
Abstraction and Subsumption in
Modular Verification of C Programs

Lennart Beringer and Andrew W. Appel

Princeton University, Princeton NJ 08544, USA

Abstract. Representation predicates enable data abstraction in sep-
aration logic, but when the same concrete implementation may need
to be abstracted in different ways, one needs a notion of subsumption.
We demonstrate function-specification subtyping, analogous to subtyp-
ing, with a subsumption rule: if φ is a funspec-sub of ψ, that is φ <: ψ,
then x : φ implies x : ψ, meaning that any function satisfying specifi-
cation φ can be used wherever a function satisfying ψ is demanded. We
extend previous notions of Hoare-logic sub-specification, which already
included parameter adaption, to include framing (necessary for separa-
tion logic) and impredicative bifunctors (necessary for higher-order func-
tions, i.e. function pointers). We show intersection specifications, with the
expected relation to subtyping. We show how this enables compositional
modular verification of the functional correctness of C programs, in Coq,
with foundational machine-checked proofs of soundness.

Keywords: Foundational Program Verification; Separation Logics; Spec-
ification Subsumption

1 Introduction

Even in the 21st century, the world still runs on C: operating systems, run-
time systems, network stacks, cryptographic libraries, controllers for embedded
systems, and large swaths of critical infrastructure code are either directly hand-
coded in C or employ C as intermediate target of compilation or code synthesis.
Analysis methods and verification tools that apply to C thus remain a vital area
of research. The Verified Software Toolchain (VST) [4] is a semi-automated proof
system for functional-correctness verification of C programs that integrates two
long-standing lines of research: (i) program logics with machine-checked proofs
of soundness; (ii) practical verification tools for industry-strength programming
languages. VST consists of three main components:

Verifiable C [3] is a higher-order impredicative concurrent separation logic cov-
ering almost all the control-flow and data-structuring features of C (we cur-
rently omit goto and by-copy whole-struct assignment);

VST-Floyd [7] is a library of lemmas, definitions, and automation tactics that
assist the user in applying the program logic to a program, using forward
symbolic execution, with separation logic assertions as symbolic states;
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The semantic model justifies the proof rules, exploiting the theories of step-
indexing, impredicative quantification, separation algebras, and concurrent
ghost state. The semantic model is the basis of a machine-checked proof [4],
in Coq, that the Verifiable C program logic is sound w.r.t. the operational se-
mantics of CompCert Clight. Thus the user’s Coq proof in Verifiable C com-
poses with our soundness proof of Verifiable C and with Leroy’s CompCert
compiler correctness proof [15] to yield an end-to-end proof of the functional
correctness of the assembly-language program.

VST’s key feature—distinguishing it from tools such as VCC [8], Frama-C [11],
or VeriFast [9]—is that it is entirely implemented in the Coq proof assistant. A
user imports C code into the Coq development environment and applies VST-
Floyd’s automation—computational decision procedures from Coq’s standard
library, plus custom-built tactics for forward symbolic execution and entailment
checking—to construct formal derivations in the Verifiable C program logic.
The full power of Coq and its libraries are available to manipulate application-
specific mathematics. The semantic validity of the proof rules—machine-checked
by Coq’s kernel—connects these derivations to Clight, i.e. CompCert’s represen-
tation of parsed and determinized C code.

Recent applications of VST include the verification of cryptographic primi-
tives from OpenSSL [2, 6] and mbedTLS [24], an asynchronous communication
mechanism [17], and an internet-facing server component [13]. Ongoing efforts
elsewhere include a generational garbage collector and a malloc-free library.

Motivated by these applications, we now add support for data abstraction, a key
enabler of scalability. As shown in previous work [21], separation logic can easily
express data abstraction, using abstract predicates: just as the client program of
an abstract data type (ADT) can be written without knowing the representation,
verification of the client can proceed without knowing the representation. In type
theory, this is the principle of existential types [18].

But in real-life modular programming, the same function may want more than
one specification. For example, a function may expose a concrete specification
to “friend” functions that know the representation of internal data and a more
abstract specification for clients that do not. In this case, one should not have to
verify the function-body twice, once for each specification; instead, one should
verify the function-body with respect to the concrete specification, then prove
the concrete implies the abstract. Again, type theory provides an appropriate
notion: subtyping [22]. In other cases, it may be desirable to specify different
use cases of a function—applying, for example, to different input configurations,
or to different control flow paths—using different specifications, perhaps using
different abstract predicates. Yet again, type theory provides a useful analogue:
intersection types, a form of ad-hoc polymorphism.

These observations motivate the use of type-theoretic principles as guidelines
for developing specification mechanisms and automation features for abstraction.
We now take a step in this direction, focusing primarily on the notion of subtyp-
ing. The observation that Hoare’s original rule of consequence is insufficiently
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powerful in languages with (recursive) procedures motivated research into pa-
rameter adaptation, by (among others) Kleymann, Nipkow, and Naumann [12,
20, 19]. Indeed, Kleymann observed that ([12], page 9)

– in proving that the postcondition has been weakened, one may also assume
the precondition of the conclusion holds. . .

– one may adjust the auxiliary variables in the premise. Their value may de-
pend on the value of auxiliary variables in the conclusion and the value of
all program variables in the initial state.

But these developments were carried out for small languages and predate the
emergence of separation logic. The present article hence revisits these ideas in the
context of VST, by developing a powerful notion of function-specification sub-
typing for higher-order impredicative separation logic. Our treatment improves
on previous work in several regards:

– We support function-specifications of function pointers, as part of our sup-
port for almost the entire C language. Kleymann only considers a single
(anonymous, parameterless, but possibly recursive) procedure, while Nip-
kow supports mutual recursion between named procedures.

