
74

Deriving Efficient Program Transformations from Rewrite

Rules
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An efficient optimizing compiler can perform many cascading rewrites in a single pass, using auxiliary data
structures such as variable binding maps, delayed substitutions, and occurrence counts. Such optimizers often
perform transformations according to relatively simple rewrite rules, but the subtle interactions between the
data structures needed for efficiency make them tricky to write and trickier to prove correct. We present a
system for semi-automatically deriving both an efficient program transformation and its correctness proof
from a list of rewrite rules and specifications of the auxiliary data structures it requires. Dependent types
ensure that the holes left behind by our system (for the user to fill in) are filled in correctly, allowing the user
low-level control over the implementation without having to worry about getting it wrong. We implemented
our system in Coq (though it could be implemented in other logics as well), and used it to write optimization
passes that perform uncurrying, inlining, dead code elimination, and static evaluation of case expressions
and record projections. The generated implementations are sometimes faster, and at most 40% slower, than
hand-written counterparts on a small set of benchmarks; in some cases, they require significantly less code to
write and prove correct.
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1 INTRODUCTION

Program transformations are the heart of any good optimizing compilerÐso they should be correct,
efficient, and easy to write. Functional languages make it easy to describe transformations as rewrite
rules, implemented by pattern-matching. But those naive implementations can be unacceptably
inefficient. They may fail to get rid of all redexes in one pass, or they may call to helper functions
which require an unacceptable number of extra traversals.

For efficiency, compiler writers employ a wide range of implementation tricks, such as delayed
substitutions, occurrence counts, and variable binding maps [Appel and Jim 1997; Benton et al.
2004; Kennedy 2007; Peyton Jones and Marlow 2002]. Such implementations can be very efficient
indeed, but much harder to write correctly and reason about, as they require complex bookkeeping
to properly update auxiliary data structures at every recursive call.
To regain confidence in an implementation, one can prove that it behaves as expected. This

approach has been taken by several compiler implementations in recent years [Anand et al. 2017;
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Kumar et al. 2014; Leroy et al. 2012; Neis et al. 2015], and is highly effective [Yang et al. 2011].
But such proofs are exceptionally difficult. An efficient program transformation, already tricky to
reason about on paper, is even more difficult to work with in a formal proof system. Even for a
single transformation, articulating the invariants on auxiliary data structures in formal language
and using them to prove an implementation correct can be challenging enough to be considered a
research contribution on its own [Savary Bélanger and Appel 2017].

In this paper, we describe a method for semi-automatically deriving correct and efficient imple-
mentations from specifications:

• by semi-automatic, wemean that large parts of implementation and proof can be automatically
generated from a program transformation’s specification;
• by correct, we mean that the derived implementation is guaranteed to perform transforma-
tions according to a given system of syntactic rewrite rules;
• by efficient, we mean that derived implementations are about as fast as well-optimized
hand-written code.

Importantly, specifications of program transformations include not only a high-level description of
the transformation to perform, but also a description of the auxiliary data structures needed to
implement it efficiently. Ourmethod for deriving implementation and proof from these specifications
is then designed around the observation that an efficient program transformation resembles a
traversal with zipper [Huet 1997] where expensive computations are incrementalized through the
use of extra parameters and state variables.
We have implemented this method as a metaprogram in Coq. It takes a specification which

includes a list of rewrite rules to implement, produces a partial functional program with partial
proof that its inputs and outputs are related to each other under the given rewrite system, and
leaves behind proof obligations corresponding to components whose implementation and proof
need guidance from the user. Dependent types ensure that each such component is written correctly.
Once all obligations have been solved, one obtains an efficient functional implementation proved
correct with respect to the given rewrite rules.1

Finally, our tool does not require the user to learn a new domain specific language or framework:
the specifications the metaprogram requires can be expressed in terms of ordinary Coq inductive
relations, and the proof obligations it generates can be solved using ordinary Coq tactics.

Contributions:

• We develop a theory of efficient program transformation using context-dependent rewrites.
• We show how to derive efficient functional programs from specifications written in this
theory.
• We demonstrate a tool to do this mostly automatically.
• We use our tool to implement and verify functional-language optimizations. In some cases, it
takes a lot less code (and proof), and benchmarks suggest that the optimizers are about as
fast as (i.e. at most 40% slower than) hand-written counterparts.

1To obtain a full compiler correctness theorem, one then needs to prove each rewrite rule sound with respect to the
semantics of the object language. Such proofs are beyond the scope of our tool. However, we find that when proving
program transformations correct by hand, the proofs are often naturally structured in two layers: one that relates the
implementation to a set of rewrite rules, and one that proves the rewrite rules semantically sound. The first layer is a
substantial part of the entire proof, and our tool helps to automate it away.
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Variables Var ∋ x ,y, . . .

Constructor tags Tag ∋ c

Primitives Prim ∋ p

Expressions e ::= halt x

| f (®x)
| let x = Con c ®y in e

| let x = Projn y in e

| case x of
−−−−→
c ⇒ e

| let x = Prim p ®y in e

| let
−−−−−−−→
f (®x) = e in e

Fig. 1. λcps syntax.
−−−−−−−→
f (®x) = e is a block of mutually recursive functions, each with 0 or more parameters.

2 WHAT MAKES PROGRAM TRANSFORMATIONS DIFFICULT TOWRITE?

To illustrate how tricky it can be to write efficient program transformations correctly by hand,
this section presents some program transformations used by functional-language compilers and
the tricks used to implement them efficiently. We have used our tool to implement each of these
transformations with a fraction of the effort required to do so manually. Because we specify
program transformations in a more principled manner, our tool is able to fill in most of the
implementation automatically and generates proof obligations for the remaining parts that prevent
subtle interactions between efficiency tricks from introducing bugs.

The user of our tool can provide any first-order Coq inductive type representing an intermediate
language, but the examples in this paper will focus on a continuation-passing-style intermediate
representation that we call λcps. The syntax for λcps terms is given in figure 1. It’s an untyped
call-by-value lambda calculus with constructors and recursive functions; every call is a tail call.
Although typed ML-like source languages tie constructor-matching and record-projection to-

gether in a case or match expression, λcps is a low-level untyped language, designed for ease
of analysis, optimization, and code generationÐso our a case expression just selects the branch
with the matching constructor tag. Then each branch must use projections to access constructor
arguments.

Figure 2 gives a representation of λcps as a Coq inductive type. This representation additionally
contains fun_tags, which can be used to associate metadata with each function definition and call
site.

2.1 Case Folding

The case folding transformation states that if a variable x is bound to a constructor application c ®y,
then any case expression that scrutinizes x later on can be simplified to the branch corresponding
to c . As a rewrite rule:

(c ′⇒ e ′) ∈
−−−−→
c ⇒ e C = D ◦ (let x = Con c ′ ®y in □) ◦ E x not bound on the stem of E

C[case x of
−−−−→
c ⇒ e] { C[e ′]

whereC , D, and E denote one-hole contexts, □ is the empty context, square brackets denote context
application, and ◦ denotes context composition.
An efficient implementation carries along a finite map ρ as an extra parameter that associates

variable names with constructor applications. Upon encountering a binding let x = Con c ®y in e ,
we extend ρ with x 7→ c ®y before making a recursive call on e . Upon encountering a case expression
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Definition var := positive.

Definition fun_tag := positive.

Definition ctor_tag := positive.

Definition prim := positive.

Inductive exp: Type := Econstr (x: var) (c: ctor_tag) (ys: list var) (e: exp)

| Ecase (x: var) (ces: list (ctor_tag ∗ exp))

| Eproj (x: var) (c: ctor_tag) (n: N) (y: var) (e: exp)

| Efun (fds: list fundef) (e: exp)

| Eapp (f: var) (ft: fun_tag) (xs: list var)

| Eprim (x: var) (p: prim) (ys: list var) (e: exp)

| Ehalt (x: var)

with fundef: Type := Ffun (f: var) (ft: fun_tag) (xs: list var) (e: exp).

Fig. 2. λcps represented as a Coq inductive type. This type is not built into our tool; instead, the user can

choose any such type, representing the user’s intermediate language.

case x of
−−−−→
c ⇒ e , we check if (x 7→ c ′ ®y) ∈ ρ and if there exists a case arm c ′⇒ e ′ in the list of case

arms −−−−→c ⇒ e . If so, we make a recursive call on e ′, getting rid of the surrounding case expression
and all untaken branches in the process.

When a binding of variable x can occur inside the scope of another binding of x , one must delete
bindings in ρ to handle this name shadowing. We avoid this problem by enforcing a global invariant
that all bindings are globally unique names, as do many compilers [Appel and MacQueen 1991;
Chambart et al. 2016; Kranz et al. 1986; Steele 1978], including all SSA-based compilers [Cytron
et al. 1991]. Other compilers enforce a no-shadowing invariant [Peyton Jones and Marlow 2002];
our theory and tool can accommodate either approach.

2.2 Projection Folding

The projection folding transformation states that if a variable x is bound to a constructor application
c ®y and later we project the nth component from x and bind the result to z, then we can get rid of
the projection and instead just use yn (that is, the nth component of y) in place of z. As a rewrite
rule:

C = D ◦ (let x = Con c ®y in □) ◦ E x not bound on the stem of E

C[let z = Projn x in e] { C[e[yn/z]]

An efficient implementation carries along a finite map ρ, as in case folding, to associate names x
with constructor applications c ®y. Calling a helper function to perform the substitution e[yn/x]
would make the transformation take quadratic time. To achieve quasilinear runtime, we use an
extra parameter σ to represent a delayed substitution. This substitution is applied to each free
variable throughout the traversal. Upon encountering a projection let z = Projn x in e , we check
whether (σx 7→ c ®y) ∈ ρ; if so, we drop the projection and make a recursive call on e with σ

extended by (z 7→ yn). To avoid issues around shadowing, this implementation strategy maintains
the global-unique-bindings invariant.

