))

CSwitch (i :: ℧, ~θ,L, φmp, φfp, m) = S

Ψ ⊢ (i :: ℧, ~θ,L, φmp, φfp, m) Z=⇒ S

Figure 8.3: Sequential steps in the concurrent step relation

map to make it more approximate if it wishes, and so we allow the

function pool, lock pool, and other threads to age as well so that all

resource maps will have the same level and therefore will be able to join

together into a total resource map.

One key point is that the schedule does not change during cstep-

seq. Thus the next instruction to be executed will be from the same

thread—that is, the concurrent step relation does not context switch

when executing normal sequential instructions. In section 5.3 we dis-
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cstep-prelock

~θi = (ρ, φ, Krun lock v · κ)
(ρ, φ, m) |= true ∗ v

π

; R
~θ′ = [i 7→ (ρ, φ, Klock v κ)] ~θ

CSwitch (i :: ℧, ~θ′,L, φmp, φfp, m) = S

Ψ ⊢ (i :: ℧, ~θ,L, φmp, φfp, m) Z=⇒ S

cstep-nolock

~θi = (ρ, φ, Klock v κ) m(v) = 0

CSwitch (i :: ℧, ~θ,L, φmp, φfp, m) = S

Ψ ⊢ (i :: ℧, ~θ,L, φmp, φfp, m) Z=⇒ S

cstep-lock

~θi = (ρ, φ, Klock v κ)
m(v) = 1 m′ = [v 7→ 0] m L = v : φlock,L

′

~θ′ = [i 7→ (ρ, φ ⊕ φlock, Krun κ)] ~θ

Ψ ⊢ (i :: ℧, ~θ,L, φmp, φfp, m) Z=⇒ (i :: ℧, ~θ′,L′, φmp, φfp, m
′)

cstep-unlock

~θi = (ρ, φ, Krun unlock v · κ)
m(v) = 0 m′ = [v 7→ 1] m φ = φ′ ⊕ φlock

(ρ, φ, m) |= (true ∗ hold v P )
(ρ, φlock, m) |= tightly P

L′ = v : wlock,L ~θ′ = [i 7→ (ρ, φ′, Krunκ)] ~θ

CSwitch (i :: ℧, ~θ′,L′, φmp, φfp, m
′) = S

Ψ ⊢ (i :: ℧, ~θ,L, φmp, φfp, m) Z=⇒ S

cstep-fork

~θi = (ρ, φ, Krun fork v ~v · κ)
(ρ, φfp, m) |= true ∗ v : {validly precisely P}{Q}

φ = φparent ⊕ φchild

(marshal(~v), φchild, m) |= validly precisely P
~θ′ = [i 7→ (ρ, φparent, Krun κ)] ~θ

~θ′′ = ~θ′ + ((ρ0, wchild, Krun (call v ~v · Kstop)) :: nil)

CSwitch (i :: ℧, ~θ′′,L, φmp, φfp, m) = S

Ψ ⊢ (i :: ℧, ~θ,L, φmp, φfp, m) Z=⇒ S

Figure 8.4: Fully concurrent steps in the concurrent step relation
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cussed why this is reasonable.

In contrast, almost all of the other cases of the concurrent step

relation do context switch. The context switch relation, CSwitch (S) =

S ′, handles all of the details of performing a context switch by removing

the head of the schedule (thus allowing the next thread to execute) and

aging all of the worlds.

Thread exit (cstep-texit) does not remove the thread from the list,

but scheduling a terminated thread simply results in a context switch.

As explained in chapter 4, we do not reason about the resources that

threads free (or fail to free) on termination, so we do not place any

restrictions on φ.

Figure 8.4 contains the portion of the step relation that is respon-

sible for executing the fully-concurrent statements.

Three rules describe lock acquisition. Rule cstep-prelock checks to

make sure that the location that the thread is attempting to lock is a

lock in the thread’s resource map and then changes the thread’s status

from runnable (Krun) to waiting on a lock (Klock). Finally, cstep-prelock

context switches to give other threads a chance to grab the lock first.

Rule cstep-nolock is the “block” case of a blocking lock—we try to

grab the lock, but it is not yet available. In this case we simply context

switch.

Rule cstep-lock is the rule that actually acquires the lock. It flips

the memory location of the lock from a 1 to a 0 and then joins the

resource map associated with the lock φlock in the lock pool L with
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the resource map of the thread. By the restrictions on the lock pool

contained in the consistant machine state, this resource map satisfies

the lock’s resource invariant4. Rule cstep-lock does not context switch

after grabbing the lock. If we wished to context switch here it would

not be difficult to modify our proofs; however it is unnecessary (since

we quantify over all schedulers) and so we do not do it. See section 5.3

for a further discussion of interleaving.

The cstep-unlock rule reverses the lock rule. It flips the memory

location associated with the lock from a 0 to a 1 and puts the resource

map associated with the lock φlock into the lock pool L. It is able to

uniquely identify this resource map due to the premise

(ρ, φlock, m) |= tightly P,

since tightly P is tight, and therefore precise. Since P is an arbitrary

predicate in (classical) logic, this premise makes our semantics noncon-

structive, i.e., noncomputable. See section 8.6 for further discussion of

why this abstraction is reasonable.

In the Coq development we use a different premise,

(ρ, φlock, m) |= ⊲ tightly P,

4The invariant is satisfied on all more approximate resource maps due to the way
YES inversion works. To establish that it holds at the current level of approximation
is impossible in the general case, but in the case that actually occurs in the proof of
the lock rule of CSL, a complex induction is able to prove that it holds immediately.
Perhaps a modification of this rule would somehow lead to a simpler proof of the
CSL lock rule.
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which is related to the ⊲ discussed in 8.4.6. When we remove the ⊲

there we can simultaneously remove the ⊲ in the cstep-unlock rule.

Finally, cstep-fork creates a new thread. Because we spawn function-

calls as opposed to arbitrary commands that might have free C-minor

variables, we don’t need complex side-conditions on free variables and

can use the empty environment ρ0 in the new thread. There is a non-

constructive test that the function’s precondition is satisfied:

(marshal(~v), φchild, m) |= validly precisely P.

In this test the parameters of the function call are marshaled into a local

environment ρ so that the predicate will be able to judge them. Like

the unlock rule, this test is nonconstructive. The sequential semantics

does not need such a test at every function call; we need it here to

know what world is transferred by the (precise) predicate P that is

the function’s precondition. Preconditions of nonspawnable (ordinary)

functions need not be precise.

8.6 Reasonableness of the step relation

Our semantics has two features that are unusual in a concurrent seman-

tics. The first unusual feature, exhibited in the cstep-seq and cstep-lock

rules, is that the semantics does not interleave at every instruction. We

discussed this feature in section 5.3.

The second unusual feature of our semantics is the nonconstructive
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tests in the cstep-unlock and cstep-fork rules. If we are executing a

program for which we have a proof in CSL, then we can prove that the

test will always succeed. However, the presence of these nonconstructive

tests is unsatisfying. More generally, the presence of resource maps in

the semantics is worrying: we need to verify that they are not allowing

unrealistic behavior. We can defend both the nonconstructive tests and

the presence of resource maps in the semantics by relating our semantics

to the erased semantics defined in chapter 5.

The erased machine defined in chapter 5 is similar to the unerased

machine defined in this chapter; the difference is that in the erased

machine all of the resource maps have been removed. The unerased

machine is actually a conservative approximation to the erased one, as

demonstrated by the erasure theorem:

Theorem (Erasure). If Ψ ⊢ (℧, ~θ,L, φmp, φfp, m) Z=⇒

(℧′, ~θ′,L′, φ′
mp, φ

′
fp, m

′), and ~θe and ~θ′e are erased versions of

the thread lists ~θ and ~θ′, respectively, then Ψ ⊢ (℧, ~θe, m)
e

Z=⇒

(℧′, ~θ′e, m′).

Proof. By case analysis on the Z=⇒ relation. We observe

that each case in that relation has a corrosponding case in

the Z=⇒e relation with a subset of the premises. In each case

the schedule, locals (inside a thread), concurrent controls

(inside a thread), thread list (up to erasure), and memory

are identical. For the cstep-seq case we use lemma 8.2.

This is a useful sanity check: the real machine takes no decisions
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based on erasable information; the erased semantics simply gets stuck

less often.

When to erase. One could imagine proving safety of a concurrent

program with respect to the unerased semantics, then erasing, and last

compiling. However, this would be a mistake since the compiler may

do concurrency-unsafe optimizations. Instead, we should preserve the

resource maps in the semantics of each intermediate representation as

we compile from Concurrent C minor to machine language; this gives

the compiler a specification of concurrency-safe optimizations. After we

have reached machine language, we can use the resource maps to prove

that our interleaving model is sound for machines with weak memory

models. We erase last.

8.7 Conclusions

We have now given a formal concurrent operational semantics for Con-

current C minor. This semantics isolates the behavior of the sequential

step relation from the concurrent reasoning, making it easy to use to

reason about concurrent features such as locking a lock. However, it

is not a major goal to use our operational semantics to reason about

the sequential features of Concurrent C minor. To do so we define an

oracular semantics for Concurrent C minor in chapter 9.



Chapter 9

Oracle Semantics

In chapter 3 we introduced Concurrent C minor, and in chapter 8 we

gave it a formal concurrent operational semantics. That semantics al-

lows for natural reasoning about the fully concurrent operations of Con-

current C minor, such as lock and unlock. However, it does not allow

for natural reasoning about the sequential language features such as

control flow. In this chapter we define an oracular semantics for Con-

current C minor that is ideal for reasoning about sequential language

features in the context of a concurrent program1.

9.1 Why an oracular semantics

A compiler, or a Hoare tuple, considers a single thread at a time. The

compiler (and its correctness proof) wants to compile code uniformly

even around the concurrent operations. Similarly, in a CSL proof, the

1Portions of this chapter have been published before as [HAZ08a] and [HAZ08b].





