
FORMAL ASPECTS OF MOBILE CODE SECURITY

RICHARD DREWS DEAN

A DISSERTATION

PRESENTED TO THE FACULTY

OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE

BY THE DEPARTMENT OF

COMPUTER SCIENCE

JANUARY 1999

c© Copyright by Richard Drews Dean, 1998.

All Rights Reserved

Abstract

We believe that formal methods of all kinds are critical to mobile code security,

as one route to gaining the assurance level necessary for running potentially hos-

tile code on a routine basis. We begin by examining Java, and understanding the

weaknesses in its architecture, on both design and implementation levels. Iden-

tifying dynamic linking as a key problem, we produce a formal model of linking,

and prove desirable properties about our model. This investigation leads to a deep

understanding of the underlying problem. Finally, we turn our attention to crypto-

graphic hash functions, and their analysis with binary decision diagrams (BDDs).

We show that three commonly used hash functions (MD4, MD5, and SHA-1) do

not offer ideal strength against second preimages. The ability of a cryptographic

hash function to resist the finding of second preimages is critical for its use in digi-

tal signature schemes: a second preimage enables the forgery of digital signatures,

which would undermine confidence in digitally signed mobile code. Our results

show that modern theorem provers and BDD-based reasoning tools are effective

for reasoning about some of the key problems facing mobile code security today.

iii

Acknowledgments

My advisor, Andrew Appel, offered sure guidance through what turned out to

be an exceptionally smooth journey through graduate school. I can only offer my

deepest gratitude. Ed Felten freely offered his time and advice, even though I was

not his student. Several of those late-night hacking sessions will remain forever

unforgettable.

To my long suffering office mates, both past and present, I offer thanks for

putting up with me for four years. Four years can be either the shortest or longest

periods of time; Martin Carlisle, Steven Kleinstein, Paul Martino, Don Mitchell,

Anil Ruia, and Michael Schneider all deserve thanks for their support. Jeff Korn

and Dan Wang provided valuable friendship and technical insights; I can only

hope they will say the same when their turn comes. Paul Burchard helped me

enjoy many trips to Small World. Dan Boneh and Pei Cao provided collegial atmo-

sphere when I arrived, and I thank Pei for introducing me to PARC. Last, but not

least, I’ve had an amazing collaboration with Dan Wallach, as well as good sushi.

Thanks. The folks known as “CS Staff” deserve a special thanks, for keeping things

working, even in the presence of some not entirely reasonable requests.

I’ve been privileged to meet lots of helpful people outside Princeton. The kind

and generous people at the SRI International Computer Science Laboratory have

helped make this thesis possible with two summers of support, both financial and

technical. I thank Li Gong, John Rushby, Patrick Lincoln, Sam Owre, Natarajan

Shankar, Paul Jackson, and David Stringer-Calvert. Peter Neumann deserves spe-

cial thanks, for also agreeing to serve on my thesis committee.

Others who I owe technical debts to include Martı́n Abadi (DEC), Kathleen

Fisher (AT&T), Paul Karger (IBM), John Mitchell (Stanford), Jon Riecke (Bell Labs),

iv

and Andrew Wright (Intertrust). Jim Roskind (Netscape) always took my phone

calls with good grace, even when they generated lots of work for him. Kim Bruce,

Frank Pfenning, and Dan Wang provided good technical advice for dotting the i’s

and crossing the t’s in Chapter 4. All errors, of course, are the fault of the author.

I thank Alan Hu for long-term friendship, and recent collaboration; the results

in Chapter 5 would be absent without his expert advice. I thank Ray Chiang for

long-term friendship, even with continents and oceans in the way.

Research in the Secure Internet Programming Laboratory at Princeton is sup-

ported by the NSF under award CCR-9457813, by the Alfred P. Sloan Foundation,

and by donations from Sun Microsystems, Microsoft, Intel, Merrill Lynch and Trin-

tech. My work at SRI was partially supported by DARPA through Rome Labora-

tory contract F30602-96-C-0204.

v

To my parents

vi

Contents

Abstract . iii

1 Introduction 1

2 Java Security1 6

2.1 Introduction . 6

2.2 Java Semantics . 10

2.3 Java Security Mechanisms . 14

2.4 Taxonomy . 15

2.4.1 Denial-of-Service Attacks . 15

2.4.2 Confidentiality Breaches . 16

2.4.3 Implementation Errors . 20

2.4.4 Interapplet Security . 24

2.4.5 Java Language Implementation Failures 25

2.5 Java Language and Bytecode Weaknesses 39

2.5.1 Language Weaknesses . 40

1Earlier versions of this chapter appeared in the 1996 IEEE Symposium on Security and Pri-
vacy [DFW96] and Internet Besieged: Countering the Cyberspace Scofflaw [DFWB97].

vii

2.5.2 Bytecode Weaknesses . 41

2.6 Analysis . 44

2.6.1 Policy . 45

2.6.2 Enforcement . 45

2.6.3 Integrity . 46

2.6.4 Accountability . 47

2.7 Conclusion . 48

3 Safe Dynamic Linking2 49

3.1 Introduction . 49

3.2 Related Work . 50

3.3 Informal Problem Statement . 53

3.4 Informal Discussion . 57

3.5 Formal Treatment in PVS . 61

3.5.1 The PVS Model . 61

3.5.2 The Proofs . 67

3.6 Implementation and Assurance . 81

3.7 Conclusion . 83

4 Linking and Scope 84

4.1 Related Work . 85

4.2 Modeling the Problem in PCF . 86

2An earlier version of this chapter appeared in the Fourth ACM Conference on Computer and Com-
munication Security [Dea97].

viii

4.3 PCFτ . 87

4.4 PCFτ ,ρ . 89

4.4.1 PCFτ ,ρ Definition . 89

4.4.2 PCFτ ,ρ Operational Semantics 91

4.4.3 PCFτ ,ρ: The Type System . 91

4.4.4 PCFτ ,ρ Domains . 94

4.4.5 PCFτ ,ρ Environments . 94

4.4.6 PCFτ ,ρ Example . 101

4.5 Solution for PCFτ ,ρ . 102

4.5.1 Formalization . 103

4.6 Relating PCFτ ,ρ to Java . 111

4.7 Conclusions . 115

5 Attacking Cryptographic Hash Functions 116

5.1 Introduction . 116

5.2 Notation . 117

5.3 Properties and Attacks . 119

5.3.1 Second Preimage Attack . 120

5.4 Binary Decision Diagrams3 . 126

5.5 Specifying MD4, MD5 and SHA-1 in Ever 128

5.6 Defenses . 129

5.6.1 Strengthening MD Strengthening 130

3This presentation closely follows Hu [Hu97].

ix

5.6.2 Combining Function . 131

5.6.3 Multiple Hashing . 132

5.7 Related Work . 133

5.8 Conclusion . 134

6 Conclusions 135

A PVS Specification 140

B Formal Proofs 148

x

Chapter 1

Introduction

The work reported on in this thesis began in 1995. Sun Microsystems had recently

released the Java1 programming language, and marketed it as a portable, safe, and

secure way to attach small programs, called applets, to Web pages. The World Wide

Web was still new and novel at the time; version 1 of Netscape Navigator had been

available for about 6 months. Demand for new features was intense, but HTML

(like all standards) was evolving slowly. The ability to embed arbitrary programs

in Web pages would allow content providers great freedom to innovate. It would

also solve network bandwidth and latency problems, by running the program lo-

cally on the user’s machine. Of course, the idea of attaching programs to Web

pages has massive security implications; users should not have to consider the

security consequences of browsing a Web page.

To show that Java was a real language, Sun produced a Web browser, HotJava,

itself written in Java. The alpha release of HotJava was the first browser to support

applets. Netscape licensed Java in summer 1995, and shipped Java in version 2

1Java and Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc.
in the United States and other countries.

1

of Navigator in spring 1996. Microsoft licensed Java in the winter of 1995, and

shipped it in version 3 of Internet Explorer. Sun did not follow up with a 1.0 release

of HotJava until spring 1997. By this time, Netscape and Microsoft had effectively

captured the market for Web browsers. Although Web browsers have been the

most widespread deployment of Java, one should not consider Java embedded in

a browser to be the whole story.

Java became the first type-safe, garbage-collected language to enter the main-

stream of the computing industry. Although there have been many safe languages

developed in the research community (various Lisp dialects, ML, Mesa, etc.), none

of them have made much impact on mainstream computing. This is too bad, be-

cause applications developed in safe languages should be more robust due to the

lack of memory corruption errors. For security-critical applications, making it im-

possible to implement a buffer overflow is a fabulous benefit2.

Using a safe language (that has some support for maintaining abstractions) po-

tentially offers a high-performance, portable way of achieving memory safety, i.e.,

the ability to control what memory locations a program may read and/or write.

Although memory safety is not absolutely necessary for security in all settings3, it

is necessary for security in the absence of detailed analysis of the programs run-

ning concurrently. If we consider the virtual memory hardware of the CPU to be

an interpreter, guaranteeing memory safety with dynamic checks, the first ques-

tion we ask when wearing a programming language hat is “How can we turn

those dynamic checks into static checks?” A statically type-safe language with ab-
2See the continuing saga of buffer overflows on the BUGTRAQ mailing list (archives available

from http://www.netspace.org/lsv-archive/bugtraq.html). Even though it is a 30 year old
problem, all too many privileged programs written in C are vulnerable.

3Consider two programs, A and B, running concurrently. A owns locations x1 and x2; B owns
locations y1 and y2. Suppose (for known, fixed, A and B), at some point in time, x2 and y2 become
dead variables. After that, B can overwrite x2, and A can overwrite y2. If our definition of security
is non-interference, the system is secure.

2

straction mechanisms is one answer to the memory safety problem; proof-carrying

code [NL96] is another.

Once the memory safety problem has been solved, the remaining problem is

to provide useful, yet secure, interfaces to the outside world. The class libraries

that come with Java present a set of classes to the programmer for interacting with

the non-Java world. These classes use Java’s abstraction mechanisms to force their

callers to conform to their public interface, allowing (in theory) non-bypassable

security checks to be embedded in appropriate places.

Although memory safety via type safety is a well known concept, theory can

be different than implementation. For example, it is widely believed that Standard

ML is type safe. However, the SML/NJ compiler uses a 128-bit cyclic redundancy

code (CRC) as the fingerprint of a signature [AM94]. Because CRCs are not cryp-

tographically secure, it should be possible to generate two different signatures with

the same fingerprint. The SML/NJ compiler will then generate unsound code. Of

course, this is an implementation artifact of SML/NJ — for non-malicious appli-

cations, the 128-bit CRC is perfectly adequate. The random chance of a fingerprint

collision is negligible, but an attacker can cause a collision to occur.

Such implementation artifacts point to the difficulty of producing systems that

are actually type safe. More important, however, are higher level design problems.

We have seen several failures of type and memory safety in Java related to the

(mis-)design of dynamic linking. This thesis makes three contributions:

1. We examine the security of three popular Java implementations;

2. We give a model of dynamic linking in PVS and formally prove that it pre-

serves type safety, assuming that Java without dynamic linking is type-safe;

3

3. We explore the use of binary decision diagrams (BDDs) for analyzing cryp-

tographic hash functions, which are critical for supporting digitally signed

mobile code.

The history of formal methods in the security arena is a long one. Much work

was done in the late 1970s and early 1980s attempting to verify multi-level se-

curity properties of operating systems. PSOS [NBF+80] was one typical example.

The Orange Book [Nat85] requires mechanized formal methods for high-assurance

(i.e., A1-rated) systems. However, these techniques have not been widely used.

Only one A1-rated general purpose operating system has been evaluated in 15

years. The principal problems have been the difficulty of the verification, and the

specification-to-implementation correspondence problem. Advances in tools and

techniques, along with vast computational speedups (2–3 orders of magnitude),

have significantly eased the difficulty of verification. Model checking promises

vastly increased automation for verification problems that can be reduced to a fi-

nite state description. The specification-to-implementation correspondence prob-

lem remains; however, modern programming languages (e.g., Java, SML) should

help there.

There is a long running debate in the formal methods community over the rel-

ative merits of theorem proving vs. model checking. We are agnostic about this

debate. The relative difficulty and effectiveness of searching finite state spaces vs.

generating (inductive) proofs are arguments best left to others. We attempt to use

the best tools available for each problem. For modeling dynamic linking, we desire

the power to model an unbounded system, which guides us toward PVS’ higher-

order logic. For the cryptographic hash functions, where we have a finite problem

that is somewhat amenable to a heuristically guided brute-force approach, we use

4

BDDs, trading off expressive power for dramatically more automation. Because

the problem domain is a combinational circuit, we do not need to use the model

checker’s temporal logic facilities, but BDD implementations are often embedded

in model checkers, which we can use off the shelf.

Language I have spent enough time attacking these systems that I often use first

person to describe the attacker. This also solves the problem of English not provid-

ing a gender-neutral singular pronoun; without prejudice, “his” is used through-

out.

5

Chapter 2

Java Security1

2.1 Introduction

When the World Wide Web was composed of static HTML documents, with GIF

and JPEG graphics, there was fairly little concern for the security of the browsers.

The main objective was to avoid buffer overflow problems that could lead to the

execution of arbitrary machine code [Cro95]. When the Web left the research do-

main and entered the mass market, security became a problem: users wanted

electronic commerce. The Secure Socket Layer (SSL) [FKK96, DA97, Gho98], and

Secure HyperText Transport Protocol (S-HTTP) [SR98, Gho98] protocols were de-

signed to provide cryptographically strong identification of Web servers, and

privacy protection for information such as credit card numbers. Although an

early implementation of SSL had a problem seeding its random number genera-

tor [GW96], and cryptographic protocols are always tricky to design, the situation

appeared to be well in hand.

1Earlier versions of this chapter appeared in the 1996 IEEE Symposium on Security and Pri-
vacy [DFW96] and Internet Besieged: Countering the Cyberspace Scofflaw [DFWB97].

6

Rather than creating new HTML extensions, Sun Microsystems popularized

the notion of downloading a program (called an applet) that runs inside the Web

browser. Such remote code raises serious security issues; a casual Web reader

should not be concerned about malicious side-effects from visiting a Web page.

Languages such as Java [GJS96], Safe-Tcl [Bor94], Phantom [Cou95], Juice [FK97]

and Telescript [Gen96] have been proposed for running untrusted code, and each

has varying ideas of how to thwart malicious programs. Java has dominated the

market for Web-based mobile code. Java was promoted as addressing the security

issue, in that browsers were supposed to be protected from unfriendly actions by

the applets that they run; however, numerous problems have been found, as we

will describe.

After several years of development inside Sun Microsystems, the Java language

was released in mid-1995 as part of Sun’s HotJava Web browser. Shortly thereafter,

Netscape Communications Corp. announced they had licensed Java and would

incorporate it into their Netscape Navigator Web browser, beginning with version

2.0. Microsoft has also licensed Java from Sun, and incorporated it into Microsoft

Internet Explorer 3.0. With the support of many influential companies, Java ap-

pears to have the best chance of becoming the standard for mobile code on the

Web. This also makes it an attractive target for malicious attackers, and demands

external review of its security.

The original version of this chapter was written after Netscape announced it

would use Java. Since that time, we have found a number of bugs in Navigator

through its various beta and production releases and later in Microsoft’s Internet

Explorer. As a direct result of our investigation, and the tireless efforts of the ven-

dors’ Java programmers, we believe the security of Java has significantly improved

since its early days. In particular, Internet Explorer 3.0, which shipped in August,

7

1996, had the benefit of nine months of our investigation into Sun’s and Netscape’s

Java implementations. Still, despite all the work done by us and by others, Java’s

security problems are still fertile grounds for exploration.

Netscape Navigator and HotJava2 are examples of two distinct architectures for

building Web browsers. Netscape Navigator is written in an unsafe language, C,

and runs Java applets as an add-on feature. HotJava is written in Java itself, with

the same runtime system supporting both the browser and the applets. Both ar-

chitectures have advantages and disadvantages with respect to security: Netscape

Navigator can suffer from being implemented in an unsafe language (buffer over-

flow, memory leakage, etc.), but provides a well-defined interface to the Java sub-

system. In Netscape Navigator, Java applets can name only those functions and

variables explicitly exported to the Java subsystem. HotJava, implemented in a

safe language, does not suffer from potential memory corruption problems, but

can accidentally export private browser state to applets.

In order to be secure, such systems must limit applets’ access to system re-

sources such as the file system, the CPU, the network, the graphics display, and

the browser’s internal state. Additionally, the system should garbage-collect mem-

ory to prevent both malicious and accidental memory leakage. Finally, the system

must manage system calls and other methods that allow applets to affect each

other as well as the environment beyond the browser.

Java is meant to be a “safe” language, where the typing rules of the language

provide sufficient protection to serve as the foundation of a secure system. The

most important safety property is type safety, by which we mean that a program

2Unless otherwise noted, in this chapter, “HotJava-Alpha” refers to the 1.0 alpha 3 release of the
HotJava Web browser from Sun Microsystems, “Netscape Navigator” refers to Netscape Naviga-
tor 2.0, “Internet Explorer” refers to Microsoft Internet Explorer 3.0, and “JDK” refers to the Java
Development Kit, a Java compiler and execution environment, version 1.0, from Sun.

8

will never “go wrong” in certain ways: every variable’s value will be consistent

with the variable’s declaration, function calls (i.e., method invocation in the case of

Java) will all have the right number and type of arguments, and data-abstraction

mechanisms will work as documented. We also require that the system be mem-

ory safe, such that a program can only access memory locations that hold values

supposed to be accessible by that program. All security in Java depends upon

these properties being enforced. If type safety fails, then a Java program can access

private fields of objects, and cause behavior not envisioned the original program-

mer. Some type safety failures allow integers to be used as pointers, allowing

nearly arbitrary access to the underlying machine, at least within the confines of

the current process in the underlying operating system (if any). “Arbitrary ac-

cess to the underlying machine” implies that Java does not supply any security

beyond the underlying operating system: if the operating system would allow the

user running the Java program to, e.g., erase a file, then the Java program could

also. This is clearly an unacceptable state of affairs for running untrusted mobile

code. Although the work described here has been inspired by Java, and uses Java

concepts and terminology, other systems that base their protection on language

mechanisms face similar issues.

Many systems in the past have attempted to use language-based protection.

The Burroughs B5000 series appears to have been the first notable attempt; its

descendents live on today as the Unisys A-series [Uni94]. The Anderson re-

port [And72] describes an early attempt to build a secure subset of Fortran. This

effort was a failure because the implementors failed to consider all of the conse-

quences of the implementation of one construct: assigned GOTO. This subtle flaw

resulted in a complete break of the system. Jones and Liskov describe language

support for secure data flow [JL76]. The Pilot operating system as Xerox PARC

9

used type safety for memory protection, but it attempted only to prevent mistakes

from crashing the machine; it did not attempt to thwart malice. For a single-user

workstation, occasionally rebooting was considered acceptable [R+80]. Rees de-

scribes a modern capability system built on top of Scheme [Ree96].

Vigna recently edited a nice collection of papers [Vig98]. Chess [Che98]

provides an overview of the problems in mobile code security. Volpano and

Smith [VS98] examine information flow in language based security. Other rele-

vant papers in this collection include works by Necula and Lee [NL98], Gray, et

al., [GKCR98], Karjoth, et al., [KLO98], and Gong and Schemers [GS98].

The remainder of this chapter is structured as follows. Section 2.2 discusses the

Java language in more detail, Section 2.3 discusses the original implementation of

Java security mechanisms, Section 2.4 gives a taxonomy of known security flaws

in Sun’s HotJava, Netscape’s Navigator, and Microsoft’s Internet Explorer Web

browsers, Section 2.6.4 discusses the need for accountability in Java, and Section 2.7

presents our conclusions. A slower paced discussion, aimed at a less technical au-

dience, of some of these issues can be found in McGraw and Felten’s book [MF96].

2.2 Java Semantics

Java is similar in many ways to C++ [Str91]. Both provide support for object-

oriented programming, share many keywords and other syntactic elements, and

can be used to develop standalone applications. Java diverges from C++ in the

following ways: it is type-safe, supports only single inheritance (although it de-

couples subtyping from inheritance), and has language support for concurrency.

Java supplies each class and object with a lock, and provides the synchronized

10

keyword so each class (or instance of a class, as appropriate) can operate as a Mesa-

style monitor [LR80].

Java compilers produce a machine-independent bytecode, which may be trans-

mitted across a network and then interpreted or compiled to native code by the

Java runtime system. In support of this downloaded code, Java distinguishes re-

mote code from local code. Separate sources3 of Java bytecode are loaded in sep-

arate name spaces to prevent both accidental and malicious name clashes. Byte-

code loaded from the local file system is visible to all applets. The documenta-

tion [GM96] says the “system name space” has two special properties:

1. It is shared by all “name spaces.”

2. It is always searched first, to prevent downloaded code from overriding a

system class; see Section 2.4.5.

However, we have found that the second property does not hold.

The Java runtime system knows how to load bytecode only from the lo-

cal file system; it has no built in knowledge of the Internet. To load code

from other sources, the Java runtime system calls a subclass of the abstract

class4 ClassLoader, which defines an interface for the runtime system to ask a

Java program to provide a class. Classes are transported across the network as

byte streams, and reconstituted into Class objects by subclasses of ClassLoader.

Each class is internally tagged with the ClassLoader that loaded it, and that

ClassLoader is used to resolve any future unresolved symbols for the class. Ad-

ditionally, the SecurityManager has methods to determine if a class loaded by a
3Although the documentation [GM96] does not define “source”, it appears to mean the URL

prefix of origin. Sun, Netscape, and Microsoft all offer support for digitally signed code. See Dan
Wallach’s thesis [Wal99] for more details.

4An abstract class is a class with one or more methods declared but not implemented. Abstract
classes cannot be instantiated, but define method signatures for subclasses to implement.

11

ClassLoader is in the dynamic call chain, and if so, where. This nesting depth

is then used to make access control decisions in JDK 1.0.x and derived systems

(including Netscape Navigator 2.0.x and Internet Explorer 3.0).

Java programmers can combine related classes into a package. These pack-

ages are similar to name spaces in C++ [Str94], modules in Modula-2 [Wir83], or

structures in Standard ML [MTHM97]. Although package names consist of com-

ponents separated by dots, the package name space is actually flat: scoping rules

are not related to the apparent name hierarchy. In Java, public and private have

the same meaning as in C++: Public classes, methods, and instance variables are

accessible everywhere, whereas private methods and instance variables are acces-

sible only inside the class definition. Java protected methods and variables are

accessible in the class or its subclasses or in the current (package, ClassLoader)

pair. A (package, ClassLoader) pair defines the scope of a Java class, method,

or instance variable that is not given a public, private, or protected modifier5.

Unlike C++, protected variables and methods can be accessed in subclasses only

when they occur in instances of the subclasses or further subclasses. For example:

class Foo {
protected int x;
void SetFoo(Foo obj) { obj.x = 1; } // Legal
void SetBar(Bar obj) { obj.x = 1; } // Legal

}

class Bar extends Foo {
void SetFoo(Foo obj) { obj.x = 1; } // Illegal
void SetBar(Bar obj) { obj.x = 1; } // Legal

}

5Methods or variables with no access modifiers are said to have package scope.

12

The definition of protected was the same as C++ in some early versions of Java;

it was changed during the beta-test period to patch a security problem [Mue96]

(see also section 2.6.2). The present definition, while complicated, seems to offer

some software engineering benefits: classes cannot change the state of protected

variables of instances of parent or sibling classes. This should increase the modu-

larity of code in general.

The Java Virtual Machine (JVM) is designed to enforce the language’s access

semantics. Unlike C++, programs are not permitted to forge a pointer to a func-

tion and invoke it directly, nor to forge a pointer to data and access it directly. If

a rogue applet attempts to call a private method, the runtime system throws an

exception, preventing the errant access. Thus, if the system libraries are specified

safely, the runtime system is designed to ensure that application code cannot break

these specifications.

The Java documentation claims that the safety of Java bytecodes can be stat-

ically determined at load time. This is not entirely true: the type system uses a

covariant [Cas95] rule for subtyping arrays, so array stores require run time type

checks6 in addition to the normal array bounds checks. Cast expressions also re-

quire runtime checks. Unfortunately, this means the bytecode verifier is not the

only piece of the runtime system that must be correct to ensure type safety; the

interpreter must also perform runtime checks with a corresponding performance

degradation.

6For example, suppose that A is a subtype of B; then the Java typing rules say that A[] (“array of
A”) is a subtype of B[]. Now the following procedure cannot be statically type-checked:
void proc(B[] x, B y) {

x[0] = y;
}
Because A[] is a subtype of B[], x could really have type A[]; similarly, y could really have type A.
The body of proc is not type-safe if the value of x passed in by the caller has type A[] and the value
of y passed in by the caller has type B. This condition cannot be checked statically.

13

2.3 Java Security Mechanisms

In HotJava-Alpha, the access controls were done on an ad hoc basis that was clearly

insufficient. The beta release of JDK introduced the SecurityManager class, meant

to be a reference monitor [Lam71]. The SecurityManager implements a security

policy, centralizing all access control decisions. All potentially dangerous methods

first consult the security manager before executing. Netscape and Microsoft also

used this architecture through the version 3.x releases of their products.

When the Java runtime system starts up, there is no security manager installed.

Before executing untrusted code, it is the Web browser’s or other user agent’s re-

sponsibility to install a security manager. The SecurityManager class is meant to

define an interface for access control; the default SecurityManager implementa-

tion throws a SecurityException for all access checks, forcing the user agent to

define and implement its own policy in a subclass of SecurityManager. The secu-

rity managers in current browsers typically make their access control decisions by

examining the contents of the call stack, looking for the presence of a ClassLoader,

indicating that they were called, directly or indirectly, from an applet.

Java uses its type system to provide protection for the security manager. If

Java’s type system is sound, then the security manager, in theory, will be tam-

perproof. By using types instead of separate address spaces for protection, Java is

more easily embeddable in other software, and potentially performs better because

protection boundaries can be crossed without a context switch [ALBL91]. Inter-

faces can be more expressive than integers and strings — objects obeying invari-

ants (on their private state) can be created by trusted code and given to untrusted

code, knowing that those invariants will be preserved. This should simplify the

development of robust software.

14

2.4 Taxonomy

We now present a taxonomy of known Java bugs, past and present. Dividing the

bugs into categories is useful because it helps us understand how and why they

arose, and it alerts us to aspects of the system that may harbor future bugs.

2.4.1 Denial-of-Service Attacks

Java has few provisions to thwart denial-of-service attacks. Obvious attacks are

busy-waiting to consume CPU cycles and allocating memory until the system runs

out, starving other threads and system processes. Additionally, an applet can ac-

quire locks on critical pieces of the browser to cripple it. E.g., the code in Figure 2.1

locks the status line at the bottom of the HotJava-Alpha browser, effectively pre-

venting it from loading any more pages. In Netscape Navigator 2.0, this attack can

lock the java.net.InetAddress class, blocking all hostname lookups and hence

most new network connections. HotJava, Navigator, and Internet Explorer all

have classes suitable for this attack. The attack could be prevented by replacing

such critical classes with wrappers that do not expose the locks to untrusted code.

However, the CPU and memory attacks cannot be easily fixed; many genuine ap-

plications need large amounts of memory and CPU. Another attack, first imple-

mented by Mark LaDue, is to open a large number of windows on the screen. This

synchronized (Class.forName("net.www.html.MeteredStream")) {
while(true) Thread.sleep(10000);

}

Figure 2.1: Java code fragment to deadlock the HotJava browser by locking its
status line.

15

will sometimes crash the machine. LaDue has a Web page with many other denial-

of-service attacks [LaD].

There are two twists that can make denial-of-service attacks more difficult to

cope with. First, an attack can be programmed to occur after some time delay,

causing the failure to occur when the user is viewing a different Web page, thereby

masking the source of the attack. Second, an attack can cause degradation of service

rather than outright denial of service. Degradation of service means significantly

reducing the performance of the browser without stopping it. For example, the

locking-based attack could be used to hold a critical system lock most of the time,

releasing it only briefly and occasionally. The result would be a browser that runs

very slowly.

Sun has said that they consider denial-of-service attacks to be low-priority prob-

lems [Gos95]. Given the other major problems, this seems to be a reasonable posi-

tion. However, anyone depending on timely execution of an applet (e.g., for com-

modity trading) may be disappointed.