– Our notion of subtyping avoids direct quantification over states, thus permit-
ting a higher-order impredicative separation logic in the style of VST and
Iris [10], where “assertion” must be an abstract type with a step-indexed
model rather than simply state→Prop. This is necessary to fully support
function pointers and higher-order resource invariants (for concurrent pro-
gramming). In contrast, Kleymann’s and Nipkow’s assertions are predicates
over states, and the side conditions of their adaptation rules explicitly quan-
tify over states. Naumann’s formulation using predicate transformers cap-
tures the same relationship in a slighty more abstract manner.

– VST associates function specifications to globally named functions in its
proof context ∆ and includes a separation logic assertion func-at that at-
taches specifications to function-pointer values. Our treatment integrates
subsumption coherently into proof contexts, func-at, and the soundness judg-
ment. We support subsumption at function call sites but also incorporate
subsumption in a notion of (proof) context subtyping that is reminiscent of
record subtyping [22]. This will allow bundling function specifications into
specifications of objects or modules that can be abstractly presented to client
programs and are compatible with behavioral subtyping [16, 14, 23].

– We introduce intersection specifications and show that their interaction with
subsumption precisely matches that of intersection types.

Our presentation is example-driven: we illustrate several use cases of sub-
sumption on concrete code fragments in Verifiable C. Technical adaptations
of the model that support these verifications have been machine-checked for
soundness, but in the paper we only sketch them. The full Coq proofs of our ex-
ample are in the VST repo, github.com/PrincetonUniversity/VST in directory
progs/pile.
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2 Function specifications in Verifiable C

Our main example is an abstract data type (ADT) for piles, simple collections
of integers. Figure 1 (on the next page) shows a modular C program that throws
numbers onto a pile, then adds them up.

main.c

pile list
32

triang.c apile.conepile.c

pile.h pile_private.h

pile.c

onepile.h triang.h apile.h

main.c

pile
5

onepile.c triang.c fastapile.c

fastpile_private.hpile.h

fastpile.c

triang.honepile.h apile.h

The diagram at left shows that pile.c is imported by onepile.c (which manages a
single pile), apile.c (which manages a single pile in a different way), and triang.c
(which computes the nth triangular number). The latter three modules are im-
ported by main.c. Onepile.c and triang.c import the abstract interface pile.h;
apile.c imports also the low-level concrete interface pile-private.h that exposes
the representation—a typical use case for this organization might be when apile.c
implements representation-dependent debugging or performance monitoring.

When—as shown on the right—pile.c is replaced by a faster implementation
fastpile.c (code in Figure 3) using a different data structure, apile.c must be
replaced with fastapile.c, but the other modules need not be altered, and neither
should their specification or verification.

Figure 2 presents the specification of the pile module, in the Verifiable C
separation logic. Each C-language function identifier (such as -Pile-add) is bound
to a funspec, a function specification in separation logic.

Before specifying the functions (with preconditions and postconditions), we
must first specify the data structures they receive as arguments and return as
results. Linked lists are specified as usual in separation logic: listrep is a recursive
definition over the abstract (“mathematical”) list value σ, specifying how it is
laid out in a memory footprint rooted at address p. Then pilerep describes a
memory location containing a pointer to a listrep.

A funspec takes the form, WITH ~x : ~τ PRE . . . POST . . .. For example,
take Pile-add-spec from Figure 2: the ~x are bound Coq variables visible in both
the precondition and postcondition, in this case, p:val, n:Z, σ:list Z, gv :globals,
where p is the address of a pile data structure, n is the number to be added to
the pile, σ is the sequence currently represented by the pile, and gv is a way
to access all named global variables. The PREcondition is parameterized by the
C-language formal parameter names -p and -n. An assertion in Verifiable C takes
the form, PROP(propositions)LOCAL(variable bindings)SEP(spatial conjuncts).
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/∗ pile.h ∗/
typedef struct pile ∗Pile;
Pile Pile-new(void);
void Pile-add(Pile p, int n);
int Pile-count(Pile p);
void Pile-free(Pile p);

/∗ onepile.h ∗/
void Onepile-init(void);
void Onepile-add(int n);
int Onepile-count(void);

/∗ apile.h ∗/
void Apile-add(int n);
int Apile-count(void);

/∗ triang.h ∗/
int Triang-nth(int n);

/∗ triang.c ∗/
#include ”pile.h”
int Triang-nth(int n) {

int i,c;
Pile p = Pile-new();
for (i=0; i<n; i++)
Pile-add(p,i+1);

c = Pile-count(p);
Pile-free(p);
return c;
}

/∗ onepile.c ∗/
#include ”pile.h”
Pile the-pile;
void Onepile-init(void)
{the-pile = Pile-new();}

void Onepile-add(int n)
{Pile-add(the-pile, n);}

int Onepile-count(void)
{return Pile-count(the-pile);}

/∗ pile-private.h ∗/
struct list {int n; struct list ∗next;};
struct pile {struct list ∗head;};