 CHAPTER 9. ORACLE SEMANTICS

statement sequential semantics oracular semantics

σ0 (Ω0, σ0)
[e1]:=e2

σ1 (Ω0, σ1)
if e then s1 else s2

σ2 (Ω0, σ2)
lock v

stuck (Ω1, σ3)
[e1]:=e2

(Ω1, σ4)

Figure 9.1: The oracle allows for reasoning after a concurrent instruction

commands c1 and c2 in

{P} c1 ; c2 {Q}

may contain concurrent operations, but, because of C minor’s nonlocal

exits, a soundness proof for the sequence rule of separation logic is

complicated even without the headaches of concurrency. We want a

semantics of single-threaded computation in a concurrent context.

The sequential submachine of section 8.2 is single-threaded but in-

complete because it gets stuck at the fully-concurrent operations lock,

unlock, and fork. What we want is a deterministic sequential opera-

tional semantics2 that knows how to handle concurrent communica-

tions, which it will do by consulting an oracle.

2The correctness proofs of the CompCert compiler and the sequential separation
logic proofs use determinism to simplify their task.
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Figure 9.1 demonstrates the value of this type of semantics. In the

left column is a sequence of statements in Concurrent C minor. The first

two statements are sequential statements, the third is a fully-concurrent

lock statement, and the final statement is sequential. In the middle col-

umn is a series of states σ (i.e., memory, locals, etc.) from a sequential

semantics such as the sequential submachine; the series starts with some

initial state σ0. In the right column is a series of oracle Ω and state σ

pairs for a new oracular semantics; we start with the same state σ0 as

in the regular sequential semantics, as well as some intitial oracle Ω0.

As each statement is executed, the states in the middle and right

columns are updated by the action of the statement. After executing

the first statement, which is a store to memory, in the middle column

we have a new state σ1. In the right column, we get exactly the same

state σ1. Since a store instruction is not a concurrent instruction, we

do not use the oracle and so it is unchanged. Assuming that the sub-

statements s1 and s2 do not contain concurrent instructions, we reach

the subsequent state σ2.

Now we reach a concurrent statement, lock. Here, the standard se-

quential semantics is stuck; the sequential submachine is not able to

determine the result of the lock instruction, since it depends on the

other threads. However, on the right-hand side, the semantics is able to

take advantage of the oracle Ω0. The oracle represents all of the other

threads in the concurrent machine. The right-hand semantics consults

the oracle, which predicts what the state σ3 will be after the concurrent
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machine executes the lock instruction, and also produces a new oracle

Ω1, which will be usable for the next concurrent instruction. After the

concurrent instruction, the right-hand side is able to continue to process

sequential statements as before.

To build the desired semantics we will build an oracular machine

using our extension system explained in chapter 6. Our extension will

handle all of the concurrent instructions of Concurrent C minor.

9.2 Concurrent oracle

Like any extension, we must define the type of an oracle and build a

partial function consult. When we constructed the sequential subma-

chine in section 8.2, we used the unit oracle. Here, we define a more

meaningful oracle as follows:

Ω : oracle := (℧, ~θ,L).

An oracle now contains a schedule ℧, a thread list ~θ, and a lock pool

L.

We generalize a sequential continuation (Ω, w, κ) to a concurrent

continuation (Ω, w, κ̂), whose concurrent control κ̂ may be ready (Krun κ)

or blocked on a lock (Klock v κ). An oracle allows us to build a concur-

rent machine state S from a thread number i and a concurrent continu-

ation. Alternatively, given a concurrent machine state S and thread-ID

i, we can construct a concurrent continuation (oracle Ω, world w, and
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projection

φ = φt ⊕ φmp ⊕ φfp

(ρ, φmp, m) |= allocpool
∀l. (rkind(φfp@l) = None) ∨ (rkind(φfp@l) = Some kFUN)

∀l. rkind(φt@l) 6= Some kFUN

Ω = (℧, ~θ,L)

age list n ~θ = Some ~θ′

age lpool n L = Some L′

~θ′ = [θ1, . . . , θi−1, θi+1, . . . , θn]
~θ′′ = [θ1, . . . , θi−1, (ρ, φt, κ̂), θi+1, . . . , θn]

(Ω, (ρ, φ, m), κ̂)
i
∝ (℧, ~θ′′,L′, φmp, φfp, m)

Figure 9.2: Oracular projection

concurrent control κ̂). The precise relationship is given by the relation

(Ω, w, κ̂)
i
∝ S, pronounced “(Ω, w, κ̂) is the ith projection of S”.

The projection relation is given in figure 9.2. To build the concurrent

machine state S from the concurrent continuation (Ω, (ρ, φ, m), κ̂) and

thread number i, we first split the alloc and function pools from the

resource map φ, leaving the remaining resource map φt. The predicate

allocpool is precise, and the function pool contains all of the functions

and nothing more, so splitting them off is deterministic. Next we can

age the thread list ~θ and lock pool L in case they are less approximate

than the resource maps φ, φmp, and φfp. Finally we insert the thread

(ρ, φt, κ̂) into the thread list at position i.
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Ready
~θi = (ρ, w, Krunκ)

Ready i (i :: ℧, ~θ,L, φmp, φfp, m)

SO-done
Ready i S

Ψ ⊢ StepOthers i S S

SO-step

¬(Ready i S)
Ψ ⊢ S Z=⇒ S ′

Ψ ⊢ StepOthers i S ′ S ′′

Ψ ⊢ StepOthers i S S ′′

Figure 9.3: Running the other threads

9.3 Concurrent consult relation

We need to build a consult relation to execute the concurrent statements

of Concurrent C minor. The consult function constructs a concurrent

machine S from the oracle and then runs the other theads in that

machine until control returns.

We run the other threads with the StepOthers relation, defined in

figure 9.3. The StepOthers relation takes a thread-ID i and two con-

current machine states S and S ′. We say that thread i is ready when

i is at the head of the schedule in S. When we step other threads we

have two choices. The first case, SO-done, says that if thread i is ready,

then we have finished stepping other threads and control has returned

to thread i. The second case, SO-step, says that if thread i is not ready,

then we take a step in the concurrent machine and then test again.

Now that we have defined how we run the other threads, we are

ready to define the consult relation in figure 9.4. There are three cases
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Ω-invalid

Ω = (i :: ℧, ~θ,L)

6 ∃S. (Ω, w, Krunκ)
i
∝ S

consult(Ψ, Ω, (w, κ)) = None

Ω-diverges

Ω = (i :: ℧, ~θ,L)

(Ω, w, Krun κ)
i
∝ S

Ψ ⊢ S Z=⇒ S ′

6 ∃S ′′. Ψ ⊢ StepOthers i S ′ S ′′

consult(Ψ, Ω, (w, κ)) = None

Ω-steps

Ω = (i :: ℧, ~θ,L)

(Ω, w, Krunκ)
i
∝ S

Ψ ⊢ S Z=⇒ S ′

Ψ ⊢ StepOthers i S ′ S ′′

(Ω′, w′, Krun κ)
i
∝ S ′′

consult(Ψ, Ω, (w, κ)) = Some (Ω′, (w′, κ′))

Figure 9.4: The oracular consult relation

when the oracular machine wants to consult.

In the first case, Ω-invalid, there is no concurrent machine state S

compatible with the concurrent continuation. This happens if the oracle

Ω is somehow incompatible with the world w. There are a variety of

ways that this could be the case; one simple example is that one of the

threads inside the oracle thinks that it has full ownership of a location

that is also owned by the world w. Of course, in the concurrent machine

this is forbidden by the consistency requirements.

It our proofs it is convienent to quantify universally over all oracles,

instead of of simply quantifying over valid oracles, which would require

an additional premise in the definitions and proofs. By looping safely if
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we are handed an invalid oracle by the universal quantification, we can

gracefully handle invalid oracles without requiring such a premise. By

returning None from the consult function we indicate that the semantics

should loop endlessly, thereby trivially becoming safe.

In the remaining two cases, we are able to construct a concurrent

machine S, and take at least one concurrent step. This step uses the

cstep-seq case in the concurrent step relation to execute a make lock

or free lock, uses cstep-prelock to execute the first part of a lock, uses

cstep-unlock to execute an unlock, or uses cstep-fork to execute a fork.

After taking this step, the machine decides (classically) whether

control will return to the current thread by branching on the StepOthers

judgement. Rule Ω-diverges handles the case when control does not

return, for example if the schedule is unfair, if another thread executes

an illegal instruction, or if the current thread is deadlocked. In these

cases the oracle machine loops endlessly, thereby becoming trivially

safe. The idea that we are safe if another thread blows up may seem

strange: the point is that we are proving the safety of this thread. If

another thread causes the concurrent machine to get stuck, it is not

this thread’s fault.

The final case, rule Ω-steps, is when control returns after running

the other threads. In this case we project out the ith thread from the

new concurrent machine state S ′′ and proceed with the new oracle,

world, and control that came from running the concurrent machine.

Classical reasoning is unavoidable in this system: first, the concur-
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rent machine itself requires classical reasoning to find a world satisfying

an unlock assertion because we allow users to use a classical logic, and

second, determining whether control will return to a given thread re-

duces the halting problem. The nonconstructivity of our operational se-

mantics is not a bug: we are not building an interpreter, we are building

a specification for correctness proofs of compilers and program logics.

9.4 The oracular step

As explained in section 6.6, we define the oraclular step relation using

the consult relation. As explained in that section, the oracular step uses

the underlying step relation (which is the step relation for sequential C

minor) when executing core statements.

We use the oracular step to keep “unimportant” details of the con-

current machine from interfering with proofs about the sequential lan-

guage. The key features of the oracular step are the following:

1. It is deterministic, which simplifies sequential metatheory

2. When it encounters a synchonization operation, it is able to make

progress with the oracle, whereas a regular step relation gets stuck

3. It composes with itself, whereas the regular step relation does not

(because memory will change between steps due to other threads)

4. In the cases where control would never return, such as deadlock,

we will be safe.
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With these properties we can prove properties of the sequential features

of Concurrent C minor in a natural way.