This optimization is often done simultaneously with case folding. The two optimizations interact
in a nontrivial way: upon encountering a case expression case x of

−−−−→
c ⇒ e , one must now check

whether σx occurs in ρ instead of just x .
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2.3 Dead Function Elimination

Dead function elimination removes definitions of nonrecursive functions that are never used. As a
rewrite rule:

f < FV(e2)

C[let f (®x) = e1 in e2] { C[e2]

A naive implementation might call a helper function to compute FV(e2) in order to check whether
a function f is dead or not, requiring an extra traversal and the construction of a free variable set.
One possible efficient implementation could be to return both a transformed expression and

its free variable set. Then, upon encountering a function definition let f (®x) = e1 in e2, we could
first make a recursive call on e2 to obtain a transformed expression e ′2 along with its free variables
FV(e ′2). If f < FV(e

′
2) then we could simply drop the definition and return (e ′2, FV(e

′
2)); otherwise,

we could recursively transform the function body.
This is asymptotically faster than a naive implementation using a helper function, but still has a

problem. Suppose we would like to perform dead variable elimination simultaneously with inlining.
Then, upon encountering a function definition let f (®x) = e1 in e2, we have the following dilemma:

• If f is inlinable multiple times in e2, then we would like to first make a recursive call on e1 so
that f can be optimized before it gets inlined.
• If f is dead, then we would like to just drop its definition immediately instead of wasting
time optimizing its body.

In other words, we would like to know whether f ∈ FV(e2) even before making any recursive calls.
We can do this by maintaining globally unique bindings and a mapping δ from variable names to
the number of times they occur in nonbinding position in the entire term being transformed. A
function f is dead if δ (f ) = 0. Thus, upon encountering a function definition let f (®x) = e1 in e2,
we can first use δ to check whether f is dead and behave accordingly. In the case where f is dead,
we must maintain the invariant on δ by decrementing the occurrence counts of every variable that
occurs in the function body e1 before deleting it.
In practice, it’s desirable to perform dead function elimination simultaneously with case and

projection folding. This is because the rewrites can cascade: for example, case folding may remove
all branches in which a function f is called, leaving it dead; removing f ’s definition may leave
even more definitions dead, and so on. Note again that, when doing all three of these at once, their
respective implementation strategies interact in subtle ways. For example, now case folding must
traverse all branches scheduled for deletion in order to decrement occurrence counts properly;
morever, this decrementing operation must properly apply projection folding’s delayed substitution
σ along the way.

2.4 Uncurrying

The following function f is a curried function of two arguments written in continuation-passing
style:

let f (k,x) = (let д(j,y) = e in k(д)) in . . .

The goal of the uncurrying transformation is to rewrite the body of д as a call to an uncurried
helper function f ′:

let f (k,x) = (let д(j,y) = f ′(j,x ,y) in k(д))

and f ′(j,x ,y) = e in . . .
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Though this doesn’t uncurry f directly, we can record the variables f and д in a set to be returned
along with the transformed expression, and tell a future inlining pass to inline fully saturated calls
to those variables. This calls the uncurried f ′ where possible and keeps f available in case it’s ever
partially applied. If it turns out that f is never partially applied, then dead function elimination
will (later) eliminate it.

In the general case (and ignoring some technical side-conditions), the uncurryer traverses lists
of mutually recursive functions and replaces terms matching the pattern

(f (k :: ®x) = let д(®y) = e in k(д)) :: ®fd

with (f (k :: ®x) = let д(®y) = f ′(®x ++ ®y) in k(д)) ::

(f ′(®x ++ ®y) = e) :: ®fd.

Implementing this transformation as a recursive function using pattern matching is not difficult. If
one wants to preserve globally unique bindings, the implementationmust carry around a fresh-name
generator (i.e., a counter).
But one must choose carefully where to make recursive calls! A seemingly natural choice for a

recursive call is the body e of the newly created uncurried helper function f ′, but such a choice
would actually prevent any function with more than two arguments from being fully uncurried. To
see why, consider the following example of a curried function f that takes four arguments x , y, z,
andw :

let f (kf ,x) =

let д(kд ,y) =

let h(kh , z) =

let j(kj ,w) = ebody in kh(j)

in kд(h)

in kf (д)

in . . .

This term matches the uncurrying pattern with

e := let h(kh , z) = · · · in kд(h),

and applying the rewrite rule yields the following transformed term:

let f (k ′f ,x
′) = (let д(k ′д ,y

′) = f ′(k ′f ,x
′
,k ′д ,y

′) in k ′f (д))

and f ′(kf ,x ,kд ,y) =

let h(kh , z) =

let j(kj ,w) = ebody in kh(j)

in kд(h)
=e

in . . .

Immediately making a recursive call on e (boxed in red) would uncurry the inner h, after which the
body of f ′ would no longer match the uncurrying pattern. This would prevent the 4-argument f
that we started with from being fully uncurried.
The crux of the issue is that, in the list

(f (k :: ®x) = let д(®y) = f ′(®x ++ ®y) in k(д)) ::

(f ′(®x ++ ®y) = e) :: ®fd

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 74. Publication date: August 2021.



Deriving Efficient Program Transformations from Rewrite Rules 74:7

reached after a single uncurrying step, one must first make a recursive call on (f ′(®x ++ ®y) = e) :: ®fd
before transforming e , in case f ′ is itself eligible for uncurrying. Thus an efficient implementation
must make sure to make a recursive call not on e , but on this entire sublist.

3 A THEORY OF EFFICIENT PROGRAM TRANSFORMATION

So far we have described several program transformations along with the ugly details required to
get them right. Our tool allows to specify each of these transformations, complete with the various
auxiliary data structures needed for efficiency in each case. Moreover, it derives large portions of
efficient functional implementations from such specifications automatically.

To function, our tool requires formal descriptions of auxiliary data structures used by implemen-
tors. We codify such strategies in a łtheory of efficient program transformation.ž The design of
our theory is motivated by the following observations about the transformations described in the
previous section:

• Many desirable transformations aren’t local: for example, case- and projection-folding re-
quire knowledge of bindings in scope. Even uncurrying, which appears to be a simple local
transformation, requires a mechanism for generating fresh names if one wants to maintain
globally unique bindings.
• Each transformation can be implemented as a single top-down-then-bottom-up pass that
runs in quasilinear time. To do so, one needs:
– fine-grained control over which rules should be applied top-down vs. bottom-up and the
locations of recursive calls,

– extra parameters (e.g., bindings in scope) and state variables (e.g., occurrence count maps)
that efficiently summarize information about the surrounding context, and

– the ability to delay computations and fuse multiple such delayed computations together to
avoid extra traversals (e.g., substitution).

From these observations, we assemble the following theory:

• A program transformation is specified by guarded contextual rewrite rules of the form
C[e] −→ C[e ′] if P , embellished with labels that control traversal order and the locations of
recursive calls.
• A program transformation is implemented by a recursive function. We can think of this
function as a traversal with zipper [Huet 1997]: at each recursive call on e , there exists some
surrounding one-hole context C , initially empty, that grows as the function descends into e’s
subterms and shrinks as it returns from recursive calls. Viewed in this way, an execution trace
of this recursive function corresponds to the execution of an abstract machine with states
of the form ⟨C | e⟩. This abstract machine has transitions that correspond directly to the
aforementioned guarded contextual rewrite rules, connecting the functional implementation
to its specification.
• Auxiliary data structures manipulated by an efficient implementation summarize information
about this machine state for easy lookup. For example, the map ρ of bindings in scope holds
a mapping x 7→ c ®y for each let x = Con c ®y in _ that occurs in C . A data structure that only
summarizes information about the surrounding context C can be passed down as an extra
parameter; on the other hand, a data structure that summarizes information about both C
and e (e.g., the map δ of global occurrence counts) must be passed down and returned up as a
state variable.
• A computation can be efficiently delayed and fused so long as it distributes over constructor
application. Though quite restrictive, we believe that this is still sufficient to express a wide
range of program transformations.
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3.1 Transformation as Traversal with Zipper

We now make the above high-level description more precise. Define the following syntactic cate-
gories:

Constructors Constr ∋ c

Atoms Atom ∋ a

Terms e ::= a | c ®e
Contexts C ::= □ | C :: c ®e □ ®e

We consider terms e built out of atoms a and constructor applications c ®e , and define one-hole
contexts C to be snoc-lists of frames (contexts of depth 1) of the form c ®e □ ®e . We write □ for the
empty context and use square brackets to denote context application. The distinction between
nullary constructors and atoms will be made clear when we describe delayed computations.
Recall that the recursive functions we would like to generate perform transformations in a

top-down-then-bottom-up manner. What we mean by this is that our generated recursive functions
should have two phases:

Top-down, some set of top-down rewrite rules are tried in turn and recursive calls are made; if
no top-down rewrite rule is applicable, then recursive calls are simply made on every subterm.
Atoms are left untouched. This phase inspects the input term e and produces a transformed
term e ′.

Bottom-up, after recursive calls have been made, some set of bottom-up rewrite rules are tried
in turn; if no rules are applicable, then the term is left unchanged. This phase inspects the e ′

returned by the top-down phase and produces a final transformed term.