/∗ pile.c ∗/
#include <stddef.h>
#include ”stdlib.h”
#include ”pile.h”
#include ”pile-private.h”
Pile Pile-new(void) {
Pile p = (Pile)surely-malloc(sizeof ∗p);
p→ head=NULL;
return p;
}
void Pile-add(Pile p, int n) {

struct list ∗head = (struct list ∗)
surely-malloc(sizeof ∗head);

head→ n=n;
head→ next=p→ head;
p→ head=head;
}
int Pile-count(Pile p) {

struct list ∗q;
int c=0;
for(q=p→ head; q; q=q→ next)
c += q→ n;

return c;
}
void Pile-free(Pile p) { . . . }

/∗ apile.c ∗/
#include ”pile.h”
#include ”pile-private.h”
#include ”apile.h”
struct pile a-pile = {NULL};
void Apile-add(int n)
{Pile-add(&a-pile, n);}

int Apile-count(void)
{return Pile-count(&a-pile);}

Fig. 1. The pile.h abstract data type has operations new, add, count, free. The triang.c
client adds the integers 1–n to the pile, then counts the pile. The pile.c implementation
represents a pile as header node (struct pile) pointing to a linked list of integers. At
bottom, there are two modules that each implement a single “implicit” pile in a module-
local global variable: onepile.c maintains a pointer to a pile, while apile.c maintains a
struct pile for which it needs knowledge of the representation through pile-private.h.
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(∗ spec-pile.v ∗)
(∗ representation of linked lists in separation logic ∗)
Fixpoint listrep (σ: list Z) (x: val) : mpred :=
match σ with
| h::hs ⇒ EX y:val, !! (0≤h≤ Int.max-signed) &&

data-at Ews tlist (Vint (Int.repr h), y) x
∗ malloc-token Ews tlist x ∗ listrep hs y

| nil ⇒ !! (x = nullval) && emp
end.

(∗ representation predicate for piles ∗)
Definition pilerep (σ: list Z) (p: val) : mpred :=
EX x:val, data-at Ews tpile x p ∗ listrep σ x.

Definition pile-freeable (p: val) :=
malloc-token Ews tpile p.

Definition Pile-new-spec :=
DECLARE -Pile-new
WITH gv : globals
PRE [ ] PROP() LOCAL(gvars gv) SEP(mem-mgr gv)
POST[ tptr tpile ]
EX p: val,
PROP() LOCAL(temp ret-temp p)
SEP(pilerep nil p; pile-freeable p; mem-mgr gv).

Definition Pile-add-spec :=
DECLARE -Pile-add
WITH p: val, n: Z, σ: list Z, gv : globals
PRE [ -p OF tptr tpile, -n OF tint ]

PROP(0≤n≤ Int.max-signed)
LOCAL(temp -p p; temp -n (Vint (Int.repr n));

gvars gv)
SEP(pilerep σ p; mem-mgr gv)

POST[ tvoid ]
PROP() LOCAL()
SEP(pilerep (n::σ) p; mem-mgr gv).

Definition sumlist : list Z →Z := List.fold-right Z.add 0.

Definition Pile-count-spec :=
DECLARE -Pile-count
WITH p: val, σ: list Z
PRE [ -p OF tptr tpile ]

PROP(0≤ sumlist σ≤ Int.max-signed) LOCAL(temp -p p)
SEP(pilerep σ p)

POST[ tint ]
PROP() LOCAL(temp ret-temp (Vint (Int.repr (sumlist σ))))
SEP(pilerep σ p).

Notation key

mpred predicate on memory

EX existential quantifier
!! injects Prop into mpred
&& nonseparating conjunction
data-at π τ v p is p 7→ v,

separation-logic mapsto
at type τ , permission π

malloc-token π τ x represents
“capability to deallocate x”

Ews the “extern write share”
gives write permission

-Pile-new is a C identifier

WITH quantifies variables
over pre/post of funspec

The C function’s return type,
tptr tpile, is “pointer
to struct pile”

PROP(. . .) are pure propositions
on the WITH-variables

LOCAL(. . . temp -p p . . .)
associates C local var -p
with Coq value p

gvars gv establishes gv as
mapping from C global
vars to their addresses

SEP(R1; R2) are separating
conjuncts R1 ∗R2

mem-mgr gv represents
different states of the
malloc/free system in
PRE and POST of
any function that
allocates or frees

Fig. 2. Specification of the pile module (Pile-free-spec not shown).
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In this case the PROP asserts that n is between 0 and max-int; LOCAL asserts1

that address p is the current value of C variable -p, integer n is the value of C
variable -n, and gv is the global-variable access map. The precondition’s SEP
clause has two conjuncts: the first one says that there’s a pile data structure
at address p representing sequence σ; the second one represents the memory-
manager library. The spatial conjunct (mem-mgr gv) represents the private data
structure of the memory-manager library, that is, the global variables in which
the malloc-free system keeps its free lists.

The SEP clause of the POSTcondition says that the pile at address p now
represents the list n::σ, and that the memory manager is still there.

Verifying that pile.c’s functions satisfy the specifications in Fig. 2 using VST-
Floyd is done by proving Lemmas like this one (in file verif-pile.v):

Lemma body-Pile-new: semax-body Vprog Gprog f-Pile-new Pile-new-spec.
Proof. ... (∗7 lines of Coq proof script∗).... Qed.

This says, in the context Vprog of global-variable types, in the context Gprog
of function-specs (for functions that Pile-new might call), the function-body
f-Pile-new satisfies the function-specification Pile-new-spec.

Linking

A modular proof of a modular program is organized as follows: CompCert
parses each module M.c into the AST file M.v. Then we write the specifica-
tion file spec-M.v containing funspecs as in Figure 2. We write verif-M.v which
imports spec files of all the modules from which M.c calls functions, and contains
semax-body proofs of correctness (such as body-Pile-new at the end of §2), for
each of the functions in M.c.

What’s special about the main() function is that its separation-logic precon-
dition has all the initial values of the global variables, merged from the global
variables of each module. In spec-main we merge the ASTs (global variables
and function definitions) of all the M.v by a simple, computational, syntactic
function. This is illustrated in the Coq files in VST/progs/pile.

