Abstract. Representation predicates enable data abstraction in separation logic, but when the same concrete implementation may need to be abstracted in different ways, one needs a notion of subsumption. We demonstrate function-specification subtyping, analogous to subtyping, with a subsumption rule: if ϕ is a funspec sub of ψ, that is $\phi \prec \psi$, then $x : \phi$ implies $x : \psi$, meaning that any function satisfying specification ϕ can be used wherever a function satisfying ψ is demanded. We extend previous notions of Hoare-logic sub-specification, which already included parameter adaption, to include framing (necessary for separation logic) and impredicative bifunctors (necessary for higher-order functions, i.e. function pointers). We show intersection specifications, with the expected relation to subtyping. We show how this enables compositional modular verification of the functional correctness of C programs, in Coq, with foundational machine-checked proofs of soundness.

Keywords: Foundational Program Verification; Separation Logics; Specification Subsumption

1 Introduction

Even in the 21st century, the world still runs on C: operating systems, runtime systems, network stacks, cryptographic libraries, controllers for embedded systems, and large swaths of critical infrastructure code are either directly hand-coded in C or employ C as intermediate target of compilation or code synthesis. Analysis methods and verification tools that apply to C thus remain a vital area of research. The Verified Software Toolchain (VST) [4] is a semi-automated proof system for functional-correctness verification of C programs that integrates two long-standing lines of research: (i) program logics with machine-checked proofs of soundness; (ii) practical verification tools for industry-strength programming languages. VST consists of three main components:

Verifiable C [3] is a higher-order impredicative concurrent separation logic covering almost all the control-flow and data-structuring features of C (we currently omit goto and by-copy whole-struct assignment);

VST-Floyd [7] is a library of lemmas, definitions, and automation tactics that assist the user in applying the program logic to a program, using forward symbolic execution, with separation logic assertions as symbolic states;

To appear in FM2019: 23rd International Symposium on Formal Methods, October 2019. This copy has the full appendix; the conference proceedings version has an abbreviated appendix.
The semantic model justifies the proof rules, exploiting the theories of step-indexing, impredicative quantification, separation algebras, and concurrent ghost state. The semantic model is the basis of a machine-checked proof [4], in Coq, that the Verifiable C program logic is sound w.r.t. the operational semantics of CompCert Clight. Thus the user’s Coq proof of Verifiable C composes with our soundness proof of Verifiable C and with Leroy’s CompCert compiler correctness proof [15] to yield an end-to-end proof of the functional correctness of the assembly-language program.

VST’s key feature—distinguishing it from tools such as VCC [8], Frama-C [11], or VeriFast [9]—is that it is entirely implemented in the Coq proof assistant. A user imports C code into the Coq development environment and applies VST-Floyd’s automation—computational decision procedures from Coq’s standard library, plus custom-built tactics for forward symbolic execution and entailment checking—to construct formal derivations in the Verifiable C program logic. The full power of Coq and its libraries are available to manipulate application-specific mathematics. The semantic validity of the proof rules—machine-checked by Coq’s kernel—connects these derivations to Clight, i.e. CompCert’s representation of parsed and determinized C code.

Recent applications of VST include the verification of cryptographic primitives from OpenSSL [2, 6] and mbedTLS [24], an asynchronous communication mechanism [17], and an internet-facing server component [13]. Ongoing efforts elsewhere include a generational garbage collector and a malloc-free library.

Motivated by these applications, we now add support for data abstraction, a key enabler of scalability. As shown in previous work [21], separation logic can easily express data abstraction, using abstract predicates: just as the client program of an abstract data type (ADT) can be written without knowing the representation, verification of the client can proceed without knowing the representation. In type theory, this is the principle of existential types [18].

But in real-life modular programming, the same function may want more than one specification. For example, a function may expose a concrete specification to “friend” functions that know the representation of internal data and a more abstract specification for clients that do not. In this case, one should not have to verify the function-body twice, once for each specification; instead, one should verify the function-body with respect to the concrete specification, then prove the concrete implies the abstract. Again, type theory provides an appropriate notion: subtyping [22]. In other cases, it may be desirable to specify different use cases of a function—applying, for example, to different input configurations, or to different control flow paths—using different specifications, perhaps using different abstract predicates. Yet again, type theory provides a useful analogue: intersection types, a form of ad-hoc polymorphism.

These observations motivate the use of type-theoretic principles as guidelines for developing specification mechanisms and automation features for abstraction. We now take a step in this direction, focusing primarily on the notion of subtyping. The observation that Hoare’s original rule of consequence is insufficiently
powerful in languages with (recursive) procedures motivated research into parameter adaptation, by (among others) Kleymann, Nipkow, and Naumann [12, 20, 19]. Indeed, Kleymann observed that ([12], page 9)

- in proving that the postcondition has been weakened, one may also assume the precondition of the conclusion holds...
- one may adjust the auxiliary variables in the premise. Their value may depend on the value of auxiliary variables in the conclusion and the value of all program variables in the initial state.

But these developments were carried out for small languages and predate the emergence of separation logic. The present article hence revisits these ideas in the context of VST, by developing a powerful notion of function-specification subtyping for higher-order impredicative separation logic. Our treatment improves on previous work in several regards:

- We support function-specifications of function pointers, as part of our support for almost the entire C language. Kleymann only considers a single (anonymous, parameterless, but possibly recursive) procedure, while Nipkow supports mutual recursion between named procedures.
- Our notion of subtyping avoids direct quantification over states, thus permitting a higher-order impredicative separation logic in the style of VST and Iris [10], where “assertion” must be an abstract type with a step-indexed model rather than simply state → Prop. This is necessary to fully support function pointers and higher-order resource invariants (for concurrent programming). In contrast, Kleymann’s and Nipkow’s assertions are predicates over states, and the side conditions of their adaptation rules explicitly quantify over states. Naumann’s formulation using predicate transformers captures the same relationship in a slightly more abstract manner.
- VST associates function specifications to globally named functions in its proof context Δ and includes a separation logic assertion func.at that attaches specifications to function-pointer values. Our treatment integrates subsumption coherently into proof contexts, func.at, and the soundness judgment. We support subsumption at function call sites but also incorporate subsumption in a notion of (proof) context subtyping that is reminiscent of record subtyping [22]. This will allow bundling function specifications into specifications of objects or modules that can be abstractly presented to client programs and are compatible with behavioral subtyping [16, 14, 23].
- We introduce intersection specifications and show that their interaction with subsumption precisely matches that of intersection types.