To enforce this traversal order, we define labels, labeled terms, and labeled contexts:

Labels ℓ ::= Down | Mid | Up | Shift
Labeled terms eℓ ::= ℓ e | c ®eℓ

Labeled contexts Cℓ ::= □ | Cℓ :: ℓ □ | Cℓ :: c ®e □
−→
eℓ

In a labeled term, each subterm may be associated with a label ℓ; similarly a labeled context is
composed of frames that may contain labeled terms and frames of the form ℓ □. Terms left of
the hole □ are unlabeledÐour abstract machines (defined below) will process labelled subterms
left-to-right, with □ marking the boundary. Labels are used to control traversal order:

• Down e is a term e waiting to be traversed in a top-down manner.
• Mid e is a term e that has been traversed top-down and is waiting to be traversed bottom-up.
• Up e is a term that has been traversed both top-down and bottom-up, and is ready to be
returned.
• Shift forces our abstract machines to move to the next argument when processing a construc-
tor application c ®e .

We define a program transformation in terms of an abstract machine operating on states
〈

Cℓ
�

� eℓ
〉

composed of a labeled one-hole contextCℓ and focused term eℓ . A machine’s behavior is defined by
a list of transition rules

〈

Cℓ
1

�

� eℓ1
〉

−→
〈

Cℓ
2

�

� eℓ2
〉

if P , where Cℓ
1 , e

ℓ
1 , C

ℓ
2 , e

ℓ
2 , and P may also contain

variables denoting placeholders for concrete terms and contexts. The machine is executed by
starting in some initial state

〈

Cℓ
0

�

� eℓ0
〉

and repeatedly applying the first applicable rule in the list.
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®D
〈

Cℓ

�

�

�

�

Down (c
−→
eℓ)

〉

−→

〈

Cℓ :: Mid □

�

�

�

�

c
−−−−−−−−−→
(Down eℓ)

〉

(congruence)

〈

Cℓ

�

�

�

�

c eℓ
−→
eℓ
〉

−→

〈

Cℓ :: c □
−→
eℓ

�

�

�

�

eℓ
〉

(first-argument)

〈

Cℓ :: c ®e □
−→
eℓ

�

�

�

�

Up e

〉

−→

〈

Cℓ

�

�

�

�

Shift (c ®e e
−→
eℓ)

〉

(exit-argument)

〈

Cℓ

�

�

�

�

Shift (c ®e eℓ
−→
eℓ)

〉

−→

〈

Cℓ :: c ®e □
−→
eℓ

�

�

�

�

eℓ
〉

(next-argument)

〈

Cℓ :: c ®e □
�

� Up e
〉

−→
〈

Cℓ
�

� Up (c ®e e)
〉

(last-argument)
〈

Cℓ
�

� c
〉

−→
〈

Cℓ
�

� Up c
〉

(no-arguments)
〈

Cℓ
�

� a
〉

−→
〈

Cℓ
�

� Up a
〉

(atom)
〈

Cℓ :: Mid □
�

� Up e
〉

−→
〈

Cℓ
�

�Mid e
〉

(exit-topdown)

®U
〈

Cℓ
�

�Mid e
〉

−→
〈

Cℓ
�

� Up e
〉

(exit-bottomup)

Fig. 3. A program transformation ( ®D, ®U ) as an abstract machine.

We define a top-down rewrite rule to be a transition rule of the form
〈

Cℓ
�

� Down e1
〉

−→
〈

Cℓ :: Mid □
�

� eℓ2
〉

if P

where eℓ2 can contain only Down labels. The Down label on the left-hand side forces these rules
to be applicable only to terms waiting to be traversed top-down. The Down labels in eℓ2 are used
to mark the subterms on which to make łrecursive calls.ž The Mid label is used to indicate that
bottom-up rewrite rules should be checked at this location after all such recursive calls have been
completed. We explain exactly how each of these labels control traversal order in detail below.
We also will require that Down labels in the right-hand side eℓ2 be applied only to variables. This
restriction does not unduly limit expressiveness: x may be any arbitrary e because P could just
include an extra clause of the form x = e . The restriction just makes the deriver easier to implement,
and delayed computations a bit easier to explain.
We define a bottom-up rewrite rule to be a transition rule of the form

〈

Cℓ
�

� Mid e1
〉

−→
〈

Cℓ
�

� Up e2
〉

if P .

The Mid label on the left-hand side forces these rules to be applicable only to terms that have
already been traversed top-down and are waiting to be traversed bottom-up. The Up label on
the right-hand side marks the transformed term as having been traversed both top-down and
bottom-up, and as ready to be returned.

A program transformation is a pair ( ®D, ®U ) of top-down rewrite rules ®D and bottom-up rewrite

rules ®U , and denotes the abstract machine in figure 3. Upon encountering an input term, this

machine first tries to apply each of the top-down rewrite rules ®D. If any such rule is applicable,
the current subterm in focus is replaced by its right-hand side, which marks the locations of every
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subsequent recursive call with a Down label and augments the context Cℓ with the frame Mid □
to indicate that bottom-up rewrite rules should be checked at this location after the top-down
phase has completed. If no top-down rule is applicable and the machine is processing a constructor

application c
−→
eℓ , the congruence rule schedules each argument eℓ for a recursive call.

Rules first-argument, exit-argument, next-argument, last-argument, no-arguments,
and atom carry out the rest of the top-down phase by processing subterms of the form eℓ containing
Down labels indicating the locations of recursive calls. first-argument starts the process by
descending into the first argument eℓ in the case where the focused term is a constructor application

c eℓ
−→
eℓ . After an argument e has been fully processed (is labeled Up), exit-argument continues the

computation by moving back upwards and using Shift to indicate that the next argument is ready to
be processed. next-argument then descends into the next such argument eℓ . After the rightmost
argument e has been processed, last-argument collects it along with all previous arguments ®e and
marks the whole constructor application c ®e e as done with the top-down phase and ready for the
bottom-up phase. Finally, no-arguments and atom state that any nullary constructor application
or atom is immediately done with the top-down phase.
After the top-down phase is complete, exit-topdown marks the beginning of the bottom-up

phase by popping the Mid label from the context Cℓ and applying the label to e . This allows the

application of bottom-up rewrite rules ®U . If no such rules are applicable, exit-bottomup marks e
as done with the bottom-up phase.

3.1.1 A Concrete Example. Consider a constant folding transformation 0 × e −→ 0 over arithmetic
expressions e ::= 0 | 1 | e+e | e×e . An efficient implementation should perform this transformation
in both a top-down and bottom-up manner:

• Rewriting top-down allows folding 0 × e down to 0 without wastefully processing e .
• Rewriting bottom-up allows folding (0 × e1) × e2 down to 0 in one linear-time pass.

Such an implementation can be specified by two rulesÐone top-down and one bottom-up:

®D =
[〈

Cℓ
�

� Down (0 × e)
〉

−→
〈

Cℓ :: Mid □
�

� 0
〉

if ⊤
]

®U =
[〈

Cℓ
�

�Mid (0 × e)
〉

−→
〈

Cℓ
�

� Up 0
〉

if ⊤
]

The execution trace in figure 4 demonstrates how the corresponding abstract machine folds (0×(1+
1 + 1)) × 1 down to 0. Note that top-down rule application avoids processing the large expression
1 + 1 + 1, saving work, and that the bottom-up rule application performs the reduction 0 × 0 −→ 1
after the inner 0 × (1 + 1 + 1) has been reduced to 0, allowing all redexes to be eliminated in one
pass.

3.1.2 Program Transformations as Recursive Functions. So far, we’ve shown how program trans-
formations can be specified by lists of top-down and bottom-up rewrite rules, and executed by
an abstract machine. We now connect the abstract machine to a functional implementation, by

giving a translation from specifications ( ®D, ®U ) to recursive functions written in a generic untyped
call-by-value functional language with pattern matching and pattern guards [Erwig and Jones
2001]. The translation is given in figure 5. Though we will improve upon this translation in later
sections, the functions it produces already resemble the implementations generated by our tool.2

The function ⟦−⟧ translates a specification of a program transformation ( ®D, ®U ) into a recursive
function that implements it. It leaves behind a hole (boxed in red) for each rewrite rule in the
specification. These holes are to be filled in manually by the user of our tool, with a pattern guard

2Coq does not support pattern guards, so in practice our tool emits case trees with join points resembling a naive desugaring
of pattern guards into a standard ML-like language.
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⟨□ | Down (0 × (1 + 1 + 1)) × 1⟩ −→ (congruence)

⟨□ :: Mid □ | Down (0 × (1 + 1 + 1)) × Down 1⟩ −→ (first-argument)

⟨□ :: Mid □ :: □ × Down 1 | Down (0 × (1 + 1 + 1))⟩ −→ (top-down rule application)

⟨□ :: Mid □ :: □ × Down 1 :: Mid □ | 0⟩ −→ (no-arguments)

⟨□ :: Mid □ :: □ × Down 1 :: Mid □ | Up 0⟩ −→ (exit-topdown)

⟨□ :: Mid □ :: □ × Down 1 | Mid 0⟩ −→ (exit-bottomup)

⟨□ :: Mid □ :: □ × Down 1 | Up 0⟩ −→ (exit-argument)

⟨□ :: Mid □ | Shift (0 × Down 1)⟩ −→ (next-argument)

⟨□ :: Mid □ :: 0 × □ | Down 0⟩ −→ (congruence)

⟨□ :: Mid □ :: 0 × □ :: Mid □ | 0⟩ −→ (no-arguments)

⟨□ :: Mid □ :: 0 × □ :: Mid □ | Up 0⟩ −→ (exit-topdown)

⟨□ :: Mid □ :: 0 × □ | Mid 0⟩ −→ (exit-bottomup)

⟨□ :: Mid □ :: 0 × □ | Up 0⟩ −→ (last-argument)

⟨□ :: Mid □ | Up (0 × 0)⟩ −→ (exit-topdown)

⟨□ | Mid (0 × 0)⟩ −→ (bottom-up rule application)

⟨□ | Up 0⟩

Fig. 4. Running a simple constant folding transformation on the term (0 × (1 + 1 + 1)) × 1.