VST’s main soundness statement is that, when running main() in CompCert’s
operational semantics, in the initial memory induced from all global-variable ini-
tializers, the program is safe and correct—with a notion of partial correctness in
interacting with the world via effectful external function calls [13] and returning
the “right” value from main.

3 Subsumption of function specifications

We now turn to the replacement of pile.c by a more performant implementation,
fastpile.c, and its specification—see Figure 3. As fastpile.c employs a different

1 A LOCAL clause temp -p p asserts that the current value of C local variable -p is
the Coq value p. If n is a mathematical integer, then Int.repr n is its projection into
32-bit machine integers, and Vint projects machine integers into the type of scalar
C-language values.
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/∗ fastpile-private.h ∗/
struct pile { int sum; };

/∗ fastpile.c ∗/
#include . . .
#include ”pile.h”
#include ”fastpile-private.h”
Pile Pile-new(void)
{Pile p = (Pile)surely-malloc(sizeof ∗p); p→ sum=0; return p; }

void Pile-add(Pile p, int n)
{int s = p→ sum; if (0≤ n && n≤ INT-MAX-s) p→ sum = s+n; }

int Pile-count(Pile p) {return p→ sum;}
void Pile-free(Pile p) {free(p);}

(∗ spec-fastpile.v ∗)
Definition pilerep (σ: list Z) (p: val) : mpred :=
EX s:Z, !! (0≤ s≤ Int.max-signed ∧ Forall (Z.le 0) σ ∧

(0≤ sumlist σ≤ Int.max-signed → s=sumlist σ))
&& data-at Ews tpile (Vint (Int.repr s)) p.

Definition pile-freeable := (∗ looks identical to the one in fig.2 ∗)
Definition Pile-new-spec := (∗ looks identical to the one in fig.2 ∗)
Definition Pile-add-spec := (∗ looks identical to the one in fig.2 ∗)
Definition Pile-count-spec := (∗ looks identical to the one in fig.2 ∗)

Fig. 3. fastpile.c, a more efficient implementation of the pile ADT. Since the only query
function is count, there’s no need to represent the entire list, just the sum will suffice.
In the verification of a client program, the pilerep separation-logic predicate has the
same signature: list Z → val →mpred, even though the representation is a single number
rather than a linked list.

data representation than pile.c, its specification employs a different representa-
tion predicate pilerep. As pilerep’s type remains unchanged, the function speci-
fications look virtually identical2; however, the VST-Floyd proof scripts (in file
verif-fastpile.v) necessarily differ. Clients importing only the pile.h interface, like
onepile.c or triang.c, cannot tell the difference (except that things run faster and
take less memory), and are specified and verified only once (files spec-onepile.v
/ verif-onepile.v and spec-triang.v / verif-triang.v).

But we may also equip fastpile.c with a more low-level specification (see Fig-
ure 4) in which the function specifications refer to a different representation
predicate, countrep. In reasoning about clients of this low-level interface, we do
not need a notion of of “sequence”—in contrast to pilerep in Fig. 3. The new
specification is less abstract than the one in Fig. 3, and closer to the implemen-

2 Existentially abstracting over the internal representation predicates would further
emphasize the uniformity between fastpile.c and pile.c—a detailed treatment of this
is beyond the scope of the present article.
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(∗ spec-fastpile-concrete.v ∗)
Definition countrep (s: Z) (p: val) : mpred := EX s′:Z,
!! (0≤ s ∧ 0≤ s′≤ Int.max-signed ∧ (s≤ Int.max-signed → s′=s)) &&
data-at Ews tpile (Vint (Int.repr s′)) p.

Definition count-freeable (p: val) := malloc-token Ews tpile p.

Definition Pile-new-spec := ...

Definition Pile-add-spec :=
DECLARE -Pile-add
WITH p: val, n: Z, s: Z, gv : globals
PRE [ -p OF tptr tpile, -n OF tint ]

PROP(0≤n≤ Int.max-signed)
LOCAL(temp -p p; temp -n (Vint (Int.repr n)); gvars gv)
SEP(countrep s p; mem-mgr gv)

POST[ tvoid ]
PROP() LOCAL() SEP(countrep (n+ s) p; mem-mgr gv).

Definition Pile-count-spec := ...

Fig. 4. The fastpile.c implementation could be used in applications that simply
need to keep a running total. That is, a concrete specification can use a predicate
countrep: Z → val →mpred that makes no assumption about a sequence (list Z). In
countrep, the variable s′ and the inequalities are needed to account for the possibility
of integer overflow.

tation. The subsumption rule (to be introduced shortly) allows us to exploit this
relationship: we only need to explicitly verify the code against the low-level spec-
ification and can establish satisfaction of the high-level specification by recourse
to subsumption. This separation of concerns extends from VST specifications to
model-level reasoning: for example, in our verification of cryptographic primi-
tives we found it convenient to verify that the C program implements a low-level
functional model and then separately prove that the low-level functional model
implements a high-level specification (e.g. cryptographic security).3 In our run-
ning example, fastpile.c’s low-level functional model is integer (the Coq Z type),
and its high level specification is list Z.