2.4.2 Confidentiality Breaches

Protecting confidentiality of users’ data is a key goal of the Java security policy in

Web browsers. There are two ways of achieving this goal: preventing applets from

learning about the environment they are running in, and blocking the channels

to communicate this information to the outside world. The default applet secu-

rity policy only allows an applet to make a network connection to the host it was

loaded from. This policy is a compromise between security and utility. Communi-

cation with other hosts is prohibited by policy, but we show that this policy can be

subverted via the use of covert channels.

16

Information Available to Applets

In HotJava-Alpha, most attempts by an applet to read or write the local file sys-

tem result in a dialog box for the user to grant approval. Separate access control

lists (ACLs)7 specify where reading and writing of files or directories may occur

without the user’s explicit permission. By default, the write ACL is empty and the

read ACL contains the HotJava library directory and specific MIME mailcap files.

The read ACL also contains the user’s public html directory, which may contain

information which compromises the privacy of the user. The Windows 95 version

additionally allows writing (but not reading) in the \TEMP directory. This allows

an applet to corrupt files in use by other Windows applications if the applet knows

or can guess names the files may have. At a minimum, an applet can consume

all the free space in the file system. These security concerns could be addressed

by the user editing the ACLs; however, the system default should have been less

permissive. Navigator and Internet Explorer do not permit any file system access

by applets (without digital signatures).

In HotJava-Alpha, we could learn the user’s login name, machine name, as

well as the contents of all environment variables; System.getenv() in HotJava-

Alpha had no security checks. By probing environment variables, including the

PATH variable, we could often discover what software is installed on the user’s ma-

chine. This information could be valuable either to corporate marketing depart-

ments, or to attackers desiring to break into a user’s machine. In later Java ver-

sions, System.getenv() was replaced with “system properties,” many of which

are not supposed to be accessible by applets. However, there have been imple-

mentation problems (see Section 2.4.5) that allowed an applet to read or write any

7Although Sun calls these “ACLs”, they are actually profiles — a list of files and directories
granted specific access permissions.

17

applet

Web
requests

CharlieBob

Alice

covert
channel

applet

Figure 2.2: A Three Party Attack — Charlie produces a Trojan horse applet. Bob
likes it and uses it in his Web page. Alice views Bob’s Web page and Charlie’s
applet establishes a covert channel to Charlie. The applet leaks Alice’s information
to Charlie. No collusion with Bob is necessary.

system property.

Java allows applets to read the system clock, making it possible to benchmark

the user’s machine. As a Java-enabled Web browser may well run on pre-release

hardware and/or software, an attacker could learn valuable information. Timing

information is also needed for the exploitation of covert timing channels. “Fuzzy

time” [Hu91] should be investigated to see if it can mitigate these problems.

Two vs. Three Party Attacks

It is useful to distinguish between two different kinds of attack, which we shall

call two-party and three-party. A two-party attack requires that the Web server the

applet resides on participate in the attack. A three-party attack can originate from

anywhere on the Internet, and might spread if it is hidden in a useful applet that

gets used by many Web pages (see Figure 2.2). Three-party attacks are more dan-

gerous than two-party attacks because they do not require the collusion of the Web

server.

18

Covert Channels

Various covert channels exist in HotJava, Navigator, and Internet Explorer, allow-

ing applets to have two-way communication with arbitrary third parties on the

Internet. These are not classic timing or storage channels, but exploit mechanisms

not intended to be used for data communication.

Typically, most HotJava users will use the default network security mode, which

allows an applet to connect only to the host from which it was loaded. This is the

only security mode available to Navigator and Internet Explorer users8. In fact,

the browsers have failed to enforce this policy through a number of errors in their

implementation.

The accept() system call, used to receive a network connection initiated on

another host, is not protected by the usual security checks in HotJava-Alpha. This

allows an arbitrary host on the Internet to connect to a HotJava browser as long as

the location of the browser is known. For this to be a useful attack, the applet needs

to signal the external agent to connect to a specified port. Even an extremely low-

bandwidth covert channel would be sufficient to communicate this information.

The accept() call is properly protected in current Java implementations.

If the Web server that provided the applet is running an SMTP mail daemon,

the applet can connect to it and transmit an e-mail message to any machine on

the Internet. Additionally, the Domain Name System (DNS) can be used as a two-

way communication channel to an arbitrary host on the Internet. An applet may

reference a fictitious name in the attacker’s domain. This transmits the name to the

attacker’s DNS server, which could interpret the name as a message, and then send

a list of arbitrary 32-bit IP numbers as a reply. Repeated DNS calls by the applet

8Without using digitally signed code.

19

establish a channel between the applet and the attacker’s DNS server. This channel

also passes through a number of firewalls [CB94]. In HotJava-Alpha, the DNS

channel was available even with the security mode set to “no network access,”

although this was fixed in later Java versions. DNS has other security implications;

see section 2.4.3 for details.

Another third-party channel is available with the URL redirect feature. Nor-

mally, an applet may instruct the browser to load any page on the Web. An at-

tacker’s server could record the URL as a message, then redirect the browser to the

original destination.

When we notified Sun about these channels, they said the DNS channel would

be fixed [Mue95], but in fact it was still available in JDK 1.0 and Netscape Navi-

gator 2.0. Netscape has since issued a patch (incorporated into Netscape Naviga-

tor 2.01) to fix this problem.

As far as we know, nobody has done an analysis of covert storage or timing

channels in the Java runtime system for evaluating isolation between applets.

2.4.3 Implementation Errors

Some bugs arise from fairly localized errors in the implementation of the browser

or the Java subsystem.

DNS Weaknesses

A significant problem appeared in the JDK 1.0 and Netscape Navigator 2.0 imple-

mentation of the policy that an applet can open a TCP/IP connection only back

to the server it was loaded from. While this policy is reasonable, since applets

20

often need to load components (images, sounds, etc.) from their host, it was not

uniformly enforced. This policy was enforced as follows:

1. Get all the IP addresses of the hostname that the applet came from.

2. Get all the IP addresses of the hostname that the applet is attempting to con-

nect to.

3. If any address in the first set matches any address in the second set, allow the

connection. Otherwise, do not allow the connection.

The problem occurred in the second step: the applet can ask to connect to any

hostname on the Internet, so it can control which DNS server supplies the second

list of IP-addresses; information from this untrusted DNS server was used to make

an access control decision. There is nothing to prevent an attacker from creating a

DNS server that lies [Bel95]. In particular, it may claim that any name for which

it is responsible has any given set of addresses. Using the attacker’s DNS server

to provide a pair of addresses (machine-to-connect-to, machine-applet-came-from), the

applet could connect to any desired machine on the Internet. The applet could

even encode the desired IP-address pair into the hostname that it looks up. This

attack is particularly dangerous when the browser is running behind a firewall,

because the malicious applet can attack any machine behind the firewall. At this

point, a rogue applet can exploit a whole legion of known network security prob-

lems to break into other nearby machines.

This problem was postulated independently by Steve Gibbons [Gib96] and by

us. To demonstrate this flaw, we produced an applet that exploits an old sendmail

hole to run arbitrary Unix commands as user daemon.

21

hotjava.props.put("proxyHost", "proxy.attacker.com");
hotjava.props.put("proxyPort", "8080");
hotjava.props.put("proxySet", "true");
HttpClient.cachingProxyHost = "proxy.attacker.com";
HttpClient.cachingProxyPort = 8080;
HttpClient.useProxyForCaching = true;

Figure 2.3: Code to redirect all HotJava-Alpha HTTP retrievals. FTP retrievals may
be redirected with similar code.

attacker.comvictim.org

DNS

Web proxy

DNS

Web server

Trusted mail
 server

Mail server

F
irew

all hostname lookup

applet

information leak
Internal mail

 server

User

applet exploits
sendmail bug

applet

hostname
lookup

applet

Figure 2.4: DNS subversion of Java: an applet travels from attacker.com
to victim.org through normal channels. The applet then asks to connect to
foo.attacker.com, which is resolved by the DNS server for attacker.com to be
mail server inside victim.org which can then be attacked.

Sun (JDK 1.0.1) and Netscape (Navigator 2.01)9 have both issued patches to fix

this problem.

9Netscape solved the problem by storing the results of all DNS name lookups internally, forcing
a given hostname to map to exactly one IP address. Netscape Navigator also stores the applet
source as a function of its IP address, not hostname. This solution has the added property that
it prevents time-varying DNS attacks. Previously, an attacker’s name server could have returned
different IP addresses for the same hostname each time it was queried, allowing the same attacks
detailed above.

22

Buffer Overflows

HotJava-Alpha had many unchecked sprintf() calls that used stack-allocated

buffers. Because sprintf() does not check for buffer overflows, an attacker could

overwrite the execution stack, thereby transferring control to arbitrary code. At-

tackers have exploited the same bug in the Unix syslog() library routine (via

sendmail) to take over machines from across the network [CER95]. In later Java

releases, all of these calls were fixed in the Java runtime. However, the bytecode

disassembler was overlooked all the way through the JDK 1.0 release. Users dis-

assembling Java bytecode using javap were at risk of having their machines com-

promised if the bytecode had very long method names. This bug was fixed in

JDK 1.0.2.

Disclosing Storage Layout

Although the Java language does not allow direct access to memory through point-

ers, the Java library allows an applet to learn where in memory its objects are

stored. All Java objects have a hashCode() method which, in typical implemen-

tation (including early Sun and Netscape implementations) unless overridden by

the programmer, casts the address of the object’s internal storage to an integer and

returns it. Although this does not directly lead to a security breach, it exposes more

internal state than necessary.

Public Proxy Variables

An interesting attack on HotJava-Alpha is that an attacker can change the browser’s

HTTP and FTP proxy servers. An attacker can establish his own proxy server as

a man-in-the-middle. As long as the client is using unencrypted HTTP and FTP

23

protocols, we can both watch and edit all traffic to and from the HotJava-Alpha

browser. All this is possible simply because the browser state was stored in pub-

lic variables in public classes. This attack compromises the user’s privacy, and its

implementation is trivial (see Figure 2.3). By using the property manager’s put()

method, an attackers stores a desired proxy in the property manager’s database.

If the attacker can then entice the user to print a Web page, these settings will be

saved to disk, and will be the default settings the next time the user starts HotJava.

If the variables and classes were private, this attack would fail. Likewise, if the

browser were running behind a firewall and relied on proxy servers to access the

Web, this attack would also fail.

We note that the same variables are public in JDK 1.0, although they are not

used. This code is not part of Navigator or Internet Explorer.

2.4.4 Interapplet Security

Because applets can persist after the Web browser leaves the page that contains

them, it becomes important to protect applets from each other. Otherwise, an at-

tacker’s applet could deliberately sabotage a third party’s applet. In many envi-

ronments, it would be unacceptable for an applet to even learn of the existence of

another applet. Non-interference [GM82, GM84] is a formal definition that cap-

tures this intuition.

In Netscape Navigator 3.0, AppletContext.getApplets() is careful to return

handles only to applets on the same Web page as the caller. However, an applet

could easily get a handle to the top-level ThreadGroup and then enumerate every

thread running in the system, including threads belonging to other arbitrary ap-

plets. The Java runtime encodes the applet’s class name in its thread name, so a

24

rogue applet can now learn the names of all applets running in the system. In ad-

dition, an applet could call the stop() or setPriority() methods on threads in

other applets. The SecurityManager checked only that applets could not alter the

state of system threads; there were no restraints on applets altering other applet

threads. Netscape Navigator 4.0 prevents an attacker from seeing threads belong-

ing to applets on other Web pages, in the same way it protects applets. Internet Ex-

plorer allows an applet to see those threads, but calls to stop() or setPriority()

have no effect.

An insidious form of this attack involves a malicious applet that lies dormant

except when a particular victim applet is resident. When the victim applet is run-

ning, the malicious applet randomly mixes degradation of service attacks with

attacks on the victim applet’s threads. The result is that the user sees the victim

applet as slow and buggy.

2.4.5 Java Language Implementation Failures

Unfortunately, the Java language and the bytecode it compiles to are not as secure

as they could be. There are significant differences between the semantics of the

Java language and the semantics of the bytecode language. First, we discuss David

Hopwood’s attack [Hop96b] based on package names. Next, we present our attack

that runs arbitrary machine code after compromising the type system. Several

flaws in the type system are examined, including two first noted by Tom Cargill.

Illegal Package Names

Java packages are normally named java.io, java.net, etc. The language prohibits

“.” from being the first character in a package name. The runtime system replaces

25

each “.” with a “/” to map the package hierarchy onto the file system hierarchy;

the compiled code is stored with the periods replaced with slashes. David Hop-

wood found that if the first character of a package name was “/”, the Java runtime

system would attempt to load code from an absolute path [Hop96b], because ab-

solute pathnames begin with a “/” character on Unix. Thus, if an attacker could

place compiled Java in any file on the victim’s system (either through a shared

file system, via an incoming FTP directory, or via a distributed file system such

as AFS), the attacker’s code would be treated as trusted, because it came from the

local file system rather than from the network. Trusted code is permitted to load

dynamically linked libraries (DLLs, written in C) which can then ignore the Java

runtime and directly access the operating system with the full privileges of the

user.

This attack is actually more dangerous than Hopwood first realized. Since

Netscape Navigator caches the data it reads in the local file system, Netscape Nav-

igator’s cache can also be used as a way to get a file into the local file system.

In this scenario, a normal Java applet would read (as data) files containing byte-

code and DLL code from the server where the applet originated. The Java runtime

would ask Navigator to retrieve the files; Navigator would deposit them in the lo-

cal cache. As long as the applet can figure out the file names used by Navigator in

its cache, it can execute arbitrary machine code without even needing prior access

to the victim’s file system.

JDK 1.1 Signature Management

In the JDK 1.1.1 release from Sun, there was a problem in the management of

digitally-signed code. The model in JDK 1.1 is that signed code, if the signature

26

is accepted by the user, receives the ability to do anything. Unfortunately, there

were two problems:

1. The method java.security.IdentityScope.identities would enumerate

all the signers known to the system. This is bad design.

2. The method java.lang.Class.getSigners returned a reference to the array

of identity objects used by the runtime to track the signer of the current class.

This array is writable. The code should have returned a copy of the array

instead, so that modifications would not be used by the JVM.

The net result of these problems was to make it a trivial exercise to write an applet

which gets access to all the signers that a JVM knows about, and tries on identities,

one at a time, until it finds a privileged one. Thus, if any signer is trusted, all

applets are capable using the privileges of the trusted signer. This problem was

fixed in JDK 1.1.2.

Superclass Constructors

The Java language [GJS96] requires that all constructors call either another con-

structor of the same class or a superclass constructor as their first action. The sys-

tem classes ClassLoader, SecurityManager, and FileInputStream all rely on this

behavior for their security. These classes have constructors that check if they are

called from an applet, and throw a SecurityException if so. Unfortunately, al-

though the Java language prohibits the following code, the bytecode verifier read-

ily accepted its bytecode equivalent:

27

class CL extends ClassLoader {
CL() {

try { super(); }
catch (Exception e) {}

}
}

This allowed an attacker to build (partially uninitialized) ClassLoaders,

SecurityManagers, and FileInputStreams. ClassLoaders are the most interest-

ing class to instantiate, as any code loaded by a ClassLoader asks its ClassLoader

to resolve any classes it references. This is contrary to the documentation [GM96]

that claims the system name space is always searched first; we have verified this

difference experimentally. Fortunately for an attacker, ClassLoaders did not have

any instance variables, and the ClassLoader constructor needs to run only once,

to initialize a variable in the runtime system. This happens before any applets

are loaded. Therefore, this attack resulted in a properly initialized ClassLoader

which is under the control of an applet. Since ClassLoaders define the name space

seen by other Java classes, the applet can construct a completely customized name

space. A fix for this problem appeared in Netscape Navigator 2.02, which was later

broken (see Section 2.4.5). Netscape Navigator 3.0 and JDK 1.0.2 took different ap-

proaches to fix this problem.

We discovered that creating a ClassLoader gives an attacker the ability to defeat

Java’s type system. Assume that classes A and B both refer to a class named C. A

ClassLoader could resolve A against class C, and B against class C′. If an object

of class C is allocated in A, and then is passed as an argument to a method of B,

the method in B will treat the object as having a different type, C′. If the fields

of C′ have different types (e.g., Object and int) or different access modifiers (

public, private, protected) than those of C, then Java’s type safety is defeated.

28

This allows an attacker to get and set the value of any non-static variable, and

call any method (including native methods). This attack also allows an applet to

modify the class hierarchy, as it can read and write variables normally visible only

by the runtime system. Any attack which allows object references to be used as

integers, and vice versa, leads to complete penetration of Java (see section 2.4.5).

Java’s bytecode verification and class resolution mechanisms are unable to detect

these inconsistencies because Java defines a weak correspondence between class

names and Class objects.

Netscape Navigator 3.0 and Microsoft Internet Explorer fix the superclass con-

structor issue and take other measures to prevent applets from instantiating Class-

Loaders. JDK 1.1-Beta initially offered “safe” ClassLoaders to applets, but the

feature was withdrawn from the final release because they could, in fact, still be

abused.

Fundamentally, the job of a ClassLoader is to resolve names to classes as part

of Java’s dynamic linking. Dynamic linking has subtle interactions with static type

checking. This problem has driven much of my research; Chapters 3 and 4 are

devoted to it.

Attacking the SecurityManager

Unfortunately, a ClassLoader can load a new SecurityManager that redeclares

the SecurityManager’s variables as public, violating the requirement that refer-

ence monitors be tamperproof. There are four interesting variables in the JDK

AppletSecurity class: readACL, writeACL, initACL, and networkMode. The read-

ACL and writeACL variables are lists of directories and files that applets are allowed

to read and write. The initACL variable tracks whether the ACLs have been ini-

29

tialized. The networkMode variable determines what hosts applets are allowed to

make network connections to. By setting the networkMode variable to allow con-

nections anywhere, the ACLs to null, and the initACL variable to true, we effec-

tively circumvent all JDK security.

Java’s SecurityManagers generally base their access control decisions on

whether they are being called in the dynamic scope of code loaded from the net-

work. The default ClassLoader in the runtime system knows how to load classes

only from the local file system, and appears as the special value NULL to the runtime

system. Any other ClassLoader is assumed to indicate untrusted code. However,

a ClassLoader can provide an implementation of Class that makes certain run-

time system data structures accessible as ints. Setting the ClassLoader field to

zero causes the Java runtime system to believe that the code came from the local

file system, also effectively bypassing the SecurityManager.

Running Machine Code from Java

Netscape Navigator 2.0x protected itself from the attacks described above

with additional checks in the native methods that implement file system rou-

tines that applets would never have any reason to invoke. In addition, the

java.lang.Runtime.exec() method has been stubbed out in the runtime system,

so applets cannot start Unix processes running. However, the type system viola-

tions (i.e., using Objects as ints and vice versa) make it possible, but non-trivial,

to run arbitrary machine code, at which point an attacker can invoke any system

call available to the user running the browser without restriction, and thus has

completely penetrated all security provided by Java.

Although Java does not guarantee a memory layout for objects [LY96], the cur-

30

rent implementations lay out objects in the obvious way: instance variables are in

consecutive memory addresses, and packed as in C. An attacker can clearly write

machine code into integer fields, but there are two remaining challenges: learn-

ing the memory address of our code, and arranging for the system to invoke our

machine code. All an attacker can do is use object references as integers, but note

that object references in JDK and Netscape Navigator are pointers to pointers to

objects, and we can only doubly dereference them; thus, we cannot easily figure

out where to jump to.

Internet Explorer uses a single pointer for object references, which simplifies

the attack. Below, we describe how Netscape Navigator can be attacked, but this

attack has been generalized to work with Microsoft Internet Explorer as well.

Netscape Navigator’s object references are pointers to a structure that contains

two pointers: one to the object’s private data, and another to its type information.

Thus, while a malicious ClassLoader allows an attacker to cast object references

to integers and back, the attacker can only doubly dereference the pointers. This

complicated the process of learning the actual machine address of an object’s data.

To solve this problem, observe that Class objects, i.e., instances of the class

java.lang.Class are not implemented as normal Java objects. Class has no Java-

visible variables, but the implementation of a Class by the runtime system uses a

C structure, ClassClass, to hold class-specific data. The ClassClass, implemented

in C, uses a mixture of Java object references and direct pointers. One of the fields

of the ClassClass structure (which we have a reference to) contains a pointer to a

method table. The method table contains a pointer back to the ClassClass and an

array of pointers to method blocks; see Figure 2.5. Note that methods from super-

classes are copied into each method table, and class Object has eleven methods, so

31

Java object reference

Method Table

Instance Data

Object x;

Class c;
struct
ClassClass

Method Table

fieldblock

Method Block

invoker

l

Figure 2.5: Memory layout of Java objects, and the special case of
java.lang.Class.

32

lui a0, ((a+20) div 65536) ; Hi order bits of string pointer
addi a0, a0, ((a+20) mod 65536) ; Low order bits of string pointer
li v0, 1010 ; System call # for unlink() (IRIX)
syscall
nop
.asciz "/tmp/JavaSafe.NOT" ; File to delete

Figure 2.6: MIPS assembly code to delete a file.

the twelfth method is the first method declared in this object. Each method block

contains a pointer to its ClassClass.10 Thus we have a cycle of 3 pointers, starting

from the Class reference. Since 2 and 3 are relatively prime, we can cycle around

the loop, gaining access to each and every pointer, in particular, getting access to

a pointer to the ClassClass, which we treat as an integer l. We then overwrite

memory beginning at l with the MIPS instructions11in Figure 2.6.

At this point, the machine code is in memory, and we know where it is. How-

ever, we’ve damaged a ClassClass structure, overwriting many of its fields. In

particular, we’ve overwritten its constant pool pointer, so that methods can no

longer be resolved by name. However, the Java interpreter resolves the method

name the first time it is invoked, and replaces the method invocation with a so-

called quick instruction, which caches the result of the lookup. By calling the

method we hijack first, we cause the constant pool to be accessed, the method

lookup result to be cached, and future calls to be performed with a quick-variant

of the instruction. Each method block contains a function pointer to a function to

be used for invoking that method: the runtime system contains functions for in-

10This pointer is actually the first field of the fieldblock structure, which in turn is the first field
of the method block. However, the pointer to the ClassClass is at offset 0 from the beginning of
the method block.

11We used an SGI workstation running version 5 of the IRIX operating system for the attack,
because we wanted a 32-bit, big-endian architecture with simple calling conventions to simplify
our job. The attack is equally applicable to other architectures and operating systems, but more
complicated.

33

voking virtual methods, non-virtual methods, synchronized methods, and native

methods. However, we can treat this function pointer as an integer, so we simply

assign l (the beginning of the machine code) to it, and invoke the appropriate Java

method. This, in turn, invokes our machine code. Our machine code will die with

an illegal instruction as it tries to execute ”/tmp”, but that’s fine — the damage

has already been done.

More Type System Attacks

The ClassLoader attack described above was the first of many holes found in the

Java type system. Any hole in the type system that allows integers to be used as

object references is sufficient to run arbitrary machine code. Many such problems

have been found.

Cargill’s Interface Attack Tom Cargill noted that Java’s interface feature could

be used to call private methods [Car96a]. This works because all methods de-

clared in an interface are public, and a class was allowed to implement an inter-

face by inheriting a private method from its parent. Netscape Navigator 2.02 fixed

the ClassLoader attack by making the native methods private, and wrapping

them inside methods that checked a boolean variable initialized by the ClassLoader

constructor before calling the private, native methods to do the real work. Be-

cause an attacker could now call the private methods directly, the fix was de-

feated.

Hopwood’s Interface Attack David Hopwood found that interfaces were

matched by string name, and not Class object identity [Hop96a]. By passing ob-

jects implementing an interface across multiple name spaces (where a name space

34

corresponds to a ClassLoader), Hopwood could also treat object references as inte-

gers, and vice versa. Hopwood implemented his attack by storing a user-defined

subclass of java.io.PrintStream in System.out, a public, non-final variable.

Dirk Balfanz found that exceptions were also identified by name, and thus had the

same problem [Bal96].

Arrays Java defines all arrays to be objects. The system normally provides ar-

ray classes that inherit directly from Object, but use the covariant subtyping rule.

However, we found that the user was able to define his own array classes because

of a bug in the AppletClassLoader. When a class is loaded via Class.forName(),

it will ask the ClassLoader of the code that invoked Class.forName() to supply

the class, unless it’s an array class, in which case the system will supply an ap-

propriate definition. However, AppletClassLoader did not check that the name

of the class it actually loaded is the same as what was requested until after it has

called defineClass(), which had the side-effect of entering the class into the sys-

tem class table. By misnaming an array class, e.g., [LFoo; (i.e., array of Foo), as

a normal class, e.g., Foo2, it was entered into the system class table, and could be

used as an array. By calling Class.newInstance(), an attacker could allocate an

instance of his class, and cast it into an array. When the class definition is needed

to check the cast, the system first looks in the system class table, but only for array

classes. If our definition has an integer as its first instance variable, and the array

is Class[], then necessary conditions exist to run arbitrary machine code.

Tom Cargill noted that the quick variants of the method invocation instructions

(which do not perform type checking) do not interact properly with arrays of

interfaces [Car96b]. Recall that the method invocation instruction is rewritten

at runtime, using the actual type of its argument the first time it is executed. How-

35

ever, not all elements of the array need have the same type. Using this, an attacker

can call private methods of public, non-final classes. This was fixed in JDK 1.1,

Navigator 3.0, and Internet Explorer 3.0.

Packages Dirk Balfanz found that the pre-release versions of Internet Explorer 3.0

did not separate packages with the same name loaded from different origins [BF96].

An applet could declare classes belonging to system packages such as java.lang.

These classes would be accepted due to a error in the SecurityManager’s method

that was supposed to prevent this. This error was also present in JDK 1.0.2. As a

result, an applet could access package-scope variables 12 and methods of system

packages. This bug was fixed in the final release of Internet Explorer 3.0. Because

Sun and Netscape’s implementation of the JVM detected this elsewhere, and did

not in fact consult the SecurityManager, HotJava and Navigator were not vulner-

able to this attack.

Exceptions In June 1998, we found another type soundness failure in the

Netscape 4.05 JVM. The attack relies on several implementation problems in the

interaction of ClassLoaders and exception handling. Mark LaDue found that one

could instantiate a new AppletClassLoader in Netscape 4.04 and 4.05 [LaD98].

We eventually traced this bug down to the Netscape SecurityManager check-

ing whether the fourth stack frame above it had a ClassLoader. The struc-

ture of the Netscape SecurityManager is such that the fourth stack frame

above the check should belong to a constructor of a class that inherits from

java.lang.ClassLoader. Although this check prohibits an applet from instantiat-

ing a subclass of java.lang.ClassLoader, netscape.applet.AppletClassLoader

12such as readACL and writeACL, see section 2.4.5.

36

is a public class with a public constructor that adds an additional stack frame,

making the applet’s constructor be the fifth stack frame, not the fourth, on the

stack. If Netscape had used their stack inspection-based permission model for

this security check, the problem would not have occurred. However, LaDue was

unable to break the type system directly, because Netscape was identifying types

correctly by (name, ClassLoader) pairs, not just names.

We generalized his result to instantiating any subclass of

netscape.applet.AppletClassLoader. Unfortunately, AppletClassLoader

implemented a final method for the upcall from the JVM to the ClassLoader,

so we were unable to intercept name lookups. We overcame this difficulty by

taking advantage of a bug in the AppletClassLoader implementation: it first

called findLoadedClass, looking in the ClassLoader’s internal hash table, before

calling findSystemClass, to ask the NULL ClassLoader for a definition of a class.

This meant that we could shadow the definition of any system class we chose,

simply by defining it in our ClassLoader. The magic class to shadow was

java.lang.Throwable, the base class of exceptions and errors.

The attack proceeds as follows: we took the Throwable class from JDK 1.1, and

added an int and an Object field. We created a ClassLoader, and used it to load

our version of Throwable. We used the same ClassLoader to load another class,

Hack, of our creation, which had a static field of type RuntimeException13. From

the main applet, loaded by an ordinary AppletClassLoader, we instantiate a sub-

class of RuntimeException, Kaboom, that we created with additional Object and

int fields. Note that these fields are declared in the reverse order than the fields

we added to our version of Throwable; the JVM’s memory layout of objects is such
13We chose RuntimeException rather than Exception to avoid the need for a throws clause to

make the Java compiler happy during the early stages of development. Because the verifier cur-
rently ignores the exception-throwing information in the bytecode, it is irrelevant.