9.5 Conclusion

In chapter 8 we gave Concurrent C minor a formal concurrent opera-

tional semantics. That semantics was easy to use for reasoning about

the concurrent features of the language, but not natural to use for rea-

soning about sequential features. In this chapter we have defined an

oracular semantics for Concurrent C minor to support natural reason-

ing about sequential features.

We have not yet formally stated the precise relationship between

the oracular semantics and the concurrent semantics. The oracular se-

mantics is built from the concurrent semantics, but we wish to reason

somewhat differently. The oracular semantics is a “thread-local” ver-

sion of the semantics, so it is natural to think that if we could prove

properties of each thread using the oracular semantics, then we could

combine those proofs into a proof of the entire concurrent machine.

However, we are not yet in a position to formally state the connection,

which will be the subject of section 10.3.



Chapter 10

A Modal Hoare Judgment

and Oracular Soundness

In chapter 3 we introduced Concurrent C minor. In chapter 4 we gave

Concurrent C minor an axiomatic semantics, Concurrent Separation

Logic. In chapter 8 we gave Concurrent C minor an operational seman-

tics. At last we are ready to connect these two semantics by proving the

soundness of the CSL axioms with respect to the operational semantics.

Our CSL axiomatic semantics is designed to reason about one thread

at a time, and we noted in chapter 8 that the concurrent operational

semantics was not particularly easy to use for reasoning about such

sequential computation. In chapter 9 we developed an oracle semantics

that presents a single-threaded view of the concurrent machine and is

suitable for reasoning about one thread at a time.

We connect our axiomatic semantics to our operational semantics in


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three stages. First, in section 10.1 we develop a definition for the Hoare

tuple based on the oracle semantics. Second, in section 10.2 we connect

our axiomatic semantics to our oracle semantics by proving the rules of

CSL as lemmas from that definition. Third, in section 10.3 we connect

our oracle semantics to our concurrent semantics, thereby proving the

soundness of our approach1.

10.1 A modal Hoare judgment

Here we develop the definition for the Hoare tuple. First, in section

10.1.1, we explain a simple continuation-passing definition in the style

of Appel and Blazy [AB07]. Then in section 10.1.2 we explain why this

style of definition will not allow us to embed predicates into program

syntax as we wish to do for the make lock statement of Concurrent

C minor. Finally, we show how to redefine the Hoare tuple using our

modal logic of chapter 7 and explain how the new definition allows us

to embed predicates into program syntax.

10.1.1 A continuation-passing Hoare judgment

Our semantic model for Hoare tuples is rooted in the idea of safety,

defined in figure 10.1. We start with the notion of immediately safe.

A state σ is immediately safe if it is not stuck; in other words, if it is

safely halted or can take a step. A state can be safely halted in two

1Portions of this chapter have been published before as [HAZ08a] and [HAZ08b].
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isafe stop
Ψ ⊢ immediately safe (Ω, (w, Kstop))

isafe level
level φ = 0

Ψ ⊢ immediately safe (Ω, ((ρ, φ, m), κ))

isafe step
Ψ ⊢ (Ω, σ) 77−→ (Ω′, σ′)

Ψ ⊢ immediately safe (Ω, σ)

stepstar 0
Ψ ⊢ (Ω, σ) 77−→∗ (Ω, σ)

stepstar S

Ψ ⊢ (Ω, σ) 77−→ (Ω′, σ′)
Ψ ⊢ (Ω′, σ′) 77−→∗ (Ω′′, σ′′)

Ψ ⊢ (Ω, σ) 77−→∗ (Ω′′, σ′′)

Ψ ⊢ safe σ = ∀Ω, Ω′, σ′. Ψ ⊢ (Ω, σ) 77−→∗ (Ω′, σ′) →
Ψ ⊢ immediately safe (Ω′, σ′)

Figure 10.1: Oracular safety

ways. The first, case isafe stop, is the standard way of saying that the

machine has been safely halted when the code has reached the end of

the computation. The second, case isafe level, is less standard. After

we reach approximation level 0, we will no longer be able to age the

resource maps; moreover, all of the stratified predicates are now unit

and therefore no longer guarantee anything.

This does not mean that the program is now unsafe; it means that

the program’s observer has stopped caring about the computation. We

prove our programs sound starting with arbitrarily large amounts of

stratification. Therefore, our programs are proved sound with regard to

any finite amount of time. If we wish to know that our program is safe
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for 100 steps of computation, we stratify predicates to level 100 (we age

the world at most once per step of computation). If we wish to know

that our program is safe for 100 billion steps of computation, we stratify

predicates to level 100 billion. The third way of being immediately safe,

case isafe step, is the standard way of observing that if we can take a

step then we are not stuck.

We define the 77−→∗ relation in the usual way as the composition

of the 77−→ relation with cases stepstar 0 and stepstar S. We then de-

fine safe in the usual way: for any state σ′ reachable from σ, σ′ is

immediately safe. Notice that we quantify universally over all initial

oracles Ω; in section 9.3 we explained that quantifying over all oracles

instead of simply valid ones is sound due to the Ω-invalid case of the

oracular consult relation: if we get an invalid oracle we are safe if we

try to consult it because we loop forever. The unrestricted universal

quantification simplifies the proofs that do not use the oracle since it

means that they do not have to carry around validity premises about

the oracle, which would weaken the isolation between the sequential

and concurrent reasoning.

Now that we have defined safety, we are ready to start to define the

semantics of our Hoare tuple. In figure 10.2 we give a näıve definition of

the Hoare tuple in a continuation-passing style developed by Appel and

Blazy. This is a simpler definition than the one they use, which supports

the frame rule in a more semantic style, and has additional parameters

to handle nonlocal exits from blocks and functions. Their rule was given
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Ψ ⊢ P ⊓⊔ κ = ∀w. w |= P →
Ψ ⊢ safe(w, κ)

Γ ⊢ {P} c {Q} ≈ ∀κ. Ψ ⊢ Γ ∗ Q ⊓⊔ κ →
Ψ ⊢ Γ ∗ P ⊓⊔ c · κ

Note: it is not possible to prove a rule for function call
because Ψ is free in the definition of Γ ⊢ {P} c {Q}.

Figure 10.2: Näıve continuation-passing style definition of Hoare tuple

in full in figure 2.5 in chapter 2. In the Coq development we include all

of the features they describe to handle the nonlocal exits and semantic

frame rule, but here we eliminate many of the more advanced features,

which are for sequential control flow, to concentrate on the key ideas.

We define the notion that a predicate P guards a control κ in the

context of a program Ψ, written Ψ ⊢ P ⊓⊔κ. The idea is that P permits

only states on which it is safe to run κ. Thus, for all worlds w such that

w |= P , the state (w, κ) is safe.

Next, we define the Hoare tuple Γ ⊢ {P} c {Q}. For any sequence

of instructions κ, if Γ∗Q guards κ then Γ∗P must guard the statement

c followed by κ. We add the parameter Γ, which is the assertion that

describes the functions, to both the pre- and postconditions as a conve-

nience for the user, so that he does not have to write {Γ∗P} c {Γ∗Q}.

This is a continuation-passing style definition, and it may not be

obvious at first glance that it is equivalent to the informal notion of “if

we start with a state that satisfies P , and we run s, and s terminates,
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then we end with a state that satisfies Q”. It is equivalent because we

are quantifying over all instruction sequences κ that are guarded by Q.

For any property of Q that is checkable with our operational semantics,

we can develop a small tester sequence that tests the property and gets

stuck if it does not hold. If we are still concerned, it is easy to add a

statement that asserts that the predicate Q holds and if it does not

then gets stuck.

This definition is one of partial correctness; in other words it does

not assume that the statement s will terminate. However, since it asserts

that s · κ is safe if P holds, then it does imply that the statement s

does not get stuck.

Using this definition, we can prove all of the sequential rules of

separation logic except for the rule for call. In fact, as mentioned

above, Appel and Blazy use a more complex version of this definition

to prove all of the rules of sequential separation logic with respect to C

minor in Coq. Unfortunately, in the current context, we cannot use the

definition of the Hoare tuple given in figure 10.2 to prove the soundness

of the function call CSL rule:

Γ ∗ (f : {P}{Q}) ⊢ {P} call f {Q}.

The problem is that the program Ψ, used in function call to match a

function name with a function body, is free in the definition of the Hoare

rule. Obviously, a sound definition should not have any free variable;
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unfortunately, fixing the problem is not easy. One solution is to make

Ψ a parameter of the Hoare tuple, an approach taken by Schirmer

[Sch06]. However, this solution requires the CSL use to drag around his

entire program through his correctness proofs, which is unfortunate,

and makes function pointers more difficult to use. Moreover, the user

already is passing around a description of the functions in Γ—why

should he also pass around the program Ψ?

We cannot simply quantify universally over the program Ψ; this

makes the call rule easy to use—but impossible to prove, so it will not

do. Another bad idea is to quantify existentially over the program Ψ;

this makes the call rule easy to prove—but impossible to use.

We are fast running out of options. Appel and Blazy put the pro-

gram Ψ into the world w and let predicates judge program syntax.

However, in our context this solution is not good enough since we do

not wish to put program syntax into worlds.

10.1.2 Embedding predicates into syntax

We cannot put program syntax into the world due to the make lock l R

statement. This statement takes a semantic predicate R—i.e., a func-

tion from world to Prop—that becomes the resource invariant of the

new lock l. Thus, a predicate is embedded into program syntax.

Since program syntax is directly exposed to the user, we wish to pro-

vide a simple inductive definition for program syntax and avoid complex

stratification techniques. If we wish to avoid stratification techniques,
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then the definition for the type of “predicate” must come before the def-

inition of program syntax. Since a predicate is a function from world

to Prop, a world cannot contain program syntax, which is why a world

is simply a tuple of locals ρ, resource map φ, and memory m.