�
( ®D, ®U )

�
=

let rec transform C e =

let e ′ =

if e is an atom then e else

match e with

for each ⟨C | Down e1⟩ −→
〈

C :: Mid □
�

� eℓ2
〉

if P ∈ ®D,

e1 | Some (x , . . .) ← guard implementing P ⇒
�
eℓ2
�
C
where FV(P) = {x , . . .}

for each constructor c,

c ®e ⇒
�
c
−−−−−−−−→
(Down e)

�

C

match e ′ with

for each ⟨C | Mid e1⟩ −→ ⟨C | Up e2⟩ if P ∈ ®U ,

e1 | Some (x , . . .) ← guard implementing P ⇒ e2where FV(P) = {x , . . .}

e ⇒ e

Fig. 5. Generating a recursive function from a specification ( ®D, ®U ).
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⟦Down e⟧C ℓ = transform C e where C = Cℓ with all labels erased
�
c eℓ1 · · · e

ℓ
n

�
C ℓ =

let x1 =
�
eℓ1
�
C ℓ :: c □ e ℓ2 · · · e

ℓ
n

in

let x2 =
�
eℓ2
�
C ℓ :: c x1 □ e ℓ3 · · · e

ℓ
n

in

...

let xn−1 =
�
eℓn−1

�
C ℓ :: c x1 · · · xn−2 □ e ℓn

in

let xn =
�
eℓn
�
C ℓ :: c x1 · · · xn−1 □

in

c x1 · · · xn

Fig. 6. Helper function for the translation in figure 5.

that checks the side conditions of each rewrite rule. If a guard for side condition P evaluates to
Some (v, . . .), then P must hold with instantiations x 7→ v for each x in the free variables of P that
do not occur in the corresponding rule’s left-hand side. In section 3.3.1, we will show an example
of a program transformation with nontrivial holes of this form. In our Coq implementation, these
holes correspond to proof obligations of type option Σx, ...P . This type ensures that they can only
be filled with sound implementations.3

The translation ⟦−⟧ uses a helper function
�
eℓ
�
C
, defined in figure 6, to translate the right-hand

sides eℓ of top-down rewrite rules. Specifically, the extra parameter C is used to compute the
one-hole context to be passed to each recursive call (i.e., each subterm labelled Down in eℓ); this
context must be updated throughout the top-down phase to reflect changes made by recursive calls
on subterms.
Each piece of the translation for a transformation ( ®D, ®U ) corresponds directly to a piece of the

abstract machine given in figure 3:

• The separation of the implementation into top-down and bottom-up phases corresponds to
the rules exit-topdown and exit-bottomup and the use of labels Down, Mid, and Up.
• The if-then-else to check whether e is an atom corresponds to atom.
• The let-bindings generated by ⟦−⟧C , which carefully update the one-hole context parameter
with newly transformed subterms, correspond to applications of first-argument, exit-
argument, next-argument, last-argument, and no-arguments.

• Each case arm of the form C, c ®e ⇒
�
c
−−−−−−−−→
(Down e)

�

C
in the top-down phase corresponds to an

application of the congruence rule.
• All remaining case arms correspond to the rewrite rules from which they were generated.

3.1.3 Constant Folding as a Recursive Function. Continuing our constant folding example, figure 7
shows the recursive function generated by the above translation for the constant folding trans-
formation described in section 3.1.1. The two holes guard1 and guard2, boxed in red, correspond
to the side conditions of the two rewrite rules from which the recursive function was generated:
guard1 corresponds to the side condition of the top-down rewrite rule

〈

Cℓ
�

� Down (0 × e)
〉

−→
〈

Cℓ :: Mid □
�

� 0
〉

if ⊤, and guard2 corresponds to the side condition of the bottom-up rewrite rule

3Actually, to avoid the extra overhead associated with bundling everything up into option and sigma types, the proof
obligation is written in continuation-passing style, with type ΠR (Πx, . . .P → R) → R → R .
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let rec transform C e =

let e ′ =

if false then e else

match e with

0 × e | Some () ← guard1 ⇒ 0

e1 + e2 ⇒

let x1 = transform (C :: □ + e2) e1 in

let x2 = transform (C :: x1 + □) e2 in

x1 + x2

e1 × e2 ⇒

let x1 = transform (C :: □ + e2) e1 in

let x2 = transform (C :: x1 + □) e2 in

x1 × x2

match e ′ with

0 × e | Some () ← guard2 ⇒ e

_, e ⇒ e

Fig. 7. Constant folding, generated from the specification in section 3.1.1 according to the translation in

figure 5.

〈

Cℓ
�

�Mid (0 × e)
〉

−→
〈

Cℓ
�

� Up 0
〉

if ⊤. In this toy example, both side conditions are just the trivial
side condition ⊤, and contain no free variables; therefore, both holes are trivial to fill with the
always-successful guard.
Note that a majority of the implementation shown in figure 7 has to do with making recursive

calls in unsurprising places, and is generated fully automatically by the translation. This toy example
only has two such congruence cases, but in real applications there are many more, and our tool
generates correctness proofs for each such case in addition to their implementations.

3.2 Summarizing Information in the Surrounding Context

We’ve shown that program transformations can be specified by contextual rewrite rules and
executed on an abstract machine whose behavior corresponds closely to the execution of actual
implementations written using recursion and pattern matching. We now use this correspondence
to formally describe the kinds of auxiliary data structures frequently used by compiler writers to
summarize information about the surrounding context.

Throughout this section, let C denote the context constructed by erasing all labels from Cℓ , and
similarly let e denote the term constructed by erasing all labels from eℓ . An auxiliary data structure
is an extra value v that’s related to the erased machine state ⟨C | e⟩ by some invariant ∼ at each
execution step. This extra value evolves in parallel with the machine state; i.e., for each execution
trace

〈

Cℓ
1

�

� eℓ1
〉

−→ · · · −→
〈

Cℓ
n

�

� eℓn
〉

, there is a parallel trace v1, . . . ,vn such that ⟨Ci | ei ⟩ ∼ vi for
all 1 ≤ i ≤ n.
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Here are a few example specifications of such auxiliary data structures, drawn from the transfor-
mations described in section 2:

• The variable binding map ρ used by case (ğ2.1) and projection folding (ğ2.2) has invariant

⟨C | _⟩ ∼ ρ = ∀(x 7→ c ®y) ∈ ρ, C contains the binding (let x = Con c ®y in _).

• The occurrence count map δ used by dead function elimination (ğ2.3) has invariant

⟨C | e⟩ ∼ δ = ∀x , δ (x) = no. of times x occurs in non-binding position in C[e].

• The monotonic counter variable x used by uncurrying (ğ2.4) to generate globally fresh names
has invariant

⟨C | e⟩ ∼ x = ∀y, y occurs in C[e] =⇒ y < x .

Note that ρ’s invariant doesn’t depend on the subterm in focus e , while δ ’s and x ’s do. This has an
interesting consequence: if ⟨C | c e⟩ ∼ ρ and the recursive traversal of e produces a transformed
term e ′, we still have ⟨C | c e ′⟩ ∼ ρ because ρ’s invariant depends only on C . Thus, there is no
need to update ρ łon the way upž after returning from a recursive traversal of a subterm. This is
what allows ρ to be passed around as a parameter, while δ and x must be passed around as state
variables.

So we have identified two kinds of auxiliary data structures used to summarize information
about the surrounding contextÐparameters and state variablesÐand a way to formally specify
their behavior using invariants. Our tool uses this formal description to generate, from a small set
of user-defined basic operations, proved-correct code that performs the necessary bookkeeping
to maintain each auxiliary data structure’s invariants throughout a whole traversal. This is made
possible by the observation that, in order to preserve an invariant ∼ throughout a whole traversal,
one need only manually specify how to preserve it across each abstract machine step. Inspecting
the transition rules in figure 3 reveals that there are only a few such operations that need to be
implemented manually:

• The rules congruence, atom, exit-topdown, and exit-bottomup all erase to the identity
transition ⟨C | e⟩ −→ ⟨C | e⟩, and thus it’s trivial to generate code that preserves invariants
across these transitions.
• Top-down and bottom-up rewrite rules both erase to transitions of the form

⟨C | e1⟩ −→ ⟨C | e2⟩ if P ,

and one must manually specify how to preserve invariants on state variables across this
transition. (It’s not necessary to specify how to preserve invariants on parameters because the
surrounding context C remains unchanged.) This corresponds to the fact that the user must
explain how to preserve the invariants on their auxiliary data structures across individual
rewriting steps.
• The rules first-argument, exit-argument, next-argument, and last-argument erase to
transitions of the form

⟨C | c ®e1 e ®e2⟩ −→ ⟨C :: c ®e1 □ ®e2 | e⟩ and

⟨C :: c ®e1 □ ®e2 | e⟩ −→ ⟨C | c ®e1 e ®e2⟩ .