3 For example: in our proof of HMAC-DRBG [24], before VST had function-spec
subsumption, we had two different proofs of the function f-mbedtls-hmac-drbg-seed,
one with respect to a more concrete specification drbg-seed-inst256-spec and
one with respect to a more abstract specification drbg-seed-inst256-spec-abs.
The latter proof was 202 lines of Coq, at line 37 of VST/hmacdrbg/-
drbg protocol proofs.v in commit 3e61d2991e3d70f5935ae69c88d7172cf639b9bc of
https://github.com/PrincetonUniversity/VST. Now, instead of reproving the
function-body a second time, we have a funspec sub proof that is only 60 lines of Coq
(at line 42 of the same file in commit c2fc3d830e15f4c70bc45376632c2323743858ef).
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To formally state the desired subsumption lemma, observe that notation like
DECLARE -Pile-add WITH ... PRE ... POST ... is merely VST’s syntactic sugar
for a pair that ties the identifier -Pile-add to the funspec WITH...PRE...POST.
For -Pile-add we have two such specifications,

spec-fastpile.Pile-add-spec: ident∗funspec (∗ in Figure 3 ∗)
spec-fastpile-concrete.Pile-add-spec: ident∗funspec (∗ in Figure 4 ∗)

and our notion of funspec subtyping will satisfy the following lemma

Lemma sub-Pile-add: funspec-sub (snd spec-fastpile-concrete.Pile-add-spec)
(snd spec-fastpile.Pile-add-spec).

and similarly for Pile-new and Pile-count. Specifically, we permit related specifica-
tions to have different WITH-lists, in line with Kleymann’s adaptation-complete
rule of consequence

` {P ′}c{Q′}
` {P}c{Q}

∀Z.∀σ. PZσ → ∀τ. ∃Z ′.(P ′Z ′σ ∧ (Q′Z ′τ → QZτ))

where assertions are binary predicates over auxiliary and ordinary states, and
Z,Z ′ are the WITH values.4

Our subsumption applies to function specifications, not arbitrary statements
c. In the rule for function calls, it ensures that a concretely specified function
can be invoked where callers expect an abstractly specified one, just like the

subsumption rule of type theory:
Γ ` e : σ σ <: τ

Γ ` e : τ
. It is also reflexive and tran-

sitive.

Support for framing An important principle of separation logic is the frame rule:

{P}c{Q}
{P ∗R}c{P ∗R}

(modifiedvars(c) ∩ freevars(R) = ∅)

We have found it useful to explicitly incorporate framing in funspec-sub, because
abstract specifications may have useless data. Consider a function that performs
some action (e.g., increment a variable) using some auxiliary data (e.g., an array
of 10 integers):

int incr1(int i, unsigned int ∗auxdata) { auxdata[i%10] += 1; return i+1; }

The function specification makes clear that the private contents of the auxdata
is, from the client’s point of view, unconstrained; the implementation is free to
store anything in this array:

4 We give Kleymann’s rule for total correctness here. VST is a logic for partial cor-
rectness, but its preconditions also guarantee safety; Kleymann’s partial-correctness
adaptation rule cannot guarantee safety.
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Definition incr1-spec := DECLARE -incr1
WITH i: Z, a: val, π: share, private: list val
PRE [ -i OF tint, -auxdata OF tptr tuint ]

PROP (0≤ i < Int.max-signed; writable-share π)
LOCAL(temp -i (Vint (Int.repr i)); temp -auxdata a)
SEP(data-at sh (tarray tuint 10) private a)

POST [ tint ]
EX private ′: list val, PROP() LOCAL(temp ret-temp (Vint (Int.repr (i+1))))

SEP(data-at π (tarray tuint 10) private ′ a).

You might think the auxdata is useless, but (i) real-life interfaces often have
useless or vestigial fields; and (ii) this might be where the implementation keeps
profiling statistics, memoization, or other algorithmically useful information.

Here is a different implementation that should serve any client just as well:

int incr2(int i, unsigned int ∗auxdata) { return i+1; }

Its natural specification has an empty SEP clause:

Definition incr2-spec := DECLARE -incr2
WITH i: Z
PRE [ -i OF tint, -auxdata OF tptr tuint ]

PROP (0≤ i < Int.max-signed) LOCAL(temp -i (Vint (Int.repr i))) SEP()
POST [ tint ]

PROP() LOCAL(temp ret-temp (Vint (Int.repr (i+ 1)))) SEP().

The formal statement that incr2 serves any client just as well as incr1 is another
case of subsumption:

Lemma sub-incr12: funspec-sub (snd incr2-spec) (snd incr1-spec).

In the proof, we use (data-at π (tarray tuint 10) private a) as the frame.
If the auxdata is a global variable instead of a function parameter, all the

same principles apply:

int global-auxdata[10];
int incr3(int i) { global-auxdata[i%10] += 1; return i+1; }
int incr4(int i) { return i+1; }

We define a funspec for incr3 whose SEP clause mentions the auxdata, we define
a funspec for incr4 whose SEP clause is empty, and we can prove,

Lemma sub-incr34: funspec-sub (snd incr4-spec) (snd incr3-spec).

For another example of framing, consider again Figure 2, the specification of
pilerep, pile-freeable, Pile-new-spec, etc. One might think to combine pile-freeable
(the memory-deallocation capability) with pile-rep (capability to modify the con-
tents) yielding a single combined predicate pilerep’. That way, proofs of client
programs would not have to manage two separate conjuncts.

That would work for clients such as triang.c and onepile.c, but not for apile.c
which has an initialized global variable (a-pile) that satisfies pilerep but not
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pile-freeable (since it was not obtained from the malloc-free system). Further-
more, the specifications of pile-add and pile-count do not mention pile-freeable in
their pre- or postconditions, since they have no need for this capability.

By using funspec-sub (with its framing feature), we can have it both ways.
One can easily make a more abstract spec in which the funspecs of pile-new,
pile-add, pile-count, pile-free all take pilerep’ in their pre- and postconditions;
onepile and triang will still be verifiable using these specs. But in proving
funspec-sub, therefore, specifications for pile-add and pile-count now do implicitly
take pile-freeable in their pre- and postconditions, even though they have no use
for it; this is the essence of the frame rule.