One very important predicate is f : {P}{Q}, i.e., “f is a function

with precondition P and postcondition Q”. This predicate is used in the

precondition of both the call and fork CSL rules; the real difficulty is

in proving the call rule. What is the relationship between the assertion

f : {P}{Q} and the code that makes up f—that is, Ψ(f)? In our näıve

definition of the Hoare tuple, there was no relation at all, since Ψ was

a free variable.

As we discussed, we do not wish to provide Ψ as a parameter to the

Hoare tuple. Instead, what we want to do is quantify over all “good”

programs Ψ – that is programs compatible with Γ. The idea is to add

an additional premise after a universal quantification; this way we hope

to have a definition that is both possible to use and possible to prove.

What we are looking for is some relation Γ ⊢ Ψ, called the believe

relation, which says that the program Ψ is compatible with Γ. Compat-

ible with Γ means that if there is an assertion f : {P}{Q} in Γ, then

we can believe that assertion about the function body Ψ(f).

Given such a relation, we can then attempt to define the Hoare tuple
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as follows:

Γ ⊢ {P} c {Q} ≈ ∀Ψ. Γ ⊢ Ψ →

∀κ. Ψ ⊢ Γ ∗ Q ⊓⊔ κ →

Ψ ⊢ Γ ∗ P ⊓⊔ c · κ

Recall that we use ≈ to mean “we wish we could define things this

way”. This definition says that for any program Ψ compatible with Γ,

if Q guards κ, then P must guard c · κ.

What remains is to define the relation Γ ⊢ Ψ. The obvious choice is

Γ ⊢ Ψ ≈ ∀ f, P, Q. (Γ ⊢ true ∗ f : {P}{Q}) →

Ψ ⊢ {P} Ψ(f) {Q}

In other words, for any function assertion that is part of Γ, the Hoare

tuple guarantees that the body of that function has precondition P and

postcondition Q.

Unfortunately, there is a problem with these definitions: the def-

inition of the Hoare tuple depends on the believe relation, while the

definition of the believe relation depends on the definition of the Hoare

tuple. Worst of all, this dependence is contravariant, meaning that no

solution exists, even in untyped set theory.

10.1.3 A modal judgment

Fortunately, we have our modal logic from chapter 7, which was devel-

oped to handle just this kind of thorny contravariant recursive situation.
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Although we originally developed it to model lock invariants, we can use

it to define the Hoare tuple itself since the logic has powerful features

such as impredicative quantification and higher-order recursion.

The Hoare tuple we explain here is much simpler than the one in

the Coq development. The major simplifications include:

1. No globals in the world type. As in chapter 7, we removed

from the world type the map from global names to addresses.

2. No relation between function pre- and postconditions. As

in chapter 7, we have removed the extra parameter that relates

function pre- and postconditions to each other.

3. No marshaling of arguments. As explained in chapter 8, we

have a method of marshaling arguments at function call so that

our function preconditions can judge them. We omit this feature

here for simplicity.

4. No support for nonlocal exits. As explained in chapter 2,

C minor supports various kinds of nonlocal exits; to reason about

these we add parameters R and B to the Hoare tuple. We omit

them here since these features are directly related neither to con-

currency nor to the core of our new definition of the Hoare tuple.

5. Miscellaneous. Other changes to improve the presentation.

We define our Hoare tuple using our modal substructural logic in

figure 10.3. Recall that a predicate in the logic is a function from world
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safeΨ κ : predicate
= λw. Ψ ⊢ safe(w, κ)

P ⊓⊔Ψ κ : predicate
= P ⊂ safeΨ κ

Hargs : type
= predicate × predicate × statement × predicate

believe : (Hargs → predicate) → predicate → program →
predicate

= λH. λΓ. λΨ.

∀f, P, Q.

(Γ ⊂ true ∗ f : {P}{Q}) ⊂
⊲H(Γ, P, Ψ(f), Q)

Htuple : Hargs → predicate
= µHO Hargs (H : Hargs → predicate).

λ(Γ, P, c, Q).
∀Ψ. believe H Γ Ψ ⇒

∀κ. (Γ ∗ Q) ⊓⊔Ψ κ ⇒
(Γ ∗ P ) ⊓⊔Ψ (c · κ)

Γ ⊢ Ψ : predicate
= believe Htuple Γ Ψ

Γ ⊢ {P} c {Q} : Prop

= ⊢ Htuple(Γ, P, c, Q)

Figure 10.3: A modal Hoare tuple
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(which is a tuple of locals ρ, resource map φ, and memory m) to Prop.

We start with safeΨ κ, or predicate-level safe, which lifts the safe

notion into the modal substructural logic by “hardcoding” the program

Ψ and control κ into the predicate. If

w |= safeΨ κ,

then the control κ is safe with world w in the context of program Ψ.

Just as in the case of the simpler definitions, we define the notion

of a predicate P guarding a control κ in the context of a program Ψ

with P ⊓⊔Ψ κ, or predicate-level guard. Recall from section 7.3.7 that

the predicate P ⊂ Q is a safe form of logical implication in the modal

logic, informally equivalent to “On any world of equal or greater ap-

proximation than the current one, P implies Q”. Therefore

P ⊓⊔Ψ κ

means that for any world w′ with level less than or equal to the level

of w, if w′ |= P , then Ψ ⊢ safe (w′, κ).

Our modal Hoare judgment takes a single argument of type Hargs,

which is a tuple of predicate (Γ), predicate (P ), statement (c), and

predicate (Q). We must uncurry the arguments so that we will be able

to use the higher-order recursion operator µHO, which is how we will

“tie the knot” when defining the believe and Htuple predicates.

The believe predicate informally says that for any function specifi-
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cation f : {P}{Q} in Γ, the body of the function f , that is, Ψ(f), has

precondition P and postcondition Q.

The first argument of believe is a function H from Hargs to predicate—

that is, a function that has the same type as the Hoare tuple. The

higher-order recursion operator µHO will “tie the knot” and make sure

that H will be the Hoare tuple itself. The second argument to believe is

the predicate Γ, and the third argument is the program Ψ; the purpose

of believe is to relate Γ to Ψ using H .

First, believe quantifies over all functions f , preconditions P , and

postconditions Q. Then for any function specification f : {P}{Q} that

is implied by Γ—that is, if2

Γ ⊂ true ∗ f : {P}{Q},

we require that H(Γ, P, Ψ(f), Q) hold on all strictly more approximate

worlds, which we enforce with the ⊲ modal operator:

⊲H(Γ, P, Ψ(f), Q).

2In the Coq development, we use a slightly different form of the implication

Γ ⊂ true ∗ f : {P}{Q},

which is
©! (Γ ⇒ true ∗ f : {P}{Q}).

This implication is very unusual for us in that we almost never use the “unsafe” form
of implication ⇒; moreover looking at it now we suspect that unsafe implication is
not needed in the proofs. One of many projects for cleaning up the Coq proofs in
the future will be to replace ⇒ with ⊂ in the Coq definition of believe.
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We require the ⊲ operator so that believe is contractive in H .

There is a subtlety in this definition involving the quantification

over P and Q and the relationship of them to Γ. We are able to quan-

tify over predicates P and Q because we support full impredicative

quantifiation. Next, recall from section 7.3.10 that due to the way YES

inverts, that for a given function f there are multiple P and Q that

will be indistinguishable; all that we know is that they are equivalent

at strictly greater approximation. This is another reason for applying

the ⊲ operator before we pass P and Q to H .

The Htuple predicate implements our Hoare tuple. We start with

the higher-order recursion operator µHO, which was explained in section

7.3.9 and which has type

µHO : ∀α. ((α → predicate) → (α → predicate)) → α → predicate.

We instantiate the type parameter α with the type Hargs; then µHO

binds the variable H for recursive self reference. Now we provide a

function of type Hargs → predicate, which we do with a λ as usual,

pattern-matching the arguments (Γ, P, c, Q) of the Hoare tuple.

Now we universally quantify over all programs Ψ, and require

believe H Γ Ψ,

which guarantees that Γ describes the functions contained in Ψ. The

rest of the definition is very close to the one given in figure 10.2: for all
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controls κ, if Q guards κ, then P guards c · κ—the difference is that Ψ

is no longer a free variable in the definition.

Once our Hoare tuple is defined we can define a notation Γ ⊢ Ψ for

believe Htuple Γ Ψ, which is equal to the believe inside the definition of

Htuple by fold-unfold.

Finally, we define our “user-level” Hoare tuple Γ ⊢ {P} c {Q} as

⊢ Htuple(Γ, P, c, Q),

using the notation defined in section 7.3.1, where ⊢ P is shorthand for

∀w. w |= P . A Hoare rule is sound only if it is true for all worlds.

10.2 Hoare judgments in CSL

We are now ready at last to prove the axioms of CSL sound with respect

to the Concurrent C minor oracular semantics. Later, in section 10.3,

we will connect the oracular semantics to the concurrent operational

semantics and thereby achieve an end-to-end result.

The Hoare rules divide into three categories. The first category,

which is by far the most numerous, covers all of the sequential Hoare

rules except for call. The second category contains the call rule and the

rules for building up the predicate Γ. The third category coveres the

concurrent rules.
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10.2.1 Sequential rules

In section 2.5.3 we presented the sequential Hoare rules of Appel and

Blazy in figure 2.6. Appel and Blazy proved those rules sound in Coq

with respect to sequential C minor; their proof was a sizable engineering

development, and complex enough without worrying about complexities

arising from concurrent computation.

Appel was able to adapt those Coq proofs to our new definitions

without altering their essential structure; very little changed, providing

strong evidence that our oracular semantics was able to hide the com-

plexities of concurrency from the metatheory proofs about sequential

language features, even in the extremely picky context of a machine-

checked proof.

10.2.2 Function call

The proof of the call rule, on the other hand, did have to change since

it interacts with the new Γ ⊢ Ψ predicate. In fact, the semantics of

function call had to change so that the resource map was aged during

the call; remember from figure 8.1 that rule sstep-call does just that.