Our presentation is example-driven: we illustrate several use cases of subsumption on concrete code fragments in Verifiable C. Technical adaptations of the model that support these verifications have been machine-checked for soundness, but in the paper we only sketch them. The full Coq proofs of our example are in the VST repo, github.com/PrincetonUniversity/VST in directory progs/pile.
2 Function specifications in Verifiable C

Our main example is an abstract data type (ADT) for piles, simple collections of integers. Figure 1 (on the next page) shows a modular C program that throws numbers onto a pile, then adds them up.

![Diagram](image)

The diagram at left shows that pile.c is imported by onepile.c (which manages a single pile), apile.c (which manages a single pile in a different way), and triang.c (which computes the nth triangular number). The latter three modules are imported by main.c. Onepile.c and triang.c import the abstract interface pile.h; apile.c imports also the low-level concrete interface pile_private.h that exposes the representation—a typical use case for this organization might be when apile.c implements representation-dependent debugging or performance monitoring.

When—as shown on the right—pile.c is replaced by a faster implementation fastpile.c (code in Figure 3) using a different data structure, apile.c must be replaced with fastapile.c, but the other modules need not be altered, and neither should their specification or verification.

Figure 2 presents the specification of the pile module, in the Verifiable C separation logic. Each C-language function identifier (such as Pile_add) is bound to a funspec, a function specification in separation logic.

Before specifying the functions (with preconditions and postconditions), we must first specify the data structures they receive as arguments and return as results. Linked lists are specified as usual in separation logic: listrep is a recursive definition over the abstract ("mathematical") list value σ, specifying how it is laid out in a memory footprint rooted at address p. Then pilerep describes a memory location containing a pointer to a listrep.

A funspec takes the form, WITH ⃗x : ⃗τ PRE ... POST For example, take Pile_add_spec from Figure 2: the ⃗x are bound Coq variables visible in both the precondition and postcondition, in this case, ⃗p:val, ⃗n:Z, ⃗σ:list Z, ⃗gv:globals, where p is the address of a pile data structure, n is the number to be added to the pile, σ is the sequence currently represented by the pile, and gv is a way to access all named global variables. The PREcondition is parameterized by the C-language formal parameter names ⃗p and ⃗n. An assertion in Verifiable C takes the form, PROP(propositions)LOCAL(variable bindings)SEP(spatial conjuncts).
The pile.h abstract data type has operations new, add, count, free. The triang.c client adds the integers 1–n to the pile, then counts the pile. The pile.c implementation represents a pile as header node (struct pile) pointing to a linked list of integers. At bottom, there are two modules that each implement a single “implicit” pile in a module-local global variable: onepile.c maintains a pointer to a pile, while apile.c maintains a struct pile for which it needs knowledge of the representation through pile_private.h.
Fixpoint listrep (σ: list Z) (x: val) : mpred :=
match σ with
| h::hs ⇒ EX y:val, (0 ≤ h ≤ Int.max_signed) &&
 data_at Ews tlist (Vint (Int.repr h), y) x
 * malloc_token Ews tlist x * listrep hs y
| nil ⇒ !! (x = nullval) && emp
end.

Definition pilerep (σ: list Z) (p: val) : mpred :=
EX x:val, data_at Ews tpile x p * listrep σ x.

Definition pile_freeable (p: val) :=
malloc_token Ews tpile p.

Definition Pile_new_spec :=
DECLARE -Pile-new
WITH gv: globals
PRE [] PROP() LOCAL(gvars gv) SEP(mem-mgr gv)
POST [tptr tpile]
 EX p: val,
 PROP() LOCAL(temp ret-temp p)
 SEP(pilerep nil p; pile_freeable p; mem-mgr gv).

Definition Pile_add_spec :=
DECLARE -Pile-add
WITH p: val, n: Z, σ: list Z, gv: globals
PRE [.p OF tptr tpile, .n OF tint]
 PROP(0 ≤ n ≤ Int.max_signed)
 LOCAL(temp .p p; temp .n (Vint (Int.repr n));
 gvars gv)
 SEP(pilerep σ p; mem-mgr gv)
POST [tvoid]
 PROP() LOCAL()
 SEP(pilerep (n::σ) p; mem-mgr gv).

Definition sumlist : list Z → Z := List.fold_right Z.add 0.

Definition Pile_count_spec :=
DECLARE -Pile-count
WITH p: val, σ: list Z
PRE [-p OF tptr tpile]
 PROP(0 ≤ sumlist σ ≤ Int.max_signed)
 LOCAL(temp .p p)
 SEP(pilerep σ p)
POST [tint]
 PROP() LOCAL(temp ret-temp (Vint (Int.repr (sumlist σ))))
 SEP(pilerep σ p).

Fig. 2. Specification of the pile module (Pile_free_spec not shown).