4 Definitions of funspec subtyping

Except in certain higher-order cases, we use this notion of function specification:

NDmk-funspec (f: funsig) (cc: calling-convention)
(A: Type) (Pre Post: A → environ →mpred): funspec.

To construct a nondependent (ND) function spec, one gives the function’s C-
language type signature (funsig), the calling convention (usually cc=cc-default),
the precondition, and the postcondition. A gives the type of variable (or tuple of
variables) “shared” between the precondition and postcondition. Pre and Post are
each applied to the shared value of type A, then to a local-variable environment
(of type environ) containing the formal parameters or result-value (respectively),
finally yielding an mpred, a spatial predicate on memory.

For example, to specify an increment function with formal parameter -p
pointing to an integer in memory, we let A = int, so that

Pre = λi : A. λρ. ρ( p) 7→ i and Post = λi : A. λρ. ρ( p) 7→ (i+ 1).

This form suffices for most C programming. But sometimes in the presence
of higher-order functions, one wants impredicativity: A may be a tuple of types
that includes the type mpred. If this is done naively, it cannot typecheck in CiC
(there will be universe inconsistencies); see the Appendix.

General funspec. Higher-order function specs are (mostly) beyond the scope of
this paper. When precondition and postcondition must predicate over predicates,
we must ensure that each is a bifunctor, that is, we must keep track of covari-
ant and contravariant occurrences, and so on. This approach was outlined by
America and Rutten [1] and has been implemented both in Iris [10] and VST.5

VST’s most general form of function spec is,

Inductive funspec :=
mk-funspec: forall (f: funsig) (cc: calling-convention) (A: TypeTree)
(P Q: forall ts, dependent-type-functor-rec ts (AssertTT A) mpred)
(P-ne: super-non-expansive P) (Q-ne: super-non-expansive Q), funspec.

5 Bifunctor function-specs in VST were the work of Qinxiang Cao, Robert Dockins,
and Aquinas Hobor.
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Here, super-non-expansive is a proof that the precondition (or postcondition) is
a nonexpansive (in the step-indexing sense) bifunctor; see the Appendix. The
nondependent (ND) form of mk-funspec shown above is simply a derived form of
dependent mk-funspec.

Too-special funspec subtyping. Let’s consider the obvious notion of funspec sub-
typing: φ1 is a subtype of φ2 if the precondition of φ2 entails the precondition
of φ1, and the postcondition of φ1 entails the postcondition of φ2.

Definition far-too-special-NDfunspec-sub (f1 f2 : funspec) :=
let ∆ := funsig-tycontext (funsig-of-funspec f1) in
match f1, f2 with
NDmk-funspec fsig1 cc1 A1 P1 Q1 , NDmk-funspec fsig2 cc2 A2 P2 Q2 ⇒
fsig1 = fsig2 ∧ cc1 = cc2 ∧ A1=A2 ∧ (∀x : A1, ∆, P2 nil x `P1 nil x) ∧
(∀x : A1, (ret0-tycon ∆), Q1 nil x `Q2 nil x)

end.

We write ∆, P2 nil x `P1 nil x, where P1 and P2 are the preconditions of f1
and f2, nil expresses that these are nondependent funspecs (no bifunctor struc-
ture), and x is the value shared between precondition and postcondition. The
type-context ∆ provides the additional guarantee that the formal parameters
are well typed, and ret0-tycon ∆ guarantees that the return-value is well typed.

This notion of funspec-sub is sound (w.r.t. subsumption), but barely useful:
(1) it requires that the witness types of the two funspecs be the same (A1=A2),
(2) it doesn’t support framing, and (3) it requires Q1`Q2 even when P2 is not
satisfied. Each of these omissions prevents the practical use of funspec-sub in
real verifications, but only (1) and (3) were addressed in previous work [12, 20].

Useful, ordinary funspec subtyping. If NDmk-funspec were a constructor, we
could define,

Definition NDfunspec-sub (f1 f2 : funspec) :=
let ∆ := funsig-tycontext (funsig-of-funspec f1) in
match f1, f2 with
NDmk-funspec fsig1 cc1 A1 P1 Q1, NDmk-funspec fsig2 cc2 A2 P2 Q2 ⇒
fsig1 = fsig2 ∧ cc1 = cc2 ∧
∀x2 : A2,
∆, P2 nil x2 `
EX x1:A1, EX F :mpred, (((λρ.F ) ∗ P1 nil x1) &&

!! ((ret0-tycon ∆), (λρ.F ) ∗ Q1 nil x1 `Q2 nil x2))
end.

Here, each of the three deficiencies is remedied: the witness value x1 : A1 is
existentially derived from x2 : A2, the frame F is existentially quantified, and
the entailment Q1 ` Q2 is conditioned on the precondition P2 being satisfied.

This version of funspec-sub is, we believe, fully general for NDmk-funspec,
that is, for function specifications whose witness types A do not contain (co-
variant or contravariant) occurrences of mpred. We present the general, de-
pendent funspec-sub in the Appendix, with its constructor mk-funspec, and
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show the construction of NDmk-funspec as a derived form. And actually, since
NDmk-funspec is not really a constructor (it is a function that applies the
constructor mk-funspec), we must define NDfunspec-sub as a pattern-match on
mk-funspec; see the Appendix.