Here we prove a simplified CSL call rule where we remove the function

arguments, but in the Coq development we prove the rule for the full

C minor call statement. We will also assume that P and Q are valid in

the sense given in section 7.3.8.

Theorem 10.1. Γ ∗ (f : {P}{Q}) ⊢ {P} call f {Q}
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Proof. We unfold the definition of the Hoare tuple and

then introduce the premises w |= (Γ ∗ f : {P}{Q}) ⊢ Ψ and

w |= (Γ ∗ (f : {P}{Q}) ∗ Q) ⊓⊔Ψ κ; we then wish to prove

w |= (Γ∗(f : {P}{Q})∗P )⊓⊔Ψcall f ·κ. To prove this goal, we

may assume a w′ such that level w′ ≤ level w and that w′ |=

Γ ∗ f : {P}{Q} ∗ P , and must prove Ψ ⊢ safe(w′, call f · κ).

We can assume that level w′ > 0 since otherwise we would

be immediately safe. Therefore, there exists w′′ such that

age 1 w′ = Some w′′. By the sstep-call rule from figure 8.1,

we can then take a step from (w′, call f ·κ) to (w′′, Ψ(f) ·κ).

By the definition of safety, it suffices to prove this state safe.

We know ⊢ (Γ∗f : {P}{Q}) ⊂ (true∗f : {P}{Q}). There-

fore, by the definition of w |= (Γ ∗ f : {P}{Q}) ⊢ Ψ, and

since we know that level w′ ≤ level w, we know that w′ |=

⊲ Htuple(Γ ∗ f : {P}{Q}, P, Ψ(f), Q). Since w′′ is strictly

more approximate than w′ and since Htuple is fashionable,

we know that w′′ |= Htuple(Γ ∗ f : {P}{Q}, P, Ψ(f), Q).

Γ ⊢ Ψ is fashionable, meaning that it holds on all worlds of

the same level. Therefore, from w |= (Γ ∗ f : {P}{Q}) ⊢ Ψ,

we know w′′′ |= (Γ ∗ f : {P}{Q}) ⊢ Ψ for some w′′′ of the

same level as w and such that there exists an n such that

age n w′′′ = Some w′′. Γ ⊢ Ψ is necessary, meaning that it

holds on all worlds that are approximations of the current

world, so from w′′′ |= (Γ ∗ f : {P}{Q}) ⊢ Ψ we know that
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w′′ |= (Γ ∗ f : {P}{Q}) ⊢ Ψ. Since P ⊓⊔Ψ κ is both necessary

and fashionable, from w |= (Γ ∗ (f : {P}{Q}) ∗ Q) ⊓⊔Ψ κ

we know w′′ |= (Γ ∗ (f : {P}{Q}) ∗ Q) ⊓⊔Ψ κ. From these

two facts and w′′ |= Htuple(Γ ∗ f : {P}{Q}, P, Ψ(f), Q), we

know w′′ |= (Γ ∗ f : {P}{Q}) ∗ P ⊓⊔Ψ (Ψ(f) · κ). Therefore

it suffices to show that w′′ |= Γ ∗ f : {P}{Q}) ∗ P . Since

Γ, f : {P}{Q}, and P are valid, this follows directly from

w′ |= Γ ∗ f : {P}{Q})P .

Proved in Coq.

Like all the proofs about sequential features, this proof did not men-

tion anything about concurrency. The ability to prove complicated se-

quential results that are blind to the fact that they are running in a

concurrent context is a major strength of our approach.

Combining proofs about functions

The major task for the CSL user is to prove Γ ⊢ Ψ—that is, to prove

pre- and postconditions for all of the functions in Ψ. For proving indi-

vidual function bodies, he will use the rules of CSL. Here we show how

to combine individual function bodies into a proof of Γ ⊢ Ψ, which is a

proof about the program as a whole.
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func-nil
⊢ (Γ ⊢ Ψ : emp)

func-cons

⊢ (Γ ⊢ Ψ : Γ′)
⊢ (Γ ⊂ (true ∗ Γ′ ∗ f : {P}{Q}))

Γ ⊢ {P} call f {Q}

⊢ (Γ ⊢ Ψ : (Γ′ ∗ f : {P}{Q}))

func-believe
⊢ (Γ ⊢ Ψ : Γ)

⊢ (Γ ⊢ Ψ)

Figure 10.4: Building believe

For this purpose we define a variant of the believe predicate, believe′:

believe′ : predicate → program → predicate → predicate

= λΓ. λΨ. Γ′

∀f, P, Q.

(Γ′ ⊂ true ∗ f : {P}{Q}) ⊂

⊲ Htuple(Γ, P, Ψ(f), Q)

We use the notation Γ ⊢ Ψ : Γ′ as shorthand for believe′ Γ Ψ Γ′.

Γ ⊢ Ψ : Γ′ means that all the functions in Γ′ are proved correct with

respect to their function bodies in Ψ. Since a function body may call

all functions (not just those proved correct so far), they may use any

of the specifications contained in Γ. This allows Γ′ to be built up one

function at a time.

To help the user prove Γ ⊢ Ψ, we provide the rules in figure 10.4.

The idea is that we will start with Γ′ as emp, with rule func-nil. Then
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we will add the functions in Γ to Γ′ one at a time, with rule func-cons.

The user will prove each function body using the rules of CSL. When

every function in Γ has been added to Γ′, then the two variants of

believe are equivalent as expressed in rule func-believe.

Theorem 10.2. The rules func-nil, func-cons, and func-

believe are sound with respect to the semantic definitions

of Γ ⊢ Ψ and Γ ⊢ Ψ : Γ′.

Proof. Rule func-nil is vacuously true since emp does not

contain any functions. Rule func-believe is true immediately

from the definitions. For rule func-cons, believe′ is quan-

tifying over all of the functions in Γ′ plus the new func-

tion f . For all of the functions in Γ′, we use the premise

Γ ⊢ Ψ : Γ′. For the new function f , we need to prove

⊢ ⊲ Htuple(Γ, P, Ψ(f), Q), which follows immediately since

for any P , (⊢ P ) → (⊢ ⊲P ).

Proved in Coq.

The CSL user thus proves the bodies of all his functions with respect

to Γ using the rules of CSL, and then uses the rules in figure 10.4 to

prove Γ ⊢ Ψ.

10.2.3 Concurrent rules

In section 4.8 we presented the concurrent rules of Concurrent Separa-

tion Logic in figure 4.1. We are now ready to prove them sound with
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respect to the oracular semantics.

Theorem 10.3. The rules of Concurrent Separation Logic

for the concurrent statements of Concurrent C minor as

given in figure 4.1 are sound with respect to the semantics

of the Hoare tuple defined in figure 10.3.

Proof. All of the concurrent statements of Concurrent C

minor are handled by the consult partial function. Therefore,

our job is to show that the preconditions of the rules guar-

antee that consult does not get stuck and that afterwards

the postconditions hold. Since in the definition of safe we

universally quantify over all oracles, our proofs must hold

for any oracle.

The oracular consult partial function was defined in section

9.3 with three cases. In the first case, Ω-invalid, we handle

invalid oracles, where there is no concurrent machine state

compatible with the oracle. If the oracle is invalid, we loop

endlessly. Since looping endlessly is safe regardless of the

precondition, and since a postcondition is possible given an

infinite loop, we can easily prove the Hoare rules if we have

been given an invalid oracle by the universal quantification.

In both the second case, Ω-diverges, and the third case, Ω-

steps, there is a concurrent machine state S consistent with

the oracle. In both cases, we must take a concurrent step
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from S to some subsequent state S ′; this step can get stuck,

and it is the first task of the CSL rule preconditions to

ensure that it does not. The key difficulty in showing that

you can take a step is showing that the state S ′ meets the

consistency requirements given in section 8.4. This will be

one of our major tasks in the case analysis below.

Assuming that this first task is done and therefore the pre-

conditions are good enough to guarantee that the concur-

rent step relation is able to step from S to S ′, the consult

function cannot get stuck. Therefore, the remaining task

in the soundness proof is to prove the postcondition of the

CSL rule. The oracle classically decides whether control will

ever return to the thread by branching on the StepOthers

relation.

In the first case, Ω-diverges, control will never return and

the machine enters an infinite loop. As before, this makes

it possible to prove any postcondition.

In the final case, Ω-steps, control returns after running the

other threads. In this case it is necessary to use the pre-

condition of the CSL rules to prove their postcondition by

doing induction on the StepOthers relation.

With these preliminaries out of the way, we will briefly con-

sider each rule in turn.
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1. Γ ⊢ {e
◭◮

7→ 0} make lock e R {e
◭◮

; R ∗ hold e R}

An examination of the make lock case of the consult

function defined in figure 8.2 will make clear that the

consult will not get stuck and will guarantee the post-

condtion. The concurrent machine will run cstep-seq to

execute this instruction. Since the new lock is created

locked, it is simple to show that the machine is still

consistent since we only require complex properties to

hold for unlocked locks.

Proved in Coq.

2. Γ ⊢ {e
◭◮

; R ∗ hold e R} free lock e {e
◭◮

7→ 0}

An examination of the free lock case of the consult

function defined in figure 8.2 will make clear that the

consult will not get stuck and will guarantee the post-

condtion. The concurrent machine will run cstep-seq

to execute this instruction. Since we have removed a

lock from the total resouce map φT, it is easy to show

consistency of the new state because we can quantify

over one fewer lock.

Proved in Coq.

3. Γ ⊢ {e π

; R} lock e {e π

; R ∗ tightly R}

The lock rule is by far the hardest rule to prove. It

is relatively easy to show that the concurrent machine

will run cstep-prelock to execute the instruction and
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that the next state will be consistent. However, show-

ing that the postcondition holds is quite challanging.