Notation key

mpred predicate on memory

EX existential quantifier

!! injects Prop into mpred

&& nonseparating conjunction

data_at π τ v p is p ↦→ v,

separation-logic mapsto

at type τ, permission π

malloc_token π x represents

"capability to deallocate x"

Ews the “extern write share”

gives write permission

.Pile_new is a C identifier

WITH quantifies variables

over PRE/POST of funspec

The C function’s return type,

tptr tpile, is “pointer to struct pile”

PROP(...) are pure propositions

on the WITH-variables

LOCAL(… temp .p p …) associates C local var .p

with Coq value p

gvars gv establishes gv as

mapping from C global vars to their addresses

SEP(R₁; R₂) are separating conjuncts R₁ • R₂

mem_mgr gv represents

different states of the malloc/free system in

PRE and POST of

any function that allocates or frees
In this case the PROP asserts that \(n \) is between 0 and max-int; LOCAL asserts\(^\text{1}\) that address \(p \) is the current value of C variable \(.p \), integer \(n \) is the value of C variable \(.n \), and \(gv \) is the global-variable access map. The precondition’s SEP clause has two conjuncts: the first one says that there’s a pile data structure at address \(p \) representing sequence \(\sigma \); the second one represents the memory-manager library. The spatial conjunct \((\text{mem-mgr} \ gv)\) represents the private data structure of the memory-manager library, that is, the global variables in which the malloc-free system keeps its free lists.

The SEP clause of the POSTcondition says that the pile at address \(p \) now represents the list \(n::\sigma \), and that the memory manager is still there.

Verifying that pile.c’s functions satisfy the specifications in Fig. 2 using VST-Floyd is done by proving Lemmas like this one (in file verif_pile.v):

Proof. ... (*7 lines of Coq proof script*)... Qed.

This says, in the context Vprog of global-variable types, in the context Gprog of function-specs (for functions that Pile.new might call), the function-body f.Pile.new satisfies the function-specification Pile.new.spec.

Linking

A modular proof of a modular program is organized as follows: CompCert parses each module M.c into the AST file M.v. Then we write the specification file spec.M.v containing funspecs as in Figure 2. We write verif.M.v which imports spec files of all the modules from which M.c calls functions, and contains semax_body proofs of correctness (such as body.Pile.new at the end of §2), for each of the functions in M.c.

What’s special about the main() function is that its separation-logic precondition has all the initial values of the global variables, merged from the global variables of each module. In spec.main we merge the ASTs (global variables and function definitions) of all the M.v by a simple, computational, syntactic function. This is illustrated in the Coq files in VST/progs/pile.

VST’s main soundness statement is that, when running main() in CompCert’s operational semantics, in the initial memory induced from all global-variable initializers, the program is safe and correct—with a notion of partial correctness in interacting with the world via effectful external function calls [13] and returning the “right” value from main.

3 Subsumption of function specifications

We now turn to the replacement of pile.c by a more performant implementation, fastpile.c, and its specification—see Figure 3. As fastpile.c employs a different

\(^{1}\) A LOCAL clause \texttt{temp .p p} asserts that the current value of C local variable \(.p \) is the Coq value \(p \). If \(n \) is a mathematical integer, then \texttt{int.repr n} is its projection into 32-bit machine integers, and \texttt{Vint} projects machine integers into the type of scalar C-language values.
/* fastpile_private.h */
struct pile {
 int sum;
};

/* fastpile.c */
#include ...
#include "pile.h"
#include "fastpile_private.h"

Pile Pile-new(void)
{
 Pile p = (Pile)surely_malloc(sizeof *p); p->sum=0; return p;
}

void Pile-add(Pile p, int n)
{
 int s = p->sum; if (0 <= n && n <= INT_MAX-s) p->sum = s+n;
}

int Pile-count(Pile p)
{
 return p->sum;
}

void Pile-free(Pile p)
{
}

(∗ spec-fastpile.v ∗)

Definition pilerep (σ: list Z) (p: val) : mpred :=
EX s:Z, !! (0 ≤ s ≤ Int.max_signed ∧ Forall (Z.le 0) σ ∧
 (0 ≤ sumlist σ ≤ Int.max_signed → s=sumlist σ))
 && data_at Ews tpile (Vint (Int.repr s)) p.

Definition pile-freeable := (∗ looks identical to the one in fig.2 ∗)

Definition Pile-new.spec := (∗ looks identical to the one in fig.2 ∗)

Definition Pile-add.spec := (∗ looks identical to the one in fig.2 ∗)

Definition Pile-count.spec := (∗ looks identical to the one in fig.2 ∗)

Fig. 3. fastpile.c, a more efficient implementation of the pile ADT. Since the only query function is count, there’s no need to represent the entire list, just the sum will suffice.

In the verification of a client program, the pilerep separation-logic predicate has the same signature: list Z → val → mpred, even though the representation is a single number rather than a linked list.

data representation than pile.c, its specification employs a different representation predicate pilerep. As pilerep’s type remains unchanged, the function specifications look virtually identical\(^2\); however, the VST-Floyd proof scripts (in file verif-fastpile.v) necessarily differ. Clients importing only the pile.h interface, like onepile.c or triang.c, cannot tell the difference (except that things run faster and take less memory), and are specified and verified only once (files spec-onepile.v / verif-onepile.v and spec-triang.v / verif-triang.v).

But we may also equip fastpile.c with a more low-level specification (see Figure 4) in which the function specifications refer to a different representation predicate, countrep. In reasoning about clients of this low-level interface, we do not need a notion of of “sequence”—in contrast to pilerep in Fig. 3. The new specification is less abstract than the one in Fig. 3, and closer to the implement-

\(^2\) Existentially abstracting over the internal representation predicates would further emphasize the uniformity between fastpile.c and pile.c—a detailed treatment of this is beyond the scope of the present article.
Abstraction and Subsumption in C

Definition `countrep (s: Z) (p: val) : mpred := EX s′:Z, !(0 ≤ s ∧ 0 ≤ s′ ≤ Int.max_signed ∧ (s ≤ Int.max_signed → s′ = s)) && data_at Ews tpile (Vint (Int.repr s′)) p.