5 The subsumption rules

The purpose of funspec-sub is to support subsumption rules.
Our Hoare-logic judgment takes the form ∆ ` {P}c{Q} where the context

∆ describes the types of local and global variables and the funspecs of global
functions. We say ∆ <: ∆′ if ∆ is at least as strong as ∆′; in Verifiable C this is
written tycontext-sub ∆ ∆′. Again, this relation is reflexive and transitive.

Definition (glob-specs): If i is a global identifier, write (glob-specs ∆)!i to be the
option(funspec) that is either None or Some φ.

Lemma funspec-sub-tycontext-sub: Suppose ∆ agrees with ∆′ on types at-
tributed to global variables, types attributed to local variables, current function
return type (if any), and differs only in specifications attributed to global func-
tions, in particular: For every global identifier i, if (glob-specs ∆)!i=Some φ
then (glob-specs ∆

′)!i=Some φ′ and funspec-sub φ φ
′. Then ∆ <: ∆′.

Proof. Trivial from the definition of ∆ <: ∆′.

Theorem (semax-Delta-subsumption):

∆ <: ∆′ ∆′ ` {P}c{Q}
∆ ` {P}c{Q}

Proof. Nontrivial. Because this is a logic of higher-order recursive function point-
ers, our Coq proof6 in the modal step-indexed model uses the Löb rule to handle
recursion, and unfolds our rather complicated semantic definition of the Hoare
triple [4].

But this is not the only subsumption rule we desire. Because C has function-
pointers, the general Hoare-logic function-call rule is for∆ ` {P}ef (e1, . . . , en){Q}
where ef is an expression that evaluates to a function-pointer. Therefore, we can-
not simply look up ef as a global identifier in ∆. Instead, the precondition P
must associate the value of ef with a funspec. Without subsumption, the rules
are:

(glob specs ∆)!f = Some φ
∆ ` f ⇓ v

∆ ` {func ptr v φ ∧ P}c{Q}
∆ ` {P}c{Q}

∆ ` ef ⇓ v
∆ ` e1 ⇓ v1 . . . ∆ ` en ⇓ vn

P ∗ F ` func ptr v φ
φ(w) = {P}{Q}

∆ ` {P ∗ F}ef (e1, e2, . . . , en){Q ∗ F}
6 See file veric/semax lemmas.v in the VST repo.
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The rule semax-fun-id at left says, if the global context ∆ associates identifier
f with funspec φ, and if f evaluates to the address v, then for the purposes of
proving {P}c{Q} we can assume the stronger precondition in which address v
has the funspec φ.

The semax-call rule says, if ef evaluates to address v, and the precondition
factors into conjuncts P ∗F that imply address v has the funspec φ, then choose a
witness w (for the WITH clause), instantiate the witness of φ with w, and match
the precondition and postcondition of φ(w) with P and Q; then the function-call
is proved. (Functions can return results, but we don’t show that here.)

To turn semax-call into a rule that supports subsumption, we simply replace
the hypothesis φ(w) = {P}{Q} with φ <: φ′ ∧ φ′(w) = {P}{Q}.

To reconcile semax-Delta-subsumption and semax-fun-id, we build <: into the
definition of the predicate func-ptr v φ, i.e. permit φ to be more abstract than
the specification associated with address v in VST’s underlying semantic model
(“rmap”).

6 Intersection specifications

In some of our verification examples, we found it useful to separate different use
cases of a function into separate function specifications. One can easily do this
using a pattern that discriminates on a boolean value from the WITH list jointly
in the pre- and postcondition:

WITH b : bool, ~x : ~τ PRE if b then P1 else P2 POST if b then Q1 else Q2.

To attach different WITH-lists to different cases, we may use Coq’s sum type
to define a type such as Variant T := case1: int | case2: string. and use it in a
specification

WITH ~x : ~τ , t : T, ~y : ~σ
PRE [. . .] match t with case1 i ⇒ P1(~x, i, ~y) | case2 s ⇒ P2(~x, s, ~y) end
POST [. . .] match t with case1 i ⇒ Q1(~x, i, ~y) | case2 s ⇒ Q2(~x, s, ~y) end.

which amounts to the intersection of
WITH ~x : ~τ , i : int, ~y : ~σ PRE [. . .] P1(~x, i, ~y) POST [. . .] Q1(~x, i, ~y) and
WITH ~x : ~τ , s : string, ~y : ~σ PRE [. . .] P2(~x, i, ~y) POST [. . .] Q2(~x, i, ~y).

Generalizing to arbitrary index sets, we may—for a given function signature
and calling convention—combine specifications into specification families. (We
show the nondependent (ND) case; the Coq proofs cover the general case.)

Definition funspec-Pi-ND sig cc (I:Type) (A : I →Type)
(Pre Post: forall i, A i → environ →mpred): funspec := ...

In previous work [5] we showed how relational (2-execution) specifications
can be encoded as unary VDM-style specifications. Intersection specifications
internalize VDM’s “sets of specifications” feature.

The interaction between this construction and subtyping follows precisely
that of intersection types in type theory: the lemmas
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Lemma funspec-Pi-ND-sub: forall fsig cc I A Pre Post i,
funspec-sub (funspec-Pi-ND fsig cc I A Pre Post)

(NDmk-funspec fsig cc (A i) (Pre i) (Post i)).

Lemma funspec-Pi-ND-sub3: forall fsig cc I A Pre Post g (i:I)
(HI: forall i, funspec-sub g (NDmk-funspec fsig cc (A i) (Pre i) (Post i))),

funspec-sub g (funspec-Pi-ND fsig cc I A Pre Post).

are counterparts of the typing rules ∧j∈Iτj <: τi (for all i ∈ I) and
∀i, σ <: τi
σ <: ∧i∈Iτi

,

the specializations of which to the binary case appear on page 206 of TAPL [22].
We expect these rules to be helpful for formalizing Leavens and Naumann’s
treatment of specification inheritance in object-oriented programs [14].