Essentially the problem is that after we grab the lock

with cstep-lock, we do not context switch. By using

the consistency requirements on lock pools it is sim-

ple to show a postcondition of ⊲ tightly R, but this is

not good enough to prove our CSL rule, since we need

tightly R, which is stronger. Accordingly, we need to

make a more complex induction, where we argue that

since the time when the lock was unlocked, we have

already context switched at least once, and therefore

we have moved from ⊲ tightly R to tightly R.

Proved in Coq.

4. R = (hold e R ∗ S) → Γ ⊢ {tightly R} unlock e {emp}

An examination of the preconditions of the CSL rule

will demonstrate that the concurrent machine will run

cstep-unlock to execute this instruction. Proving the

postcondition of emp is not difficult. The difficulty is

in showing that the new machine state is consistent,

and in particular that the rules for the lock pool are

respected; they are since we know that R holds and

that R is tight.

Almost entirely proved in Coq. Proved in detail in ap-

pendix B.1.
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5. Γ ⊢ {f :{P}{Q}∗validly precisely P} forkf {f :{P}{Q}}

An examination of the preconditions of the CSL rule

will demonstrate that the concurrent machine will run

cstep-fork to execute this instruction. It is not difficult

to show that the new state is consistent or to prove the

postcondition.

The fork rule is relatively simple to prove because our

definition of safety is quite uncaring about the behav-

ior of other threads (if they go wrong, we are imme-

diately safe due to case Ω-diverges). Therefore, in the

soundness proof of the CSL fork rule, we are only con-

cerned about the parent thread. When we connect the

oracle semantics to the concurrent semantics in section

10.3, we will have to prove that the has been properly

started in the preservation theorem.

Proved in Coq.

Now that we have proved all of the rules of CSL sound with respect

to the oracular semantics of Concurrent C minor, half of our soundness

task is done. The other half, covered in the remainder of this chapter,

is to connect the oracular semantics to the concurrent semantics, which

we do with progress and preservation theorems.
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c isafe level
level φmp = 0

Ψ ⊢ c isafe (℧, ~θ,L, φmp, φfp, m)

c isafe sched
6 ∃θ. ~θi = θ

Ψ ⊢ c isafe (i :: ℧, ~θ,L, φmp, φfp, m)

c isafe step
Ψ ⊢ S Z=⇒ S ′

Ψ ⊢ c isafe S

cstepstar 0
Ψ ⊢ S Z=⇒∗ S

cstepstar S

Ψ ⊢ S Z=⇒ S ′

Ψ ⊢ S ′
Z=⇒∗ S ′′

Ψ ⊢ S Z=⇒∗ S ′′

Ψ ⊢ csafe S = ∀S ′. Ψ ⊢ S Z=⇒∗ S ′ →
Ψ ⊢ c isafe S ′

Figure 10.5: Concurrent safety

10.3 Soundness of the Oracular

Approach

Now we connect the oracular semantics to the concurrent semantics.

First we define the notion of concurrent safety in figure 10.5. We say

that a concurrent machine state S is concurrently immediately safe

(just referred to as immediately safe when the context is clear) in three

situations.

First, case c isafe level, the concurrent machine is immediately safe

if the resource maps inside it have approximation level 0. Recall that

since all resource maps in S must join together due to the consistency
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requirements on S, all those resource maps must have the same ap-

proximation level, and therefore it is sufficient to test the level of the

alloc pool. Just as in section 10.1.1, we only provide guarantees about

correct behavior for an arbitrarily large but finite amount of time.

Second, case c isafe sched, the concurrent machine is immediately

safe if the schedule is trying to pick a nonexistent thread. Since we

quantify over all schedules we do not have to worry that some of the

schedules we quantify over wish to pick nonexistent threads; we also

quantify over all schedules that pick only existing threads.

Third, case c isafe step, the concurrent machine is immediately safe

if it can take a step. That is, “immediately safe” means “not stuck”.

We define the Z=⇒∗ relation as the composition of the concurrent

step relation in the usual way with cases cstepstar 0 and cstepstar S.

We define csafe in the usual way: for any state S ′ reachable from S, S ′

is immediately safe.

Our major goal will be to prove concurrent safety from oracular

safety. Due to the nature of the concurrent step relation, concurrent

safety is actually quite a strong property. Recall from section 8.5 that

the cstep-unlock rule requires that a lock’s resource invariant be true

before unlocking. This means that concurrent safety implies that all

resource invariants are obeyed. Since outside programs can only com-

municate with a program via locks, this implies that all outside com-

munication is done correctly.

We will prove concurrent safety with a progress theorem and preser-
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safe-as never

(Ω, w, κ̂)
i
∝ S

6 ∃S ′.(Ψ ⊢ StepOthers i S S ′)

Ψ ⊢ safe-as i (Ω, w, κ̂)

safe-as eventually

(Ω, w, κ̂)
i
∝ S

Ψ ⊢ StepOthers i S S ′

(Ω′, w′, Krun κ)
i
∝ S ′

w′ |= safeΨ κ

Ψ ⊢ safe-as i (Ω, σ, κ̂)

Ψ ⊢ all-threads-safe(S) = ∀i, Ω, σ, κ̂.

(Ω, σ, κ̂)
i
∝ S →

Ψ ⊢ safe-as i (Ω, σ, κ̂)

Figure 10.6: Progress invariant

vation theorem. As usual, the progress theorem will define an invariant

sufficient to guarantee that the concurrent machine is not stuck and

the preservation theorem will guarantee that the invariant is preserved

as the machine computes.

10.3.1 Progress

In figure 10.6 we define the property safe-as i. Informally, a concurrent

continuation (Ω, σ, κ̂) is safe-as i if, supposing it is the ith thread of the

concurrent machine consistent with oracle Ω, then if this thread is ever

ready to run then it will be oracularly safe. There are two cases: in the

first, case safe-as never, the thread will never again be selected to run

sequential code again; in the second, case safe-as eventually, the thread
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will eventually be selected to run again, and when it is selected, it will

be safe. Recall that to be safe we must quantify over all oracles, so we

do not need to worry about the actual oracle Ω′.

We define Ψ ⊢ all-threads-safe(S) to mean that each projection of S

will be oracularly safe the next time it is ready and selected. Together

with the consistency requirements on the concurrent machine state as

explained in section 8.4, this is enough to prove progress.

Theorem 10.4 (Progress). If Ψ ⊢ all-threads-safe(S), then

S is immediately safe.

Proof. Part of taking a step in the concurrent machine

is proving that the next concurrent machine has the con-

sistency property. More than half of the difficulty in the

theorem is proving consistency of the next concurrent ma-

chine state. These properties would normally be proved in

the preservation theorem, but due to the use of dependent

types to guarantee consistency part of the preservation the-

orem is proved in the progress theorem.

By case analysis on the thread whose thread-id is at the

head of the schedule. The initial case is on the concurrent

control of the thread.

1. The concurrent control is Klock v κ, so the thread is

waiting on lock v. If m(v) = 0, i.e. the lock is locked,

we will execute step cstep-nolock and keep waiting.
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Since nothing has changed it is easy to show that the

new state is consistent. If m(v) = 1, i.e., the lock is

unlocked, then we will execute cstep-lock to grab the

lock. The consistency requirements are easy to satisfy

since the quantification over the lock pool must deal

with one fewer unlocked lock.

2. The concurrent control is Krun κ, so the thread is runnable.

We have two cases. Since thread i is at the head of

the schedule, we know Ψ ⊢ StepOthers i S S. By all-

threads-safe we know safe-as i, where i is the thread at

the head of the schedule; there are two possibilities, but

we know that it cannot be safe-as never, since thread i

is ready to run. Therefore it must be safe-as eventually,

and thread i must be oracularly safe. If it is safe be-

cause the thread has reached Kstop then we execute

cstep-texit. Otherwise, the thread must be able to take

an oracular step. There are three possibilities:

a) If the oracle step is in case Core Step, then κ must

be a sequential instruction, and we know that the

machine steps sequentially. In this case we execute

cstep-seq. We facts about the sequential step rela-

tion to prove that the next state is consistent.

b) If the oracle step is in case Oracle Step, then we

know that a consult succeeded on the oracle step.
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prkind l k = λ(ρ, φ, m). rkind(φ @ l) = Some k

Ψ ⊢ all-funs-spawnable(S) =

(ρ0, φT, m) |= ∃Γ. (Γ ⊢ Ψ) ∧
(

∀f. prkind f kFUN →
∃P, Q. f : {P}{Q} ∧

Γ ⊂ true f : {P}{Q}
)

Figure 10.7: Preservation invariant

There are three possibilities:

i. We can prove that we are not in case Ω-invalid.

ii. We can prove that we are not in case Ω-diverges.

iii. In case Ω-steps, we have as a premise that the

concurrent step relation takes a step (recall

that proving that it takes a step is in fact the

major task of the CSL rules).

c) We can prove that the oracle step cannot be in

case Oracle Diverges.

Proved in Coq.

10.3.2 Preservation

The preservation theorem is more complex due to the existence of forks,

since we need to know that the child will be safe if its precondition

is satisfied. To guarantee that the child will be safe, we require an

additional invariant, all-funs-spawnable, given in figure 10.7.
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First we define the predicate version of the rkind function, prkind,

which maps resources to resource kinds. Recall from section 8.4.6 that

rkind is useful as an antecedent with unrestricted (dangerous) implica-

tion, and we will use prkind here for this purpose. If

(ρ, φ, m) |= prkind l k

then φ @ l has resource kind k.

Then we define Ψ ⊢ all-funs-spawnable(S). Recall that for any con-

current machine state S there exists a total resource map φT that is

the join of all of the resource maps in S. all-funs-spawnable states that

there exists a predicate Γ that is compatible with the program Ψ and

that for any location f with kind kFUN, there exists a precondition P

and postcondition Q such that

(ρ0, φT, m) |= f : {P}{Q}

and that Γ implies, i.e. all the functions in φT are contained in Γ.