37

Throwable

Exception

RuntimeException

Kaboom
{ Class c;}

Throwable’
{ int c; }

Hack
{ RuntimeException e; }
 ... finally { (Throwable’) e.c = 42; }

Applet
{ Kaboom k;
new Hack();
... catch
(Kaboom k2)
{...}}

Figure 2.7: Type soundness failure of catch-any exception block. The shaded trian-
gles represent ClassLoaders.

38

that the same memory location will have different types in different contexts. We

then use the Java reflection API to store an instance of Kaboom into the static field

of Hack. This completes the setup of the attack. See Figure 2.7.

The actual type soundness bug that we exploit cannot be expressed in Java, but

is expressible in the JVM bytecode language. In order to compile Java’s try-finally

feature, there is a special wild card pattern that catches any exception, without

requiring that it be a subclass of any nameable class. In this exception handler

block, the verifier treats the exception value on the top of the stack as an instance

of Throwable as defined in the current ClassLoader. The thought was that every

thrown value is a subclass of Throwable (the verifier checks this at the throw site),

but nothing more is known. Unfortunately, we’ve loaded two different definitions

of Throwable, and the value we threw was an instance of a subclass of Throwable

in the NULL ClassLoader, not an instance of Throwable in the current ClassLoader.

Thus, we have a type soundness failure: the value of a variable is not a member

of its type. Because the verifier lets us operate on this object according to the def-

inition of Throwable in the current ClassLoader, we can store an integer into the

int field that our version of Throwable declares. We then rethrow the object as

normal, and catch it in our main applet class as its type, Kaboom. Its Object field

has acquired the integer we stored into the “instance” of Throwable, completing

the cast.

2.5 Java Language and Bytecode Weaknesses

The official Java and bytecode language definitions are weaker than they should

be from a security viewpoint. The language has neither a formal semantics nor a

39

formal description of its type system.14 The module system is limited, the scop-

ing rules are too liberal, and methods may be called on partially initialized ob-

jects [Has96]. The bytecode language is relatively difficult to verify, has no formal

semantics15, has unnaturally typed constructors, and does not enforce the private

modifier on code loaded from the local file system. The separation of object cre-

ation and initialization poses problems. We explore these issues in more depth.

2.5.1 Language Weaknesses

The Java language definition [GJS96] has neither a formal semantics nor a formal

description of its type system. We cannot formally reason about Java and the secu-

rity properties of the Java libraries written in Java. Java lacks a formal description

of its type system, yet the security of Java fundamentally relies on the soundness

of its type system. Java’s package system provides only basic modules, and these

modules cannot be nested, although the name space superficially appears to be hi-

erarchical. With properly nested modules, a programmer could limit the visibility

of security-critical components. In the present Java system, only access to vari-

ables is controlled, not their visibility. Java also allows methods to be called from

constructors: these methods may see a partially initialized object instance [Has96].

One nice feature of Java is that an object reference is roughly equivalent to a

traditional capability [Lev84]. Because pointers cannot be forged, the possession

of an object instance (such as an open file) represents the capability to use that

file. However, the Java runtime libraries are not generally structured around using

14Drossopoulou and Eisenbach [DE97a], Syme [Sym97], and others are developing formal se-
mantics for Java.

15A formal definition of the bytecode language is under development by Computational Logic,
Inc. Stata and Abadi [SA98] have produced a type system for bytecode subroutines.

40

objects as capabilities. Used as capabilities, Java objects would have all the tradi-

tional problems of capability systems, e.g., difficulty tracking and controlling who

has access to various system resources.

The Java language definition could be altered to reduce accidental leaks of in-

formation from public variables, and encourage better program structure with a

richer module system than Java’s package construct. Public variables in public

classes are dangerous; it is hard to think of any safe application for them in their

present form. Although Java’s packages define multiple, non-interfering naming

environments, richer interfaces and parameterized modules would be useful addi-

tions to the language. By having multiple interfaces to a module, a module could

declare a richer interface for trusted clients, and a more restrictive interface for un-

trusted clients. The introduction of parameterized modules, like Standard ML’s

functors [MTH90], should also be investigated. Parameterized modules are a so-

lution to the program structuring problem that opened up our man-in-the-middle

attack (see section 2.4.3).

2.5.2 Bytecode Weaknesses

The Java bytecode language is where the security properties must ultimately be

verified, as this is what gets sent to users to run. Unfortunately, it is rather difficult

to verify bytecode. Bytecode is in a linear form and local variables can hold values

of different types at different times, so type checking it requires global data flow

analysis similar to the back end of an optimizing compiler [Yel95]; this analysis is

complicated further by the existence of exceptions and exception handlers. Type

checking normally occurs in the front end of a compiler, where it is a traversal

of the abstract syntax tree [Pey87]. (The Juice system [FK97] works in the same

41

way.) In the traditional case, type checking is compositional: the type correctness

of a construct depends upon the current typing context, the type correctness of its

subexpressions, and whether the current construct is typable by one of a finite set

of rules. In the Java bytecode language, the verifier must show that all possible

execution paths lead to the same virtual machine configuration — a much more

complicated problem, and thus more prone to error. Recent work [SA98] on for-

malizing the semantics of the bytecode language is encouraging, but this should

have been done in the design stage, not as an interesting research problem after

the fact.

Object Initialization Creating and initializing a new object occurs in an interest-

ing way: the object is created as an uninitialized instance of its class, duplicated

on the stack, then its constructor is called. The constructor’s type signature is

uninitialized instance of class → void; it mutates the current typing context for the

appropriate stack locations to initialized instances of their class. It is unusual for a

dynamic function call to mutate the static typing context — in most statically typed

languages, values have the same type throughout their life.

The initialization of Java objects seems unnecessarily baroque. The first time

a class is used, its static constructors are executed. Then, for each instance of the

class, a newly allocated object sets all of its instance variables to either null, zero,

or false, as appropriate for the type of the variable. Then the appropriate con-

structor is called. Each constructor executes in three steps: First, it calls another

constructor of its own class, or a constructor of its superclass. Next, any explicit

initializers for instance variables (e.g. int x = 6;) written by the programmer are

executed. Finally, the body of the constructor is executed. During the execution

of a constructor body, the object is only partially initialized, yet arbitrary methods

42

of the object may be invoked, including methods that have been overridden by

subclasses, even if the subclasses’ constructors have not yet run. Because Java’s

security partly relies on some classes throwing exceptions during initialization (to

prevent untrusted code from creating an instance of a dangerous class), it seems

unwise to have the system’s security depend on programmers’ understanding of

such a complex feature.

Information Hiding We also note that the bytecode verifier does not enforce the

semantics of the private modifier for bytecode loaded from the local file system.

Two classes loaded from the local file system in the same package have access to

all of each other’s variables, whether or not they are declared private. In par-

ticular, any code in the java.lang package can set the system’s security manager,

although the definition of System.security and System.setSecurityManager()

would seem to prevent this. The Java runtime allows the compiler to inline calls

to System.getSecurityManager(), which may provide a small performance im-

provement, but with a security penalty for not enforcing the programmer’s de-

clared abstractions.

Extra Expressive Power The key distinction here is that the JVM is strictly richer

than Java, that is, there are valid JVM programs (i.e., bytecode that successfully

verifies) that do not correspond to valid Java programs. Some examples:

1. The bytecode language has an intra-method GOTO statement, so arbitrary

control-flow graphs may be formed. The Java language can produce only

reducible flow graphs.

2. The bytecode language allows access to the exception value in an exception

handler that catches any exception, whereas Java’s finally block does not.

43

3. The bytecode language can catch an exception thrown by a super class con-

structor, which is impossible in Java. (The first statement in a constructor

must be to call a constructor of its super class, or another constructor of the

same class.) In early JVM releases, this could be used to (eventually) break

the type system [DFW96].

The issue is how programmers reason about their code. They want to reason

at the source code level about the possible behavior of hostile code.16 But since

the object code can contain contexts that cannot occur in the source code, a priori,

there is no reason to believe that arbitrary semantic properties of Java will hold of

the JVM bytecode language. The relationship between the JVM bytecode language

and Java, and deriving sufficient, effectively checkable conditions on the bytecode

to ensure that Java semantics are always upheld, is a major open problem in Java

security today. Of course, complete formal specifications of both the JVM and Java

are needed first.

2.6 Analysis

We found a number of interesting problems in an alpha version of HotJava, and

various commercial versions of Netscape Navigator and Microsoft Internet Ex-

plorer. More instructive than the particular bugs we and others have found is

an analysis of their possible causes. Policy enforcement failures, coupled with the

lack of a formal security policy, make interesting information available to applets,

and also provide channels to transmit it to an arbitrary third party. The integrity

of the runtime system can also be compromised by applets. To compound these

16Noted by Andrew Appel in March 1996.

44

problems, no audit trail exists to reconstruct an attack afterward. In short, the Java

runtime system is not a high assurance system.

2.6.1 Policy

The present documents on Netscape Navigator [Ros96], Microsoft Internet Ex-

plorer, and HotJava do not formally define a security policy. This contradicts the

first of the Orange Book’s Fundamental Computer Security Requirements, namely

that “There must be an explicit and well-defined security policy enforced by the

system.” [Nat85] Without such a policy, it is unclear how a secure implementation

is supposed to behave [Lan81]. In fact, Java has two entirely different uses: as a

general purpose programming language, like C++, and as a system for developing

untrusted applets on the Web. These roles require vastly different security policies

for Java. The first role does not demand any extra security, as we expect the operat-

ing system to treat applications written in Java just like any other application, and

we trust that the operating system’s security policy will be enforced. Web applets,

however, cannot be trusted with the full authority granted to a given user, and so

require that Java define and implement a protected subsystem with an appropriate

security policy.

2.6.2 Enforcement

The Java SecurityManager is intended to be a reference monitor [Lam71]. A refer-

ence monitor has three important properties:

1. It is always invoked.

2. It is tamperproof.

45

3. It is small enough to be verifiable.

Unfortunately, the Java SecurityManager design has weaknesses in all three

areas.

• It is not always invoked: programmers writing the security-relevant por-

tions of the Java runtime system must remember to explicitly call the

SecurityManager. A failure to call the SecurityManager will result in access

being granted, contrary to the security engineering principle that dangerous

operations should fail unless permission is explicitly granted.

• It is not tamperproof: attacks that compromise the type system can alter in-

formation that the SecurityManager depends on.

• The SecurityManager code is the only formal specification of policies. With-

out a higher-level formal specification, informal policies may have incorrect

implementations that go unnoticed. For example, the informal policies about

network access were incorrectly coded in JDK 1.0 and Netscape Navigator

2.0’s SecurityManager (see Section 2.4.3).

2.6.3 Integrity

The architecture of HotJava is inherently more prone than that of Netscape Naviga-

tor or Microsoft Internet Explorer to accidentally reveal internal state to an applet

because the HotJava browser’s state is kept in Java variables and classes. Variables

and methods that are public are potentially very dangerous: they give the attacker

a toe-hold into HotJava’s internal state. Static synchronized methods and public

instances of objects with synchronized methods lead to easy denial of service at-

tacks, because any applet can acquire these locks and never release them. These

46

are all issues that can be addressed with good design practices, coding standards,

and code reviews.

Java’s architecture does not include an identified trusted computing base

(TCB) [Nat85]. Substantial and dispersed parts of the system must cooperate to

maintain security. The bytecode verifier, and interpreter or native code genera-

tor must properly implement all the checks that are documented. The HotJava

browser (a substantial program) must not export any security-critical, unchecked

public interfaces. This does not approach the goal of a small, well defined, veri-

fiable TCB. An analysis of which components require trust would have found the

problems we have exploited, and perhaps solved some of them.

2.6.4 Accountability

The fourth fundamental requirement in the Orange Book is accountability: “Audit

information must be selectively kept and protected so that actions affecting secu-

rity can be traced to the responsible party.” [Nat85] The Java system does not define

any auditing capability. If we wish to trust a Java implementation that runs byte-

code downloaded across a network, a reliable audit trail is a necessity. The level

of auditing should be selectable by the user or system administrator. As a min-

imum, files read and written from the local file system should be logged, along

with network usage. Some users may wish to log the bytecode of all the programs

they download. This requirement exists because the user cannot count on the at-

tacker’s Web site to remain unaltered after a successful attack. The Java runtime

system should provide a configurable audit system.

47

2.7 Conclusion

We have seen many security failures in the Java implementations produced by Sun,

Netscape, and Microsoft. Although the basic bugs are getting fixed over time, we

are seeing the classic problem with the “penetrate and patch” methodology: new

bugs get introduced with each new version of the software, and the software never

converges to a bug-free state.

It is interesting to look back at this chapter in hindsight. Our complaints about

the lack of any auditing still have not been addressed. Much work has been done

on digital signatures, but support for managing signed code relies on the type-

safety of the Java implementation, which we have been able to subvert in many

implementations, including Netscape 4.05. HotJava source code is no longer gen-

erally available, so we have not examined HotJava 1.0 or 1.1 for vulnerabilities.

48

Chapter 3

Safe Dynamic Linking1

3.1 Introduction

We have seen that the design of dynamic linking is critical to the security of Java.

Since Java is a (mostly) statically typed language [GJS96], if an applet can run in

a different environment than the one in which it successfully passed the bytecode

verifier, there is a potential security problem. We have shown that the ability to

break Java’s type system leads to an attacker being able to run arbitrary machine

code, at which point Java can make no security claims [DFWB97]. While type the-

ory is a well developed field, there has been relatively little work on the semantics

of linking, and less work where linking is a security-critical operation.

This chapter addresses the design of a type-safe dynamic linking system. Safe

dynamic linking is not sufficient for building a secure system using language-

based protection. However, linking should avoid breaking any language prop-

erties. The rest of the chapter is structured as follows. Section 3.2 discusses related

1An earlier version of this chapter appeared in the Fourth ACM Conference on Computer and Com-
munication Security [Dea97].

49

work, Section 3.3 gives an informal statement of the problem, Section 3.4 infor-

mally discusses the problem, its ramifications, and solution, Section 3.5 discusses

the formal treatment of the problem in PVS [OSR93], Section 3.6 briefly discusses

implementation and assurance issues, and Section 3.7 concludes. The PVS specifi-

cation is provided in an appendix.

3.2 Related Work

There has been little recent work in linking. The traditional view is that linkage

editing (informally, linking, performed by a linker) is a static process that replaces

symbolic references in object modules with actual machine addresses. The linker

takes object modules (e.g., Unix2 .o files) produced by a compiler or assembler,

along with necessary runtime libraries (e.g., Unix .a files) as input, and produces

an executable program by laying out the separate pieces in memory, and replacing

symbolic references with machine addresses. Static linking copies code (e.g., the

standard C library’s printf() function) and data from the runtime libraries into

the executable output.

The alternative strategy is dynamic linking. Although dynamic linking is an old

idea (appearing in Multics [Org72], among other systems), it did not become pop-

ular in the Unix and PC worlds until the late 1980s to early 1990s, with the advent

of systems such as SunOS 4.0 [GLDW87] and Microsoft Windows. Dynamic link-

ing delays the replacement of symbolic references with machine addresses until

the program is loaded into memory from disk. (In practice, most dynamic linking

is lazy, that is, a symbolic reference is not replaced until it is used the first time.)

Dynamic linking saves both disk space and memory, as it eliminates the storage
2Unix is a registered trademark of X/Open, Inc.

50

of multiple copies of the same library linked into programs on disk, and multiple

processes can share the code (assuming it is not self-modifying), but not data ar-

eas, in memory. Each process gets its own data area, so the code does not have to

be reentrant. Dynamically linked programs start up a little slower than statically

linked programs, but this is generally not a problem on modern CPUs.

Besides the memory and disk savings, dynamically linked code offers increased

flexibility. Bug fixes in library routines simply require the installation of the new

libraries, and all dynamically linked programs on the system acquire the fix. Two

different versions of a library that implement the same interface, but with different

behavior, can be substituted for one another, and the behavior of all dynamically

linked programs installed on the system changes.3 This feature is essential for exe-

cutable content to be portable. A runtime system abstracts the operating system’s

system call interface into a portable set of libraries. Although the libraries’ imple-

mentation is platform dependent, all the implementations have the same interface,

so the (e.g.,) Java applet does not need to know what kind of computer it is running

on.

Unix, Macintosh, and PC operating systems, along with C, COBOL, FORTRAN,

and Pascal, have treated linking as the process of replacing symbolic references

with machine addresses. Since C compilers compile a single file at a time, they

cannot detect the same variable being declared differently in different source files.

Declaring a variable to be an integer in one file and a pointer in another leads to

an unsafe program: trying to interpret an integer as a pointer usually leads to a

core dump. Because protection in Java depends on preventing users from forging

object references, such a type mismatch would completely undermine the system.
3Hostname lookup in SunOS 4.x is a prime example: the default standard C library provided by

Sun uses Sun’s NIS to look up hostnames. A system administrator can rebuild the library to use
the Internet Domain Name System.

51

Well-designed languages have module systems that provide support for sepa-

rate compilation without these problems [Wir83, MTHM97]. C++ introduced name

mangling as a way to encode type information into linking, to prevent inter-module

type errors while still using standard linkers [Str94]. 4 Name mangling only pre-

vents accidents; it does not prevent a malicious programmer from creating a type

error.

The SPIN project at the University of Washington [BSP+95] and the Flux Project

at the University of Utah [FBB+97] address dynamic linking for an operating sys-

tems viewpoint [SFPB96, OBLM93]. The SPIN work does not describe the me-

chanics of linking in detail; rather it focuses on access control via linking. Our

work [WBDF97] with name space management is similar. The Flux work focuses

on the implementation of a flexible and efficient dynamic linking mechanism; it

does not discuss type safety. Other work at Utah [BLO94] has examined type safe

linking for C, but does not address the problem faced in Java.

Appel and MacQueen [AM94] provide type-safe linking for Standard ML, and

avoid the problems discussed here for two reasons. Standard ML is strictly stati-

cally scoped, and SML structures do not allow for recursion. Thus, loaded defi-

nitions can refer only to already existing definitions, and they never capture defi-

nitions loaded in the future.

Cardelli’s recent work [Car97] addresses type safety issues with separate com-

pilation and linking. He introduces a simple language, the simply typed λ-calculus,

with a primitive module system that supports separate compilation. He then in-

formally, but rigorously, proves that his linking algorithm terminates, and if the

4C++ compilers replace function names with symbols that encode the argument and return
types of the function. There is no standard algorithm for doing this, which interferes with the
interoperability of various C++ compilers on the same machine. This hack was introduced because
standard Unix linkers had no way to associate type information with symbols.

52

algorithm is successful, that the resulting program will not have a type error. (Here

a type error means calling a function with the wrong number or type(s) of argu-

ments, or using a number as a function.) However, it assumes that all types are

known at link time, and does not address (mutually) recursive modules.

Janson’s work [Jan74] removes dynamic linking from the Multics kernel. Jan-

son argues that the Multics dynamic linker is not security-relevant, so it should not

be part of the security kernel. His redesign of dynamic linking moves it into each

process, where it happens in user mode rather than kernel mode. (The SunOS 4

dynamic linker design [GLDW87] is very similar.) However, dynamic linking in

Java is security-relevant, unlike Multics, where hardware-based rings were used

for protection.

Drossopoulou and Eisenbach’s recent work [DE97b] considers the type safety

of a subset of Java. Although it accounts for forward references, it assumes that it is

looking at an entire program in a closed world. It does not model the interleaving

of type checking, linking, and program execution.

The situation in Java is different from the above situations. Java does not have

type information available at link time; type checking (that is, bytecode verifica-

tion) is interleaved with dynamic linking. Because the safety of the system relies

on type safety, which in turn relies on proper dynamic linking, the linker is criti-

cal to security, unlike the Multics case. This chapter considers the security-critical

interaction of linking and type checking.

3.3 Informal Problem Statement

The Java runtime system may interleave type checking, linking, and program exe-

cution [GJS96]. The implementation from JavaSoft (and used by Netscape in their

53

Web browser) takes advantage of this freedom. Because most implementations of

Java are statically typed, we need to be sure that a linking action cannot invalidate

the results of previously performed type checking. If linking could invalidate type

checking, then a Java system would be vulnerable to a time-of-check-to-time-of-

use (TOCTTOU) attack [Neu95].

The potential vulnerability is as follows: an applet is downloaded and verified.

Part of the verification procedure involves type checking. An applet is (in general)

composed of multiple classes, which can reference each other and runtime library

components in arbitrary ways (e.g., mutually recursively). The type correctness

of the applet depends on the types of these external references to other classes.

These classes, if not already present, are loaded during type checking. However,

an applet can ask for any arbitrary class to be loaded via a Class.forName() call.

If a class could load a new class to be used in place of the one it was type checked

against, the system would not be type safe. (The actual rules for exactly when Java

classes are loaded are very complicated; to make the proofs tractable, we use the

simplified system described above.)

The exact correspondence between classes and types is subtle. We use Fisher

and Mitchell’s model [FM96], where classes are in 1–1 correspondence with im-

plementation types, and implementation types are subtypes of interface types, which

define the externally visible structure of the class. (Interface types roughly corre-

spond to Java interfaces.) We say that A is a subtype of B, written A ≤ B, if an

expression of type A can be used in any context where an expression of type B is

required. Two implementation types are the same if and only if they have the same

name. (In Java, two classes are the same if and only if they have the same name and

the same classloader [GJS96].) Two interface types are the same if they are struc-

turally equivalent. Interface types fit nicely in the objects as records model [Car88b],

54

so we can define structurally equivalent types as having the same fields, where cor-

responding fields have the same type. For an implementation type Impl , we write

Inter (Impl) for the corresponding interface type. The interested reader is referred

to Fisher’s thesis [Fis96] for more details.

We need to define some standard terms from type theory before we proceed.

Let Γ be a type context of the form Γ = {x1 : σ1, . . . , xk : σk}, where each xi is a distinct

identifier (in this case, they represent classes), and each σ is an implementation

type. The notation x : σ assigns x the type σ. Γ(x) = σ if and only if x : σ ∈ Γ. Define

xi v xj, pronounced, “xi is an interface subtype[e of xj,” if and only if Inter (σi) =

Inter(σ j).5 Define Γ� Γ′ when ∀x ∈ Γ : Γ(x)v Γ′(x); we call Γ′ a consistent extension

of Γ.

Let M range over Java classes, which are the objects of type checking. We write

Γ ` M : τ to mean that M has type τ in context Γ; this is called a typing judgment.

We assume the following proposition holds:

Proposition 3.1 If Γ ` M : τ and Γ � Γ′, then Γ′ ` M : τ .

The justification for this proposition can be found in [Mit90]; it is a combina-

tion of Mitchell’s (add hyp) axiom and his Lemmas 2.2.1 and 2.2.2. The intuitive

reading of this proposition is that we can consistently extend the environment,

e.g., by adding new variables, classes, or methods to an existing program, without

changing existing typing judgments in a type system that satisfies the proposition.

A rigorous proof of this would require a formalization of the complete Java type

system (see [DE97b] for work in this direction), and is beyond the scope of this

thesis.
5The reader familiar with object-oriented type theory might expect the definition of v to be

Inter(σi) ≤ Inter (σ j). However, since Java variables declared as classes are really object references,
and the Java class hierarchy is acyclic (i.e., ≤ is a partial order, not just a pre-order) there is no
statically sound subtype relation other than equality. In general, this relation will not be symmetric.

55

The above definitions are all well and good, but how do they relate to security?

Consider a user preparing to run a Java applet embedded in a Web page. Their

system provides runtime libraries for the applet, which are under the user’s con-

trol. The applet’s code is completely under its author’s control, and was compiled

and (hopefully!) tested on his system, against his copy of the runtime libraries.

The user’s Java runtime implementation may supply additional classes that the

author doesn’t have. The author would like to know that these will not affect the

execution of the applet. The user wants to know that once the applet has been

verified (i.e., type checked), that the applet cannot do anything (by adding to or

changing its type context) that the verifier would have rejected. Thus, we have a

mutual suspicion problem. Under the restrictions given above, the programmer

and end-user can safely cooperate.

In fact, we would ideally desire a stronger property: the author would like

to know that the classes with the same name and interface (two properties that

have been mechanically checked) behave the same, up to some isomorphism. Un-

fortunately, Java’s type system is not sufficiently expressive to encode behavioral

specifications, and we rely upon convention. While these conventions affect the

behavior of programs (e.g., consider swapping the create file and delete file opera-

tions), they do not affect the type safety of the system.

We introduce the following necessary restriction:

Restriction 3.2 (Linking) A program can change its type context, Γ, to a new type con-

text, Γ′, only in a way such that Γ � Γ′.

In summary, by limiting type context modifications to consistent extensions, we

can safely perform dynamic linking in the presence of static type checking. The

56

rest of the chapter considers the formalization and proof of this statement, along

with the consequences of ignoring this limitation.

3.4 Informal Discussion

The linking restriction given above is a necessary condition so that linking opera-

tions do not break the type safety of a language. The designers of Java provided a

very flexible dynamic linking facility when they designed the ClassLoader mech-

anism. The basic system knows how to load and link code only from the local file

system, and it exports an interface, in the class ClassLoader, that allows a Java pro-

gram to ask the runtime system to turn an array of bytes into a class. The runtime

system does not know where the bytes came from; it merely attempts to verify that

they represent valid Java bytecode. (The bytecode language is the instruction set

of an abstract machine, and is the standard way of transmitting Java classes across

the network.) Each class is tagged with the ClassLoader that loaded it. Whenever

a class needs to resolve a symbolic reference, it asks its own ClassLoader to map

the name it gives to a class object. Our model always passes the ClassLoader as an

explicit argument. We model a specific implementation of ClassLoader. Although

we do not care where the bytecode came from, we need the property that a Class-

Loader returns only classes loaded by itself or the system ClassLoader, which we

call the primordial ClassLoader. This is a provable theorem in our model, but we

could easily insert a dynamic check into the trusted portion of the ClassLoader

that would make this true for any ClassLoader. We assume that the ClassLoader

hierarchy is a tree of height one (see Figure 3.1). JDK 1.0.2 and 1.1 meet these

restrictions when running untrusted applets that cannot create their own Class-

Loaders. Later, we shall see how to remove these limitations in a more general

57

ClassLoader
Applet

0

Applet

nClassLoader

primordial
ClassLoader

Figure 3.1: A diagram showing the ClassLoader hierarchy in a JVM.

model.

The original Java Development Kit (JDK) implementation (JDK 1.0.2) did not

place any restrictions on the behavior of ClassLoaders. This led to the break-

age of type safety, where integers could be used as object references, and vice

versa [DFW96]. The type safety failure led to an untrusted applet being able to

run arbitrary machine code, thus completely compromising the security of Java

applets [DFWB97]. We discussed this issue with Sun, and the following language

was added to the definition of Java [GJS96, Section 12.2, page 218]:

A Java Virtual Machine system should maintain an internal table of
classes and interfaces that have been loaded for the sake of resolving
symbolic references. Each entry in the table consists of a fully qualified
class name (as a string), a class loader, and Class object. Whenever
a symbolic references to a class or interface is to be resolved, a class
loader is identified that is responsible for loading the class or interface,
if necessary. The table is consulted first, however; if it already contains
an entry for that class name and class loader, then the class object in that
entry is used and no method of the class loader is invoked. If the table
contains no such entry, then the method loadClass of the class loader
is invoked, giving it the name of the class or interface. If and when it
returns, the class object that it returns is used to make a new entry in
the table for that class name and class loader.

The purpose of this internal table is to allow the verification process
to assume, for its purposes, that two classes or interfaces are the same
if they have the same name and the same class loader. This property al-
low a class to be verified without loading all the classes and interfaces

58

that it uses, whether actively or passively. Well-behaved class loaders
do maintain this property: given the same name twice, a good class
loader should return the same class object each time. But without the
internal table, an malicious class loader could violate this property and
undermine the security of the Java type system. A basic principle of
the Java language is that the type system cannot be subverted by code
written in Java, not even by implementations of such otherwise sensi-
tive system classes as ClassLoader and SecurityManager.