Definition `count_freeable (p: val) := malloc_token Ews tpile p.

Definition `Pile-new-spec := ...

Definition `Pile-add-spec :=
DECLARE -Pile-add
WITH p: val, n: Z, s: Z, gv: globals
PRE [-p OF tptr tpile,-n OF tint]
PROP(0 ≤ n ≤ Int.max_signed)
LOCAL(temp -p p; temp -n (Vint (Int.repr n)); gvars gv)
SEP(countrep s p; mem_mgr gv)
POST[tvoid]
PROP() LOCAL() SEP(countrep (n + s) p; mem_mgr gv).

Definition `Pile-count-spec := ...

Fig. 4. The fastpile.c implementation could be used in applications that simply need to keep a running total. That is, a concrete specification can use a predicate `countrep: Z → val → mpred that makes no assumption about a sequence (list Z). In `countrep, the variable s′ and the inequalities are needed to account for the possibility of integer overflow.

tation. The subsumption rule (to be introduced shortly) allows us to exploit this relationship: we only need to explicitly verify the code against the low-level specification and can establish satisfaction of the high-level specification by recourse to subsumption. This separation of concerns extends from VST specifications to model-level reasoning: for example, in our verification of cryptographic primitives we found it convenient to verify that the C program implements a low-level functional model and then separately prove that the low-level functional model implements a high-level specification (e.g. cryptographic security). In our running example, fastpile.c’s low-level functional model is `integer (the Coq Z type), and its high level specification is list Z.

\[\text{For example: in our proof of HMAC-DRBG [24], before VST had function-spec subsumption, we had two different proofs of the function } f_{\text{mbedtls_hmac_drbg_seed}}, \text{ one with respect to a more concrete specification } \text{drbg.seed.inst256.spec and one with respect to a more abstract specification } \text{drbg.seed.inst256.spec.abs. The latter proof was 202 lines of Coq, at line 37 of VST/hmacdrbg/protocol_proofs.v in commit 3e61d2991ec3d70f5935ae69e88d71726f639b9bc of https://github.com/PrincetonUniversity/VST. Now, instead of reproving the function-body a second time, we have a funspec_sub proof that is only 60 lines of Coq (at line 42 of the same file in commit c2fc3d830e15f4c70bc45376632c232374385ef).\]
To formally state the desired subsumption lemma, observe that notation like
\texttt{DECLARE } \texttt{.Pile.add WITH } \ldots \texttt{ PRE } \ldots \texttt{ POST } \ldots \text{ is merely VST’s syntactic sugar for a pair that ties the identifier } \texttt{.Pile.add} \text{ to the funspec \texttt{WITH...PRE...POST}}. For \texttt{.Pile.add} we have two such specifications,

\begin{align*}
\text{spec_fastpile.Pile_add_spec: } & \quad \text{id} \ast \text{funspec} \quad (* \text{ in Figure 3 } *) \\
\text{spec_fastpile_concrete.Pile_add_spec: } & \quad \text{id} \ast \text{funspec} \quad (* \text{ in Figure 4 } *)
\end{align*}

and our notion of \textit{funspec subtyping} will satisfy the following lemma

Lemma sub_Pile_add: \textit{funspec_sub} \((\text{snd spec_fastpile_concrete.Pile_add_spec}) \quad \text{(snd spec_fastpile.Pile_add_spec)}\)

and similarly for \texttt{Pile.new} and \texttt{Pile.count}. Specifically, we permit related specifications to have different WITH-lists, in line with Kleymann’s adaptation-complete rule of consequence

\[
\Gamma \vdash \{P\}c\{Q\} \quad \forall Z. \forall \sigma. \ PZ\sigma \rightarrow \forall \tau. \ \exists Z'. (P'Z'\sigma \land (Q'Z'\tau \rightarrow QZ\tau))
\]

where assertions are binary predicates over auxiliary and ordinary states, and \(Z, Z'\) are the WITH values.\(^4\)

Our subsumption applies to function specifications, not arbitrary statements \(c\). In the rule for function calls, it ensures that a concretely specified function can be invoked where callers expect an abstractly specified one, just like the subsumption rule of type theory: \(
\Gamma \vdash e : \sigma \quad \sigma <: \tau \quad \Gamma \vdash e : \tau
\). It is also reflexive and transitive.

\textit{Support for framing} An important principle of separation logic is the frame rule:

\[
\frac{}{\{P\}c\{Q\} \quad \{P * R\}c\{P * R\} \quad \text{(modifiedvars}(c) \cap \text{freevars}(R) = \emptyset)}
\]

We have found it useful to explicitly incorporate framing in \textit{funspec_sub}, because abstract specifications may have useless data. Consider a function that performs some action (e.g., increment a variable) using some auxiliary data (e.g., an array of 10 integers):

\begin{verbatim}
int incr1(int i, unsigned int *auxdata) { auxdata[i%10] += 1; return i+1; }
\end{verbatim}

The function specification makes clear that the \texttt{private} contents of the \texttt{auxdata} is, from the client’s point of view, unconstrained; the implementation is free to store anything in this array:

\(^4\) We give Kleymann’s rule for total correctness here. VST is a logic for partial correctness, but its preconditions also guarantee safety; Kleymann’s partial-correctness adaptation rule cannot guarantee safety.
Definition incr1-spec := DECLARE-incr1
WITH i: Z, a: val, π: share, private: list val
PRE [i OF tint, _auxdata OF tptr tuint]
 PROP (0 ≤ i < Int.max-signed; writable_share π)
 LOCAL(temp .i (Vint (Int.repr i)); temp .auxdata a)
 SEP(data.at sh (tarray tuint 10) private a)
POST [tint]
 EX private': list val, PROP() LOCAL(temp ret-temp (Vint (Int.repr (i+1))))
 SEP(data.at π (tarray tuint 10) private' a).