Since both the context and focus are changing in these transitions, both state variables
and parameters need to be updated. These transitions correspond to the fact that the user
must explain how to preserve the invariants on their auxiliary data structures across single
downward or upward movements through the term being transformed.
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3.3 Delayed Computation

Delayed computations are used to incrementalize and fuse together computations that would
otherwise require extra traversals. In the examples presented in section 2, this was used to efficiently
implement variable substitution: rather than calling a helper function for substituting one variable
by another, projection folding uses a delayed substitution σ that gets applied to free variables
throughout the traversal.

While parameters and state variables are best characterized by viewing program transformations
as abstract machines, delayed computations are best characterized by viewing program transforma-
tions as recursive functions. Suppose transform is a recursive function that implements a program

transformation ( ®D, ®U ) without using a delayed computation, as shown in figure 5. For simplicity’s
sake, we’ll also assume that transform doesn’t use a state variable or parameterÐthe explanation to
follow can be readily generalized to account for them, but involves a number of extra technical
details that obscure the high-level idea. transform’s body has the following form:

let rec transform C e =

let e ′ =

if e is an atom then e else

match e with

... top-down rules ...

... congruence cases ...

match e ′ with

... bottom-up rules ...

We want a function transform′ that takes an extra parameter d representing a delayed computation
and satisfies transform′C e d = transformC (run d e), where run is a function that takes the delayed
computation d and runs it to completion on e . (For example, in the case of projection folding, d is a
partial map Var⇀ Var and run a function that implements parallel substitution.) Importantly, we
would like to implement transform′ but without doing all of run d before executing transform, and
we would like to fuse nested calls run d1 (run d2 e) into single calls run d3 e .

We now demonstrate how to derive such a transform′ given suitable d . Along the way, we will
clarify what properties d and run need to satisfy in order for this derivation to be possible. First,
transform′ must be initializable with some d that represents an identity computation, since there is
no delayed computation pending at the very start of a transformation. That is, there must be some
did such that run did = id.

Now, let’s take the equation transform′ C e d = transform C (run d e) as a naive definition for
transform′ and inline transform inside of it. This yields:

let rec transform′ C e d =

let e ′ =

if (run d e) is an atom then run d e else

match run d e with

... top-down rules ...

... congruence cases ...

match e ′ with

... bottom-up rules ...
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We want to determine whether run d e is an atom, and, if not, which top-down match clause to
take, all without actually running (run d) to completion. At the same time, we still want the match
expression to be compiled to a efficient series of conditional branches. To allow this, we require
that (run d e) be an atom iff e is an atom, and that (run d) distribute over constructor applications.
Then any pattern p matches (run d e) if p matches e , and we can push the calls to (run d) inside the
if-then-else and the pattern match:

let rec transform′ C e d =

let e ′ =

if e is an atom then run d e else

match e with

... top-down rules ...

... congruence cases ...

match e ′ with

... bottom-up rules ...

Now, if transform′ is to satisfy transform′ C e d = transform C (run d e), we need to adjust each
top-down match clause: since we have removed the call to (run d), the pattern variables in each
branch capture subterms of e as they are before running d , not after. We must modify the right-hand
side of each match clause to perform a bit of the delayed computation alongside whatever rewrite
rule it implements. There are two kinds of match clauses in this match expression: (1) clauses that
correspond to top-down rewrite rules, and (2) clauses for congruence cases. We describe only how
to modify (1). The same method can be used to modify (2) because each congruence case for c ®e is

equivalent to a top-down rewrite rule
〈

Cℓ
�

� Down (c ®e)
〉

−→
〈

Cℓ :: Mid □
�

�

� c
−−−−−−−−→
(Down e)

〉

if ⊤.

Suppose we’re given a clause corresponding to a rule
〈

Cℓ
�

� Down e1
〉

−→
〈

Cℓ :: Mid □
�

� eℓ2
〉

if P .
Wemodify it as follows: because (run d) distributes over constructor applications, we can repeatedly
apply distributivity to find a delayed subcomputation dx for each variable x in the pattern e1, such

that run d e1 = e1
−−−−−−−−−−−→
[run dx x/x]. We use ®x to refer to a list of these variables, and ®dx to refer

to the corresponding list of delayed computations. Recall that our generator requires users to
manually write a guard to check the side condition P . Given the context C , pattern variables ®x , and

corresponding subcomputations ®dx , this guard must either fail by returning None or succeed with
Some (. . .) containing instantiations for each free variable in P that doesn’t occur in the left-hand
side e1. To properly incrementalize (run d), we update this guard’s specification as follows:

• Divide the free variables of P into two parts: let ®y be the variables where Down y appears in
the right-hand side eℓ2 (i.e., the subterms on which to recur), and ®z all other variables that
do not occur in the left-hand side. We allow each y in ®y to have a corresponding delayed
computation dy . Then, where transform makes a recursive call on run d y, transform′ makes
a recursive call on y with extra argument dy . This change is precisely what allows for the
fusion of nested delayed computations; we will illustrate it in action below with a concrete
example.
• Because ®x represents pre-delayed-computation values, the guard should succeed only if P

holds on post-delayed-computation values
−−−−−−−→
run dx x , not on the captured pattern variables ®x .

• The guard’s specification then becomes the following: if running the guard given C , ®x , and
®dx yields Some (®y, ®dy , ®z), then P

−−−−−−−−−−−→
[run dx x/x]

−−−−−−−−−−→
[run dy y/y]; i.e., the side condition P must hold

under the substitutions of each x by (run dx x) and y by (run dy y).
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This is all quite tricky to work out by hand, and our example below will show the kinds of bugs that
can easily arise when manipulating delayed computations manually. Fortunately, our tool prevents
the user from going wrong: for each hole to be filled with a side condition check, we generate the
above specification in the form of a Coq proof obligation, ensuring that the user can’t fill the hole
with incorrect code.

Finally, like parameters and state variables, delayed computations may have an invariant; this
invariant may depend on the focused term, and must be preserved at every recursive call.

3.3.1 A Concrete Example of Delayed Computation. Recall that the goal of the projection folding
transformation is to statically evaluate projections, so that

. . . let x = (y, z) in . . . letw = fst x in e

is optimized to
. . . let x = (y, z) in . . . e[y/w].

In general, if we ever encounter a term let z = Projn x in e in a context C that contains a binding
let x = Con c ®y in _, we would like to rewrite let z = Projn x in e into e[yn/z], where yn denotes
the nth component of ®y. Assuming that all variable bindings are globally unique, we can express
this as the following top-down rewrite rule (for clarity, we have written the side condition above a
horizontal line, as in inference rule notation):

C = D ◦ (let x = Con c ®y in □) ◦ E e ′ = e[yn/z]
〈

C
�

� Down (let z = Projn x in e)
〉

−→ ⟨C :: Mid □ | Down e ′⟩

As explained in section 2.2, an efficient implementation of this rule delays the substitution [yn/z],
to be combined later with other substitutions into a big parallel substitution σ . In terms of the d
and run function discussed in the previous section, our d in this case is just σ and run a function
subst that performs the parallel substitution.
Now, in the recursive function our tool generates from this specification, there will be a match

clause that corresponds to the above rewrite rule. In this match clause, there is some delayed
substitution σ , the term being transformed has matched against the pattern let z = Projn x in e ,
and the user of our tool must manually write a guard that checks that the rule’s side condition
holds of subst σ (let z = Projn x in e). By distributivity, it’s sufficient to check that the condition
holds of let (σz) = Projn (σx) in (subst σ e).4

Recall the method described in the previous section for generating this guard’s specification:

• Divide the free variables of the side condition P to be implemented into the variables ®y
marked with a Down label in the right-hand side of the rule (i.e., the subterms on which to
recur), and all other variables that don’t occur in the left-hand side of the rule ®z.
• Given the surrounding context C , pre-delayed-computation variables ®x and corresponding

subcomputations ®dx , the guard must either fail with None or succeed with Some (®y, ®dy , ®z)

such that P
−−−−−−−−−−−→
[run dx x/x]

−−−−−−−−−−→
[run dy y/y].

In this example, the captured variables z, x , n, e have corresponding delayed subcomputations σ , σ ,

∅ (the identity substitution), and σ ; that is, ®x = [z,x ,n, e] and ®dx = [σ ,σ , ∅,σ ]. The free variables
of the side condition to implement are {C,D,x , c, ®y,E, e ′, e, z}; of these, only e ′ is marked with a
Down label on the right-hand side Down e ′, and only D, c , ®y, and E do not appear in the left-hand
side let z = Projx n in e . So, in this example, ®y = [e ′] and ®z = [D, c, ®y,E].

4Currently, our tool does not perform this rewrite automatically; instead, it assumes that the user has chosen a properly
distributive delayed computation and will be able to perform this step by hand. In future versions of our tool, we hope to
automate this process.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 74. Publication date: August 2021.



74:18 John M. Li and Andrew W. Appel

Therefore, this particular guard has the following specification: given a context C , captured
variables z, x , n, and e , and their respective delayed computations σ , σ , ∅, and σ , the guard the user
implements must either fail with None or succeed with Some (e ′,σe ′,D, c, ®y,E) such that

C = D ◦ (let (σx) = Con c ®y in □) ◦ E

subst σe ′ e
′
= (subst σ e)[yn/z].