Code to implement this restriction (essentially the same as Restriction 3.2) is part

of JDK 1.1.

However, the specified restriction applies only to a single ClassLoader; multi-

ple ClassLoaders can collude to break the type system in the absence of the limita-

tion that a ClassLoader can return only a class defined by itself or the primordial

ClassLoader, or if the ClassLoader hierarchy has a height greater than one. See

Chapter 4 for a discussion of the underlying problem and its solution.

The absence of the linking restriction directly led to two problems in the JDK 1.0.2

implementation:

1. A rogue ClassLoader can break the semantics of Java by supplying inconsis-

tent mappings from names to classes. For example, the first time a Class-

Loader is asked to resolve the name Alpha, it could return a pointer to the

class:

class Alpha { public Object x; }

The second time it is asked to resolve Alpha, it could return a pointer to the

class:

class Alpha { public int x; }

59

This confuses the type system so that at runtime an integer is assigned to an

object reference, thereby breaking the system. In Java runtimes derived from

JDK 1.0.x releases, including Netscape Navigator 2.0x, this led to complete

compromise of the system.

2. Another bug was found in JDK 1.0.2’s handling of array classes. (In Java,

all arrays are objects, and suitable class definitions are automatically gener-

ated.) It was possible to trick the system into loading a user-defined array

class while the program was running, aliasing a memory location as both

an object reference and an integer. The static type checking was performed

against the real array class, and then the program loaded the bogus array

class by its request, which was not a consistent extension of the type context.

This bug was in the AppletClassLoader supplied by Sun, and exploitable by

Web applets. This also led to running arbitrary machine code, completely

compromising the security of the system.

The PVS specification presented below specifies a simple implementation of

dynamic linking. It restricts linking to consistent extensions of the current type

context, and requires that the type context be a consistent extension of the type

context defined by the primordial ClassLoader. It shows that all relevant oper-

ations preserve consistency of the type context. It proves that the initial context

(here, a cut-down version of the Java runtime library) is consistent. The combina-

tion of these properties is an inductive proof of the safety of the system.

60

3.5 Formal Treatment in PVS

PVS [OSR93]6 is the PROTOTYPE VERIFICATION SYSTEM, a current SRI research

development in formal methods and theorem proving. PVS has been used in

many different verification efforts, including a microprocessor [SM95], floating

point division [RSS96], fault-tolerant algorithms [LR93], and multimedia frame-

works [RRV95], by users at SRI and other sites. PVS combines a specification lan-

guage with a variety of theorem proving tools.

Proposition 3.1 states that security is preserved if a program is linked and run

in a consistent extension of the type context it was compiled in. Any actual im-

plementation of dynamic linking will be quite complex, and it is not obvious that

a particular implementation satisfies Restriction 1. This chapter builds a model of

dynamic linking that is quite similar to the Java implementation, and proves that

this model ensures type safety. By writing a concrete specification in PVS, and

proving the desired properties, we get a specification that looks very much like a

functional program, along with a correctness proof. Whereas some specification

writers would prefer a more abstract specification (with key properties defined as

axioms, and many functions unspecified), we chose to give a very concrete specifi-

cation, to make it easier to relate to an actual implementation. PVS’s proof facilities

are strong enough to make this specification verifiable without undue difficulty.

3.5.1 The PVS Model

It should be noted that the model is fairly closely related to how Sun’s Java im-

plementation performs dynamic linking, but it is not a model of Java. Certain

6For more information about PVS, see http://www.csl.sri.com/pvs.html

61

simplifications were made to Java, and the model fixed design problems observed

in the JDK 1.0.2 implementation. Sun has been working on their system as well,

and coincidentally certain features are similar, but these are independent designs.

This correctness proof does not imply the correctness of any implementation of

Java. This model merely shows that dynamic linking can peacefully co-exist with

static typing. The remainder of this section is meant to provide commentary for

the PVS specification in Appendix A.

PVS Types

The core structure in the model is the ClassTable, which contains two mappings:

the first, an environment mapping (Name, ClassLoader) pairs to ClassIDs, and the

second, a store mapping ClassIDs to Class objects.

ClassID : TYPE = Ident

ClassList : TYPE = list[Class]

ClassIDMap : TYPE = FUNCTION[ClassID→ Class]

ClassDB : TYPE = [ClassID,ClassIDMap]

EnvEntry : TYPE = [string,ClassLoader, list[ClassID]]

The terms “environment” and “store” are meant to reflect similar structures

in programming language semantics. The environment associates names with

locations (on a physical machine, memory addresses), and the store simulates

RAM. The indirection between (Name,ClassLoader) pairs and Classes exists so

that linking does not have to change the environment; it just changes the store.

This allows us to show that the environment does not change over time, even if

the actual objects that the names are bound to do. We keep a mapping from a

(Name,ClassLoader) pair to a list of ClassIDs; the correctness proof is that there is

62

at most one ClassID associated with each name, i.e., that this mapping is a partial

function. We keep a list of ClassIDs instead of a set, so we can tell what order

things happened in if anything should ever break. We define a state as safe if

and only if each (Name, ClassLoader) pair maps to at most one ClassID. We also

prove that we never delete a mapping; otherwise our partial function could vary

over time, which is exactly the behavior we seek to prohibit.

ClassBase : DATATYPE

BEGIN

resolved(name : string, references : list[string], loader : ClassLoader,
linked : list[ClassBase]) : resolved?

unresolved(name : string, references : list[string], loader : ClassLoader) : unresolved?
END ClassBase

ValidClass((c : ClassBase)) : bool =
CASES c OF

unresolved(n, r, l) : TRUE,
resolved(n, r, loader, links) :

(∀ (cl : ClassBase) :
(cl ∈ links) ⊃

loader(cl) = loader(c)∨ loader(cl) = primordialClassLoader)
ENDCASES

The definition of Class and ClassTable use a powerful feature of PVS, predi-

cate subtypes. ClassBase is a datatype that represents a Java class in our model.

However, to be a valid Java class, it must also satisfy the ValidClass predicate.

While PVS can decide whether a variable is of type ClassBase, it cannot, in gen-

eral, decide whether a variable is of type Class. We must prove the type correct-

ness condition (TCC), i.e., that ValidClass is satisfied, for any value we bind to a

variable of type Class. We must also prove that the return value of any function

declared to return a Class satisfies the ValidClass predicate. Fortunately, we have

the full power of PVS available for these proofs.

63

ClassTableBase : TYPE = [# env : list[EnvEntry], store : ClassDB#]

ValidCT((ctb : ClassTableBase)) : bool =
(∀ (e : EnvEntry) :

(e ∈ env(ctb)) ⊃
LETy = PROJ 3(e)

IN

every(λ (x : ClassID) :
PROJ 2(e) = loader(PROJ 2(store(ctb))(x))∧

x ≤ PROJ 1(store(ctb)),
y))

ClassTable : TYPE = {ctb : ClassTableBase | ValidCT(ctb)}

ClassTableBase is a record type with two fields, env and store. A value is a

ClassTable if and only if it is a ClassTableBase record, and it satisfies the ValidCT

predicate. As above, we must prove TCCs for any values we declare to be Class-

Tables. The ValidCT predicate has two conjuncts: the first conjunct says that all

(Name, ClassLoader) pairs map to classes that have the same ClassLoader, and

the second conjunct says that the ClassIDs that the (Name, ClassLoader) pairs

are mapped by the environment to ClassIDs that are less than or equal to the next

ClassID to be allocated.7 The need for the second conjunct is not intuitively ob-

vious; it is an invariant strengthening that is needed to make the induction go

through.

We declare ClassLoader to be an uninterpreted type with at least one element.

The natural model of the Java ClassLoader would be a mutually recursive datatype

with Class, but PVS does not conveniently handle the mutual recursion found in

the Java implementation. Since our model uses the ClassLoader only as part of the

key in the ClassTable, it suffices for ClassLoader to be uninterpreted.

The Class datatype represents classes in our model. A class has either been re-

solved (i.e., linked), or unresolved, in which case the class has unresolved symbols,
7We are taking advantage of the concrete representation of ClassIDs as integers.

64

but no pointers to other classes. The unresolved constructor is required because

PVS requires that each datatype have a non-recursive constructor.

The ClassID is imported from the identifiers theory. These are merely unique

identifiers; currently they are implemented in the obvious fashion using integers.

It would better to define a theory for identifiers, so that other representations can

be used later, without changing the proofs. The ClassIDMap plays the role of a store

in semantics, giving a mapping between ClassIDs and Classes. ClassDB is a pair

consisting of the next unused identifier, and a ClassIDMap.

We represent objects by the type Object, which merely records the class this

object is an instance of. Although this representation is fairly abstract, it suffices

for our proofs.

PVS Implementation

The structure of our model roughly follows Sun’s Java Virtual Machine implemen-

tation. The major exception is that PVS does not have global variables or mutation,

so we explicitly pass the state of the system to each function. We have also rear-

ranged some data structures for ease in modeling.

Primitive Operations The FindClassIDswCL function takes a ClassTable, the

name of a class, and the requested ClassLoader, and returns a list of ClassIDs and

a ClassLoader. The predicate subtype on FindClassIDswCL ensures that the re-

turned ClassIDs map to classes (in the store) that have the requested ClassLoader.

FindClass applies the current store, mapping ClassIDs to Classes, to the result of

FindClassIDs, which is simply a projection from FindClassIDswCL.

65

Class Loading The define function is modeled after the Java defineClass()

function. It takes a ClassTable, the name of the new class, the unresolved ref-

erences of the new class, and a ClassLoader. It returns a pair: the new class and

the updated class table. No invariants are checked at this level. This corresponds

to the Java design, where defineClass() is a protected method in ClassLoader,

and is called only after the appropriate safety checks have been made. We imple-

ment define in terms of a helper function, InsertClass. The InsertClass function

takes a ClassTable, the name and ClassLoader of a new class, and the new class,

and inserts it into the ClassTable. It returns the new ClassTable. Note that the

insertion generates a new ClassTable — it does not destroy the old one.

The loadClass function plays a role similar to loadClass() in a properly op-

erating Java ClassLoader. In the Java system, loadClass() is the method the run-

time system uses to request that a ClassLoader provide a mapping from a name

to a Class object. Our model checks whether the class is provided by the “runtime

system,” by checking the result of findSysClass. This ensures that any Class-

Loader provides a consistent extension of the runtime system, as defined by the

primordial ClassLoader. We then check whether this ClassLoader has defined the

class, and return it if so. Otherwise, we define a new class. Since this class could

come from anywhere, we tell PVS that some external references exist by using the

Input: (cons?[string]) construction, without specifying any particular exter-

nal references.

The linkClass function, although it plays a supporting role, is defined here

because PVS does not allow forward references. The linkClass function takes a

ClassTable, the class to be linked, and the class’s ClassLoader, and returns the

linked class, and the updated ClassTable. The linking algorithm is very sim-

ple: while there is an unresolved reference, find the class it refers to, (loading

66

it if necessary, which could create a new ClassTable), and resolve the reference.

The linkClass function returns only “resolved” classes; these may be partially

resolved in the recursive calls to linkClass during the linking process.

The resolve function is modeled after the Java resolveClass() method. It

takes a ClassTable, class, and class loader, links the class with respect to the given

ClassLoader, and updates the ClassTable. It returns the new ClassTable. We im-

plement resolve in terms of a helper function, ReplaceClass. The ReplaceClass

function takes a ClassTable, the old and new classes, and the appropriate Class-

Loader, and updates the store if and only if the appropriate class is found. It then

returns the new ClassTable. If no appropriate class is found, it returns the un-

changed ClassTable. Note that resolve does not change the ClassLoader of the

resolved class.

Classes Classes have several operations: the ability to create a new instance of

the class, ask the name of a class, get a class’s ClassLoader, and to load a new class.

Loading a new class is the only non-trivial operation; it simply invokes loadClass.

The Java runtime system provides several classes that are “special” in some

sense: java.lang.Object is the root of the class hierarchy, java.lang.Class is the

class of Class objects, and java.lang.ClassLoader defines the dynamic linking

primitives. These classes play important roles in the system; we model this behav-

ior by assuming they are pre-loaded at startup.

3.5.2 The Proofs

This chapter offers two contributions. Although Restriction 3.2 is a simple state-

ment, it is a necessary restriction whose importance has been overlooked, espe-

67

cially in the initial design and implementation of Java. The concept, though, is

general: any language whose type system satisfies Proposition 1 (and most do) can

use the results of this chapter. Given an operational semantics for the language un-

der inspection, a completely formal safety proof can be constructed. Drossopoulou

and Eisenbach’s work [DE97b] is a good beginning, but was not available when

this work began. The second contribution is a proof that the requirements of Re-

striction 1 are satisfied by our model. Here the proofs are discussed at a high level;

PVS takes care of the details.

There are nine lemmas, thirty-four type correctness conditions, and eleven the-

orems which establish the result. Formal proof of these theorems increases our

confidence in the correctness of the specification. Twenty-six of the TCCs are auto-

matically handled by PVS, and three more are trivial. The eleven theorems show

that the system starts operation in a safe state, and each operation takes the system

from a safe state to a safe state. Because the theorems are universally quantified

over class names, classloaders, classes, and class tables, any interleaving of the

functions (assuming each function is an atomic unit) is safe. All of the theorems

have been formally proven in PVS. The proofs are long and not very enlightening,

so here we present only brief outlines of the proofs, with the mechanized proof of

loadClass inv in Appendix B. The details are all routine, and handled by PVS.

Lemmas

We define nine lemmas which encapsulate useful facts about our model. PVS does

not distinguish between lemma and theorem, so the distinction is arbitrary. We

call the main results theorems, and the rest lemmas, to help guide the reader.

68

every monotone This is the simple fact that if ∀x.P(x)→ Q(x), then if we have a

list, all of whose elements satisfy P(x), then all the elements of the list also satisfy

Q(x). The proof is by induction on the length of the list.

every monotone : LEMMA

(∀ (p, q : PRED[ClassID]), (y : list[ClassID]) :
(∀ (x : ClassID) : p(x) ⊃ q(x))∧ every(p, y) ⊃ every(q, y))

every FindClassIDswCL This lemma states that all of the classes returned by

FindClassIDswCL have the same ClassLoader, and that the ClassLoader is the one

passed as an argument to FindClassIDswCL. Furthermore, this is also true in a

new store, where a new ClassID is bound to a new class. Here we see the second

conjunct of the predicate ValidCT coming into play.

every FindClassIDswCL : LEMMA

(∀ (cldr : ClassLoader, ct : ClassTable,nm : string, refs : list[string]) :
every(λ (x : ClassID) :

cldr =
loader(PROJ 2(store(ct))

WITH [(1 + PROJ 1(store(ct))) :=
unresolved(nm,

refs, cldr)](x))∧
x ≤ 1 + PROJ 1(store(ct)),

PROJ 1(FindClassIDswCL(ct,nm, cldr))))

linkClass loader inv This lemma states that the loader field of a class stays the

same after the class is linked. The proof proceeds by induction on the number of

unresolved references to be linked.

linkClass loader inv : LEMMA (∀ ct, cl : loader(cl) = loader(PROJ 1(linkClass(ct, cl))))

69

MapPreservesLength Map is a function that takes a function and a list, and re-

turns the list that results from applying the function to each element of the list.8

MapPreservesLength simply asserts that the length of the resulting list equals the

length of the argument list. The proof is by induction on the length of the list and

the definition of map.

MapPreservesLength : LEMMA

(∀ (f : FUNCTION[ClassID→ Class]), (l : list[ClassID]) : length(map(f , l)) = length(l))

proj1 FindClassIDswCL This lemma asserts the independence of the environ-

ment, mapping (Name, ClassLoader) pairs to ClassID lists, and the store, map-

ping ClassIDs to Classes. The lemma states that for all ClassTables, looking up

a name in the environment gives the same result no matter what store is supplied.

The proof is by induction on the size of the environment. It’s clearly true for the

empty environment, and the store is not referenced during the examination of each

binding in the environment.

proj1 FindClassIDswCL : LEMMA

(∀ (ct : ClassTable), (nm : string), (cldr : ClassLoader), (classdb : ClassDB) :
ValidCT((#env := env(ct), store := classdb#)) ⊃

FindClassIDswCL((#env := env(ct), store := classdb#),nm, cldr) =
FindClassIDswCL(ct,nm, cldr))

proj1 FindClassIDs This lemma is very similar to proj1 FindClassIDswCL, but

it considers only the ClassIDs, not the ClassLoaders. The proof is immediate from

proj1 FindClassIDswCL.

8Map is a standard function in most functional programming languages.
While the standard PVS definition is slightly complicated, it is equivalent to:
map(l: list[T], f: function[T -> S]) : RECURSIVE list[S] = IF null?[l] THEN null
ELSE cons(f(car(l)), map(cdr(l), f)) ENDIF

70

proj1 FindClassIDs : LEMMA

(∀ (ct : ClassTable), (nm : string), (cldr : ClassLoader), (classdb : ClassDB) :
ValidCT((#env := env(ct), store := classdb#)) ⊃

FindClassIDs((#env := env(ct), store := classdb#),nm, cldr) =
FindClassIDs(ct,nm, cldr))

define mono This lemma states that defining a new class does not remove any

class bindings from the environment. The proof follows from the definition of

define, the ClassTable satisfying ValidCT, and the every monotone lemma.

define mono : LEMMA (∀ ct,nm, cldr : Monotonic(ct,PROJ 2(define(ct,nm, Input, cldr))))

safe proj This technical lemma is needed in the proof of resolve inv. It states

that a safe ClassTable is still safe when its store is replaced by an arbitrary store.

Because safety is a function of the environment, not the store, this is intuitively

obvious. The proof uses the MapPreservesLength lemma.

safe proj : LEMMA

(∀ ct, (mapping : ClassIDMap) :
Safe(ct)∧ValidCT((#env := env(ct), store := (PROJ 1(store(ct)),mapping)#)) ⊃

Safe((#env := env(ct), store := (PROJ 1(store(ct)),mapping)#)))

Resolve This lemma states that linking terminates by producing a class with no

unresolved references. (We do not model the failure to find an unresolved refer-

ence.) The proof is by induction on the number of unresolved references. Clearly it

holds for a completely resolved class, and each recursive call to linkClass resolves

one class reference.

Resolve : LEMMA (∀ (cl : Class), (ct : ClassTable) :
references(PROJ 1(linkClass(ct, cl))) = null)

71

Type Correctness Conditions

We shall discuss only the five non-trivial TCCs here. Twenty-six TCCs are auto-

matically proven by PVS without manual assistance. Two TCCs, which show the

existence of members of a type (to satisfy the declaration of a non-empty type),

merely require the user to instantiate a variable with a suitable term. The third

trivial TCC is that an empty ClassTable satisfies the ValidCT predicate; this is vac-

uously true. The proofs of the five remaining TCCs required significant manual

intervention.

FindClassIDswCL TCC4 This TCC requires us to show that the class we return

has the specified ClassLoader. The result follows from the every monotone lemma,

coupled with the definition of ValidCT.

72

FindClassIDswCL_TCC4: OBLIGATION
(FORALL (hd: EnvEntry, tab, tl: list[EnvEntry],

v: [d: [ClassTable, string, ClassLoader]
-> ll_ldr: [list[ClassID], ClassLoader]
| PROJ_2(ll_ldr) = PROJ_3(d)
AND
every(LAMBDA (x: ClassID):

loader(PROJ_2(store(PROJ_1(d)))(x)) = PROJ_3(d),
PROJ_1(ll_ldr))],

cldr: ClassLoader, ct: ClassTable, nm: string):
env(ct)
=
cons[[string, ClassLoader,

x: list[number]
|
every(LAMBDA (x: number):

real_pred(x)
AND rational_pred(x)
AND integer_pred(x) AND x >= 0)(x)]](hd,

tl)
AND tab = env(ct)
IMPLIES
PROJ_2(IF PROJ_1(hd) = nm AND PROJ_2(hd) = cldr

THEN (PROJ_3(hd), PROJ_2(hd))
ELSE v((# env := tl, store := store(ct) #), nm, cldr)
ENDIF)

= cldr
AND
every[ClassID](LAMBDA (x: ClassID): loader(PROJ_2(store(ct))(x)) = cldr,

PROJ_1(IF PROJ_1(hd) = nm AND PROJ_2(hd) = cldr
THEN (PROJ_3(hd), PROJ_2(hd))
ELSE v((# env := tl, store := store(ct) #),

nm, cldr)
ENDIF)));

define TCC1 This TCC requires us to show that defining a new class results in

a ClassTable that satisfies ValidCT. After simplification, there are two cases to

consider: The first case concerns any previous (Name,ClassLoader) to Class map-

pings, with the same (Name,ClassLoader) pair as the definition we are consider-

ing. This follows from the every FindClassIDswCL lemma. The second case con-

cerns the new definition. The result follows from the definition of define and the

every monotone lemma.

73

define_TCC1: OBLIGATION
(FORALL (cl, cldr: ClassLoader, ct: ClassTable,

nm: string, refs: list[string]):
cl = mkClass(nm, refs, cldr)
IMPLIES
ValidCT((# env :=

cons[[string, ClassLoader,
list[ClassID]]]((nm,

cldr,
cons[Ident]
(GetNextID
(PROJ_1(store(ct))),
FindClassIDs(ct,

nm, cldr))),
env(ct)),

store :=
(GetNextID(PROJ_1(store(ct))),
PROJ_2(store(ct))
WITH [(GetNextID(PROJ_1(store(ct))))

:= mkClass(nm, refs, cldr)])
#)));

linkClass TCC1 This TCC requires us to show that each step of linking a class

preserves the ValidClass predicate. Recall that the ValidClass predicate requires

all classes referenced by a given class have either the same ClassLoader as the

given class, or were loaded by the primordialClassLoader. The key step in the

proof is to use the type information about the return value of FindClassIDswCL –

we know that it returns a class loaded by the given ClassLoader, or the primordial-

ClassLoader. In conjunction with the definition of loadClass, the result follows

after simplification.
linkClass_TCC1: OBLIGATION

(FORALL (getClass, hd: string, newCl, newCt, res,
tl: list[string], cl: Class, ct: ClassTable):

getClass = (LAMBDA (n: string): loadClass(ct, n, loader(cl)))
AND references(cl) = cons[string](hd, tl)
AND res = PROJ_1(getClass(hd))
AND newCt = PROJ_2(getClass(hd))
AND newCl
= CASES cl OF
unresolved(name, references, loader):
resolved(name, tl, loader, cons[Class](res, null[Class])),
resolved(name, references, loader, linked):
resolved(name, tl, loader, cons[ClassBase](res, linked))
ENDCASES
IMPLIES ValidClass(newCl));

74

linkClass TCC3 This TCC, together with linkClass TCC1, forms an inductive

proof that linkClass preserves the validity of any class. If we have a class that

has not yet been linked, but has no unresolved references, the result of linkClass

vacuously satisfies the ValidClass predicate. If the class has already been linked,

it is immediately returned. Because we were given a valid class by assumption, the

result is also valid. Otherwise we must consider the recursive case. Because TCCs

occur logically before the definition in PVS, the definition is not in scope. PVS

models the recursive call by universally quantifying over a function with the same

type as the recursive function. The proof proceeds by using the type of the univer-

sally quantified function. Some simplification and an appeal to the closedWorld

lemma establish the result.

75

linkClass_TCC3: OBLIGATION
(FORALL (getClass, v: [[ClassTable, Class] -> [Class, ClassTable]],

cl: Class, ct: ClassTable):
getClass = (LAMBDA (n: string): loadClass(ct, n, loader(cl)))
IMPLIES
ValidClass(PROJ_1(CASES references(cl) OF

null:
IF unresolved?(cl)
THEN
(resolved(name(cl),

null[string],
loader(cl),
null[ClassBase]),

ct)
ELSE (cl, ct)
ENDIF,
cons(hd, tl):
v
(PROJ_2
(loadClass(ct,

hd, loader(cl))),
CASES cl OF
unresolved(name,
references,
loader):
resolved(name,

tl, loader,
cons[Class]
(PROJ_1
(loadClass(ct,

hd, loader(cl))),
null[Class])),

resolved(name,
references,
loader, linked):
resolved(name,

tl, loader,
cons[ClassBase]
(PROJ_1
(loadClass(ct,

hd, loader(cl))),
linked))

ENDCASES)
ENDCASES)));

resolve TCC1 This TCC requires us to show that linking preserves the validity

of a ClassTable, namely, that replacing a class in the store with its resolved ver-

sion results in a ClassTable that satisfies the ValidCT predicate. This is where the

strengthening of the ValidCT predicate, requiring that every ClassID point to an

already allocated element of the store, is used. The proof proceeds by a case split

76

on the result of looking up an arbitrary class after linking it. If the result is the

empty list, the TCC follows immediately from the type of linkClass, which has

already been shown to return a ClassTable that satisfies ValidCT. Otherwise, we

note that linkClass returns a valid ClassTable, and the linkClass loader inv

lemma (linking does not change a class’s ClassLoader). At this point, an appeal to

the every monotone lemma, combined with the type constraint on the return value

of FindClassIDswCL establishes the result.
resolve_TCC1: OBLIGATION

(FORALL (newCl, newCt, cl: Class, ct: ClassTable):
newCl = PROJ_1(linkClass(ct, cl)) AND newCt = PROJ_2(linkClass(ct, cl))
IMPLIES
ValidCT(CASES FindClassIDs(PROJ_2(linkClass(ct, cl)),

name(cl), loader(cl)) OF
cons(hd, tl):
(# env :=

env
(PROJ_2
(linkClass(ct,

cl))),
store :=
(PROJ_1
(store
(PROJ_2
(linkClass(ct,

cl)))),
PROJ_2
(store
(PROJ_2
(linkClass(ct,

cl))))
WITH [hd :=

PROJ_1
(linkClass(ct,

cl))])
#),

null:
PROJ_2
(linkClass(ct,

cl))
ENDCASES));

Theorems

There are three classes of theorems: safety theorems, monotonicity theorems, and

two miscellaneous theorems. The safety theorems assert that each ClassTable

77

produced has at most one ClassID per (Name, ClassLoader)-pair. The mono-

tonicity theorems assert that (Name, ClassLoader) to ClassID mappings are never

deleted. The miscellaneous theorems are closedWorld and consistExt, which

assert that a ClassLoader never returns a class defined by another ClassLoader

(other than the primordial ClassLoader), and that every ClassLoader is a consis-

tent extension of the primordial ClassLoader.

Initial Safe This theorem states that the system initially starts out in a safe state.

With the aid of the string lemmas theory, written by Sam Owre, PVS proves this

theorem automatically. Since the initial state has finite size, the safety property is

very simple to check.

Initial Safe : THEOREM Safe(sysClassTable)

loadClass inv This is the first case to consider in proving the safety invariant.

It states that the loadClass function is safe, in the sense that it will never bind a

(Name, ClassLoader) pair to a Class if such a binding already exists. The proof is

very similar to forName inv.

loadClass inv : THEOREM (∀ ct,nm, cldr :
Safe(ct) ⊃ Safe(PROJ 2(loadClass(ct,nm, cldr))))

loadClass mono This monotonicity proof assets that loadClass does not delete

any mappings from the environment. The proof proceeds by a case-split on whether

the appropriate class is already loaded. If so, the final environment is the same as

the starting environment. Otherwise, define is called, and define mono asserts the

desired result.
loadClass mono : THEOREM (∀ ct,nm, cldr :

Monotonic(ct,PROJ 2(loadClass(ct,nm, cldr))))

78

linkClass inv This case of the invariant states that linkClass preserves safety.

The intuitive idea is that linkClass modifies only the store, not the environment.