You might think the auxdata is useless, but (i) real-life interfaces often have useless or vestigial fields; and (ii) this might be where the implementation keeps profiling statistics, memoization, or other algorithmically useful information.

Here is a different implementation that should serve any client just as well:

```c
int incr2(int i, unsigned int *auxdata) { return i+1; }
```

Its natural specification has an empty SEP clause:

Definition incr2-spec := DECLARE-incr2
WITH i: Z
PRE [i OF tint, _auxdata OF tptr tuint]
 PROP (0 ≤ i < Int.max-signed) LOCAL(temp .i (Vint (Int.repr i)))
 SEP()
POST [tint]
 PROP() LOCAL(temp ret-temp (Vint (Int.repr (i+1))))
 SEP().

The formal statement that incr2 serves any client just as well as incr1 is another case of subsumption:

Lemma sub-incr12: funspec-sub (snd incr2-spec) (snd incr1-spec).

In the proof, we use (data.at π (tarray tuint 10) private a) as the frame.

If the auxdata is a global variable instead of a function parameter, all the same principles apply:

```c
int global_auxdata[10];
int incr3(int i) { global_auxdata[i%10] += 1; return i+1; }
int incr4(int i) { return i+1; }
```

We define a funspec for incr3 whose SEP clause mentions the auxdata, we define a funspec for incr4 whose SEP clause is empty, and we can prove,

Lemma sub-incr34: funspec-sub (snd incr3-spec) (snd incr4-spec).

For another example of framing, consider again Figure 2, the specification of pilerep, pile_freeable, Pile_new_spec, etc. One might think to combine pile_freeable (the memory-deallocation capability) with pile_rep (capability to modify the contents) yielding a single combined predicate pilerep'. That way, proofs of client programs would not have to manage two separate conjuncts.

That would work for clients such as triang.c and onepile.c, but not for apile.c which has an initialized global variable (a.pile) that satisfies pilerep but not...
pile_freeable (since it was not obtained from the malloc-free system). Furthermore, the specifications of pile_add and pile_count do not mention pile_freeable in their pre- or postconditions, since they have no need for this capability.

By using funspec_sub (with its framing feature), we can have it both ways. One can easily make a more abstract spec in which the funspecs of pile_new, pile_add, pile_count, pile_free all take pilerep in their pre- and postconditions; onepile and trianp will still be verifiable using these specs. But in proving funspec_sub, therefore, specifications for pile_add and pile_count now do implicitly take pile_freeable in their pre- and postconditions, even though they have no use for it; this is the essence of the frame rule.

4 Definitions of funspec subtyping

Except in certain higher-order cases, we use this notion of function specification:

\[
\text{NDmk-funspec} \ (f: \text{funsig}) \ (cc: \text{calling-convention}) \ (A: \text{Type}) \ (\text{Pre Post: } A \rightarrow \text{environ} \rightarrow \text{mpred}) : \text{funspec}.
\]

To construct a nondependent (ND) function spec, one gives the function’s C-language type signature (funsig), the calling convention (usually cc=cc_default), the precondition, and the postcondition. A gives the type of variable (or tuple of variables) “shared” between the precondition and postcondition. Pre and Post are each applied to the shared value of type A, then to a local-variable environment (of type environ) containing the formal parameters or result-value (respectively), finally yielding an mpred, a spatial predicate on memory.

For example, to specify an increment function with formal parameter .p pointing to an integer in memory, we let A = int, so that

\[
\text{Pre} = \lambda i : A. \lambda \rho. \rho(p) \mapsto i \quad \text{and} \quad \text{Post} = \lambda i : A. \lambda \rho. \rho(p) \mapsto (i + 1).
\]

This form suffices for most C programming. But sometimes in the presence of higher-order functions, one wants impredicativity: A may be a tuple of types that includes the type mpred. If this is done naively, it cannot typecheck in CiC (there will be universe inconsistencies); see the Appendix.

General funspec. Higher-order function specs are (mostly) beyond the scope of this paper. When precondition and postcondition must predicate over predicates, we must ensure that each is a bifunctor, that is, we must keep track of covariant and contravariant occurrences, and so on. This approach was outlined by America and Rutten [1] and has been implemented both in Iris [10] and VST.\(^5\)

VST’s most general form of function spec is,

\[
\text{Inductive funspec} := \mk\text{funspec} : \forall (f: \text{funsig}) \ (cc: \text{calling-convention}) \ (A: \text{TypeTree}) \ (P Q : \forall ts, \text{dependent-type-functor-rec ts (AssertTT A) mpred}) \ (P.\text{ne: super.non.expansive P}) \ (Q.\text{ne: super.non.expansive Q}), \text{funspec}.
\]

\(^5\) Bifunctor function-specs in VST were the work of Qinxiang Cao, Robert Dockins, and Aquinas Hobor.
Abstraction and Subsumption in C

Here, super_non_expansive is a proof that the precondition (or postcondition) is a nonexpansive (in the step-indexing sense) bifunctor; see the Appendix. The nondependent (ND) form of mk_funspec shown above is simply a derived form of dependent mk_funspec.

Too-special funspec subtyping. Let’s consider the obvious notion of funspec subtyping: \(\phi_1 \) is a subtype of \(\phi_2 \) if the precondition of \(\phi_2 \) entails the precondition of \(\phi_1 \), and the postcondition of \(\phi_1 \) entails the postcondition of \(\phi_2 \).