Such a specification could be implemented as follows:

let guard C z x n e σ =

if C can be written as (D ◦ let (σx) = Con c ®y in □ ◦ E) for some D, c, ®y,E

then Some (e,σ [z 7→ yn],D, c, ®y,E)

else None

where the check to see whether C can be written as a composition of contexts containing D, c , ®y,
and E can be implemented as a recursive function that searches through C for bindings of σx .
This specification gives the user an opportunity to come up with a new delayed substitution

σe ′ that satisfies the desired fusion law, which will be passed as argument to a recursive call on
an e ′ of their choice. In the above implementation, we chose e ′ := e and σe ′ := σ [z 7→ yn], which
correctly fuses the substitutions σ and [yn/z] and then makes a recursive call on e .5

Note also that the specification generated by the procedure described above defends the user
against easy-to-make mistakes: it requires that the user search for σx in the context C , not x , and
that they update the substitution σ with z 7→ yn , not z 7→ σyn . Both of these choices, which take at
least a moment of careful thought to make correctly when implementing projection folding by hand,
are made mechanically by our tool’s procedure for deriving a guard’s specification, eliminating
possibility for error.
Of course, as described in section 3.2, the point of an efficient rewriter is that it doesn’t have

to do things like search through an entire context C looking for bindings of σx , and an efficient
implementation would instead maintain an auxiliary data structure ρ mapping variable names to
their definitions for easy lookup. Though the above explanation of delayed computation has been
simplified to more clearly explain how we generate each guard’s specification in a way that allows
nested delayed computations to fuse, our tool can just as well generate implementations that make
use of delayed computations alongside the parameters and state variables discussed in section 3.2.

4 IMPLEMENTATION

At a high level, our tool is intended to be used as follows:

(1) The user writes down a first-order Coq inductive type representing the syntax of terms that
they would like their program transformations to operate on (e.g., for the examples described
in section 2, the user would write down the exp type shown in figure 2).

(2) The user runs a MetaCoq [Sozeau et al. 2020] program (which we have written) to generate,
from this inductive type, a corresponding type of one-hole contexts for use in writing down
contextual rewrite rules.

(3) The user uses these two inductive types to write down a list of top-down and bottom-up
rewrite rules, expressed as a Coq inductive relation.

(4) The user specifies what kind of parameters and state variables are needed for the imple-
mentation by writing down their respective invariants, and then fills out typeclass instances

5This fusion is only sound under the assumptions that (1) σ satisfies the invariant that σ ’s domain and range are disjoint
from e ’s bound variables and (2) the term being transformed has globally unique bindings. Though we gloss over these
details in our explanation, our tool can in fact encode both of these invariants.
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that explain how such invariants can be preserved across single upwards and downwards
movements through the term being transformed.

(5) The user specifies what kind of delayed computation is needed by writing down a suitable
run function and identity computation did.

(6) The user initiates a proof in Coq with a goal that mentions each of the above pieces of their
specification, and runs our tool by applying a special tactic that we have written. This tactic,
using a mix of MetaCoq and Ltac, parses the given specification from the proof context
and synthesizes most of a functional implementation along with a proof that its inputs
and outputs are related by the reflexive transitive closure of the user-supplied rewriting
relation. For each rewrite rule R in the given specification, our tactic leaves behind two
holes for the user to fill in: one corresponds to the guard responsible for checking R’s side
condition, and the other requires the user to explain how to preserve their parameters’ and
state variables’ invariants across an application of R. For each congruence case corresponding
to a constructor c , our tactic leaves behind a single hole that requires the user to prove that
their delayed computation distributes over c . Each hole’s type includes proof obligations for
the correctness of its implementation, so that any well-typed filling of these holes will lead
to a sound implementation.

We now describe each piece of the implementation in detail.

4.1 Generating a Type of One-Hole Contexts

In section 3.1, we defined one-hole contexts as snoc-lists of frames (i.e., contexts of depth 1). This
definition gets slightly more complicated in a typed setting. Suppose we would like our program
transformations to operate on the exps representing our λcps intermediate language, defined in
figure 2. Then, frames can be built not only out of applications of exp constructors, but also out of
constructors of any inductive types used in its definition: for example, there must be frames for
applications of the Fcons constructor for constructing lists of mutually recursive function bodies.
Thus, our Coq encoding of frames must be able to represent constructors of multiple different types.
We accomplish this using the following Frame typeclass, which represents a finite universe U of
simple inductive types and a type of frames for that universe:

Class Frame (U: Set) := {

univD: U→ Set;

frame_t: U→ U→ Set;

frameD: ∀ {A B: U}, frame_t A B→ univD A→ univD B }.

Here, U is an inductive type representing all inductive types used in the definition of a given root
type (exp in our case), univD maps each u : U to the type it represents, frame_t is a type constructor
for frames in U , with each frame indexed by representatives of its hole and root type, and frameD

represents application of frames. We then define one-hole contexts as a stack of frames where the
hole and root types of adjacent frames agree:

Inductive frames_t' {U: Set} {F: U→ U→ Set}: U→ U→ Set :=

| frames_nil: ∀ {A}, frames_t' A A

| frames_cons: ∀ {A B C}, F A B→ frames_t' B C→ frames_t' A C.

Definition frames_t {U: Set} {Frame U} := frames_t' frame_t.

We can then define application and composition of one-hole contexts for all instances of the Frame

typeclass at once: context application C[e] simply applies the frames in C to e one by one using
frameD, and context composition C >++ D concatenates the two lists C and D together.
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Writing an instance of the Frame typeclass by hand would be very tedious. Therefore, we use
MetaCoq [Sozeau et al. 2020] to generate these instances automatically. For the exp type, the
following Coq command runs the MetaCoq program mk_Frame_ops (which we have written) to
generate a proper Frame instance named exp_Frame_ops for our exp type:

MetaCoq Run (mk_Frame_ops "exp" exp [var; fun_tag; ctor_tag; prim; N]).

The first argument to mk_Frame_ops is a string to be prefixed to the objects it defines (in this case,
exp_Frame_ops). The second argument is the type that we’d like our program transformations to
operate on (which we will refer to as the root type), and the third argument is the set of types
that we would like to be considered atoms. The MetaCoq program also generates a small database
of miscellaneous information useful to our tool called exp_aux_data. After having run the above
command, users must register both exp_Frame_ops and exp_aux_data as instances of the Frame and
AuxData typeclasses respectively:

Instance AuxData_exp: AuxData exp_univ := exp_aux_data.

Instance Frame_exp: Frame exp_univ := exp_Frame_ops.

4.2 Specifying Rewrite Rules

With a suitable type of one-hole contexts in hand, a user can write down a list of top-down and
bottom-up rewrite rules as a Coq inductive relation ({) : Root→ Root→ Prop, where Root is the
root type; each constructor in ({)’s definition corresponds to a single rewrite rule. A top-down
rewrite rule ⟨C | Down e1⟩ −→ ⟨C :: Mid □ | e2⟩ if P is written as a constructor with type

∀ . . . variables used in the rule . . ., P → C[e1]{ C[e2 with Down replaced by Rec]

For example, the projection folding rewrite rule shown in section 3.3.1 can be written as the
following constructor:

| pfold_rule : ∀C D E x c ys y y' i e,

C = D >++ Econstr x c ys frames_nil >++ E ∧

nth_error ys i = Some y' ∧

e' = subst y' y e→

C[Eproj y x i e]{ C[Rec e'].

where we assume subst is a user-written function, defined elsewhere, that performs substitution
of a single variable. The Rec operator, just like the Down label, is used to indicate the locations of
recursive calls in top-down rewrite rules; it’s just given a different name in our Coq implementation
to make its meaning more apparent. A bottom-up rewrite rule

〈

Cℓ
�

�Mid e1
〉

−→
〈

Cℓ
�

� Up e2
〉

if P
is written as a constructor with type

∀ . . . variables used in the rule . . ., P → BottomUp (C[e1]{ C[e2])

The symbols Rec and BottomUp are only used by our tool for specifying whether a rule should be
considered top-down or bottom-up, and for marking the locations of recursive calls. Both symbols
are defined as the identity function, so these specifications are definitionally equal to the standard
Coq presentations of such rewrite rules. This is useful when the user wishes (outside of our tool) to
prove, for example, that the rules preserve some evaluation relation for their language.
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4.3 Specifying Parameters and State Variables

Parameters and state variables are completely specified by their invariants. Let Root be the root
type and assume there is a Frame U instance for some universe U. A parameter is specified by a
type R and an invariant that relates values of type R to one-hole contexts:

I_R : ∀ (A : U), frames_t A Root→ R→ Prop.

A state variable is specified by a type S and an invariant that relates values of type S to contexts
and focused terms:

I_S : ∀ (A : U), frames_t A Root→ univD A→ S→ Prop.

From this we define the types Param of parameters and State of state variables as sigma types with
respect to these invariants:

Definition Param {A} C : Set := {r | I_R C r}.

Definition State {A} C e : Set := {s | I_S C e s}.

Recall that, in order for our tool to generate code that preserves these invariants throughout a
traversal, the user must explain how to preserve them across single upwards and downwards
movements. These obligations are encoded by the following typeclasses (>:: is frame-snoc):

Class Preserves_S_up := preserve_S_up : ∀A B fs f x,

State (fs >:: f) x→ State fs (frameD f x).

Class Preserves_R := preserve_R : ∀A B fs f,

Param fs→ Param (fs >:: f).

Class Preserves_S_dn := preserve_S_dn : ∀A B fs f x,

State fs (frameD f x)→ State (fs >:: f) x.

4.4 Specifying Delayed Computations

Like parameters and state variables, a delayed computation is specified by a type D and an invariant
that are then packaged into a sigma type:

Context (I_D : ∀ (A : U), univD A→ D→ Prop).

Definition Delay {A} e : Set := {d | I_D e d}.

The user must also provide an instance of the Delayed typeclass:

Class Delayed := {

delayD : ∀ {A} (e : univD A), Delay e→ univD A;

delay_id : ∀ {A} (e : univD A), Delay e;

delay_id_law : ∀ {A} (e : univD A), delayD (delay_id e) = e }.