The proof is fairly complicated, using loadClass inv as a lemma, proceeds by in-

duction on the number of unresolved references in the class.

linkClass inv : THEOREM (∀ ct, cl : Safe(ct) ⊃ Safe(PROJ 2(linkClass(ct, cl))))

linkClass mono This monotonicity proof assets that linkClass does not delete

any mappings from the environment. The proof proceeds by induction on the

number of resolved references. There is a case-split to handle the two different

cases of linking a class with no unresolved references (either because the class

has already been linked, or the class is Object). The induction step follows from

loadClass mono.

linkClass mono : THEOREM (∀ ct, cl : Monotonic(ct,PROJ 2(linkClass(ct, cl))))

forName inv This is the next case of the safety invariant. It states that the forName

function preserves safety. The proof follows from the lemmas MapPreservesLength

and proj1 FindClassIDs.

forName inv : THEOREM (∀ ct,nm, cldr : Safe(ct) ⊃ Safe(PROJ 2(forName(ct,nm, cldr))))

forName mono This monotonicity proof asserts that the forName operation does

not delete any mappings from the environment. Because forName either returns

the given environment or calls loadClass, the result is immediate.

forName mono : THEOREM (∀ ct,nm, cldr : Monotonic(ct,PROJ 2(forName(ct,nm, cldr))))

79

Resolve inv This is the last case of the safety invariant. It states that the resolve

operation is safe. This is intuitively obvious, since resolve is the composition of

linkClass and ReplaceClass, neither of which modifies the environment. The

proof uses linkClass inv as a lemma, and then does a case split on the result of

FindClassIDs. If FindClassIDs returns a list, the safe proj lemma leads to the

desired result. If FindClassIDs returns null, the result is immediate.

Resolve inv : THEOREM (∀ ct, cl, cldr : Safe(ct) ⊃ Safe(resolve(ct, cl, cldr)))

Resolve mono This final monotonicity proof asserts that the resolve operation

does not delete any mappings from the environment. The desired result follows

from the monotonicity of linkClass, the type correctness of resolve, and

proj1 FindClassIDs.

Resolve mono : THEOREM (∀ ct, cl, cldr : Monotonic(ct, resolve(ct, cl, cldr)))

closedWorld This theorem asserts that a ClassLoader will load only classes that

were defined by itself or the primordial ClassLoader. Intuitively, this follows from

the definition of loadClass, findSysClass, and FindClass. The formal proof re-

quires the predicate subtype on FindClassIDswCL; with that, it is almost immedi-

ate.
closedWorld : THEOREM

(∀ ct,nm, cldr :
LET classloader = loader(PROJ 1(loadClass(ct,nm, cldr)))

IN classloader = cldr∨ classloader = primordialClassLoader)

consistExt This theorem asserts that every ClassLoader is a consistent extension

of the primordial ClassLoader. The proof follows immediately from definition of

loadClass.

80

consistExt : THEOREM

(∀ ct,nm, cl, cldr :
cons?(findSysClass(ct,nm)) ⊃

car(findSysClass(ct,nm)) = PROJ 1(loadClass(ct,nm, cldr)))

The last two proofs are important for the overall type safety of a JVM. These

properties, with the additional assumptions that there are no other ClassLoaders

in the system, and the runtime system libraries are closed (i.e., do not mention any

classes that they do not define), are sufficient to prevent a type safety breach across

ClassLoader boundaries. If we wish to allow arbitrary, user-written ClassLoaders,

then trusted code needs to make dynamic checks to ensure that the appropriate

generalizations of closedWorld and consistExt hold. The problem that must be

solved is passing an object across a ClassLoader boundary, where the object is

treated as having a different type (because there are two classes with different def-

initions) in the type context defined by each ClassLoader.

3.6 Implementation and Assurance

This chapter presents a model of dynamic linking, and proves a safety property

under one assumption. While this is a nice result, systems in the real world are

implemented by humans. A couple of simplifications were made with respect to

Java:

1. Class names were assumed to be in canonical form; Java requires mapping

“.” to “/” at some point. Because this is not a 1–1 correspondence, it needs

to be handled consistently.

2. The fact that array classes (classes with names beginning with a “[”) have a

special form has not been modeled.

81

3. The failure to locate a class is not modeled. We assume that such a failure

will halt program execution, via an unspecified mechanism.

There are two conclusions for implementors: each class definition must be loaded

exactly once for each classloader, and linking across ClassLoader boundaries must

be carefully controlled. The simplest way to ensure that each class is defined at

most once per ClassLoader is for the runtime system to track which classes have

been loaded by which classloaders and ask a classloader to provide the definition

of a class only once. We assume that a classloader will either provide a class or

fail consistently. In this chapter, we do not allow untrusted ClassLoaders, so we

can prove properties about the behavior of all the ClassLoaders in the system.

Although it would be simple to extend this model to allow untrusted ClassLoaders

by wrapping the untrusted code with dynamic checks of the properties we have

statically proven about our ClassLoader model, in the next chapter we examine an

alternative model instead.

The assurance level of the final system will depend on many factors. We note

that our mechanism is conceptually simple, and can be specified in five pages. Our

proofs were performed with lists, because they admit simple inductive proofs. A

real implementation would probably use a more efficient data structure. However,

it should be simple to show that other data structures, e.g., a hash table, satisfy

the required properties. The specification contains no axioms, and is essentially a

functional program, in the sense that it shows exactly what is to be computed, and

so could serve as a prototype implementation. Clearly, though, dynamic linking

is part of the trusted computing base for Java and similar systems, and a given

system will have an assurance level no higher than the assurance of its dynamic

linking.

82

3.7 Conclusion

This chapter presents one of many models for dynamic linking. We present a for-

mal proof to show that dynamic linking need not interfere with static type check-

ing. Although the system presented is not Java, it is closely related, and can serve

as a proof-of-concept for Java implementors. Studying the JDK implementation for

the purpose of modeling it for this work led to the discovery of a type system fail-

ure in JDK 1.0.2 and Netscape Navigator 2.02. The proofs presented here were not

unduly hard to generate, and greatly improve confidence in the safety of dynamic

linking.

83

Chapter 4

Linking and Scope

Much progress has been made in producing formal definitions of Java, e.g.,

Drossopoulou and Eisenbach [DE97b] and Syme [Sym97]. These works, however,

both assume that the environment is well formed, in particular, that each class is

defined at most once. In the previous chapter, we showed how to ensure that con-

dition, and strengthened it to preclude other unsound cases that can arise with

multiple environments.

In this chapter, we discuss the root of the problem ignored by the present formal

specifications of Java [Sym97, DE97b]: Classes have dynamic scope in JVM. Given the

well-known failure of static typing with dynamic scope at the value level [Mit96,

page 60], it should not be surprising that dynamic scoping at the type level induces

a similar failure. The rest of this chapter discusses related work (Section 4.1), ex-

plains our choice of PCF (Section 4.2), models it in two PCF variants, PCFτ (Sec-

tion 4.3) and PCFτ ,ρ (Section 4.4), proposes a solution to the problem (Section 4.5),

proves results for the PCFτ ,ρ language (Section 4.5.1), relates the PCF formulation

of the problem back to Java (Section 4.6), and concludes (Section 4.7).

84

4.1 Related Work

We chose to build a model of JVM making extensive use of environments, rather

than dynamic linking, as in Cardelli [Car97] or Chapter 3. We did this because the

bindings must be immutable in JVM. In our earlier work, we implemented this im-

mutability by introducing a store, with the environment mapping class names to

store locations, and the store mapping locations to classes. Although this worked

out technically, the proofs became much more difficult. Cardelli also did not con-

sider recursive definitions. Although it would be easy to extend his work in that

direction, the added necessity to do so further pushed us towards the environ-

ment model given here. Cardelli observed that environments are related to his

linksets [Car97, Section 2.1].

Our presentation of type dynamic has followed Abadi, et al. [ACPP91], and

Leroy and Mauny [LM93]. These were the most useful formulations for our needs.

Henglein [Hen94] attempts to minimize the amount of tagging required; because

Java requires type tags for other reasons, this is not an issue for us.

First-class environments have a long history in reflective languages [WF88].

Java’s ClassLoaders can be considered a reflection mechanism; they control en-

vironment lookup in the language itself. The JDK 1.1 Reflection API adds more

reflective capabilities to Java, but they are special methods that do not inter-

act with the normal execution environment. Lee and Friedman’s “Quasi-static

scope” [LF93] is perhaps the closest system to ours, but its values require special

accessors. Most work on first-class environments has concentrated on applications

of the concept, whereas we are using the concept to model something that already

exists in Java. To the best of my knowledge, all previous work on first-class envi-

ronments has occurred in dynamically typed languages (usually a variant of Lisp).

85

The Pebble language [BL84] has a more sophisticated version of our binding

types. In Pebble, bindings have types that depend upon their values, whereas

PCFτ ,ρ bindings are either of type bindingτ or bindingν . Our type system is much

simpler than Pebble’s; we omit dependent types and type : type. In Pebble, Burstall

and Lampson note the same phase distinction problem that we do.

Liang and Bracha’s OOPSLA98 paper [LB98], describes Sun’s implementation

of safe class loading in Java 2.0 (formerly known as JDK 1.2). Their design was

done after discussions about an earlier version of this chapter.

4.2 Modeling the Problem in PCF

Instead of explaining the details of dynamic linking in Java at this point, we present

examples in variants of PCF [Sco93]. By defining little languages that focus on the

areas we want to study, we dramatically simplify our proofs. We also are able to

avoid a detailed discussion of ClassLoaders until the end of the chapter. The main

results do not refer to Java.

The problem with dynamic scope, of course, is the classical problem of free vari-

able capture. The first example shows the capture of a redefinition of a variable,

using a simple extension of PCF. The second example considers PCF extended with

multiple environments, and shows another aspect of free variable capture, which

also leads to unsoundness. The first example is not a language proposal; it merely

illustrates the problem in a simple, familiar setting. In the second example, we

provide sufficient restrictions to prove soundness.

86

E ::= c | x | λx:τ .E | (E1 E2) | let val x:τ = E1in E2 | let type t = τ in E
τ , σ ::= int | bool | τ → σ | t

Figure 4.1: PCFτ definition

4.3 PCFτ

We begin by defining a variant of simply typed, call-by-value PCF that we call

PCFτ : The one unusual aspect of PCFτ is the let type construction. We call the

bound variable in a let type a type identifier, to distinguish it from a polymorphic

type variable. Type identifiers have dynamic scope; variables have lexical scope.

We will define this language by the translation E[[]] to a variant of the second-

order λ-calculus [Rey74], where type variables have dynamic scope, and with the

addition of int and bool types. Because type identifiers are dynamically scoped,

we do not use capture-avoiding substitution for them. Regular variables do use

capture-avoiding substitution. As usual, we denote value application with (), and

type application with []. We consider α-equivalent terms congruent.

The typing rules are found in Figure 4.3. Type equality is purely syntactic: two

type identifiers are equal if and only if they have the same name, and function

types are equal if and only if their domains and codomains are equal. These rules

should be very familiar from the the usual rules for simply typed λ-calculus, but

are now unsound.

We need only β-reduction, but we need both a dynamically scoped form, which

we call βDyn , and a lexically scoped form, which we call βLex . Both reduction rules

are the usual substitution rules, but βDyn does substitution that captures free vari-

ables, whereas βLex uses the usual capture-free substitution. For value application,

87

` c : τ
Const

Γ(x) = τ

Γ ` x : τ
Var

Γ, x:τ ` E : σ
Γ ` λx:τ .E : τ → σ

Abs
Γ ` E1 : τ → σ Γ ` E2 : τ

Γ ` (E1E2) : σ
App

Γ ` E1 : τ Γ, x:τ ` E2 : σ
Γ ` let val x = E1 in E2 : σ

LetVal
Γ, t:τ ` E : σ

Γ ` let type t = τin E : σ
LetType

Γ ` E1 : int Γ ` E2 : int
Γ ` E1 + E2 : int

Plus
Γ(t) = τ Γ ` E:t

Γ ` E:τ
Ident

Figure 4.2: Typing rules for PCFτ

E[[c]] = c
E[[x]] = x

E[[λx:τ .E]] = λx:τ .E[[E]]
E[[E1E2]] = E[[E1]]E[[E2]]

E[[let val x:τ = E1in E2]] = (λx:τ .E[[E2]])(E[[E1]])
E[[let type t = τ in E]] = (Λt.E[[E]])[τ]

Figure 4.3: Translation from PCFτ to second-order λ-calculus.

we use βLex , for type application, we use βDyn . We are adopting the usual interpre-

tation of lexical scope as α-conversion of bound variables. Note that this language

is not confluent, as is normal for dynamically scoped languages [Mit96, page 60].

We demonstrate the unsoundness of the type system with the following exam-

ple. Consider the statically typable (by the above rules) program:

let type t = int in

let val f: t -> int = λx:t = x + 1 in

let type t = bool in

let val z:t = true in f(z)

Which translates to:

(Λt.(λ f :t→ int.(Λt.(λz:t. f (z))(true))[bool])(λx:t.x + 1))[int]

88

Clearly the application f(z) is wrong — its body contains true + 1, which is a

type error. The program passed the type checking rules, because the free variable

t got captured. However, without any restrictions on the behavior of dynamic

linking, this is exactly what would happen in the JVM. In fact, JDK 1.0.x did not

restrict the behavior of dynamic linking, and so this could actually get past the

bytecode verifier. JDK 1.1 enforces restrictions on the behavior of dynamic linking

to prevent this example from getting past the bytecode verifier.

4.4 PCFτ ,ρ

We now present the second kind of type soundness problem found in Java, which

can occur in the presence of multiple ClassLoaders. We model multiple Class-

Loaders with first-class environments. To effectively support first-class environ-

ments, we also need type dynamic.

4.4.1 PCFτ ,ρ Definition

We define a language, PCFτ ,ρ, which is a combination of call-by-value PCF, first-

class environments [Jag94], and dynamic types [ACPP91, LM93]. We use c to

range over constants (true, false, {..., -2, -1, 0, 1, 2, ...}, and quoted

strings), x to range over variables, t to range over type variables, and v to range

over values. All values are tagged with their types. We introduce the semantic

objects Closure,Env ,Dynamic,Bindingν,Bindingτ as values. λ-abstractions reduce

to Closures. Reify,bindν ,bindτ all reduce to Envs. Dynamic reduces to Dynamic.

Lookupν reduces to a Bindingν , and Lookupτ reduces to a Bindingτ .

89

E ::= c | x | λx:τ .E | (E1 E2) | (E1, E2)
| let val x:τ = E1in E2

| if E1 then E2 else E3

| E1 = E2 | E1 + E2 | fst(E) | snd(E)
| typecase E1 of x:τ ⇒ E2 else E3

| dynamic(E) | reify | lookupτ (E1, E2)
| lookupν(E1, E2) | bindτ (E1, E2)
| bindν(E1, E2) | eval(E1, E2)

τc ::= int | bool | string
τ , σ ::= τc | env | dynamic

| τ → σ | t | τ × σ| bindingτ | bindingν
Value ::= (c, τc) | ((v1, v2), τ × σ) | (Env , env) | (Dynamic(v), dynamic)

| (Closure(η, x, E), τ → σ) | (Bindingν(x, v), bindingν)
| (Bindingτ (t, τ), bindingτ)

Program ::= E | type t = τ ; Program

Figure 4.4: Grammar for PCFτ ,ρ.

We choose this unusual set of features because it captures the aspects of the

JVM that we are interested in. We use reify to capture the current environment

and convert it into a value (i.e., it does for environments what call/cc does for

continuations). Lookup(s,e) takes a string s and a reified environment e, yielding

a binding; bind(b, e) takes a binding b and a reified environment e, and (non-

destructively) yields a new reified environment. We have two lookup and bind

operators; one for value bindings, and the other for type bindings. There are no

other operations on bindings. The dynamic type constructor takes a value and a

type (the expression must statically be a member of the type) and returns a value

of type dynamic. The typecase operator takes a value of dynamic type, and if its

stored type is τ , binds x to the value. We have simplified typecase from Abadi,

et al. [ACPP91] by eliminating their pattern variables, which we do not need. We

90

also have an eval operator, which takes an expression (as a string) and a reified

environment, and returns a value of type dynamic.

4.4.2 PCFτ ,ρ Operational Semantics

Instead of translating this language into the second-order λ-calculus, we give the

operational semantics in Figure 4.6. In addition to the notation used in Figure 4.4,

let s denote a unique stamp, and the (underscore) be a pattern matching wild

card (as in Standard ML).

4.4.3 PCFτ ,ρ: The Type System

Again, the type system for this language in Figure 4.4.3 comes from the simply

typed λ-calculus, with the addition of monomorphic type identifiers. We use the

traditional Γ, x:τ notation for augmenting environments to mean that the defini-

tion of x overrides any existing binding in Γ. See Section 4.4.5 for the definition of

Γ∗.

Two types, τ , σ are considered the same, written Γ ` τ ∼= σ, according to the

following rules, where = means syntactic identity:

• If τ ∈ {int,bool,string,env,dynamic,bindingν ,bindingτ}, then τ = σ.

• If τ = τ1→ τ2, then σ = σ1→ σ2 with τ1
∼= σ1 and τ2

∼= σ2.

• If τ = τ1× τ2, then σ = σ1× σ2 with τ1
∼= σ1 and τ2

∼= σ2.

• If τ = t, then σ = t or Γ(t)∼= σ.

• If τ ∼= σ, then σ ∼= τ , i.e.,∼= is symmetric.

91

We define a semantic entailment relation, v |= τ , following Leroy and

Mauny [LM93], by induction on the structure of τ :

• ∀τ .∃error. error |= τ

• c |= τc if and only if c ∈ τc

• (v1, v2) |= τ if and only if τ = τ1× τ2 and v1 |= τ1 and v2 |= τ2.

• Closure(η, x, E) |= τ if and only if τ = τ1 → τ2 and ∃Γ such that η |= Γ and

Γ, x:τ1 ` E:τ2.

• Bindingτ |= bindingτ

• Bindingν |= bindingν

• Env |= env

We extend the |= relation to environments in a pointwise fashion: η |= Γ if and

only if ∀x ∈ η.η(x) |= Γ(x).

Define τ̂ to be the set of all type identifiers that appear in a type as type identi-

fiers are replaced with their definition, until the type consists of base types, func-

tion types, and pairs.

A type identifier t is shared across dynamic environments η1 and η2 if and only

if: If η1(t) = (τ , s), then η2(t) = (σ, s) and all type identifiers in τ̂ are shared between

η1 and η2. That is, the definition of t has the same stamp in both environments.

Necessarily, τ ∼= σ follows, because the two stamps are the same exactly when η1

and η2 share the same binding, i.e., the first class environment operators lookup

and bind were used to transport the binding across environments. Note that this

sharing relationship is a dynamic attribute of types; the static typing rules only

92

consider a single environment. Our semantics are carefully crafted to avoid name

clashes that would compromise type soundness.

We extend this notion of sharing between to type identifiers to a type identifier,

t, and a type, τ , defined in η1 in the obvious fashion: the type identifier is shared

with all type identifiers in τ̂ with respect to η1. Similarly, the notion of sharing

between a type, τ with respect to η1 and an environment, η2, is defined as all type

identifiers appearing in τ̂ with respect to η1 being shared with all type identifiers

bound in η2.

` c : τ
Const ` reify : env

Reify

Γ(x) = τ

Γ ` x : τ
Var

Γ, x:τ ` E : σ
Γ ` λx:τ .E : τ → σ

Abs

Γ ` E1 : τ Γ, x:τ ` E2 : σ
Γ ` let val x:τ = E1 in E2 : σ

LetVal
Γ ` E1 : τ → σ Γ ` E2 : τ

Γ ` (E1E2) : σ
App

Γ ` E1 : τ Γ ` E2 : σ
Γ ` (E1, E2) : τ × σ

Pair
Γ ` E : σ× τ
fst(E) : σ

Fst

Γ ` E : σ× τ
snd(E) : τ

Snd
Γ ` E1 : bool Γ ` E2 : τ Γ ` E3 : τ

Γ ` if E1 then E2 else E3 : τ
Cond

Γ ` E1 : int Γ ` E2 : int
Γ ` E1 = E2 : bool

Equals
Γ ` E1 : int Γ ` E2 : int

Γ ` E1 + E2 : int
Plus

Γ ` E1 : string Γ ` E2 : env
Γ ` eval(E1, E2) : dynamic

Eval
Γ ` E : τ

Γ ` dynamic(E) : dynamic
Dynamic

Γ ` E1 : bindingν Γ ` E2 : env
Γ ` bindν(E1, E2) : env

Bindν
Γ ` E1 : bindingτ Γ ` E2 : env

Γ ` bindτ (E1, E2) : env
Bindτ

Γ ` E1 : string Γ ` E2 : env
Γ ` lookupν : bindingν

Lookupν
Γ ` E1 : string Γ ` E2 : env

Γ ` lookupτ : bindingτ
Lookupτ

Γ ` E1 : dynamic Γ, x:τ ` E2 : σ Γ ` E3 : σ
Γ ` typecase E1 of x:τ ⇒ E2 else E3 : σ

TypeCase

t /∈ Γ∗ t /∈ Γ.resτ Γ, t:τ ` Program:σ
Γ ` type t = τ ; Program:σ

Type

Figure 4.5: Typing rules for PCFτ ,ρ. Adapted from [LM93, ACPP91]
.

93

4.4.4 PCFτ ,ρ Domains

In PCFτ ,ρ, programs can have both static and checked dynamic errors. Static errors

are represented by the special value, wrong, of type Wrong. Dynamic errors, on the

other hand, are represented by the special value error of the contextually appro-

priate type; each type has an error value. The semantics are strict with respect

to error: once a subexpression evaluates to error, the result of the entire expres-

sion is error. The dynamic errors are raised by the environment manipulation

operations and eval.

4.4.5 PCFτ ,ρ Environments

The key to PCFτ ,ρ is the structure of its environments. We have both static envi-

ronments, denoted by Γ, and dynamic environments, denoted by η. Static envi-

ronments are of the form (ρν, ρτ , parent); type and value bindings are maintained

separately. The environment stores a reference to its parent environment, i.e., the

environment that was reified to produce this environment. The parent field may be

the special value NULL to indicate that this is the initial environment. Each dynamic

environment is of the form (ρν, ρτ , self, parent, resτ , resν). That is, name- and

type-environments, a unique identifier, the unique identifier of the environment

this one was reified from, a set of type identifiers bound in environments derived

from this one, and a set of variables bound in environments derived from this

one. Identifiers in resτ cannot be bound in this environment, because they have

already been bound in an environment that is a child of this environment, which

could produce a name clash between type identifiers. We could relax this rule by

using a sharing constraint instead, but the system is already complicated enough.

Identifiers in resν can not be inserted into this environment via bindν , to preserve

94

the consistent extension property. We write Γ(x) as a shorthand for Γ.ρν(x), and

Γ(t) for Γ.ρτ (t), and similarly for η(x) and η(t). We write ∅ for the initial environ-

ment, which has no bindings in its ρν and ρτ fields, a NULL parent field, and no

identifiers in its resτ field. We use the traditional η, x:τ notation for augmenting

environments to mean that a new environment is produced where the definition

of x overrides any existing binding in η.ρν, with the η.ρτ ,self,parent,resτ fields

carrying over unchanged from η.

We write Γ∗ for the reflexive, transitive closure of Γ with respect to the parent

field of Γ. So Γ∗ is the set of environments on the path from the initial environment

to Γ. We define η∗ analogously.

We define the notion of consistent extension for PCFτ ,ρ as follows: Γ � Γ′ if and

only if:

• ∀x ∈ Γ.Γ(x) = (v, τ)⇒ Γ′(x) = (v′, τ).

• ∀t ∈ Γ.Γ(t) = (τ , s)⇒ Γ′(t) = (τ , s).

The corresponding definitions also apply to dynamic environments and reified

environments.

In order to support eval in an environment built up with bind operations, we

need complete runtime type information. This defeats the erasure property. How-

ever, as a result of static typing, we do not have to check types dynamically, except

for bindν and typecase. We do have to produce types for each value, though.

95

For brevity, we use two abbreviations. Read
η ` Ei ; vi vi 6|= int i ∈1,2

η ` E1 + E2 ; (wrong, Wrong)
as “If

E1 reduces to v1 and v1 6|= int or E2 reduces to v2 and v2 6|= int, then η ` E1 + E2;

(wrong, Wrong).

Read
η ` E; wrong[]error

η ` fst(E); (wrong[]error, Wrong[]α)
as “If E reduces to wrong or error,

then fst(E) reduces to wrong or error, respectively.” We use α to stand for the
appropriate type for error.

η ` c; (c, τc, η.ρτ)
(1)

(x, τ) ∈ η
η ` x; (η(x), τ , η.ρτ)

(2)

η ` λx:τ .E; (Closure(η, x, E), τ → σ, η.ρτ)
(3)

η ` reify;
(Env(η.ρν, η.ρτ , self← s, parent← η.self, resτ ← ∅, resν ← ∅), env, η.ρτ)

(4)

η ` E1 ; (v1, ,) η ` E2 ; (v2, ,) v1, v2 |= int

η ` E1 + E2 ; (v1 + v2, int, η.ρτ)
(5)

η ` E1; (v1, ,) v1 |= bool v1 = true η ` E2 ; (v, τ ,)
η ` if E1 then E2 else E3 ; (v, τ , η.ρτ)

(6)

η ` E1 ; (v1, ,) v1 |= bool v1 = false η ` E3 ; (v, τ ,)
η ` if E1 then E2 else E3 ; (v, τ , η.ρτ)

(7)

η ` E1 ; (v1, τ ,) η ` E2 ; (v2, σ,)
η ` (E1, E2); ((v1, v2), τ × σ, η.ρτ)

(8)

η ` E; ((v1, v2), τ × σ,)
η ` fst(E); (v1, τ , η.ρτ)

(9)

η ` E; ((v1, v2), τ × σ,)
η ` snd(E); (v2, σ, η.ρτ)

(10)

Figure 4.6: Operational Semantics for PCFτ ,ρ

96

η ` E1 ; v1 η, x:(v1, τ ,) ` E2; (v2, σ,)
let val x:τ = E1 in E2 ; (v2, σ, η.ρτ)

(11)

η ` E1 ; (v1, ,) η ` E2 ; (v2, ,)
∀γ ∈ η∗ \ η.γ.resν ← γ.resν ∪ {x}

v1 = Bindingν(x, v, η) |= bindingν v2 |= env Okν(v1 , v2)
η ` bindν(E1, E2); (Env(v1, v2),env, η.ρτ)

(12)

η ` E1 ; (v1, ,) η ` E2 ; (v2, ,)
∀γ ∈ η∗ \ η.γ.resτ ← γ.resτ ∪ {t}

v1 = Bindingτ (t, τ , η) |= bindingτ v2 |= env Okτ (v1 , v2)
η ` bindτ (E1, E2); (Env(v1, v2),env, η.ρτ)

(13)

η ` E1; (v1, ,) η ` E2 ; (v2, ,) v1 |= string v2 |= env

η ` lookupν(E1, E2); (Bindingν(x, v, η), bindingν , η.ρτ)
(14)

η ` E1 ; (v1, ,) η ` E2 ; (v2, ,) v1, v2 |= int v1 = v2

η ` E1 = E2; (true, bool, η.ρτ)
(15)

η ` E1; v1 η ` E2 ; v2 v1, v2 |= int v1 6= v2

η ` E1 = E2; (false, bool)
(16)

η ` E1 ; Dynamic(v1, τ , η
′.ρτ) η, x:(v1, τ) ` E2 ; (v2, σ)

Shared((τ , η′.ρτ), η)
typecase E1 of x:τ ⇒ E2 else E3 ; (v2, σ, η.ρτ)

(17)

η ` E1 ; Dynamic(v1, σ,) η ` E3 ; (v2, σ,)
typecase E1 of x:τ ⇒ E2 else E3 ; (v2, σ, η.ρτ)

(18)

η ` E1; (v1, ,) η ` E2 ; (v2, ,) v1 |= string v2 |= env

η ` lookupτ (E1, E2); (Bindingτ (t, τ , η),bindingτ , η.ρτ)
(19)

η ` E; (v, τ ,)
dynamic(E); (Dynamic(v, τ , η.ρτ), dynamic, η.ρτ)

(20)

η ` E1 ; (Closure(η′, x, E′), τ → σ,)
η ` E2 ; (v1, τ ,) η ′, x:(v1, τ) ` E′; (v2, σ,)

η ` (E1E2); (v2, σ, η.ρτ)
(21)

97

η ` E1 ; (v1, ,) v1 |= string η ` E2 ; (v2, ,) v2 |= env
∃τ .v2 ` v1:τ v2 ` v1; (v, σ, η ′.ρτ)

η ` eval(E1, E2); (Dynamic(v, σ, η′.ρτ),dynamic), η.ρτ
(22)