Definition far too special ND funspec sub \((f_1, f_2 : \text{funspec}) := \)

\[
\begin{align*}
\text{let } & \Delta := \text{funsig-tycontext} \left(\text{funsig.of.funspec } f_1\right) \text{ in} \\
\text{match } & f_1, f_2 \text{ with} \\
& \text{NDmk.funspec } \text{fsig}_1 \text{ cc}_1 A_1 P_1 Q_1, \text{NDmk.funspec } \text{fsig}_2 \text{ cc}_2 A_2 P_2 Q_2 \Rightarrow \\
& \text{fsig}_1 = \text{fsig}_2 \land \text{cc}_1 = \text{cc}_2 \land \forall x : A_1, \Delta, P_2 \text{ nil } x \vdash P_1 \text{ nil } x) \land \\
& (\forall x : A_1, (\text{ret0.tycon } \Delta), Q_1 \text{ nil } x \vdash Q_2 \text{ nil } x) \\
\end{align*}
\]

We write \(\Delta, P_2 \text{ nil } x \vdash P_1 \text{ nil } x \), where \(P_1 \) and \(P_2 \) are the preconditions of \(f_1 \) and \(f_2 \), nil expresses that these are nondependent funspecs (no bifunctor structure), and \(x \) is the value shared between precondition and postcondition. The type-context \(\Delta \) provides the additional guarantee that the formal parameters are well typed, and \(\text{ret0.tycon } \Delta \) guarantees that the return-value is well typed.

This notion of funspec-sub is sound (w.r.t. subsumption), but barely useful: (1) it requires that the witness types of the two funspecs be the same \((A_1 = A_2)\), (2) it doesn’t support framing, and (3) it requires \(Q_1 \models Q_2 \) even when \(P_2 \) is not satisfied. Each of these omissions prevents the practical use of funspec-sub in real verifications, but only (1) and (3) were addressed in previous work [12, 20].

Useful, ordinary funspec subtyping. If \(\text{NDmk.funspec} \) were a constructor, we could define,

Definition ND funspec sub \((f_1, f_2 : \text{funspec}) := \)

\[
\begin{align*}
\text{let } & \Delta := \text{funsig-tycontext} \left(\text{funsig.of.funspec } f_1\right) \text{ in} \\
\text{match } & f_1, f_2 \text{ with} \\
& \text{NDmk.funspec } \text{fsig}_1 \text{ cc}_1 A_1 P_1 Q_1, \text{NDmk.funspec } \text{fsig}_2 \text{ cc}_2 A_2 P_2 Q_2 \Rightarrow \\
& \forall x_2 : A_2, \Delta, P_2 \text{ nil } x_2 \vdash \\
& \text{EX } x_1 : A_1, \text{EX } F : \text{mpred}, \left(\left((\lambda \rho. F) \ast P_1 \text{ nil } x_1\right) \&\& \\
& \text{!! } ((\text{ret0.tycon } \Delta), (\lambda \rho. F) \ast Q_1 \text{ nil } x_1 \vdash Q_2 \text{ nil } x_2)\right) \\
\end{align*}
\]

Here, each of the three deficiencies is remedied: the witness value \(x_1 : A_1 \) is existentially derived from \(x_2 : A_2 \), the frame \(F \) is existentially quantified, and the entailment \(Q_1 \models Q_2 \) is conditioned on the precondition \(P_2 \) being satisfied.

This version of funspec-sub is, we believe, fully general for \(\text{NDmk.funspec} \), that is, for function specifications whose witness types \(A \) do not contain (covariant or contravariant) occurrences of \(\text{mpred} \). We present the general, dependent funspec-sub in the Appendix, with its constructor \(\text{mk.funspec} \), and
show the construction of \texttt{NDmk_funspec} as a derived form. And actually, since \texttt{NDmk_funspec} is not really a constructor (it is a function that applies the constructor \texttt{mk_funspec}), we must define \texttt{NDfunspec_sub} as a pattern-match on \texttt{mk_funspec}; see the Appendix.

5 The subsumption rules

The purpose of \texttt{funspec_sub} is to support subsumption rules.

Our Hoare-logic judgment takes the form $\Delta \vdash \{P\}c\{Q\}$ where the context Δ describes the types of local and global variables and the funspecs of global functions. We say $\Delta <:\Delta'$ if Δ is at least as strong as Δ'; in Verifiable C this is written \texttt{tycontext_sub} $\Delta \Delta'$. Again, this relation is reflexive and transitive.

\textbf{Definition (glob.specs)}: If i is a global identifier, write \texttt{(glob.specs Δ)!i} to be the \texttt{option}\texttt{(funspec)} that is either None or Some ϕ.

\textbf{Lemma funspec_sub,tycontext_sub}: Suppose Δ agrees with Δ' on types attributed to global variables, types attributed to local variables, current function return type (if any), and differs only in specifications attributed to global functions, in particular: For every global identifier i, if \texttt{(glob.specs Δ)!i}=Some ϕ then \texttt{(glob.specs Δ')!i}=Some ϕ' and \texttt{funspec_sub ϕ ϕ'}. Then $\Delta <:\Delta'$.

\textit{Proof.} Trivial from the definition of $\Delta <:\Delta'$.

\textbf{Theorem (semax.Delta.subsumption)}:

\[
\begin{array}{c}
\Delta <:\Delta' \\
\Delta' \vdash \{P\}c\{Q\}
\end{array}
\Rightarrow
\begin{array}{c}
\Delta \vdash \{P\}c\{Q\}
\end{array}
\]

\textit{Proof.} Nontrivial. Because this is a logic of higher-order recursive function pointers, our Coq proof\footnote{See file veric/semax.lemmas.v in the VST repo.} in the modal step-indexed model uses the L"ob rule to handle recursion, and unfolds our rather complicated semantic definition of the Hoare triple [4].