Together this means that all of the functions in Ψ are conservatively

approximated by their pre- and postconditions in Γ. We use the prkind

construction and quantify existentially instead of universally over the

precondition P and postcondition Q here for the same reason as in

section 8.4.6. The predicate does not use the locals, so we are able to

apply it to an empty locals ρ0; it also does not use the memory m, but

since we have m easily available in S we just use it.
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The predicate Γ is constructed by the user using the rules of CSL

as explained in section 10.2.2.

Lemma 10.1. If Ψ ⊢ all-funs-spawnable(S), and Ψ ⊢ S Z=⇒

S ′, then Ψ ⊢ all-funs-spawnable(S ′).

Proof. Proved by case analysis on the step relation.

In all cases except for cstep-seq, the total resource map φT

does not change except perhaps becoming more approxi-

mate (resources are transfered from one part of the machine

to another, but this does not change the total resource map).

In step cstep-seq, the total resource map does not get larger

or add new functions. The use of rkind ensures that our use

of “dangerous” implication is sound even as the total re-

source map becomes more approximate in much the same

way as in section 8.4.6.

Proved in Coq3.

Lemma 10.2. If Ψ ⊢ all-threads-safe(S),

Ψ ⊢ all-funs-spawnable(S), and Ψ ⊢ S Z=⇒ S ′, then

Ψ ⊢ all-threads-safe(S ′).

Proof. There are three basic cases. The first is that we need

to show that the thread that was just selected and run is

3As of the writing of this thesis, the Coq proof of the preservation theorem is
currently broken due to maintenence and cleaning elsewhere in the system, particu-
larlly related to the function pool φfp; however everything here claimed to be proved
in Coq has been proved in Coq at one time.
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still safe. The second is that we need need to show that one

of the threads that was not selected is still safe. The third

only occurs with the fork rule, and it is when we need to

show that the new child thread is safe.

1. The thread that was just selected and run is still safe.

This is quite simple: if one is safe and takes a step one

is still safe.

Proved in Coq.

2. A thread that was not selected to run is still safe. There

are two possibilities: either the thread will never run,

in which case it is safe by case safe-as never, or it must

have been in case safe-as eventually, in which case we

can prove that it is safe by induction on the StepOthers

judgement.

Proved in Coq.

3. A new child that was just spawned is safe. In this case

we use the fact that all functions are spawnable to

show that since the child’s precondition was satisfied

it is safe.

Proved in detail in appendix B.2.

This completes the proof of lemma 10.2.



10.3. SOUNDNESS OF THE ORACULAR APPROACH 

Theorem 10.5 (Preservation). If Ψ ⊢ all-threads-safe(S),

Ψ ⊢ all-funs-spawnable(S), and Ψ ⊢ S Z=⇒ S ′, then

Ψ ⊢ all-threads-safe(S ′) and Ψ ⊢ all-funs-spawnable(S ′).

Proof. By lemmas 10.1 and 10.2.

Proved in Coq.

10.3.3 Safety

Now that we have both the progress and preservation theorems, we are

ready to prove concurrent safety from oracular safety.

Theorem 10.6 (Safety). If Ψ ⊢ all-threads-safe(S) and

Ψ ⊢ all-funs-spawnable(S), then Ψ ⊢ csafe S.

Proof. By induction on the Z=⇒∗ relation and the progress

and preservation theorems.

Proved in Coq.

We are nearly done. Recall that a program in Concurrent C minor

begins with a call to a special main function.

Corollary 10.1. For any schedule ℧ and arbitrary stratifi-

cation level for the initial resource maps, if the initial thread

call main () is oracularly safe and all functions are spawn-

able, then the concurrent machine is safe.
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Proof. Follows directly from the safety theorem. In the ini-

tial state S there is only one thread, so it is easy to prove

Ψ ⊢ all-threads-safe(S).

By the definition of the Hoare tuple we can prove the initial call

to the main function safe on any world that satisfies its precondition.

Therefore we have the following theorem, expressed as a deductive rule:

Γ ⊢ Ψ (ρ0, φfp, m) |= Γ
(ρ0, φmp, m) |= allocpool ∀l. L0(l) = None

Γ ⊂ true ∗ main : {P}{Q}
θ = (ρ, φ, Krun (call main) · Kstop)

(ρ, φ, m) |= validly P

Ψ ⊢ csafe (℧, θ :: nil,L0, φmp, φfp, m)

Theorem 10.7. That is, if

1. there exists a Γ that gives function pre- and postcon-

ditions for the functions in program Ψ

2. the function pool φfp forces Γ

3. we have an alloc pool φmp

4. we start with an empty initial lock pool L0

5. Γ includes a precondition P for main

6. we have exactly one thread in the machine, which is

a call to main and has an inital set of locals ρ and

resource map φ
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7. the locals ρ, resource map φ, and memory m force

main’s precondition P

then the unerased concurrent machine state

(℧, θ :: nil,L0, φmp, φfp, m) is safe.

Proof. Proved from corollary 10.1.

How hard will this theorem be for the CSL user to use? Premise 1

is developed by the user using the rules of CSL as explained in section

10.2.2. Premise 2 is simple: a function pool of arbitrary stratification

can be built from Γ by the user. Premise 3 is simple: an alloc pool of

arbitrary stratification can be built. Premise 4 is simple: the empty lock

pool is easy to construct. Premise 5 is simple as long as the user does

not forget the main function. Premise 6 is simple; the single thread is

easy to construct. The difficulty of premise 7 depends entirely on how

difficult the user wishes to make the precondition of main to satisfy; we

point out that emp is very easy to satisfy.

Therefore, we have shown that if a user proves his program sound

with CSL, then assuming that his main function’s precondition is satis-

fiable his program will be safe when run on the concurrent machine. Our

only remaing task is to connect to the erased concurrent operational

semantics from chapter 5.

Corollary 10.2. If a user proves his program sound with

CSL, then assuming his main function’s precondition is sat-
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isfiable then his program will be safe when run on the erased

concurrent machine.

Proof. Directly from the previous theorem and the erasure

theorem of chapter 8.

Note: No parallel decomposition lemma. Unlike in previous

work [Bro07], we do not require a parallel decomposition lemma. We

can avoid such a lemma because

1. We put resource maps into the concurrent operational semantics.

2. In the progress lemma we prove that the next state obeys the

consistency requirements, which guarantees that the threads have

disjoint resource maps.

3. In the store operation in the sequential semantics we get stuck if

we try to write to memory we do not own.

4. We prove the safety of the parent in the CSL fork rule.

5. We prove the safety of the child in the preservation lemma.

In previous semantics the parallel decomposition lemma was a source

of significant difficulty and our ability to avoid having to reason about

all of these issues simultaneously is a demonstration of the benefits of

our modularity.
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10.4 Conclusion

In chapter 3 we introduced Concurrent C minor. In chapter 4 we gave

Concurrent C minor an axiomatic semantics, Concurrent Separation

Logic, and in chapter 8 we gave Concurrent C minor an operational

semantics. We have now proved our logic sound with respect to our

operational semantics.





Chapter 11

Conclusions and Future

Work

We have proved the soundness of a sophisticated Concurrent Separation

Logic with first-class locks and threads with respect to the concurrent

operational semantics of Concurrent C minor. Our soundness proof is

largely implemented in Coq in a highly modular way, so that the actions

of other threads do not complicate the parts of the soundness proof

about sequential features and the complexities of sequential control

flow do not complicate the parts of the proof about the concurrent

features. Moreover, we have a strategy for applying our techniques to

the CompCert certified compiler, so that in the future we will be able

to have an end-to-end result: proved properties of concurrent source

programs will be true of the code that executes on the machine.

In chapter 3 we presented the Concurrent C minor language and





 CHAPTER 11. CONCLUSIONS AND FUTURE WORK

gave an example program in section 3.2. Then in chapter 4 we developed

a new concurrent separation logic and demonstrated its power by using

it to verify an example program. In chapter 5 we gave Concurrent C

minor a formal erased concurrent operational semantics.

In chapter 6 we presented engineering techniques that allow for sig-

nificant modularization, particularly in the context of a compiler with

multiple intermediate languages.

In chapter 7 we developed a new modal substructural logic and

showed how to reason about complex parts of the underlying model by

reasoning in the logic.

In chapter 8 we developed an unerased concurrent operational se-

mantics that was easier to reason about than the erased concurrent

operational semantics from chapter 5. We proved an erasure theorem

that showed that the unerased semantics was a conservative approxi-

mation to the erased semantics.

The concurrent operational semantics of chapter 8 was not easy

to use for reasoning about the sequential features of the Concurrent

C minor language, so in chapter 9 we developed a thread-local oracle

semantics for it.

Finally, in chapter 10 we developed a new modal Hoare tuple using

the oracle semantics and showed how to use it to prove the rules of

CSL sound. We also showed how to combine results from the oracular

semantics into a result on the concurrent semantics with a progress

and preservation lemma, thereby proving the soundness of Concurrent
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Separation Logic with respect to the concurrent operational semantics

of Concurrent C minor.

11.1 State of the Coq Development

As we have indicated in the text, the Coq development is incomplete.

The tasks that remain are:

1. Integrate the cleaner definitions for joinable types and shares that

were presented in chapter 4.

2. Add the function pool to the concurrent machine state. We are

attempting to develop a better solution to the problem of global

and immutable data in separation logic, and since the function

pool is a bit of a hack we have held off implementing it in Coq

until we can study the other alternatives in more detail.

3. Finish the modularization work presented in chapter 6. We have

been modularizing the proof incrementally.

4. Do clean-ups as noted in the text.

5. Finish the proof of the CSL unlock rule.

6. Finish the preservation proof.

We developed a slogan when working on the proof, which was “As

expected, it took longer than expected.” We also agree with the obser-
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vation of Leroy, who noted that “Building [proof] scripts is surprisingly

addictive, in a videogame kind of way” [Ler06].