The delayD method corresponds to the run function from section 3.3 and (delay_id, delay_id_law) is
the identity delay did and its correctness proof.

4.5 Making Rewriters from Specifications

Given a root type Root, inductive relation Rstep, parameter, state variable, and delayed computation,
a program transformation along with its correctness proof can be expressed by a dependently typed
function

transform : Fuel→ ∀A (C : frames_t A Root) (e : univD A) (d : D e),

Param C→ State C (delayD e d)→ result C (delayD e d)

where Fuel is a fuel-parameter used to convince Coq that the recursive function generated by our
tool terminates.
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A result is a dependent record type that carries an updated state variable and a proof that the
transformed expression is related to the original input expression (delayD e d) by the reflexive
transitive closure of the rewriting relation Rstep:

Record result A C e : Set := mk_result {

resTree : univD A;

resState : State C resTree;

resProof : clos_refl_trans Rstep (C [ e ]) (C [ resTree ]) }.

Setting the type of transform above as a proof goal and running the tactic mk_rw (which we have
written) generates most of a functional implementation and leaves behind proof obligations to be
filled in manually.

4.6 Some Important Optimizations

We have slightly simplified the presentation of our Coq implementation above. As described, it
has a few undesirable inefficiencies: the generated function uses a fuel-parameter in cases where
it may not be necessary, and carries around an extra context parameter that is relevant only to
the correctness proof. In our actual implementation, we allow the user to optionally specify a
termination metric, in which case our tool omits the fuel parameter and generates proof obligations
that require the user to prove the metric decreases at every recursive call. We also use a lightweight
technique making use of Coq’s Prop erasure to ensure that the context parameter does not appear
in the extracted OCaml despite still being usable in proofs.

5 EVALUATION

We used our tool to implement uncurrying as described in section 2.4, an inlining pass parameterized
by an arbitrary inlining heuristic, and a partial shrink reduction pass that simultaneously performs
case folding, projection folding, and dead variable elimination (but not inlining of functions called
only once or dead function elimination). Each pass was implemented as part of the backend of the
CertiCoq compiler [Anand et al. 2017].
Our implementations of uncurrying and partial shrinking require significantly less Coq code

to write and prove correct. Our uncurryer is implemented and proved correct with respect to a
system of rewrite rules in 329 lines. The manually written uncurryer requires 309 lines for the
implementation alone; its specification and proof requires an additional 1323 lines. Our tool-based
partial shrinker is implemented and proved correct in 2132 lines. The manually written full shrink
reduction algorithm [Savary Bélanger and Appel 2017] is implemented in 1414 lines and proved
correct with respect to a system of shrink rewrite rules in 9828 lines, giving 11252 in total. While
our partial shrinker does not perform shrink inlining (inlining of functions called only once) or
dead function elimination, which require an extra helper data structure with a tricky invariant,
we believe that it would be possible to extend our implementation to support these additional
optimizations while staying well under this line count.
In contrast, our tool-derived inliner is not significantly smaller than the manually written

inliner. Our tool-derived inliner is implemented and proved correct in 1945 lines, of which 1300
implement and prove correct an α-renaming function. This function is not needed by our hand-
written algorithm, which does substitution in a different way.6 The implementation and proof for

6Our tool-derived inliner calls an α -renaming function on function bodies before inlining them. This incurs an extra
traversal, but does not change the inliner’s asymptotic complexity; it also ensures that, if there isn’t much inlining to do
in the input term, the names of most bound variables will be preserved. In contrast, our hand-written algorithm simply
renames every bound variable it encounters, using an extra parameter to keep track of the current renaming as it descends
into subterms and a counter variable to generate fresh names.
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Table 1. Duration of the first (partial) shrink reduction pass when compiling a suite of benchmarks, averaged

across 10 runs.

Benchmark Hand-written Tool-derived
vs_easy 36.41 ± 1.41 ms 50.43 ± 2.60 ms
vs_hard 39.45 ± 0.78 46.81 ± 0.87
binom 18.19 ± 0.27 10.16 ± 0.48
color 138.18 ± 2.04 132.68 ± 1.20
sha 49.93 ± 4.37 64.88 ± 1.37

Table 2. Duration of the uncurrying pass when compiling a suite of benchmarks, averaged across 10 runs.

Benchmark Hand-written Tool-derived
vs_easy 5.71 ± 0.33 ms 4.61 ± 0.06 ms
vs_hard 9.24 ± 0.37 3.92 ± 0.13
binom 0.98 ± 0.01 0.79 ± 0.01
color 6.63 ± 0.09 6.73 ± 0.10
sha 3.90 ± 0.13 3.84 ± 0.06

the manually written inliner totals 2966 lines. However, this comparison is somewhat apples-to-
oranges: the hand-written inliner additionally has (limited) support for inlining of nontail calls
as part of an ANF backend while our generated inliner is restricted to λcps terms, and its proof
establishes the much stronger property that inputs and outputs are contextually equivalent.
We assess the efficiency of our generated implementations by comparing run times to those of

their hand-written counterparts. CertiCoq’s backend is a composition of multiple small passes,
including uncurrying, interleaved between calls to the shrink reducer. We measure the duration of
the uncurrying pass and the first (partial) shrinking pass7 when compiling CertiCoq’s benchmark
suite, which consists of the following programs:

• sha: Compute the SHA-256 hash of a 484-character string.
• binom: Merge two 1000-element binomial queues and find the maximum element.
• color: Color a 156-node, 1168-edge graph using Kempe-Chaitin graph coloring.
• vs_easy, vs_hard: Decide validity of two separation logic entailmentsÐone easy and one
hardÐusing VeriStar [Stewart et al. 2012].

Figures 1 and 2 show the results for (partial) shrinking and uncurrying respectively, averaged across
10 runs. The comparison between our tool-derived partial shrinker and the hand-written shrinker
is a bit apples-to-oranges: our partial shrinker doesn’t perform dead function elimination and
therefore does extra work on input terms with many dead function bodies. Nonetheless, our partial
shrinker is at most 40% slower than the hand-written shrinker. Our generated uncurryer is about as
fast as the hand-written one. As described in section 2.4, the uncurryer must make a recursive call on
a term that is not a structural subterm of its input in order to perform all uncurrying in one pass; a
nontrivial termination argument is needed to implement such a recursive function. We suspect that
the differences in the way this argument is made are what cause the discrepencies in performance
between the two implementations. We are not sure why the tool-derived uncurryer outperforms
its hand-written counterpart on the vs_hard benchmark; we speculate that this could be due to the
fact that the hand-written counterpart performs more allocation, and therefore incurs more calls to

7Since our generated inliner manages names in a fundamentally different way compared to the one currently in CertiCoq, it
doesn’t really have a hand-written counterpart; as such, it’s not included in our measurements.
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the garbage collector on this one test case.8 While not definitive, these benchmarks suggest that
tool-derived implementations are capable of being as efficient as hand-written counterparts.

6 DISCUSSION

So far we have described how our tool was used to implement the program transformations
discussed in section 2. To demonstrate how it could be more broadly applicable, we briefly describe
a few other program transformations on the λcps language that can be expressed in our framework.

6.1 Lambda Lifting

Lambda lifting is a transformation that reduces the overhead of function closures for functions
with (at least some) known call-sites. If a function f (x ,y) = e has free variables a,b, then the
lambda-lifted function f ′(x ,y,a,b) = e can be used at applied occurrences of f , while escaping
occurrences of f can use f (x ,y); the original definition’s function body e can be replaced by
f ′(x ,y,a,b). This transformation can be expressed by the following top-down rule, which operates
on lists of mutually recursive function definitions:

f ′, ®x ′, ®y ′ fresh ®y ⊆ FV( ®fdleft ++ f (®x) = e :: ®fdright)

C[let ®fdleft ++ (f (®x) = e) :: ®fdright in e1] −→

C[let ®fdleft
++ f ′(®x ′ ++ ®y ′) = Rec e[®x ′/®x , ®y ′/®y]
:: f (®x) = f ′(®x ++ ®y)

:: Rec ®fdright
in e1]

The rule rewrites a function definition f in terms of a call to a lambda-lifted copy f ′; f ′ takes
additional parameters ®y ′ which close over some free variables ®y of the surrounding function bundle
®fd1 ++ (f (®x) = e) :: ®fd, and its body e is accordingly rewritten in terms of the new variables. As
with uncurrying, this transformation relies on future inlining passes to inline fully saturated calls
to f , leaving behind calls to its lambda-lifted counterpart. Because lambda lifting is not always a
beneficial transformation, a correct implementation need not close over all free variables, and is
free to choose any subset ®y of the free variables of the mutually recursive block currently being
traversed.
An efficient implementation requires:

• A state variable ®fv : P(Var) to hold the free variables of a mutually recursive block while
traversing its function bodies, with invariant

〈

C
�

�

�

®fdright

〉

∼ ®fv ⇐⇒

∃ D ®fdleft e,

C[ ®fdright] = D[let ®fdleft ++
®fdright in e]∧

®fv = FV( ®fdleft ++
®fdright)

• A delayed substitution just like the one described in section 2.2,
• A counter variable for fresh name generation, just like the one described in section 2.4.

Note this is not a linear-time algorithmÐquadratic time is needed to compute free variable sets.
However, our hand-written lambda lifter does this as well.