But this is not the only subsumption rule we desire. Because C has function-pointers, the general Hoare-logic function-call rule is for $\Delta \vdash \{P\}e_f(e_1, \ldots, e_n)\{Q\}$ where e_f is an expression that evaluates to a function-pointer. Therefore, we cannot simply look up e_f as a global identifier in Δ. Instead, the precondition P must associate the value of e_f with a funspec. Without subsumption, the rules are:

\[
\begin{array}{c}
\texttt{(glob.specs Δ)!f} = \text{Some ϕ} \\
\Delta \vdash f \downarrow v \\
\Delta \vdash \{\text{func.ptr } v \phi \land P\}c\{Q\}
\end{array}
\Rightarrow
\begin{array}{c}
\Delta \vdash \{P\}c\{Q\}
\end{array}
\]

\[
\begin{array}{c}
\Delta \vdash e_f \downarrow v \\
\Delta \vdash e_1 \downarrow v_1 \ldots \Delta \vdash e_n \downarrow v_n \\
P * F \vdash \text{func.ptr } v \phi \phi(w) = \{P\}Q
\end{array}
\Rightarrow
\begin{array}{c}
\Delta \vdash \{P * F\}e_f(e_1, e_2, \ldots, e_n)\{Q * F\}
\end{array}
\]
The rule `semax_fun_id` at left says, if the global context Δ associates identifier f with funspec ϕ, and if f evaluates to the address v, then for the purposes of proving $\{P\}c\{Q\}$ we can assume the stronger precondition in which address v has the funspec ϕ.

The `semax_call` rule says, if e_f evaluates to address v, and the precondition factors into conjuncts $P \land \Phi$ that imply address v has the funspec ϕ, then choose a witness w (for the `WITH` clause), instantiate the witness of ϕ with w, and match the precondition and postcondition of $\phi(w)$ with P and Q; then the function-call is proved. (Functions can return results, but we don’t show that here.)

To turn `semax_call` into a rule that supports subsumption, we simply replace the hypothesis $\phi(w) = \{P\}\{Q\}$ with $\phi <:\phi' \land \phi'(w) = \{P\}\{Q\}$.

To reconcile `semax_Delta_subsumption` and `semax_fun_id`, we build $<$: into the definition of the predicate `func_ptr v ϕ`, i.e. permit ϕ to be more abstract than the specification associated with address v in VST’s underlying semantic model (“rmap”).

6 Intersection specifications

In some of our verification examples, we found it useful to separate different use cases of a function into separate function specifications. One can easily do this using a pattern that discriminates on a boolean value from the `WITH` list jointly in the pre- and postcondition:

WITH b: bool, \vec{x}: $\vec{\tau}$ PRE if b then P_1 else P_2 POST if b then Q_1 else Q_2.

To attach different `WITH`-lists to different cases, we may use Coq’s sum type to define a type such as `Variant T := case1: int | case2: string.` and use it in a specification

WITH \vec{x}: $\vec{\tau}$, t: T, \vec{y}: $\vec{\sigma}$
PRE [...] match t with case1 i ⇒ $P_1(\vec{x}, i, \vec{y})$ | case2 s ⇒ $P_2(\vec{x}, s, \vec{y})$ end
POST [...] match t with case1 i ⇒ $Q_1(\vec{x}, i, \vec{y})$ | case2 s ⇒ $Q_2(\vec{x}, s, \vec{y})$ end.

which amounts to the intersection of

WITH \vec{x}: $\vec{\tau}$, i: int, \vec{y}: $\vec{\sigma}$ PRE [...] $P_1(\vec{x}, i, \vec{y})$ POST [...] $Q_1(\vec{x}, i, \vec{y})$ and
WITH \vec{x}: $\vec{\tau}$, s: string, \vec{y}: $\vec{\sigma}$ PRE [...] $P_2(\vec{x}, i, \vec{y})$ POST [...] $Q_2(\vec{x}, i, \vec{y})$.

Generalizing to arbitrary index sets, we may—for a given function signature and calling convention—combine specifications into specification families. (We show the nondependent (ND) case; the Coq proofs cover the general case.)

Definition `funspec_Pi_ND sig cc (l:Type) (A : l → Type)`

(Pre Post: forall i, $A i$ → `environ` → `mpred`): `funspec := ...`

In previous work [5] we showed how relational (2-execution) specifications can be encoded as unary VDM-style specifications. Intersection specifications internalize VDM’s “sets of specifications” feature.

The interaction between this construction and subtyping follows precisely that of intersection types in type theory: the lemmas
Lemma \text{funspec-Pi-ND-sub}: \forall \text{fsg cc I A Pre Post},
\text{funspec-sub}\ (\text{funspec-Pi-ND}\ \text{fsg cc I A Pre Post})
(\text{NDmk-funspec}\ \text{fsg cc I A Pre Post}).

Lemma \text{funspec-Pi-ND-sub3}: \forall \text{fsg cc I A Pre Post g (i:I)}
(\forall i, \text{funspec-sub}\ g (\text{NDmk-funspec}\ \text{fsg cc I A Pre Post}))
\text{funspec-sub}\ g (\text{funspec-Pi-ND}\ \text{fsg cc I A Pre Post}).

are counterparts of the typing rules \(\land_{j \in I} \tau_j <: \tau_i \) (for all \(i \in I \)) and \(\forall i, \sigma <: \tau_i \)
the specializations of which to the binary case appear on page 206 of TAPL [22]. We expect these rules to be helpful for formalizing Leavens and Naumann’s treatment of specification inheritance in object-oriented programs [14].