∀γ ∈ η∗ \ η.γ.resτ ← γ.resτ ∪ t
η, t:τ ` Program ; (v, τ , η′.ρτ)

η ` type t = τ ; Program ; (v, τ , η′.ρτ)
(23)

η ` E; wrong[]error
η ` fst(E); (wrong[]error, Wrong[]α, η.ρτ)

(24)

η ` E; wrong[]error
η ` snd(E); (wrong[]error, Wrong[]α, η.ρτ)

(25)

η ` Ei ; wrong[]error i ∈ 1,2

η ` E1 = E2 ; (wrong[]error, Wrong[]α, η.ρτ)
(26)

η ` E1; wrong[]error
η ` if E1 then E2 else E3 ; (wrong[]error, Wrong[]α, η.ρτ)

(27)

η ` E1; true η ` E2 ; wrong[]error
η ` if E1 then E2 else E3 ; (wrong[]error, Wrong[]α, η.ρτ)

(28)

η ` E1 ; false η ` E3; wrong[]error
η ` if E1 then E2 else E3 ; (wrong[]error, Wrong[]α, η.ρτ)

(29)

η ` Ei ; wrong[]error i ∈ 1,2

η ` bindτ (E1, E2); (wrong[]error, Wrong[]α, η.ρτ)
(30)

η ` E1; v v 6= Closure(η′, x, E′)
η ` (E1E2); (wrong, Wrong, η.ρτ)

(31)

η ` Ei ; wrong[]error i ∈ 1,2

η ` (E1E2); (wrong[]error, Wrong[]α, η.ρτ)
(32)

η ` E1; v1 η ` E2 ; v2 v1 |= bindingν v2 |= env ¬Okν(v1 , v2)
η ` bindν(E1, E2); (error,env, η.ρτ)

(33)

η ` E1 ; v1 η ` E2; v2 v1 |= bindingτ v2 |= env ¬Okτ (v1 , v2)
η ` bindτ (E1, E2); (error,env, η.ρτ)

(34)

98

η ` E; vi vi 6|= int i ∈1,2

η ` E1 + E2 ; (wrong, Wrong, η.ρτ)
(35)

η ` E1; v v 6|= bindingτ
η ` bindτ (E1, E2); (wrong, Wrong, η.ρτ)

(36)

η ` E2 ; v v 6|= env

η ` bindτ (E1, E2); (wrong, Wrong, η.ρτ)
(37)

η ` E; wrong[]error
dynamic(E); (wrong[]error, Wrong[]α, η.ρτ)

(38)

η ` E1 ; dynamic(v1, τ , η) η, x:(v1, τ) ` E2; wrong[]error
typecase E1 of x:τ ⇒ E2 else E3 ; (wrong[]error, Wrong[]α, η.ρτ)

(39)

η ` E1 ; v v 6|= string

η ` lookupν(E1, E2); (wrong, Wrong, η.ρτ)
(40)

η ` E2 ; v v 6|= env

η ` lookupν(E1, E2); (wrong, Wrong, η.ρτ)
(41)

η ` Ei ; wrong[]error i ∈ 1,2

η ` lookupτ (E1, E2); (wrong[]error, Wrong[]α, η.ρτ)
(42)

η ` Ei ; wrong[]error i ∈ 1,2

η ` lookupν(E1, E2); (wrong[]error, Wrong[]α, η.ρτ)
(43)

η ` E1 ; v v 6|= string

η ` lookupτ (E1, E2); (wrong, Wrong, η.ρτ)
(44)

η ` E2 ; v 6|= env

η ` lookupτ (E1, E2); (wrong, Wrong, η.ρτ)
(45)

η ` E1 ; dynamic(v1, σ) η ` E3; wrong[]error
typecase E1 of x:τ ⇒ E2 else E3 ; (wrong[]error, Wrong[]α, η.ρτ)

(46)

η ` E; v v 6= (v1, v2)
η ` fst(E); (wrong, Wrong, η.ρτ)

(47)

η ` E; v v 6= (v1, v2)
η ` snd(E); (wrong, Wrong, η.ρτ)

(48)

99

η ` Ei ; wrong[]error i ∈1,2

let val x:τ = E1 in E2 ; (wrong[]error, Wrong[]α, η.ρτ)
(49)

η ` E1; v1 v1 6|= string

η ` eval(E1, E2); (wrong,Wrong, η.ρτ)
(50)

η ` E2; v2 v2 6|= env

η ` eval(E1, E2); (wrong,Wrong, η.ρτ)
(51)

η ` Ei ; wrong[]error i ∈1,2

η ` eval(E1, E2); (wrong[]error,Wrong[]α, η.ρτ)
(52)

η ` E1; v v 6|= bindingν
η ` bindν(E1, E2); (wrong, Wrong, η.ρτ)

(53)

η ` E2 ; v 6|= env

η ` bindν(E1, E2); (wrong, Wrong, η.ρτ)
(54)

η ` Ei ; wrong[]error i ∈ 1,2

η ` bindν(E1, E2); (wrong[]error, Wrong[]α, η.ρτ)
(55)

η ` E1 ; wrong[]error
typecase E1 of x:τ ⇒ E2 else E3 ; (wrong[]error, Wrong[]α, η.ρτ)

(56)

where

Ok ν(η,Bindingν(x, (v, τ , η′)) ⇐⇒ if x ∈ η then η(x) = (v′, τ) otherwise true
∧ Shared(η, (τ , η′.ρτ))

Ok τ (η,Bindingτ (t, σ, η
′)) ⇐⇒ ¬(t ∈ η∗)∧ Shared(η, (σ, η′.ρτ))

∧ t /∈ η.resτ
Shared(η, (τ , η′.ρτ)) ⇐⇒ ∀t ∈ τ̂ .Shared(η.ρτ , t, η ′.ρτ)

Shared(η.ρτ , t, η ′.ρτ) ⇐⇒ η(t) = (, s)⇒ η′(t) = (, s)

100

4.4.6 PCFτ ,ρ Example

Consider the code in figure 4.7.

let val e1:env = typecase (eval("type u = int ; type t = u * int ;
let val f: t -> int =
λx:t.fst(x) + 1
in reify",
reify))

of y:env => y else reify in
let val b1:bindingτ = lookupτ("t", e1) in
let val b2:bindingν = lookupν("f", e1) in
let val e2:env = bindν(b2, (bindτ(b1, reify))) in
eval("type u = bool ; let val y:u = true in
let val z:t = (y,3) in f(z)", e2)

Figure 4.7: Example program in PCFτ ,ρ syntax showing free variable capture across
environments. This program reduces to error in PCFτ ,ρ.

Although this program may seem complicated, it is actually quite simple. We

will consider how the program would evaluate without enforcement of the sharing

constraints, i.e., if the Shared hypotheses were removed from the semantics. The

first let binds e1 to the environment produced by evaluating the text in quotes.

Next, we lookup the type-binding of t (i.e., u× int), into the variable b1. Similarly,

we set b2 to the binding of f in e1, i.e., λx:t.fst(x) + 1. Next we construct a new en-

vironment, e2, which is the current environment, plus the bindings of f and t from

e1. Now, we evaluate the declaration type u = bool, which binds the free variable

u in t (imported from e1) in e2 resulting in e′2. Finally, in e′2, we evaluate let val

y:u = true in let val z:t = (y,3) in f(z). Reducing the let expressions fi-

nally yields f(true, 3), which reduces to (λx:u.x + 1)(fst(true : u, 3 : int)), which

reduces to true + 1. Again, we have a type-soundness failure. Our semantics for

PCFτ ,ρ reduces this program to error, because the Shared hypotheses fails when

we attempt to construct e2.

101

The problem we see here is extracting a binding from one environment, and

placing it another environment. Again, this is just another instance of free variable

capture that leads to an unsound typing judgement; see Figure 4.8.

ρ

ρ1

0

ρ2

u = int

t = u * int

f(x:t) = fst(x)+1 u = bool let val y:u = true in
let val z:t = (y, 3) in
f(z)

b1

e1

b2

e2

Figure 4.8: This figure shows a cross-environment lookup, which would result
in a type-soundness failure as the program attempts to evaluate true + 1. Our
semantics yields the result error. The labels correspond to the variables in the
code in Figure 4.7.

4.5 Solution for PCFτ ,ρ

Recall that lexical scope can be explained via α-conversion. The only difference

in the operational semantics is that bound variables get renamed under a lexically

scoped system to avoid the name clashes that plague dynamic scope. So far, Java

systems have tried to avoid this problem via ad hoc restrictions on dynamic link-

ing. JDK 1.1 uses a hash table to ensure that a class is never redefined in a given

environment, as I suggested in Chapter 3, after my discovery of this problem in

102

JDK 1.0. However, this misses the name capture in the second example, above.

With our new understanding of the problem, we can justify a sufficient set of

restrictions on environment manipulation (i.e., dynamic linking) to ensure sound-

ness of the type system. Note that this is not the only possible set of restrictions.

We have three restrictions:

Restriction 4.1 A type identifier may never be defined more than once in a type environ-

ment.

Restriction 4.2 Each reified environment must be a consistent extension of its parent;

i.e., if a name is defined in both environments, they must be bound to the same thing.

Restriction 4.3 If an environment references a binding originally defined in a different

environment, the two environments must share all the type bindings referenced (directly

or indirectly) by the shared binding.

Note Restriction 4.3 does not subsume restriction 4.2, because we insist that all

environments be consistent extensions of their parent environment, even if they

do not refer to any symbols in their parent environment.

We examine the program in Figure 4.7 again in light of these restrictions. The

program will fail, i.e., evaluate to error, when it tries to evaluate bindτ(b1, reify)

because it runs afoul of restriction 3: environments ρ1 and ρ2 do not share a binding

for u.

4.5.1 Formalization

We now formalize the above intuitions. The typing rules in Figure 4.4.3 and op-

erational semantics in Figure 4.6 are adapted from Leroy and Mauny [LM93], Ja-

103

gannathan [Jag94] and Abadi, et al. [ACPP91]. Because our system is monomor-

phic, the discussion of open vs. closed dynamic types does not arise. We allow free

type identifiers to appear in dynamic types. Our system has a minor twist, also

exhibited by Java: types are name-equivalent statically, and (name, environment)-

equivalent dynamically. That is, typecase requires any type identifiers in the pat-

tern be bound to the same definitions in the environments where the dynamic value

is created and used.

The formal semantics are in Figure 4.6. We take the slightly unusual approach

of expressing evaluation as a relation between environment × expression; value

× type × type environment. We need values to carry their types, so that we can

build up environments and subsequently type check expressions in those environ-

ments. In order to interpret any type identifiers that might appear in a type, we

need a type environment. However, this leads to phase distinction [Car88a] prob-

lems: execution is no longer separate from type checking, because execution, by

altering the environment, can invalidate a typing judgement. Thus, we put run-

time checks on the bind operation to ensure the continued validity of the static

typing judgement. The environment operations are easy to implement in an in-

terpreted setting, but more difficult in a compiled setting. However, one sees the

same general problem in any compiled setting with dynamic linking. The first time

a symbol is referenced, it has to be resolved; afterwards it can be directly accessed.

We begin with a technical lemma about the structure of environments in the

system.

Lemma 4.1 (Environments form a tree) The graph formed by the parent fields of all

environments is a tree.

Proof: By induction on the number of environments. Initially, there is one environ-

104

ment, and any one node graph is a tree. For the induction step, reify is the only operation

that sets parent, and it always sets it to the current environment.

We present a slight variation on the standard type-soundness proof. Each type

contains error, a constant used to denote checked runtime errors. We show that a

well-typed program never evaluates to wrong.

Lemma 4.2 (Consistent Extensions Preserve Types) If Γ ` E:τ and Γ� Γ′, then Γ′ `

E:τ .

Proof: By induction on the height of the typing derivation. There is one case for each

typing rule; we consider each rule as the last step in a typing derivation.

• The result follows immediately for Const and Reify.

• For Var, Γ ` x:τ and Γ � Γ′ immediately implies Γ′ ` x:τ by the definition of con-

sistent extension.

• Using the induction hypothesis, the result follows immediately for Pair, Fst, Snd,

Cond, Equals, Plus, Eval, Dynamic, Bindν , Bindτ , Lookupν , Lookupτ , and

App.

• For the binding operators, (Abs, LetVal, and TypeCase), Γ � Γ′ implies Γ, x:τ �

Γ′, x:τ , because ∀y ∈ Γ,Γ(y):τ implies Γ′(y):τ and Γ(x):τ and Γ′(x):τ . By the in-

duction hypothesis, the types of the subterms are preserved, so the result follows.

• For type declarations, using Type, consistent extensions may cause inadmissibility.

However, this is a static error. In the case of eval, a static error will cause error (of

type dynamic) to be returned, which preserves the type of eval.

105

Lemma 4.3 (Environment Consistency) Every expression is reduced in a consistent

extension of the environment it was type-checked in, and reified environments remain

consistent extensions of the environment that was captured. This implies that runtime

environments are consistent with type checking environments.

Proof: Proceeds by induction on the length of the reduction.

• The result is immediate for values, because either (rule 1) applies, and the result is

immediate, or no reduction rules apply.

• For variables (rule 2), the result is immediate, because the environment does not

change.

• None of the reduction rules that reduce to wrong or error (rules 24–56) change the

environment, so the result follows from the inductive hypothesis in conjunction with

the typing rules for each term.

• The result follows from the inductive hypothesis, the typing rules, and the reflexivity

of consistent extension, for pairing (rule 8), addition (rule 5), equality (rules 15–

16), if-then-else (rules 6–7), fst (rule 9), snd (rule 10), lookupν (rule 14), and

lookupτ (rule 19).

• For reify (rule 4), Env (η) captures the bindings of η, so by reflexivity, the reified

environment is a consistent extension of Γ.

• For λ-abstraction (rule 3), the closure built contains η, a consistent extension of

itself. Evaluation directly leads to a Closure, so the result is immediate.

• For dynamic (rule 20), the value built contains η, a consistent extension of itself.

Evaluation directly leads to a Dynamic, so the result is immediate.

106

• For function application (rule 21), the induction hypothesis tells us that consistent

extension is preserved as we reduce the subexpressions to a Closure, and an argu-

ment. Now, we augment the environment stored in the closure with a binding for

the function argument, which is exactly what the Abs rule did for type-checking the

body of the closure, which is the desired result.

• For typecase (rules 17–18), the inductive hypothesis allows us to conclude the

consistent extension property for the evaluation of the dynamic value whose type is

being tested. We proceed with a case split on whether the expression is a member

of τ . If it is, we evaluate the body in an environment augmented with a binding

for x, just as in the typing rule, TypeCase. We ensure that any type identifiers are

shared, so that no inconsistency arises. Combined with the inductive hypothesis,

this leads to the desired result. Otherwise, the else branch is evaluated in the same

environment as the typecase, which also corresponds to the typing rule. Combined

with the inductive hypothesis, this leads to the result.

• For let val (rule 11), the argument follows typecase, above, where the expression

is a member of the type.

• For bindν (rule 12), the induction hypothesis covers consistent extension when re-

ducing the subterms. OK ν ensures that the variable is either unbound in v2, in

which case the consistent extension property with respect to v2 is preserved, or that

the variable denoted by v1 is bound to a value of the same type as the value in the

binding v2, which also preserves consistent extension.

• For bindτ (rule 13), the induction hypothesis yields that the reductions leading to v1

and v2 preserve consistent extension. Okτ ensures that the variable in v1 is not bound

in v2 or in the reflexive, transitive closure of the parent(s) of v2. The Ok τ predicate

107

also ensures that all type variables reachable in the expansion of v1 are bound to the

same definitions in v2 as in the environment that v1 was originally defined in. Thus,

the new environment is a consistent extension of v2.

• For eval (rule 22), the inductive hypothesis ensures consistent extension during the

evaluation of the two arguments. The first argument, a string, is type checked, with

respect to the second argument, an environment. It is then evaluated in the same

environment. This is the desired result.

• For type t = τ ; Program (rule 23), the declaration is either admissible or not. If

t is unbound and t /∈ η.resτ , the environment is augmented, and the new environ-

ment is a consistent extension by definition. The inductive hypothesis, applied to the

remainder of the program yields the desired result.

Theorem 4.4 (Subject Reduction) If Γ ` Program : τ and η |= Γ, and η ` Program;

(v, τ , ρτ), then v |= τ

The proof proceeds by induction on the derivation. As before, we can ignore all rules

with a hypothesis that reduces to wrong, as these violate the induction hypothesis. All

rules which reduce to error produce an error value of the appropriate type, so subject

reduction holds for them.

• The result is immediate for values, from (rule 1) or because no other reduction rules

apply to them.

• For reducing variables, there is only one reduction rule (rule 2), and the expression

must have been typed using Var. Using η |= Γ, the result is immediate.

• For let val x:τ = E1 in E2 (rule 11), the last step of the typing derivation must

have used LetVal. By the induction hypothesis, E |= τ , so x:τ . Either E1; error,

108

in which case E2 evaluates to error (of the same type as E2), or η, x:τ ` E2; v, and

v |= σ because η, x:(v, τ) |= Γ, x:τ , at which point the induction hypothesis leads to

the desired conclusion.

• For if-then-else (rules 6–7), Cond must have been the last typing rule used. By

the induction hypothesis, E1 ; v1, and v1 |= bool, and E2 or E3 reduce to v2, and

v2 |= τ , as desired. The cases for E = E (rules 15–16), and E + E (rule 5) are similar

and omitted.

• For λ abstractions, we have λx:τ .E which must have been typed used Abs. But it

reduces to Closure(η, x, E) (rule 3), and Closure(η, x, E) |= τ → σ, as needed.

• For function application, we have v1 ; Closure(η ′, x, E′), and v1 |= τ → σ, from

the induction hypothesis. In rule 21, η, x:(v, τ) |= Γ, x:τ , and so v2 |= σ by the

induction hypothesis. This is the desired result.

• For pairs, the last typing rule used must have been Pair, so the inductive hypothesis

yields v1 |= τ and v2 |= σ, so (rule 8) (v1, v2) |= τ × σ by the definition of |=.

• For fst (rule 9), the induction hypothesis yields (v1, v2) |= τ × σ, so v1 |= τ , by

definition of |=. The case for snd (rule 10) is analogous and omitted.

• For reify (rule 4), the expression must have been typed using Reify, yielding type

env. But the reduction rule yields Env , and Env |= env by definition.

• For lookupν (rule 14), the expression must have been typed using Lookupν , and

the induction hypothesis yields v1 |= string and v2 |= env. The only applicable

reduction rule reduces to Bindingν , and Bindingν |= bindingν .

• For lookupτ (rule 19), the expression must have been typed using Lookupτ , and

the induction hypothesis yields v1 |= string and v2 |= env. The only applicable

109

reduction rule reduces to Bindingτ , and Bindingτ |= bindingτ .

• For bindν (rule 12), the expression must have been typed using Bindν , and the

induction hypothesis yields v1 |= bindingν and v2 |= env. The only applicable re-

duction rule yields Env , and Env |= env, as desired.

• For bindτ (rule 13), the expression must have been typed using Bindτ , and the

induction hypothesis yields v1 |= bindingτ and v2 |= env. The only applicable re-

duction rule yields Env , and Env |= env, as desired.

• For typecase E1 of x:τ ⇒ E2 else E3 (rules 17–18), it must have been typed using

TypeCase. In conjunction with the induction hypothesis, we have v1 |= dynamic. If

v1 is of the form Dynamic(v2 , τ , ρτ), and Shared(η, (τ , ρτ), then η, x:τ ` E2; v3,

and v3 |= σ because η, x:(v, τ) |= Γ, x:τ , at which point the induction hypothesis

leads to the desired conclusion. Otherwise, we appeal to the induction hypothesis for

E3; (v2, σ) as needed.

• For dynamic (rule 20), the last typing rule used must have been Dynamic, so ∃τ `

E:τ . By the induction hypothesis, E ; (v, τ , ρτ). The only reduction rule yields

Dynamic(v, τ , ρτ), and Dynamic(v, τ , ρτ) |= dynamic by definition.

• For eval (rule 22), the last typing rule used must have been Eval. The induc-

tion hypothesis yields v1 |= string and v2 |= env. If v1 does not denote a well

typed program with respect to v2, the semantics produce (error, dynamic) (the

error value at type dynamic), and error |= dynamic. Otherwise, the induction

hypothesis applies to v2 ` v1; (v, τ , ρτ), and eval yields Dynamic(v, τ , ρτ), and

Dynamic(v, τ , ρτ) |= dynamic.

• For type t = τ (rule 23), the declaration must have been typed using Type. Since

Type requires the environment to be well-formed, we cannot go wrong here.

110

In the above proofs, we take great advantage of the fact that evaluating an ex-

pression does not change the type environment. This allows us to simplify the

argument, because whether a type declaration is admissible or not cannot change

between type checking and evaluation. Therefore, we only have to ensure that the

first class environment operators and typecase (because the dynamic value may

have been constructed in a different environment via eval) have appropriate run-

time checks.

Corollary 4.5 (Type Soundness) If ∅ ` Program : τ and Program; (v, τ , ρτ), then

v 6= wrong.

Proof: Note that there is no introduction rule for Wrong. In conjunction with Theo-

rem 4.4, this implies v 6= wrong.

The proof technique used in Corollary 4.5 is a common trick I first saw used in

Abadi, et al [ACPP91]. Many others have used the same technique.

4.6 Relating PCFτ ,ρ to Java

Now that we have studied the phenomenon of dynamically scoped types in PCFτ ,ρ,

we need to relate our model back to Java. While the PCFτ ,ρ model may seem com-

plicated, its complexity is needed to capture the appropriate semantics of Java and

the JVM. PCFτ ,ρ is still much simpler than the JVM. We now turn to matching

PCFτ ,ρ’s types, environments, typing rules, and operators to JVM’s classes, Class-

Loaders, type system, and operators.

We regret that this chapter furthers the confusion between types and classes,

but there is no other simple alternative. Note that we do not really care about the

111

definition of a class: all we need to capture is the intuitive notion of a combination

of a type declaration and some code.

We have come to one of the deep, dark corners of Java: the ClassLoader. The

basic JVM knows how to load bytecode only from the local file system. To load

code from anywhere else (i.e., the World Wide Web), the runtime system exports

an interface (defineClass()) for turning an array of bytes into a Class object as

a method of java.lang.ClassLoader. By subclassing ClassLoader, the developer

can use the defineClass() method to construct classes from arbitrary byte sources

(as long as the bytes are the representation of a valid class in the Java Class file

format).

Each class object (i.e., instance of the class java.lang.Class) contains a refer-

ence to the ClassLoader that defined it. In addition to providing an interface to

turn bytes into classes, the ClassLoader also acts as an environment; the runtime

makes an upcall to retrieve the definitions of other classes mentioned by any given

class. In order to resolve a class name, the runtime system calls the loadClass()

method in ClassLoader of the current class. For example, if we have the class:

class A {
public B b;
public int foo()

{ return b.x+1; }
}

The runtime system uses A’s ClassLoader to look up the definition of B while

type checking A.foo(). The reader is referred to McManis [McM96], the Java lan-

guage specification [GJS96] and the Java Virtual Machine specification [LY96] for

more details and examples.

112

So we see that ClassLoaders work like environments. Each ClassLoader defines

its own namespace, so we need multiple environments to model JVM. However,

ClassLoaders are also regular objects — each is an instance of a class, and that class

has a ClassLoader. (The runtime system’s built-in ClassLoader is special in this

regard; it does not have a representation as a Java object.) This is why we use first-

class environments. User-written ClassLoaders can implement our lookup and

bind operators by returning classes defined by other ClassLoaders in response to

the runtime system calling their loadClass() method. This was first presented by

Chris Hawblitzel [Haw97], but it is not clear if he was aware of the type-soundness

problem.

All Java ClassLoaders are required (although this is not enforced) to ask the

built-in ClassLoader if it would like to return a class definition before searching

themselves for the class definition. In particular, the set of all ClassLoaders in the

system forms a tree, because each ClassLoader is loaded in turn by some other

ClassLoader. These facts have influenced our (baroque) model of environments.

Our type system is drastically simplified from JVM’s. We do not support any

notion of subtyping (related to subclassing in the JVM). We use type dynamic and

the typecase expression to model Java’s safe cast operator. In JVM, what opera-

tions one can perform on an object is a function of the static type of the object. The

cast operation walks the class hierarchy via pointer chasing; our typecase com-

pares (name, environment) pairs pointwise. Since Java (name, ClassLoader) pairs

are in one-one correspondence with classes [Dea97], this is equivalent to our model

here. Note that every JVM object has a pointer to its class; this effectively means

that all values (of non-primitive type) can be treated as dynamic. Where we use

error, Java would raise an exception.

113

We use eval to start execution in a new environment in PCFτ ,ρ. In Java/JVM,

we can load a class via a ClassLoader and get back a class object. One of the meth-

ods defined by class Class is newInstance(), so that given a reference to a class,

one can create an instance of the class. If the loaded class has a superclass that

is visible (in the current ClassLoader), we can cast the result of newInstance() to

that superclass, and invoke a method of the object, passing arbitrary arguments.

(At type Object, there is the equals method, which takes another object, in case

there is no visible superclass.) This starts execution in a class loaded by a different

ClassLoader.

Each type identifier is bound to a pair of its definition and a unique stamp.

These stamps model the role of Class objects in Java. We compare stamps for

equality to determine if two type bindings are same (even across environments),

much as two objects are instances of the same class in Java when they are instances

of the same (defined by reference equality) class.

In Java, we can have values that are instances of a class not nameable in the

current ClassLoader. These values must be treated as instances of one of their su-

perclasses; because all classes in Java are subclasses of java.lang.Object, we can

always treat something as an Object. Here, we have values of type dynamic that

cannot be matched in the current environment because a sharing constraint is not

met between the current environment and the environment where the dynamic

value was created. These values can be bound to variables, and passed as argu-

ments to functions, but they can not be taken out of their dynamic wrapper.

Our model of types and environments is not a perfect model of Java; we don’t

have self-application. However, the Java type system constrains self-application

(e.g., through binary methods) so this missing feature does not impact us too greatly.

114

In summary, PCFτ ,ρ types map to Java classes, environments map to ClassLoad-

ers, type dynamic and typecase map to Java’s checked-cast operation, and eval()

maps to invoking a method on an instance of a class loaded by another Class-

Loader.

4.7 Conclusions

We have studied a fundamental flaw in the JVM definition: Classes have dynamic

scope. In conjunction with static type checking, this results in type-system failure.

In an attempt to fix this problem, the JDK prevents a ClassLoader from defining

a class more than once. However, this does not solve the problem of free variable

capture in the presence of multiple ClassLoaders. We presented a set of environ-

ment manipulation restrictions that solve the general problem. While developing

the necessary machinery in PCF, we presented a semantics for first-class environ-

ments in a (mostly) statically typed system.

This offers a nice justification for our results in the prior chapter, where our

model of dynamic linking provably avoids name clashes. It is a well-known result

for λ-calculus that dynamic and static scope are distinguishable only in the pres-

ence of a name clash. Such a theorem should be simple to prove given formaliza-

tions of type-checking and a small-step operational semantics for Java. The proof

proceeds by induction on the length of the typing derivation. Constants have the

appropriate type. All rules other than variable use follow immediately from the

inductive hypothesis.

115

Chapter 5

Attacking Cryptographic Hash

Functions

5.1 Introduction

Mobile code security has come to rely on digital signatures to authorize mobile

code to perform potentially dangerous actions [WBDF97]. If digital signatures can

be forged, these architectures will not work. Cryptographic hash functions are a

crucial primitive in all known practical digital signature schemes, and are also used

in many other protocols, partly because they are freely exportable from the United

States. We attack the second preimage problem: given that F (x1) = y, finding

x2 6= x1 such that F (x2) = y.

Rivest’s MD4 [Riv92a] and MD5 [Riv92b] are popular choices for cryptographic

hashing, due to their relative efficiency and strength. More recently, SHA-1 [NIS95]

has also gained acceptance. While various attacks against MD4 and MD5 have

recently been discovered [Dob96], there has not been a general method for com-

puting a second preimage in expected time less than that required by exhaustive

116

search over randomly generated messages. No proposal better than brute force has

been proposed for SHA-1 second preimages. This chapter presents an improved

second-preimage attack against all three hash functions.