11.2 Future work

One of the major benefits of the project has been that it has a number

of promising tasks for future work. These include:

1. Modifying the CompCert compiler to handle concurrency. Our

plan is to create an oracle semantics for each intermediate lan-

guage of the compiler by applying our extension and then update

the correctness proofs to show that the compiler preserves the

behavior of each oracular semantics.

2. Developing techniques to reason about lock-free algorithms of var-

ious kinds. In practice, many of the concurrent algorithms used

do not use locks, instead relying on various lock-free techniques

such as atomic loads and stores. One goal is to see how we can

apply our oracle semantics towards reasoning about these kinds

of algorithms.

3. Reasoning in the presence of weak memory models. Modern pro-

cessors execute memory accesses out of program order in a way

that can change the semantics of concurrent programs. We wish

to reason about this behavior so that we can prove that our se-

mantics is sound on real processors.
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4. Exposing implication to end-user by improving dependent/stratified

model. Because users of Hoare logics are accustomed to having

full implication, it would be useful to be able to improve our as-

sertion models to expose full implication to the CSL user.

5. Developing techniques to better reason about globals and shared

immutable data in separation logic. We had a suprisingly difficult

time creating global values. We added the function pool to solve

this problem, but we want to design a more elegant technique.

11.3 Concluding thoughts

We have developed a soundness proof for a powerful new Concurrent

Separation Logic with first-class locks and threads. Along the way, we

developed a modal substructural logic; designed a new style of concur-

rent operational semantics that did bookkeeping to guarantee behavior;

designed a new oracle semantics that presented a thread-local view of

a concurrent machine and that allowed for the re-use of metaproofs of

sequential language features; and provided a new modal definition of

the Hoare tuple. Our Coq proofs have been almost completed, giving a

high degree of assurance, and are designed to support the modification

of the CompCert compiler, thereby supporting the goal of providing an

end-to-end guarantee about the behavior of concurrent programs.





Appendix A

A Miniature Model in Coq

A.1 Headers

(* Aquinas Hobor *)

Require Import List.

Parameter address : Type.

Parameter value : Type.

Parameter share : Type.

Parameter kind : Type.

Definition memory : Type := address -> value.


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A.2 Stratified Model

Section Stratified_Model.

Inductive res_n’ (inv : Type) : Type :=

| NO’

| YES’: kind -> share -> (list inv) -> res_n’ inv.

Definition rmap_n’ (inv : Type) : Type :=

address -> res_n’ inv.

Fixpoint inv_n (n: nat) : Type :=

match n with

| O => unit

| S n => ((inv_n n) * (rmap_n’ (inv_n n) * memory -> Prop))%type

end.

Definition res_n (n: nat) : Type :=

res_n’ (inv_n n).

Definition rmap_n (n: nat) : Type :=

rmap_n’ (inv_n n).

End Stratified_Model.
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A.3 Dependent Model

Section Dependent_Model.

Inductive resource’ : Type :=

res_Level : forall (n : nat), res_n n -> resource’.

Definition resource := resource’.

Inductive rmap’ : Type :=

rm_Level : forall (n : nat), rmap_n n -> rmap’.

Definition rmap := rmap’.

Definition predicate : Type := (rmap * memory) -> Prop.

End Dependent_Model.
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A.4 Private definitions relating public to

private

Section Private_Defs.

Definition level (rm: rmap) : nat :=

match rm with rm_Level n _ => n end.

Fixpoint stratify (n : nat) (P : predicate) : inv_n n :=

match n as n return inv_n n with

| O => tt

| S n => (stratify n P,

fun v =>

match v with (phi_n, mem) =>

P (rm_Level n phi_n, mem)

end)

end.

End Private_Defs.
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A.5 Public interface to acquire resource

Section Public_Interface.

Definition resource_at (rm: rmap) (addr: address) : resource :=

match rm with rm_Level n rm_n => res_Level n (rm_n addr) end.

Definition NO (rm: rmap) : resource :=

res_Level (level rm) (NO’ (inv_n (level rm))).

Definition YES (rm: rmap)

(k: kind)

(sh: share)

(P : list predicate) : resource :=

res_Level (level rm) (YES’ (inv_n (level rm))

k

sh

(map (stratify (level rm)) P)).

End Public_Interface.
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Proofs

B.1 The unlock rule

Lemma. The unlock rule of CSL is sound.

Proof. As discussed in section 10.2.3, we first need to show that the

precondition of the CSL lock rule guarantees that the concurrent step

relation will not be stuck in cases Ω-diverges and Ω-steps. The precon-

dition of the lock rule is tightly R, and in addition we have the fact

that R = (hold e R ∗ S). We need to show that these guarantee that

we can take a step with the cstep-unlock rule of the concurrent ma-

chine. We are guaranteed that we are at the head of the scheduler by

the StepOthers relation, which handles the first premise. Since we know

tightly R, and R = (hold e R ∗ S), we know tightly (hold e R ∗ S). Since

hold is tight, we know hold e R. By the consistency requirements on the

concurrent machine state, if this permission is in a thread’s resource


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map, the lock must be locked, so m(e) must be equal to 0, which han-

dles the second premise. The third premise, involving the new memory

m′ is true by construction. The forth premise, which says that we can

split off a world φlock from φ, is always true, although in most cases φlock

is not uniquely determined. The sixth premise, which is that we have

hold e R, has already been demonstrated. The seventh premise, which

is that tightly R holds on the resource map φlock, is guaranteed since

it held on the resource map φ. Moreover, since all tight predicates are

precise, this guarantees that φlock is unique. The eigth premise, which

is that we can add the newly unlocked lock to the lock pool, is true by

constrction and because we can prove that it was not in the lock pool

before, since due to the consistency requirements lock pools can only

hold unlocked locks and prior to this point the lock was locked. The

nineth premise, the construction of new thread list, is true by construc-

tion. The tenth premise, that we can context switch, is true because as

long as we have remaining stratification levels we can context switch,

and if we had run out of stratification levels then we would have been

immediately safe. Now that we have proved all of the premises to the

cstep-unlock rule, we must prove that the new concurrent machine state

S’ is consistent. From section 8.4 we must prove six properties. First,

we must show that there exists a new total resource map. The lock rule

does not add or remove from the total resource map, instead simply

moving parts of the resource map from a thread to the lock pool. It

does age the total resource map once, but since we had at least one level
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of stratification this is possible to do. Second, we must show that the

scheduler is still longer than the remaining stratification; since context

switch removes exactly one item from the scheduler and ages the worlds

exactly once this is simple. Third, we must prove that if any threads

are waiting on a memory location then that location is a lock. Since we

have not modified any of the other threads, and are not waiting on a

lock ourselves, and have not freed any locks, this is simple. Fourth, we

must have a well-formed alloc pool; since we have not changed it this is

trivial. Fifth, we must have a well-formed function pool; since we have

not changed it this is trivial. Sixth and last, we must show that we still

have a well formed lock pool. As discussed, the property P3 behaves

correctly as the world ages; since we have not touched any of the other

locks in the lock pool, and the consistency requirements on the con-

current machine state ensures that the newly unlocked lock’s memory

locations do not overlap with any previously unlocked lock’s memory

locations, all of the other locks in the lock pool are still sound. For the

lock we are unlocking, we need to show that there exists a lock invariant

for it—but this is easy, since we have that as a premise—and that the

invariant holds tightly on the lock’s resource map; however this is just

premise seven from the cstep-unlock rule. Therefore, we have a consis-

tant machine state and so are able to take a step with the cstep-unlock

rule. Now we have to prove the postcondition of the rule. Fortunately

this is quite easy. If the concurrent machine never returns control, case

Ω-diverges, we can prove any postcondition. If the concurrent machine
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does return control, case Ω-steps, we need only satisfy the postcondi-

tion of emp, and since we have given away our precondition by putting

it into the lock pool, it is easy to satisfy.

B.2 Forking a child

Lemma. The child resulting from the fork is safe-as i.

Proof. By all-funs-spawnable, we know that there exists a Γ which

believe can connect to the program Ψ. By the precondition to the

cstep-fork rule, we know f : {validly precisely P}{Q} for some precon-

dition P and postcondition Q. Since this implies that rkind(φT @ f) =

Some kFUN, by the second half of all-funs-spawnable we know that there

exists some (possibly different) precondition P ′ and postcontcondition

Q′ such that f : {P ′}{Q′} and Γ ⊂ true ∗ f : {P ′}{Q′}. By YES in-

version we know that ⊲ validly precisely P = ⊲ P ′. By the definition of

believe, we know ⊲ Htuple(Γ, P ′, Ψ(f), Q′). By the precondition to the

cstep-fork rule, we know validly precisely P . Since any valid predicate is

necessary, we know � validly precisely P , and since �P ⊢ ⊲P , we know

⊲ validly precisely P . By the YES inversion above this is equal to ⊲P ′.

After we age the world as part of the context switch in the cstep-fork

rule, we will have P ′ and Htuple(Γ, P ′, Ψ(f), Q′). By the definition of

Htuple and since we have believe Htuple Γ Ψ, by fold-unfold we know

∀κ. pguard Ψ (Γ ∗ Q′) κ ⇒

pguard Ψ (Γ ∗ P ′) (Ψ(f) · κ).
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Recall that the control Kstop was immediately safe. Therefore, for all

P , pguard Ψ P Kstop. Thus, we have

pguard Ψ (Γ ∗ P ′) (Ψ(f) · Kstop).

By the cstep-fork rule, the child will be started with initial control1

call f · Kstop and an initial world satisfying ⊲ validly precisely P , i.e.,

P ′. The key action of the call statement is to step from this control

to the control Ψ(f) · Kstop. Since the function pool φfp is passed into

each function as it runs, and since the function pool contains all of the

functions in Γ, at the time when the thread is running we will know

Γ∗P ′. By the definition of pguard, we will thus know psafe Ψ Ψ(f)·Kstop,

which means that the child is safe-as i.

1We remove the function arguments for simplicity.
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