8To implement well-founded recursion, our tool invokes a fixed-point combinator that is difficult to work with manually,
but carefully designed to extract to OCaml code with as little overhead as possible. Our manually-written uncurryer is
written using the Equations library [Sozeau 2010], which makes it easy to write functions with custom termination metrics,
but generates OCaml code that (for rather technical reasons) performs an extra allocation at each recursive call.
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6.2 Dead Parameter Elimination

A parameter x of a (possibly recursive) function f is dead if it’s only ever passed to dead parameters
of f or other functions. Such parameters can be safely deleted. This can be accomplished by
rewriting f as a wrapper around a copy f ′ that does not take any of its dead parameters as
arguments and marking f for inlining. As a top-down rewrite rule:

®y ⊆ ®x f ′ fresh ®y dead in C[let (f (®x) = e) :: ®fd in e]

C[let (f (®x) = e) :: ®fd in e] −→ C[let (f ′(®x \ ®y) = e[f ′/®y]) :: (f (®x) = f ′(®y)) :: ®fd in e]

This rule rewrites f as a wrapper around f ′, and replaces all occurrences of dead variables ®y with
f ′. These bogus uses of f ′ will all be eliminated after all calls to wrapper functions have been
inlined. (Our λcps language makes it inconvenient to, for example, supply a constant 0 in those
positions, so we have to use some variable.)

To implement this rule efficiently, a counter variable is needed to generate fresh names, a delayed

substitution is needed to perform the substitution [f ′/®y], and a state variable ®d : P(Var) is needed
to record the names of all dead parameters. This state variable has invariant

⟨C | e⟩ ∼ ®d ⇐⇒ ®d dead in C[e]

and can be initialized by a prepass that performs a standard dataflow analysis to determine which
parameters can be safely eliminated.

6.3 Shrink Inlining

In addition to dead code elimination (ğ2.3), case folding (ğ2.1), and projection folding (ğ2.2), the full
shrink reduction algorithm also inlines functions called only once. This so-called shrink inlining
transformation can be specified by the following top-down rule:

|let ®fd1 ++ (f (®x) = e) :: ®fd2 in D |f = 0

C[let ®fd1 ++ (f (®x) = e) :: ®fd2 in D[f (®y)]] −→ C[let ®fd1 ++
®fd2 in D[Rec e[®y/®x]]]

where |C |f = the number of times f appears in context C in non-binding position

This difficulty with this rule is that it simultaneously inlines f and deletes its definition, and these
two edits are made in very different places. Our theory doesn’t permit rewrite rules which make
edits in two places at once, so we must make do with specifying shrink inlining as a combination
of two rewrite rules. These rules are (1) the dead function elimination rule described in section 2.3
and (2) the following top-down rewrite rule that inlines a function called once without deleting its
definition:

|let ®fd1 ++ (f (®x) = e) :: ®fd2 in D |f = 0

C[let ®fd1 ++ (f (®x) = e) :: ®fd2 in D[f (®y)]] −→ C[let ®fd1 ++ (f (®x) = e) :: ®fd2 in D[Rec e[®y/®x]]]

Appel and Jim [1997] use the delayed substitution σ described in section 2.2 to implement the
substitution [®y/®x], the occurrence count map δ described in section 2.3 to check if f is called exactly
once, and an extra state variable θ : P(Var) to record which functions have been shrink-inlined and
whose definitions should be deleted. The implementation is carefully written so that no functions
mentioned in θ remain after shrink-reducing a block of function definitions.

Our tool does not provide such a strong guarantee: all it proves about derived implementations
is that they refine a system of rewrite rules. It just so happens that, if holes are filled properly,
our algorithm for deriving implementation from specification will produce an implementation
that never forgets to delete shrink-inlined function definitions before exiting a block of function
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definitions. However, our tool will not generate a proof of this fact. This complicates things: if
we have no proof that an implementation deletes every shrink-inlined function definition before
exiting a block of function definitions, then shrink inlined function bodies may be duplicated and
one can no longer establish the unique binding property needed for delayed substitution to work
properly.
Our solution is to split the variable θ into two halves θC ,θe : P(Var) with the invariant that

using each half to drop the functions in the context and subterm in focus respectively yields a
well-scoped term:

⟨C | e⟩ ∼ (θC ,θe ) ⇐⇒ unique_bindings(P) ∧ FV(P) ∩ BV(P) = ∅

where P = (drop_fns_ctx θC C)[drop_fns θe e]

The implementation can then remove functions from θe as their definitions are deleted from the
program. If θe is emptyÐwhich our tool-derived implementations ensure if all holes were filled in
properlyÐthen drop_fns θe e = e and the term e satisfies the full unique binding property. Thus,
even though we have no proof that our tool-derived implementation will delete every shrink-inlined
function definition, we can verify this fact efficiently at runtime simply by checking that θe is the
empty map.
This solution incurs some overhead in shuffling entries from θC to θe , deleting entries from θe

after the corresponding function definitions have been deleted, and checking whether θe is empty
before performing delayed substitution; however, these operations are all cheap to perform, and
the resulting shrink reduction algorithm is about as fast as the one given by Appel and Jim.

6.4 Limitations

Some program transformations are not compatible with our framework. Notably, cross-language
transformations (e.g. SSA conversion, code generation, and closure conversion) aren’t easily ex-
pressible as rewrite systems. This is because a cross-language transformation must convert every
source-language construct into appropriate target-language code. One could combine source and
target together into a multi-language [Matthews and Findler 2007] and express the transformation
as a set of rewrite rules on this multi-language, but our tool doesn’t guarantee that the implemen-
tation it generates will eliminate all source-language constructs. Thus one would have to prove
this fact by hand, reasoning about the very dependently typed tool-derived implementation.

7 RELATED WORK

Lacey and De Moor [2001] specify program transformations as rewrite rules of the form I1 {
I2 if ϕ, where I1 and I2 are instructions in a control-flow graph and ϕ is a temporal logic formula
representing some side conditions on the surrounding context. This approach has been further
explored by Cobalt [Lerner et al. 2005a], its successor Rhodium [Lerner et al. 2005b], and PTRANS
[Mansky 2014]. Themain difference between this work and ours is in focus: all three of these systems
present domain-specific languages for specifying program transformations based on temporal logic
and develop algorithms that automatically prove such specifications sound; specifications are
run using a rule execution engine that performs pattern matching on control-flow graphs. These
systems either uses translation validation to ensure that rules are executed properly or require the
engine to be a part of the trusted code base. We focus instead on efficiency and control: our theory
allows implementors to specify precisely how they want dataflow facts computed, and we avoid
the overhead of a rule execution engine and translation validation by generating plain recursive
functions with a once-and-for-all refinement proof.
The Pilsner verified compiler [Neis et al. 2015] has its own framework for specifying program

transformations; in this framework, a program transformation consists of (1) a pre-pass that
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analyses the input term and marks selected subexpressions with to-be-performed rewrites, and (2)
an implementation of each individual rewrite as a partial function. Only the individual rewrites
need be proved sound; then, the two components are used to generate both an implementation that
traverses the input term and applies individual rewrites at the locations indicated by the pre-pass
and a proof that the implementation is sound. We develop this idea further by allowing fine-grained
control over not only the locations where rewrites should be performed, but also the way in which
dataflow facts should be computed and the delaying of intermediate computations that would
otherwise require extra traversals.

In general, the use of a high-level language to specify program transformations is far from new:
various domain-specific languages have been proposed over the years, including Gospel [Whitfield
and Soffa 1997], Sharlit [Tjiang and Hennessy 1992], Scheme’s macro-by-example [Kohlbecker and
Wand 1987], the Nanopass framework [Sarkar et al. 2005], and Stratego [Visser 2004]. However,
none of these systems permit control over the kinds of auxiliary data structures often needed for
efficiency while retaining a formal guarantee of correctness with respect to a relational specification;
moreover, most require learning a new specification language and system, while our rewriters can
be specified as ordinary Coq inductive relations and implemented using ordinary Coq tactics.
Finally, an alternative approach to implementing program transformations is to learn them by

example [Rolim et al. 2017] or from correctness proofs of more specific transformations [Tate et al.
2010], relieving implementors from having to think about their transformations in full generality.
We believe that this approach could be used in conjunction with our own; so that a specification
could be learned from more concrete examples via these methods and then implemented using our
theory.

8 CONCLUSIONS AND FUTURE WORK

We have presented a theory that can specify a number of program transformations used by
functional-language compilers, complete with auxiliary data structures needed for efficiency when
implementating these transformations.We have described a procedure for deriving implementations
from such specifications semi-automatically, along with a machine-checked proof of correctness.
We implemented our procedure in Coq and used it to write inlining, uncurrying, and partial
shrink-reduction passes. In some cases, our tool-derived implementations require significantly
less manual proof effort to write and prove correct, and benchmarks suggest that they extract to
efficient executable code.

In the future, we would like to add support for reasoning about the generated function in ways
not related to the fact that it refines the transitive closure of a rewriting relation: for example,
one might want to prove that an implementation reaches a fixed point in one pass, or that a state
variable used to count the number of edits really does so. Currently, reasoning about the generated
function in order to prove theorems like these is exceptionally challenging, as the function makes
extensive use of dependent types and is cluttered by proof terms. One approach we are considering
to mitigate this is to generate (and automatically prove) lemmas that characterize the behavior
of the transformation on certain inputs, recovering the ability to use equational reasoning when
proving properties about the function. This is the approach taken, for example, by the Equations
library [Sozeau 2010].
Finally, we would like to implement and prove correct even more program transformations.

Several other transformations are good candidates for implementation using our tool, including
the ones discussed in section 6, eta expansion, hoisting, and loop preheaders [Appel 1994].
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