We found our new attack by using the Ever [Hu95] automated reasoning tool,

which symbolically analyzes binary decision diagrams (BDDs) describing boolean

circuits and finite-state systems.

This chapter is organized as follows: Section 5.2 defines our notation, Sec-

tion 5.3 describes the attacks, Section 5.4 gives background on binary decision

diagrams, Section 5.5 describes our specifications of MD4, MD5, and SHA-1 in

Ever [Hu95], Section 5.6 proposes defenses against the attacks, Section 5.7 dis-

cusses related work, and Section 5.8 concludes.

5.2 Notation

We write MD4 Compress and MD5 Compress for the compression functions of MD4

and MD5, respectively, and SHACompress for the compression function of SHA-1.

All have the same top level structure, which we write as:

Compress(X, ~iv) = ~iv + ~H (X, ~iv) (5.1)

where X is one block (512 bits), and ~iv is the initialization vector of four or five

32-bit words. The addition is 32-bit unsigned vector addition. We shall frequently

refer to ~H on some fixed block, X, which we shall write as ~HX. Following Rivest

and NIST, we shall treat ~iv as a four or five tuple, respectively, of 32-bit words,

(A,B ,C ,D ,E). Let w , x , y , z range over {A,B ,C ,D ,E}, f be a bitwise boolean

function of three 32-bit words, Y <<< s denote the 32-bit value Y circularly rotated

117

to the left s bits, 0 ≤ s ≤ 31, Xi be the ith word of X, 0 ≤ i ≤ 15, and k be a 32-bit

constant. Then each of the 48 steps of ~H for MD4 can be written as:

w← (w + f (x, y, z) + Xi + k) <<< s (5.2)

Similarly, the 64 steps of ~H for MD5 can be written as:

w← x + ((w + f (x, y, z) + Xi + k) <<< s) (5.3)

Instead of multiple passes over the block, SHA-1 algorithmically extends the block

to 80 words, and each step looks like:

t ← (A <<< 5) + f (B,C,D) + E + Xi + k (5.4)

E ← D

D ← C

C ← B <<< 30

B ← A

A ← t

MD4, MD5, and SHA-1 all divide their input into a sequence of 512-bit blocks.

The first block is hashed as described in equation 5.1, where the ~iv is defined as

part of the algorithm. To hash the n + 1st block, the value computed as the hash of

the nth block is used as the ~iv. These values are called chaining variables.

In all cases, the result of ~H is the final values of (A,B ,C ,D) for MD4 and MD5,

and the final values of (A,B ,C ,D ,E) for SHA-1.

118

5.3 Properties and Attacks

In analyzing various attacks on the hash functions, we will assume that

• the hash function generates b-bit outputs and thus has N = 2b possible out-

puts;

• we are given M messages, each of length K blocks;

• time is measured in units of hashing steps, where a hashing step is equal to

the amount of time required to compute the Compress function.

When computing the cost of an attack, we assume that the attacker has already

hashed the messages he is attacking, so we do not charge the attacker for perform-

ing any computation that is done as part of hashing the messages. The attacker’s

goal is to produce a message, not equal to any of the given messages, that has the

same hash code as any of the given messages.

The key element of the attack is the following insight, which we independently

and automatically rediscovered [PvO95]:

Property 5.1 For any given, fixed input block X, and any given b-bit constant ~c, there is

a unique value ~j, such that ~HX(~j) = ~c; and this value of ~j can be computed in one hashing

step from X and ~c.

That is, given some block X, we can find the ~iv for which that block produces a

certain delta. In particular, by choosing~c =~0, we can find the ~iv for which the block

is a fixed point. We independently rediscovered this insight found with automated

analysis techniques as described in sections 5.4 and 5.5.

119

Although this result initially surprised us, a quick glance at equations 5.2, 5.3,

and 5.4 shows the reason for this: given a final result for ~HX, there is exactly one

predecessor state that can produce the result at each step. Thus, computing the~iv

for which a block is a fixed point (or produces any other constant delta) requires

exactly the same number of primitive operations as hashing the block. We call this

procedure reverse hashing, because it amounts to running the ~H function in reverse.

We can now derive several more properties that follow from Property 5.1.

Property 5.2 For all X, ~HX is a permutation.

~HX is clearly an automorphism, and Property 5.1 implies that ~HX has an inverse.

Property 5.2 follows from these two facts.

Property 5.3 For all ~y and ~z, there are exactly 2512−b distinct values X such that ~HX(~y) =

~z.

This follows from Property 5.2 by a simple counting argument.

5.3.1 Second Preimage Attack

We now present new methods for constructing second preimages, taking advan-

tage of Property 5.1. Recall that Rivest wrote, “It is conjectured that the difficulty

of coming up with two messages having the same digest is on the order of 264

operations, and that the difficulty of coming up with any message having a given

message digest is on the order of 2128 operations.” [Riv92b, Section 4] [emphasis

added] While this conjecture remains true, strictly speaking, the often assumed

extension to second preimages is contradicted.

120

Single-message case

Before analyzing the general case, we first consider the special case where there is

a single message (M = 1).

Denote the intermediate ivs encountered hashing the message as ~V1, ~V2, . . . , ~VK.

The attack works as follows:

First, generate random blocks Xi. Each Xi is a fixed point for some ~yi: ~H (Xi, ~yi) =

~0. Keep repeating this step until we find a ~yj equal to some ~Vp. The expected exe-

cution time of this step is N/K, because each attempt succeeds with (independent)

probability K/N.

With a known fixed point in hand, we can now “inflate” the message by insert-

ing as many copies as we like of the block Xj into the message. Since Xj is a fixed

point of the compression function Compressp, adding copies of Xj does not affect

the hash code of the message.

Simply inflating the message in this way does not give a second preimage, be-

cause the hash functions use Merkle-Damgård strengthening: they append the

message’s length to its end before hashing it. To generate a collision we need to

make the length come out correctly. There are several ways to do this:

1. The simplest approach is to repeat the fixed point block 255 times, which adds

264 bits to the input. Since the message length in MD4 and MD5 is computed

modulo 264, this effectively adds 0 to the length field, and the proper hash

value comes out. Although this is a seemingly huge blowup, MD4 and MD5

are defined for any input length. The expected time of this step is equal to

the time required to emit 255 blocks. Note that this approach will not work

for SHA-1, as SHA-1 is undefined for inputs longer than 264 bits.

121

2. If two of the intermediate values generated in hashing the message are equal,

that is, if there exist i and j such that 0 ≤ i < j < K and ~Vi = ~Vj, then we

can shrink the message by removing the substring between the ith and jth

blocks. After doing this, we can then apply the fixed point attack to grow

the message back to its original size. This attack works if an appropriate i

and j exist, which occurs with probability approximately K2/2N for K� N.

Shrinking the message reduces its length to 2K/3 on average, so this attack

takes an expected time of 3N/2K hashing steps, when it works. This attack

is possible against all three hash functions, though it is very unlikely to work

against SHA-1 because of the limit of 264 bits on message length.

3. Regardless of the contents of the message, we can look for a way to shrink

the message by seeking a hash coincidence. If j > K/2, then we look for a

block s such that Compress(~V0, s) = ~Vp with p < j. Expected time for this step

is 4N
3K hashing steps, because each attempt is equally likely to generate any of

N results, and (since j is uniformly distributed in the interval (K/2,K)) the

expected value of j is 3K
4 , so on average 3K

4 of the possible results will allow

this step to terminate. Alternatively, if j ≤ K/2, then we look for a block s

such that ~H (~Vj, s) = ~Vp with p ≥ j. Expected time for this step is also 4N
3K

hashing steps, by a similar argument. Total expected running time for this

attack, including the time spent finding a way to inflate the message, is 7N
3K

hashing steps. This attack works against all three hash functions.

Multi-message case

We now turn to the case of multiple messages. In this case, we have a single attack.

We first sketch the attack intuitively; then we give a more detailed description that

122

(B)

77
77
77

77
77
77 Original Input

(K blocks)

33
33
33

33
33
33

33
33
33

33
33
33

00
00
00

33
33
33

33
33
33

33
33
33

33
33
33

33
33
33

2
N

/K
random
blocks

repeated chaining variable

00
00
00

00
00
00

yields a second preimage

fixed point

33
33
33

33
33
33

33
33
33

333
333
333

33
33
33

00
00
00

33
33
33

333
333
333

33
33
33

33
33
33

Original Input
(K blocks)

2
N

/K
random
blocks

00
00
00

repeated 2 55 times

second
preimage

(A)

fixed point

Figure 5.1: Diagrams of the first two second preimage constructions

123

33
33
33
33
//
//
333
333

33
33
00
00
33
33
333
333

33
33
33
33

Original Input
(K blocks)

2
N

/K
random
blocksfixed pointprefix

//
//

000
000

00
00 second preimage

Figure 5.2: Diagram of the third second preimage constructions

includes an analysis of expected running time.

Intuitive Description Intuitively, the attack works by finding a message that can

be inflated and then shrunk, to create a message of the same size that has the same

hash code. First, we use the fixed point search method to find ways to inflate

messages, until we can inflate
√

2M of the given messages1. Then we search for

ways to shrink the inflatable messages, by searching for a single block that has the

same hash code as some prefix of an inflatable message. (This prefix must stop

short of the point at which we can inflate the message.)

Detailed Description The attack goes in two steps:

First, we generate random blocks bi. For each bi, we compute the value for

which bi is a fixed point, that is, we find the ~xi such that ~H (bi, ~xi) =~0. If ~xi matches

1We simplify our presentation by ignoring the need for floor and ceiling operators. A correct
analysis has slightly different lower-order terms in the running time.

124

~Vq
p (the pth intermediate value from hashing message q), call this a hit on message

q. We continue this step until we have hit on
√

2M distinct messages. Expected

time to generate the first hit is N/KM hashing steps; if we have hit on r unique

messages so far, the expected time to hit on one more distinct message is N
K(M−r) .

The total expected time for this step is thus

T1 =
i<
√

2M

∑
i=0

N
K(M− i)

Mathematical manipulation yields

T1 ≤
√

2 N

K
√

M
(1 +

√
2/M)

Let yi be the index of the last intermediate value that “hit” in message i, or zero

if there was no such hit.

Second, we look for a block s such that, for some a and b, H(~V0, s) = ~Vb
a with

a < yb. We do this by randomly generating possible values of s until one is found

that has the desired property. The expected time of this step is

T2 =
N

∑i≤M
i=1 yi

To calculate the expected value of the sum, we note that
√

2M of the terms will

be non-zero, and the expected value of each nonzero term is K/2, so the expected

value of the sum is K
√

M/2. It follows that

T2 ≤
√

2 N

K
√

M
.

Adding up the expected cost of the two steps, we get

T = T1 + T2 ≤
2
√

2 N

K
√

M
(1 +

√
1/2M) =

2(1 +
√

2M)N
KM

≈ 4N

K
√

M
for M ≥ 4

125

Previously, the best known bound for this problem was N/M, achieved by gen-

erating random messages and looking for one that hashes to the same value as

one of the given messages. Simple algebraic manipulation yields 4N
K
√

M
≤ N

M when

K ≥ 4
√

M. As the intuition suggests, we do better given a relatively small number

of relatively long messages. Unfortunately, this attack is still infeasible.

5.4 Binary Decision Diagrams2

We found the fixed point attack by using the Ever tool to analyze binary decision

diagrams (BDDs). We were attracted to BDDs based on their success in represent-

ing complicated functions for formal verification of hardware. Here, we briefly

recap some of their key properties, and refer the interested reader to Hu’s intro-

ductory article [Hu97], and Bryant’s survey paper [Bry92] for more background.

BDDs are a compact data structure for representing boolean functions. Con-

ceptually, we start with a decision tree for the function where all variables are

mentioned in the same order along each path from the root to the leaves, and each

variable appearing at most once on each path. Then, merging equivalent nodes

(same label and edges, as in finite state machine minimization), and removing re-

dundant nodes (where both outbound edges lead to the same node), create a min-

imal directed, acyclic graph. This process is illustrated in Figure 5.3. In practice,

BDDs are constructed in reduced form without building the whole decision tree.

Useful facts about BDDs include the existence of efficient algorithms for prim-

itive Boolean operations (e.g., NOT, OR, AND, etc.), that BDDs are compact rep-

resentations for many functions, such as the parity example in Figure 5.3, BDDs

2This presentation closely follows Hu [Hu97].

126

1 1 1

x

z

y

z z z

y

10 0 0 0

0 1

0 1 0 1

0 1 0 1 0 1 0 1

x
0 1

xxx
0 1 0

1

x

10

y

z

y

z

0 1

0 1 1 0

0 1 1 0

x
0 1

x

(a)

(b)

(c)

becomes

becomes

Figure 5.3: Creating the BDD for (x⊕ y⊕ z). Courtesy of Alan Hu.

can work in either direction without additional algebra, subject to time and space

limitations, and that BDDs are canonical once the variable order is fixed. This

means that a tautology can be detected with a simple pointer comparison. BDDs

can also be used to represent sets, by using a BDD to represent the characteristic

predicate that determines set membership. PVS also represents sets by a mem-

bership predicate, although PVS does not use BDDs for this. (PVS does include

primitive BDD support.) Set intersection and union become BDD conjunction and

disjunction, respectively. Since a function between two sets is just a subset of the

Cartesian product of the sets, BDDs can be used to represent functions, as well.

This is often used in hardware verification for encoding the transition relation of a

state machine.

After manually producing a loop-free implementation of each of the hash func-

127

tions, the Ever verifier [HDDY92] automatically produced the BDD representation

of each hash function. Ever’s support for bitwise logical operations, addition, and

rotation on 32-bit words was particularly helpful. BDD-size blow-up is an easy

trap to fall into, but with care and thought, we were able to use BDDs as an auto-

mated, convenient way of manipulating the hash functions.

5.5 Specifying MD4, MD5 and SHA-1 in Ever

The specification of MD4 in Ever follows fairly naturally from the MD4 definition

given in RFC 1320. Given the experimental nature of Ever, there are a few minor

technical difficulties: Ever does not have functions, so the F, G, and H functions

have to be written inline, and the rotations have to be inline expanded to prevent

BDD blowup. Writing all the rotations inline requires expanding the code by a

factor of four, but this is manageable. The same remarks apply to MD5. The first

step of MD4, which Rivest would write as:

A = A + F(B,C,D) + X[0] <<< 3

is transcribed into Ever as:

defpred ABCD_F_3 (x) -- x is from input
(compose

(becomes v.temp^n
(add

v.A^c
-- This is F
(bor (band v.B^c v.C^c) (band (bnot v.B^c) v.D^c))
-- End of F
x

)

128

)
(constrain v.A^n TRUE)
(compose

(becomes v.temp^n (<<< v.temp^c 1))
(becomes v.temp^n (<<< v.temp^c 1))
(becomes v.temp^n (<<< v.temp^c 1))

)
(becomes v.A^n v.temp^c)
(constrain v.temp^n TRUE)

);

The specification of SHA-1 in Ever was best approached by a different course.

SHA-1 repeatedly uses more steps which follow a slightly more regular pattern

than MD4 or MD5, i.e., the four additive constants are each used for 20 consecu-

tive steps. The easiest way to generate the Ever specification was to write an AWK

script to generate the Ever specification. Other than the minor technical difficul-

ties described above, the only other necessary change was to specialize SHA-1 for

a particular input; i.e., we performed constant propagation on the compression

function.

Using these specifications, we were able to compute the initialization vector for

which the one block message “abc” (appropriately padded and MD strengthened)

was a fixed point. The results are shown in Table 5.5. These computations took a

few minutes on a 300 MHz Pentium II computer, and required less than 128 MB of

RAM. Such a machine is readily available in 1998.

5.6 Defenses

In this section, we examine three possible defenses against fixed point attacks.

129

Hash IV
MD4 A = 0xFD48C736

B = 0x570A4646
C = 0xB4655DD3
D = 0x05125A66

MD5 A = 0x627F7E3A
B = 0x98A8CB26
C = 0x39423087
D = 0x5C37CD88

SHA-1 A = 0x4D22C858
B = 0xF47D6B89
C = 0x67DC3C45
D = 0x3B7B9EA2
E = 0x2DF1C4D2

Table 5.1: Initialization vectors for which the block “abc” (in ASCII, appropriately
padded and Merkle-Damgård strengthened) is a fixed point, for each of the three
hash functions. These values were computed by Ever.

5.6.1 Strengthening MD Strengthening

The first proposal is extremely simple: MD4 and MD5 both encode the length for

Merkle-Damgård strengthening [Dam90] modulo 264. This means the block length

(29) divides the modulus, so that we need only 255 blocks of padding. We propose

to simply change the modulus to 264 − 1. Then, a naı̈ve fixed point attack would

require 512 times more padding, because the block length would not divide the

modulus. For input lengths of ≤ 2128 bits, the modular reduction is extremely effi-

cient to compute, and in any case, the reduction need only be done once per mes-

sage. Given that computing the MD4,5 hash of a message seems to require serial

computation (on a block-by-block basis), there has not been enough time for any-

one to hash a message of ≥ 264 bits, so all hash outputs computed thus far remain

valid. Although better protection is offered by other techniques, this modification

is trivial, completely backwards compatible, and has no other effect on the system.

Since SHA and SHA-1 do not support inputs longer than the modulus, this change

130

would have no effect on their security.

5.6.2 Combining Function

Dan Boneh suggested looking into the way in which results are chained together.

Recall that an MD4, MD5, or SHA-1 initialization vector is an element of (Z/232Z)4

or (Z/232Z)5, respectively. We chain the initialization vectors together by simply

using the result of the previous block as the ~iv for the next block. Let ~iv0 be the ini-

tialization vector specified by the hash function. If we consider hashing a sequence

of blocks, X0, . . . ,Xn, where

F (~iv,X) = Compress(X, ~iv)

using the notation of equation 5.1, this is:

F (. . . (F (~iv0,X0), . . . ,),Xn)

Expanding Compress, we get:

~iv1 = ~iv0 + ~H (X0, ~iv0)

· · ·

~ivn = ~ivn−1 + ~H (Xn, ~ivn−1)

If we then expand each ~ivk out, the expression for the hash of a message would be

one long vector sum. The problem here is that our underlying algebraic structure

with addition forms a well-known group. This implies the existence of an identity,

and inverses for every element, which make our attacks possible.

131

We ideally desire that F not have any iterated fixed points, for any values of its

parameters. However, for a finite domain, a simple cardinality argument shows

that this is impossible. Lacking an ideal solution, we are left with two choices:

1. For F to have fixed points for only a few values of its arguments. A simple

example would be:

Compress ′(X, ~iv) = q ~iv + ~H (X, ~iv) (5.5)

for a constant q 6= 0. Now, Compress′ depends on ~iv, unless ~iv = 0. Prop-

erty 5.1 appears not to hold, except in the exceedingly rare case that ~iv = 0.

2. We can require all iterated fixed points to be long chains that should be hard

to cryptanalyze. However, this may conflict with the essential requirement

that Compress ′ behave pseudorandomly, lest it be easily attackable.

Given the choices outlined above, the first may well be more attractive. In any

event, we should attempt to avoid combining chaining values with a group oper-

ation.

5.6.3 Multiple Hashing

The third proposal, due to Richard Lipton, is also simple. After padding the mes-

sage and appending the length, we concatenate two copies of the padded message

and compute the hash of the concatenation.

This proposal strengthens the hash function by preventing an attacker from

making local modifications to the hash function’s input. Each block of the message

is used at two separate points in the computation; if the attacker tries to modify a

132

block, this will have different effects at the two uses of the block. If the attacker

tries to make a controlled change at one point in the computation, this will force

another change elsewhere in the computation.

Another view of this method is that we are hashing the message once, but with

a variable initialization vector whose value depends on the message itself. Thus

any attempt to modify the message will have the effect of modifying the initializa-

tion vector as well as the message, complicating the attacker’s task.

The drawback of this method is that it doubles the time required to evaluate

the hash function.

5.7 Related Work

BDDs have mainly been used for the formal verification of hardware (e.g., [Gup92,

Bry95, Hu97] are surveys), although there has been some work model checking

software specifications and requirements (e.g., [ABB+96]). To our knowledge, there

has been no published work using BDDs for cryptographic applications. Recently,

promising work has appeared using automatic, but non-BDD-based, model check-

ers to analyze cryptographic protocols, while abstracting away details of the un-

derlying cryptographic primitives [Low96, MMS97]. In contrast to that work, we

are using automated tools to reason about the primitives themselves – in this case,

hash functions.

Since the introduction of MD4 in 1990 [Riv91], there has been much work on its

cryptanalysis. Intricate attacks based on the structure of MD4 and MD5 have been

proposed by Bosselaers, Den Boer, Dobbertin, and others [Ber92, dBB93, Dob96].

Although some of these attacks use brute force automation to search for solutions

133

to particular subproblems, none consider attempting to automate the analysis of

the compression function as we have using BDDs.

5.8 Conclusion

Though the attacks described in this chapter are not practical, in the sense that

they do not make it feasible to compute second preimages in a reasonable length

of time on today’s computers, they do raise some doubts about the strength of pop-

ular hash functions. The remedies discussed in section 5.6 appear to mitigate our

attacks, but we cannot state with any certainty whether there are related attacks

that still work.

We have only begun to explore the power of automated BDD-based analysis

tools in determining properties of hash functions. It would be very useful to have

some way of characterizing the resistance of various kinds of functions to analysis

based on BDDs and similar constructs.

134

Chapter 6

Conclusions

We examined three applications of formal methods to mobile code security. In

the process, we gained new insights into the problem areas. We now understand

the problem of Java’s dynamic linking to be an instance of the unsoundness of

dynamic scope. We have had some success in our exploration of cryptographic

hash functions using BDDs, but there remains much work to be done.

The major lesson learned from our analysis of the security of Java implementa-

tions is that the problems are most likely to be found in traditionally tricky areas

(e.g., exception handling), or areas with innovative designs (e.g., ClassLoaders).

We are also seeing that “penetrate and patch” is not working because of its clas-

sic failure mode: new features introduce new bugs. Unfortunately, this situation

appears unlikely to change. Unless market forces shift to reward stable, secure,

bug-free software, commercial vendors will continue to emphasize features and

short development cycles, which do not have sufficient time to allow the develop-

ment of even a modest level of assurance.

Java’s ClassLoaders were a novel and error-prone feature. We defined the

proper intuitive notion for ClassLoader behavior, the consistent extension, and a

135

model for ClassLoaders that implemented it. We have fully formal, machine-

checked, proofs, for very high assurance. While our model is slightly simplified, it

captures the most important cases. Unfortunately, JVM vendors did not exactly fol-

low it, and as a result, we see the security problem we discussed in Netscape 4.05.

Hopefully, the lessons we have learned will be more widely applied in the future.

Understanding that the dynamic linking problems were really nothing new,

and were just an instance of the general problem of dynamic scope, was a major

insight. This justifies the earlier work, because the consistent extension defini-

tion implies the lack of name clashes. As usual, in the absence of name clashes,

static and dynamic scope are indistinguishable. Why did JVM class loading get

defined with dynamic scope? The design was convenient: when class A needs the

definition of class B, ask class A’s ClassLoader. We conjecture is that no one real-

ized what they were implementing dynamic scope at the type level this way. The

insight that this is dynamic scope merges the two previously discovered Class-

Loader soundness issues into the one classic problem of dynamic scope, the cap-

ture of free variables. Since capturing free variables can happen in only two ways,

we get a nice argument for the completeness of our approach. My work in Chap-

ter 4 can be expanded in many different ways; PCFτ ,ρ is about the simplest Turing

complete language1 that has the features necessary for modeling dynamic linking

using first class environments. Finding sufficient safety constraints for a language

with a richer type system, imperative features, and concurrency, would be an in-

teresting problem. Java, of course, offers all of these features.

Finally, we shift gears and analyze cryptographic hash functions with the help

of binary decision diagrams. Having automatically rediscovered the invertibility

1Abadi, et al. citeAbadi:1991:DTS show how to encode the Y combinator using type dynamic in
simply typed PCF.

136

of a block acting on an ~iv, we reasoned about the behavior of fixed points, and

showed that none of MD4, MD5, and SHA-1 offer ideal security against second

preimages. BDDs were the appropriate technology to use for this effort; attempt-

ing to reason about this in PVS would not have been fruitful. BDDs give us the

automation that we need; PVS, like most interactive theorem provers, will only

generate a proof if the user already knows why the theorem is true. The user

provides a proof sketch, and PVS effectively tracks minor details, and prevents in-

correct proof steps. A BDD-based tool, on the other hand, uses heuristics to solve

finite problems by brute force. Since each hash function can be implemented for

fixed size input by a combinational circuit, the problems are finite and reasonably

amenable to BDD-based reasoning. As with all cryptography, cleverness goes a

long way. Once we had a method of efficiently computing what ~iv a block was

a fixed point for, the actual second preimage constructions were done by hand.

Although we cannot effectively compute second preimages, our constructions are

better than brute force. This suggests that the security of digitally signed mobile

code is slightly less than generally believed, because signatures can be forged faster

than brute force. We are continuing to work in this area, exploring new ideas for

reducing the BDD size blowup.

All of this work has led to new insight for actually building a secure mobile

code system. While language-based protection built on top of a type safe language

should work, there is a great difference between theory and practice. Since Java did

not originally come with a formal specification, many of the difficulties presented

by ClassLoaders and exception handling slipped through unnoticed. In fact, a

long standing known difficulty, dynamic scope, was incorporated into the design

(possibly by accident). We have produced a model which rectifies the difficulties

with ClassLoaders, but it remains to be seen whether the model is simple enough

137

to be robustly implemented in commercially available software.

It is worth noting that Java was developed in an ad hoc style, by non-

programming language theorists. Programming language theorists usually write

down formal specifications of type systems and semantics while designing a lan-

guage. They often prove theorems (e.g., type soundness) about the language before

implementing it. This sort of work is of more than theoretical interest for language

based security: it is assurance evidence. The success of Standard ML in the re-

search community contributes to the belief that languages with clean definitions

have a bright future, and provides an example to follow for rigorous design. As-

surance is a continuum; we can always prove more theorems with more rigor, at

greater cost. Java did nothing, with predictable results. We already know how

to do much more (as is being done to Java retroactively); it is merely a matter of

putting in the work upfront (and getting the support to do so).

Formal methods remain expensive. However, the tools we have used (PVS and

Ever) are approachable by the non-expert. An ML programmer should be able

to pick up the PVS language very quickly. The Ever specifications of the hash

functions are almost straight transcriptions from the C reference implementations.

Some knowledge of how to drive these tools is needed to produce useful results.

Access to experienced users (or tool developers) greatly speeds the learning pro-

cess; I have been very lucky in this regard. As always, formal methods focus our

attention to the problem at hand, stripping away many inessential details, and thus

clarifying the big picture, and the important details.

Formal methods have been effective in the problem domains we have explored.

Ever gave us an insight into the structure of three common cryptographic hash

functions; knowing that we could compute the ~iv for which a fixed block is a fixed

138

point made us think about how a second preimage could be constructed. PVS

forced us to think critically about how dynamic linking works, and ensured the

logical correctness of our proofs. Formal methods have provided both assurance

that we understand the design of dynamic linking, and insights into the limitations

of cryptographic hash functions. In the end, this all leads to a better understanding

of mobile code and its security properties.

Ultimately, there is one overarching question beyond the scope of this thesis:

Can language based protection be securely implemented, in spite of the perils found

in large software projects? It is clear that attempting to do this without theory is

folly, but even with good theory, the question remains open.

139

Appendix A

PVS Specification

The PVS specification language builds on a classical typed higher-order logic. The
base types consist of booleans, real numbers, rationals, integers, natural numbers,
strings, etc. Terms include constants, variables, and the forms below. PVS specifi-
cations are packaged as theories.

Tuples (-5, cons(1,null))
Records (# a := 2, b := cons(1,null) #)
Function Update f WITH [(2) := 7]
Field access a(r)
Tuple deconstruction PROJ n(t)
Abstraction (LAMBDA(i : nat): i * i)
Nonempty type TYPE+
Theorems THEOREM, LEMMA, CONJECTURE, OBLIGATION et al.