7 Conclusion

Even without funspec subtyping, separation logic easily expresses data abstraction [21]. But real-world code is modular (as in our running example) and re-configurable (as in the substitution of \text{fastpile.c} for \text{pile.c}). Therefore a notion of specification re-abstraction is needed. We have demonstrated how to extend Kleymann’s notion from commands to functions, and from first-order Hoare logic to higher-order separation logic with framing. We have a full soundness proof for the extended program logic, in Coq. Our \text{funspec-sub} integrates nicely with our existing proof automation tools and our existing methods of verifying individual modules. As a bonus, one’s intuition that function-specs are like the “types” of functions is borne out by our theorems relating \text{funspec-sub} to intersection types.

Future work: When a client module respects data abstraction, such as \text{onepile.c} and \text{triang.c} in our example, its Coq proof script does not vary if the implementation of the abstraction changes (such as changing \text{pile.c} to \text{fastpile.c}). But in our current proofs of the running example, the proof scripts need to be rerun on the changed definition of \text{pilerep}. As footnote 2 suggests, this could be avoided by the use of existential quantification, in Coq, to describe data abstraction at the C module level.

Appendix: Fully general \text{funspec-sub}

[The FM’19 conference-proceedings version of this paper is identical except that this appendix is abbreviated.]

\text{NDfunspec-sub} as introduced in Section 4 specializes the “real” subtype relation \(\phi <: \psi \) in two regards: first, it only applies if \(\phi \) and \(\psi \) are of the \text{NDfunspec} form, i.e. the types of their WITH-lists (“witnesses”) are trivial bifunctors as they do not contain co- or contravariant occurrences of \text{mpred}. Second, it fails to exploit step-indexing and is hence unnecessarily strong. Our full definition is as follows (Definition \text{funspec-sub.si} in veric/seplog.v):
Definition funspec_sub_si (f₁ f₂ : funspec) : mpred :=
let Δ := funsig_tycontext (funsig_of funspec f₁) in
match f₁, f₂ with
mk_funspec fsig₁ cc₁ A₁ P₁ Q₁ ⊢, mk_funspec fsig₂ cc₂ A₂ P₂ Q₂ ⊢ ⇒
 ((fsig₁ = fsig₂ ∧ cc₁ = cc₂) &&
 (! (ALL ts₂:list Type, ALL x₂: F A₂, ALL ρ:environ,
 (local (tc_environ Δ) ρ && P₂ ts₂ x₂ ρ)
 ⇒ EX ts₁:list Type, EX x₁: F A₁, EX F:mpred, (F * P₁ ts₁ x₁ ρ) &&
 ALL ρ':environ,
 !((local (tc_environt (ret0_tycon Δ)) ρ' && F * Q₁ ts₁ x₁ ρ'))
 ⇒ Q₂ ts₂ x₂ ρ')))
end.

We first note that funspec_sub_si is not a (Coq) Proposition but an mpred – indeed, step-indexing has nothing interesting to say about pure propositions! That is, $P \vdash Q$ means, “for all resource-maps s, $P s$ implies $Q s$,” but this can be too strong: $P \Rightarrow Q$ means, “for all resource-maps s whose step-index is ≤ the current ‘age’, $P s$ implies $Q s$.” Recursive equations of mpreds, of the kind that come up in object-oriented patterns, can tolerate \Rightarrow where they cannot tolerate \vdash [4, Chapter 17].

Second, both funspecs are constructors (mk_funspec fsig cc A P Q ⊢) as discussed in Section 4, but the two final arguments (the proofs that P and Q are super-non-expansive) are irrelevant for the remainder of the definition and hence anonymous. We also abbreviate operator dependent_type_functor_rec with F.

Third, the definition makes use of the following operators (details on the penultimate two operators can be found in [4], Chapter 16):

$$\begin{align*}
!! & \text{ inject a Coq proposition into VST’s type mpred} \\
&& \text{ (logical) conjunction of mpreds} \\
&& \text{universal quantification lifted to mpred} \\
&& \text{existential quantification lifted to mpred} \\
& \text{“unfash”} \\
\Rightarrow & \text{“fashionable implication”}
\end{align*}$$

In particular, the satisfaction of $P₂$ implies, only with the “precision” (in the step-indexed sense) at which $P₂$ is satisfied, that $Q₁$ implies $Q₂$.

It is straightforward to prove that funspec_sub_si is reflexive, transitive, and specializes to NDfunspec_sub. To obtain soundness of context subtyping (semax_Delta_subsumption), we Kripke-extend the previous definition of VST’s main semantic judgment semax. We also refined the definition of the predicate func_ptr: a stronger version of rule semax_fun_id permits the exposed specification f to be a (step-indexed) abstraction of the specification g stored in VST’s resource-instrumented model:

Definition func_ptr_g f (v: val) : mpred := EX b: block,
 (!! (v = Vptr b Ptrofs.zero) && (EX g: ..., funspec_sub_si g f && func_at g (b, 0))).
As func.at refers to the memory, this notion is again an mpred. Again, users who don’t have complex object-oriented recursion patterns can avoid the step-indexing by using this non-step-indexed variant,

Definition func.ptr f (v: val): mpred := EX b: block,
!! (v = Vptr b Ptrofs.zero) && (EX g:-, !!(funspec_sub g f) && func.at g (b, 0)).

as the following lemma shows:

Lemma func.ptr.fun.ptr.si f v: func.ptr f v ⊢ func.ptr si f v.

As one might expect, both notions are compatible with further subsumption:

Lemma func.ptr.si.mono fs gs v: funspec_sub_si f g && func.ptr.si f v ⊢ func.ptr.si g v.

Lemma func.ptr.mono fs gs v: funspec_sub f gs → (func.ptr f v ⊢ func.ptr g v).

With these modifications and auxiliary lemmas in place, we have formally reestablished the soundness proof of VST’s proof rules, justifying all rules given in this paper.

References