7 Conclusion

Even without funspec subtyping, separation logic easily expresses data abstrac-
tion [21]. But real-world code is modular (as in our running example) and re-
configurable (as in the substitution of fastpile.c for pile.c). Therefore a notion
of specification re-abstraction is needed. We have demonstrated how to extend
Kleymann’s notion from commands to functions, and from first-order Hoare logic
to higher-order separation logic with framing. We have a full soundness proof for
the extended program logic, in Coq. Our funspec-sub integrates nicely with our
existing proof automation tools and our existing methods of verifying individual
modules. As a bonus, one’s intuition that function-specs are like the “types” of
functions is borne out by our theorems relating funspec-sub to intersection types.

Future work: When a client module respects data abstraction, such as onepile.c
and triang.c in our example, its Coq proof script does not vary if the implemen-
tation of the abstraction changes (such as changing pile.c to fastpile.c). But in
our current proofs of the running example, the proof scripts need to be rerun on
the changed definition of pilerep. As footnote 2 suggests, this could be avoided
by the use of existential quantification, in Coq, to describe data abstraction at
the C module level.

Appendix: Fully general funspec sub

[The FM’19 conference-proceedings version of this paper is identical except that
this appendix is abbreviated.]

NDfunspec-sub as introduced in Section 4 specializes the “real” subtype rela-
tion φ <: ψ in two regards: first, it only applies if φ and ψ are of the NDfunspec
form, i.e. the types of their WITH-lists (“witnesses”) are trivial bifunctors as
they do not contain co- or contravariant occurrences of mpred. Second, it fails
to exploit step-indexing and is hence unnecessarily strong. Our full definition is
as follows (Definition funspec-sub-si in veric/seplog.v):
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Definition funspec-sub-si (f1 f2 : funspec):mpred :=
let ∆ := funsig-tycontext (funsig-of-funspec f1) in
match f1, f2 with
mk-funspec fsig1 cc1 A1 P1 Q1 - -, mk-funspec fsig2 cc2 A2 P2 Q2 - - ⇒
!!(fsig1 = fsig2 ∧ cc1 =cc2) &&
! (ALL ts2:list Type, ALL x2: F A2, ALL ρ:environ,

(local (tc-environ ∆) ρ && P2 ts2 x2 ρ)

EX ts1:list Type, EX x1: F A1, EX F :mpred, (F ∗ P1 ts1 x1 ρ) &&
ALL ρ′:environ,
!( (local (tc-environ (ret0-tycon ∆)) ρ′ && F ∗ Q1 ts1 x1 ρ

′)

Q2 ts2 x2 ρ
′))

end.

We first note that funspec-sub-si is not a (Coq) Proposition but an mpred –
indeed, step-indexing has nothing interesting to say about pure propositions!
That is, P ` Q means, “for all resource-maps s, P s implies Qs,” but this can
be too strong: P Q means, “for all resource-maps s whose step-index is ≤ the
current ‘age’, P s implies Qs.” Recursive equations of mpreds, of the kind that
come up in object-oriented patterns, can tolerate where they cannot tolerate
` [4, Chapter 17].

Second, both funspecs are constructors (mk-funspec fsig cc A P Q - -) as
discussed in Section 4, but the two final arguments (the proofs that P and Q
are super-non-expansive) are irrelevant for the remainder of the definition and
hence anonymous. We also abbreviate operator dependent-type-functor-rec with
F .

Third, the definition makes use of the following operators (details on the
penultimate two operators can be found in [4], Chapter 16):

!! inject a Coq proposition into VST’s type mpred
&& (logical) conjunction of mpreds
ALL universal quantification lifted to mpred
EX existential quantification lifted to mpred
! “unfash”

“fashionable implication”

In particular, the satisfaction of P2 implies, only with the “precision” (in the
step-indexed sense) at which P2 is satisfied, that Q1 implies Q2

It is straightforward to prove that funspec-sub-si is reflexive, transitive, and
specializes to NDfunspec-sub. To obtain soundness of context subtyping
(semax-Delta-subsumption), we Kripke-extend the previous definition of VST’s
main semantic judgment semax. We also refined the definition of the predicate
func-ptr: a stronger version of rule semax-fun-id permits the exposed specifica-
tion f to be a (step-indexed) abstraction of the specification g stored in VST’s
resource-instrumented model:

Definition func-ptr-si f (v: val): mpred := EX b: block,
!! (v = Vptr b Ptrofs.zero) && (EX g:-, funspec-sub-si g f && func-at g (b, 0)).
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As func-at refers to the memory, this notion is again an mpred. Again, users
who don’t have complex object-oriented recursion patterns can avoid the step-
indexing by using this non-step-indexed variant,

Definition func-ptr f (v: val): mpred := EX b: block,
!! (v = Vptr b Ptrofs.zero) && (EX g:-, !!(funspec-sub g f) && func-at g (b, 0)).

as the following lemma shows:

Lemma func-ptr-fun-ptr-si f v: func-ptr f v ` func-ptr-si f v.

As one might expect, both notions are compatible with further subsumption:

Lemma func-ptr-si-mono fs gs v:
funspec-sub-si f g && func-ptr-si f v ` func-ptr-si g v.

Lemma func-ptr-mono fs gs v: funspec-sub f gs → (func-ptr f v ` func-ptr g v).

With these modifications and auxiliary lemmas in place, we have formally
reestablished the soundness proof of VST’s proof rules, justifying all rules given
in this paper.
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