Table A.1: PVS syntax for common functional programming primitives

Linking : THEORY

BEGIN

IMPORTING string lemmas, identifiers

ClassLoader : TYPE+

primordialClassLoader : ClassLoader

ClassBase : DATATYPE

BEGIN

resolved(name : string, references : list[string],

140

loader : ClassLoader, linked : list[ClassBase]) :
resolved?

unresolved(name : string, references : list[string], loader : ClassLoader) :
unresolved?
END ClassBase

ValidClass((c : ClassBase)) : bool =
CASES c OF

unresolved(n, r, l) : TRUE,
resolved(n, r, loader, links) :

(∀ (cl : ClassBase) :
(cl ∈ links) ⊃

loader(cl) = loader(c)∨
loader(cl) = primordialClassLoader)

ENDCASES

Class : TYPE = {clb : ClassBase | ValidClass(clb)}

ClassID : TYPE = Ident

ClassList : TYPE = list[Class]

ClassIDMap : TYPE = FUNCTION[ClassID→ Class]

ClassDB : TYPE = [ClassID,ClassIDMap]

EnvEntry : TYPE = [string,ClassLoader, list[ClassID]]

ClassTableBase : TYPE = [# env : list[EnvEntry], store : ClassDB#]

ValidCT((ctb : ClassTableBase)) : bool =
(∀ (e : EnvEntry) :

(e ∈ env(ctb)) ⊃
LETy = PROJ 3(e)

IN

every(λ (x : ClassID) :
PROJ 2(e) = loader(PROJ 2(store(ctb))(x))∧

x ≤ PROJ 1(store(ctb)),
y))

ClassTable : TYPE = {ctb : ClassTableBase | ValidCT(ctb)}

Object : TYPE+ = [# cl : Class#]

141

mkClass((nm : string), (refs : list[string]), (ldr : ClassLoader)) :
Class = unresolved(nm, refs, ldr)

bogusClass : Class =
mkClass(”” ,null,primordialClassLoader)

emptyClassTable : ClassTable =
(#env := null, store := (initialID, λ (id : ClassID) : bogusClass)#)

ct : VAR ClassTable

nm : VAR string

cldr : VAR ClassLoader

cl : VAR Class

every monotone : LEMMA

(∀ (p, q : PRED[ClassID]), (y : list[ClassID]) :
(∀ (x : ClassID) : p(x) ⊃ q(x))∧ every(p, y) ⊃ every(q, y))

ll : VAR list[ClassID]

ldr : VAR ClassLoader

FindClassIDswCL((ct : ClassTable), (nm : string), (cldr : ClassLoader)) :
RECURSIVE

{ll ldr : [list[ClassID],ClassLoader]
|
(LET (ll, ldr) = ll ldr

IN ldr = cldr∧
every(λ (x : ClassID) :

loader(PROJ 2(store(ct))(x)) = cldr,
ll))}

= CASES env(ct) OF

null : (null, cldr),
cons(hd, tl) :

LET tab = env(ct),db = store(ct)
IN IF PROJ 1(hd) = nm∧ PROJ 2(hd) = cldr

THEN (PROJ 3(hd),PROJ 2(hd))
ELSE

FindClassIDswCL((#env := tl, store := db#),
nm, cldr)

ENDIF

ENDCASES

142

MEASURE length(env(ct))

FindClassIDs((ct : ClassTable), (nm : string), (cldr : ClassLoader)) :
list[ClassID] = PROJ 1(FindClassIDswCL(ct,nm, cldr))

every FindClassIDswCL : LEMMA

(∀ (cldr : ClassLoader, ct : ClassTable,nm : string, refs : list[string]) :
every(λ (x : ClassID) :

cldr =
loader(PROJ 2(store(ct))

WITH [(1 + PROJ 1(store(ct))) :=
unresolved(nm,

refs, cldr)](x))∧
x ≤ 1 + PROJ 1(store(ct)),

PROJ 1(FindClassIDswCL(ct,nm, cldr))))

FindClass((ct : ClassTable), (nm : string), (cldr : ClassLoader)) :
ClassList = map(PROJ 2(store(ct)),FindClassIDs(ct,nm, cldr))

define((ct : ClassTable), (nm : string), (refs : list[string]), (cldr : ClassLoader)) :
[Class,ClassTable] =
LET cl = mkClass(nm, refs, cldr),

InsertClass =
λ ((ct : ClassTable), (nm : string),

(cldr : ClassLoader), (cl : Class)) :
LET old = FindClassIDs(ct,nm, cldr),

newID = GetNextID(PROJ 1(store(ct))),
newMap = PROJ 2(store(ct)) WITH [newID := cl]

IN (#env := cons((nm, cldr, cons(newID,old)), env(ct)),
store := (newID,newMap)#)

IN (cl, InsertClass(ct,nm, cldr, cl))

findSysClass((ct : ClassTable), (nm : string)) :
ClassList = FindClass(ct,nm,primordialClassLoader)

foo : list[string] = cons(”foo” ,null)

Input : (cons?[string])

loadClass((ct : ClassTable), (nm : string), (cldr : ClassLoader)) : [Class,ClassTable] =
LET local = findSysClass(ct,nm), loaded = FindClass(ct,nm, cldr)

IN IF null?(local) THEN IF cons?(loaded) THEN (car(loaded), ct)
ELSE define(ct,nm, Input, cldr)
ENDIF

ELSE (car(local), ct)

143

ENDIF;

closedWorld : THEOREM

(∀ ct,nm, cldr :
LET classloader = loader(PROJ 1(loadClass(ct,nm, cldr)))

IN classloader = cldr∨ classloader = primordialClassLoader)

linkClass((ct : ClassTable), (cl : Class)) :
RECURSIVE [Class,ClassTable]

= LET getClass = (λ (n : string) : loadClass(ct,n, loader(cl)))
IN CASES references(cl) OF

null :
IF unresolved?(cl)

THEN

(resolved(name(cl),
null, loader(cl),null),

ct)
ELSE (cl, ct)
ENDIF,

cons(hd, tl) :
LET (res,newCt) = getClass(hd),

newCl = CASES cl OF

unresolved(name,
references,
loader) :

resolved(name, tl,
loader,
cons(res,null)),

resolved(name,
references,
loader, linked) :

resolved(name, tl,
loader,
cons(res, linked))

ENDCASES

IN linkClass(newCt,newCl)
ENDCASES

MEASURE length(references(cl))

linkClass loader inv : LEMMA

(∀ ct, cl : loader(cl) = loader(PROJ 1(linkClass(ct, cl))))

linkClass name inv : LEMMA

(∀ ct, cl : name(cl) = name(PROJ 1(linkClass(ct, cl))))

144

resolve((ct : ClassTable), (cl : Class), (cldr : ClassLoader)) : ClassTable =
LET (newCl,newCt) = linkClass(ct, cl),

ReplaceClass = λ (ct : ClassTable), (cl,newCl : Class), (cldr : ClassLoader) :
LET classDB = PROJ 2(store(ct)),

id = PROJ 1(store(ct)),
tab = env(ct),
clID = FindClassIDs(ct,name(cl), cldr)

IN CASES clID OF

cons(hd, tl) :
(#env := tab,

store :=
(id,
classDB

WITH [hd := newCl])
#),

null : ct
ENDCASES

IN ReplaceClass(newCt, cl,newCl, loader(cl));

forName((ct : ClassTable), (nm : string), (cldr : ClassLoader)) : [Class,ClassTable] =
CASES FindClass(ct,nm, cldr) OF

cons(hd, tl) : (hd, ct),
null : loadClass(ct,nm, cldr)
ENDCASES

newInstance((clss : Class)) : Object = (#cl := clss#)

getClassLoader((cl : Class)) : ClassLoader = loader(cl)

getName((cl : Class)) : string = name(cl)

sysClassTable : ClassTable =
LET (jlObjectClass, ct1)

= define(emptyClassTable, ”java.lang.Object” ,
null,primordialClassLoader),

(jlClassClass, ct2)
= define(ct1, ”java.lang.Class” ,

cons(”java.lang.Object” ,null),
primordialClassLoader),

(jlClassLoaderClass, ct3)
= define(ct2, ”java.lang.ClassLoader” ,

cons(”java.lang.Object” ,
cons(”java.lang.Class” ,

null)),
primordialClassLoader)

145

IN ct3;

MapPreservesLength : LEMMA

(∀ (f : FUNCTION[ClassID→ Class]), (l : list[ClassID]) :
length(map(f , l)) = length(l))

proj1 FindClassIDswCL : LEMMA

(∀ (ct : ClassTable), (nm : string), (cldr : ClassLoader), (classdb : ClassDB) :
ValidCT((#env := env(ct), store := classdb#)) ⊃

FindClassIDswCL((#env := env(ct), store := classdb#),nm, cldr) =
FindClassIDswCL(ct,nm, cldr))

proj1 FindClassIDs : LEMMA

(∀ (ct : ClassTable), (nm : string), (cldr : ClassLoader), (classdb : ClassDB) :
ValidCT((#env := env(ct), store := classdb#)) ⊃

FindClassIDs((#env := env(ct), store := classdb#),nm, cldr) =
FindClassIDs(ct,nm, cldr))

Resolve : LEMMA

(∀ (cl : Class), (ct : ClassTable) :
references(PROJ 1(linkClass(ct, cl))) = null)

Safe((ct : ClassTable)) : bool =
(∀ (nm : string), (cldr : ClassLoader) :

LET cll = length(FindClass(ct,nm, cldr)) IN cll ≤ 1)

Monotonic((ct1, ct2 : ClassTable)) : bool =
(∀ (nm : string), (cldr : ClassLoader), (id : ClassID) :

(id ∈ FindClassIDs(ct1,nm, cldr)) ⊃
(id ∈ FindClassIDs(ct2,nm, cldr)))

define mono : LEMMA

(∀ ct,nm, cldr : Monotonic(ct,PROJ 2(define(ct,nm, Input, cldr))))

safe proj : LEMMA

(∀ ct, (mapping : ClassIDMap) :
Safe(ct)∧

ValidCT((#env := env(ct),
store := (PROJ 1(store(ct)),mapping)
#)) ⊃

Safe((#env := env(ct), store := (PROJ 1(store(ct)),mapping)#)))

Initial Safe : THEOREM Safe(sysClassTable)

loadClass inv : THEOREM

146

(∀ ct,nm, cldr : Safe(ct) ⊃ Safe(PROJ 2(loadClass(ct,nm, cldr))))

loadClass mono : THEOREM

(∀ ct,nm, cldr : Monotonic(ct,PROJ 2(loadClass(ct,nm, cldr))))

linkClass inv : THEOREM (∀ ct, cl : Safe(ct) ⊃ Safe(PROJ 2(linkClass(ct, cl))))

linkClass mono : THEOREM (∀ ct, cl : Monotonic(ct,PROJ 2(linkClass(ct, cl))))

forName inv : THEOREM

(∀ ct,nm, cldr : Safe(ct) ⊃ Safe(PROJ 2(forName(ct,nm, cldr))))

forName mono : THEOREM

(∀ ct,nm, cldr : Monotonic(ct,PROJ 2(forName(ct,nm, cldr))))

Resolve inv : THEOREM (∀ ct, cl, cldr : Safe(ct) ⊃ Safe(resolve(ct, cl, cldr)))

Resolve mono : THEOREM (∀ ct, cl, cldr : Monotonic(ct, resolve(ct, cl, cldr)))

consistExt : THEOREM

(∀ ct,nm, cl, cldr :
cons?(findSysClass(ct,nm)) ⊃

car(findSysClass(ct,nm)) = PROJ 1(loadClass(ct,nm, cldr)))

END Linking

147

Appendix B

Formal Proofs

We present the PVS proof, first the input script, and then the typeset output, of
loadClass inv here to illustrate the formal reasoning taking place.
(|loadClass inv| "" (SKOSIMP*)
(("" (EXPAND "loadClass")

(("" (PROP)
(("" (EXPAND "Safe" +)
((""

(GRIND :IF-MATCH NIL :REWRITES
("MapPreservesLength" "proj1 FindClassIDswCL"))

(("1" (USE "MapPreservesLength")
(("1" (EXPAND "map" 1) (("1" (GRIND) NIL)))))
("2" (USE "proj1 FindClassIDswCL")
(("2" (EXPAND "ValidCT")

(("2" (TYPEPRED "ct!1")
(("2" (EXPAND "ValidCT")

(("2" (HIDE -3 1 2)
(("2" (INST?)

(("2" (GRIND :REWRITES "every monotone")
(("2" (EXPAND "every")

(("2"
(GRIND :REWRITES "proj1 FindClassIDswCL")
(("2"
(REWRITE "every monotone" :SUBST
("q"
"(LAMBDA (x: ClassID):

loader(PROJ 2(store(ct!1))(car(proj 3(e!1))))
=

loader(PROJ 2(store(ct!1))
WITH [(1 + PROJ 1(store(ct!1))) :=

unresolved(nm!1,
Input, cldr!1)](x))

AND x <= 1 + PROJ 1(store(ct!1)))"
"p"
"(LAMBDA (x: ClassID):

loader(PROJ 2(store(ct!1))(car(proj 3(e!1)))) =
loader(PROJ 2(store(ct!1))(x))

AND x <= PROJ 1(store(ct!1)))"))
(("2" (GRIND) NIL)))))))))))))))))))))

148

("3" (USE "proj1 FindClassIDswCL")
(("3" (EXPAND "ValidCT")

(("3" (TYPEPRED "ct!1")
(("3" (EXPAND "ValidCT")

(("3" (HIDE -3 1 2)
(("3" (INST?)

(("3" (GRIND :REWRITES "every monotone")
(("3" (EXPAND "every")

(("3"
(GRIND :REWRITES "proj1 FindClassIDswCL")
(("3"
(REWRITE "every monotone" :SUBST
("q"
"(LAMBDA (x: ClassID):

loader(PROJ 2(store(ct!1))(car(proj 3(e!1))))
=

loader(PROJ 2(store(ct!1))
WITH [(1 + PROJ 1(store(ct!1))) :=

unresolved(nm!1,
Input, cldr!1)](x))

AND x <= 1 + PROJ 1(store(ct!1)))"
"p"
"(LAMBDA (x: ClassID):

loader(PROJ 2(store(ct!1))(car(proj 3(e!1)))) =
loader(PROJ 2(store(ct!1))(x))

AND x <= PROJ 1(store(ct!1)))"))
(("3"

(GRIND)
NIL)))))))))))))))))))))))))))))))

Terse proof for loadClass inv.

loadClass inv:

{1} (∀ ct,nm, cldr : Safe(ct) ⊃ Safe(PROJ 2(loadClass(ct,nm, cldr))))

Repeatedly Skolemizing and flattening,

Expanding the definition of loadClass,

Applying propositional simplification,

Expanding the definition of Safe,

Trying repeated skolemization, instantiation, and if-lifting,

we get 3 subgoals:

149

loadClass inv.1:

{-1} nm′ = nm′′

{-2} cldr′ = cldr′′

{-3} null?(map(PROJ 2(store(ct′)),
PROJ 1(FindClassIDswCL(ct′,

nm′′,
primordialClassLoader))))

{-4} (∀ (nm : string), (cldr : ClassLoader) :
length(PROJ 1(FindClassIDswCL(ct′,nm, cldr))) ≤ 1)

{1} cons?(map(PROJ 2(store(ct′)),PROJ 1(FindClassIDswCL(ct′,nm′′, cldr′′))))
{2} 1 + length(PROJ 1(FindClassIDswCL(ct′,nm′′, cldr′′))) ≤ 1

Using lemma MapPreservesLength,

Expanding the definition of map,

Trying repeated skolemization, instantiation, and if-lifting,
This completes the proof of loadClass inv.1.
loadClass inv.2:

{-1} null?(map(PROJ 2(store(ct′)),
PROJ 1(FindClassIDswCL(ct′,

nm′,
primordialClassLoader))))

{-2} (∀ (nm : string), (cldr : ClassLoader) :
length(PROJ 1(FindClassIDswCL(ct′,nm, cldr))) ≤ 1)

{1} cons?(map(PROJ 2(store(ct′)),PROJ 1(FindClassIDswCL(ct′,nm′, cldr′))))
{2} cldr′ = cldr′′

{3} length(PROJ 1(FindClassIDswCL((#env := env(ct′),
store :=

(1
+

PROJ 1(store(ct′)),
PROJ 2(store(ct′))

WITH

[(1
+

PROJ 1(store(ct′)))
:=

unresolved(nm′,
Input, cldr′)])

#),
nm′′, cldr′′))) ≤

1

150

Using lemma proj1 FindClassIDswCL,

Expanding the definition of ValidCT,

Adding type constraints for ct!1,

Expanding the definition of ValidCT,

Hiding formulas: -3, 1, 2,

Instantiating quantified variables,

Trying repeated skolemization, instantiation, and if-lifting,

Expanding the definition of every,

Trying repeated skolemization, instantiation, and if-lifting,

Rewriting using every monotone
where q gets (λ (x : ClassID) :

loader(PROJ 2(store(ct′))(car(PROJ 3(e′)))) =
loader(PROJ 2(store(ct′))

WITH [(1 + PROJ 1(store(ct′))) :=
unresolved(nm′,

Input,
cldr′)](x))∧

x ≤ 1 + PROJ 1(store(ct′))),
p gets (λ (x : ClassID) :

loader(PROJ 2(store(ct′))(car(PROJ 3(e′)))) =
loader(PROJ 2(store(ct′))(x))∧

x ≤ PROJ 1(store(ct′)))

Trying repeated skolemization, instantiation, and if-lifting,

This completes the proof of loadClass inv.2.

151

loadClass inv.3:

{-1} null?(map(PROJ 2(store(ct′)),
PROJ 1(FindClassIDswCL(ct′,

nm′,
primordialClassLoader))))

{-2} (∀ (nm : string), (cldr : ClassLoader) :
length(PROJ 1(FindClassIDswCL(ct′,nm, cldr))) ≤ 1)

{1} cons?(map(PROJ 2(store(ct′)),PROJ 1(FindClassIDswCL(ct′,nm′, cldr′))))
{2} nm′ = nm′′

{3} length(PROJ 1(FindClassIDswCL((#env := env(ct′),
store :=

(1
+

PROJ 1(store(ct′)),
PROJ 2(store(ct′))

WITH

[(1
+

PROJ 1(store(ct′)))
:=

unresolved(nm′,
Input, cldr′)])

#),
nm′′, cldr′′))) ≤

1

Using lemma proj1 FindClassIDswCL,

Expanding the definition of ValidCT,

Adding type constraints for ct!1,

Expanding the definition of ValidCT,

Hiding formulas: -3, 1, 2,

Instantiating quantified variables,

Trying repeated skolemization, instantiation, and if-lifting,

Expanding the definition of every,

Trying repeated skolemization, instantiation, and if-lifting,

152

Rewriting using every monotone
where q gets (λ (x : ClassID) :

loader(PROJ 2(store(ct′))(car(PROJ 3(e′)))) =
loader(PROJ 2(store(ct′))

WITH [(1 + PROJ 1(store(ct′))) :=
unresolved(nm′,

Input,
cldr′)](x))∧

x ≤ 1 + PROJ 1(store(ct′))),
p gets (λ (x : ClassID) :

loader(PROJ 2(store(ct′))(car(PROJ 3(e′)))) =
loader(PROJ 2(store(ct′))(x))∧

x ≤ PROJ 1(store(ct′)))

Trying repeated skolemization, instantiation, and if-lifting,

This completes the proof of loadClass inv.3.

Q.E.D.

153

Bibliography

[ABB+96] Richard J. Anderson, Paul Beame, Steve Burns, William Chan,
Francesmary Modugno, David Notkin, and Jon D. Reese. Model
checking large software specifications. In Symposium on the Founda-
tions of Software Engineering, 1996.

[ACPP91] Martı́n Abadi, Luca Cardelli, Benjamin Pierce, and Gordon Plotkin.
Dynamic typing in a statically typed language. ACM Transactions on
Programming Languages and Systems, 13(2):237–268, April 1991.

[ALBL91] Thomas E. Anderson, Henry M. Levy, Brian N. Bershad, and Ed-
ward D. Lazowska. The interaction of architecture and operating sys-
tem design. In Proceedings of the Fourth ACM Symposium on Architec-
tural Support for Programming Languages and Operating Systems, 1991.

[AM94] Andrew W. Appel and David B. MacQueen. Separate compilation
for Standard ML. In Proc. SIGPLAN ’94 Symp. on Prog. Language De-
sign and Implementation, volume 29, pages 13–23. ACM Press, June
1994. Also appears as Princeton University Department of Computer
Science Technical Report 452-94, available from http://ncstrl.cs.
princeton.edu/techreports/.

[And72] James P. Anderson. Computer security technology planning study.
Technical Report ESD-TR-73-51, U.S. Air Force, Electronic Systems Di-
vision, Deputy for Command and Management Systems, HQ Elec-
tronic Systems Division (AFSC), L. G. Hanscom Field, Bedford, MA
01730 USA, October 1972. Volume 2, pages 58–69.

[Bal96] Dirk Balfanz. Personal communication, June 1996.

[Bel95] Steven M. Bellovin. Using the domain name system for system break-
ins. In Proceedings of the Fifth Usenix UNIX Security Symposium, pages
199–208, Salt Lake City, Utah, June 1995. Usenix.

154

[Ber92] T.A. Berson. Differential cryptanalysis mod 232 with applications to
MD5. In R.A. Rueppel, editor, Advances in Cryptology — Eurocrypt ’92,
Berlin, 1992. Springer-Verlag.

[BF96] Dirk Balfanz and Ed Felten. Java security update. RISKS Forum,
18(32), August 1996. ftp://ftp.sri.com/risks/risks-18.32.

[BL84] Rod Burstall and Butler Lampson. A kernel language for abstract data
types and modules. In G. Kahn, D. B. MacQueen, and G. Plotkin, ed-
itors, Semantics of Data Types, volume 173 of Lecture Notes in Computer
Science, pages 1–50. Springer-Verlag, June 1984.

[BLO94] Guruduth Banavar, Gary Lindstrom, and Douglas Orr. Type-safe
composition of object modules. In International Conference on Com-
puter Systems and Education, Bangalore, India, 1994. See also: http:
//www.cs.utah.edu/projects/flux/papers.html.

[Bor94] Nathaniel S. Borenstein. Email with a mind of its own: The safe-tcl
language for enabled mail. In Proceedings of ULPAA, 1994.

[Bry92] Randal E. Bryant. Symbolic boolean manipulation with ordered bi-
nary decision diagrams. ACM Computing Surveys, 24(3):293–318,
September 1992.

[Bry95] Randal E. Bryant. Binary decision diagrams and beyond: Enabling
technologies for formal verification. In International Conference on
Computer-Aided Design, pages 236–243, 1995.

[BSP+95] Brian N. Bershad, Stefan Sava, Przemyslaw Pardyak, Emin Gün Sirer,
Marc E. Fiuczynski, David Becker, Craig Chambers, and Susan Eggers.
Extensibility, safety, and performance in the spin operating system. In
Proceedings of the Fifteenth Symposium on Operating System Principles,
1995.

[Car88a] Luca Cardelli. Phase distinctions in type theory. Manuscript available
from http://www.luca.demon.co.uk/Papers.html, January 1988.

[Car88b] Luca Cardelli. A semantics of multiple inheritance. Information and
Computation, 76:138–164, 1988.

[Car96a] Tom Cargill. Personal communication, April 1996.

[Car96b] Tom Cargill. Personal communication, July 1996.

155

[Car97] Luca Cardelli. Program fragments, linking, and modularization. In
Proceedings 24th ACM SIGPLAN-SIGACT Symposium on the Principles
of Programming Languages, January 1997. See also: http://www.luca.
demon.co.uk/Papers.html.

[Cas95] Giuseppe Castagna. Covariance and contravariance: Conflict with-
out a cause. ACM Transactions on Programming Languages and Systems,
17(3):431–447, May 1995.

[CB94] William R. Cheswick and Steven M. Bellovin. Firewalls and Internet
Security: Repelling the Wily Hacker. Addison-Wesley, 1994.

[CER95] CERT Coordination Center. Syslog vulnerability - a workaround for
sendmail. CERT Advisory CA-95:13, October 1995. ftp://ftp.cert.
org/pub/cert_advisories/CA-95%3A13.syslog.vul.

[Che98] D.M. Chess. Security issues in mobile code systems. In Mobile Agents
and Security, volume 1419 of Lecture Notes in Computer Science, pages
1–14. Springer-Verlag, 1998.

[Cou95] Antony Courtney. Phantom: An interpreted language for distributed
programming. In Usenix Conference on Object-Oriented Technologies,
June 1995.

[Cro95] Ray Cromwell. Another netscape bug (and possible security
hole). Message to the Cypherpunks mailing list (and forwarded to
BUGTRAQ); Message-Id: <199509220612.CAA11441@clark.net>,
September 1995. Available from http://www.netspace.org/cgi-bin/
wa?A2=ind9509d&L=bugtraq&F=&S=&P=499.

[DA97] Tim Dierks and Christopher Allen. The TLS protocol, November 1997.

[Dam90] Ivan Damgård. A design principle for hash functions. In G. Brassard,
editor, Proc. CRYPTO 89, pages 416–427. Springer-Verlag, 1990. Lec-
ture Notes in Computer Science No. 435.

[dBB93] Bert den Boer and Antoon Bosselaers. Collisions for the compres-
sion function of MD5. In Tor Helleseth, editor, Advances in Cryptology
— EUROCRYPT ’93, volume 765 of Lecture Notes in Computer Science,
pages 293–304, Lofthus, Norway, May 1993. Springer-Verlag.

[DE97a] Sophia Drossopoulou and Susan Eisenbach. Is the Java type system
sound? In Proceedings of the Fourth International Workshop on Founda-
tions of Object-Oriented Languages, Paris, January 1997.

156

[DE97b] Sophia Drossopoulou and Susan Eisenbach. Java is type safe – proba-
bly. In Proceedings of the Elventh European Conference on Object-Oriented
Programming, June 1997.

[Dea97] Drew Dean. The security of static typing with dynamic linking. In Pro-
ceedings of the Fourth ACM Conference on Computer and Communications
Security, Zurich, Switzerland, April 1997. http://www.cs.princeton.
edu/sip/pub/ccs4.html.

[DFW96] Drew Dean, Edward W. Felten, and Dan S. Wallach. Java security:
From HotJava to Netscape and beyond. In Proceedings of the 1996 IEEE
Symposium on Security and Privacy, pages 190–200, May 1996.

[DFWB97] Drew Dean, Edward W. Felten, Dan S. Wallach, and Dirk Balfanz. Java
security: Web browsers and beyond. In Internet Beseiged: Countering
Cyberspace Scofflaws. ACM Press, 1997.

[Dob96] Hans Dobbertin. Cryptanalysis of md4. In Proceedings of the 3rd Work-
shop on Fast Software Encryption, volume 1039 of Lecture Notes in Com-
puter Science, pages 53–70, Cambridge, UK, 1996. Springer-Verlag.

[FBB+97] Bryan Ford, Godmar Back, Greg Benson, Jay Lepreau, Albert Lin, and
Olin Shivers. The Flux OS kit: A substrate for OS and language re-
search. In Proceedings of the Sixteenth Symposium on Operating System
Principles, 1997.

[Fis96] Kathleen Fisher. Type Systems for Object-Oriented Programming Lan-
guages. PhD thesis, Stanford University, 1996.

[FK97] Michael Franz and Thomas Kistler. A tree-based alternative to Java
byte-codes. In Proceedings of the International Workshop on Security and
Efficiency Aspects of Java ’97, 1997. Also appears as Technical Report
96-58, Department of Information and Computer Science, University
of California, Irvine, December 1996.

[FKK96] Alan O. Freier, Philip Karlton, and Paul C. Kocher. The ssl protocol
version 3.0, March 1996. Available from http://home.netscape.com/
eng/ssl3/ssl-toc.html.

[FM96] Kathleen Fisher and John C. Mitchell. On the relationship between
classes, objects, and data abstraction. In Proceedings of the 17th Inter-
national Summer School on Mathematics of Program Construction, LNCS,
Marktoberdorf, Germany, 1996. Springer-Verlag. To appear.

157

[Gen96] General Magic, Inc., 420 North Mary Ave., Sunnyvale, CA 94086 USA.
The Telescript Language Reference, June 1996. http://www.genmagic.
com/Telescript/Documentation/TRM/index.html.

[Gho98] Anup K. Ghosh. E-Commerce Security: Weak Links, Best Defenses. John
Wiley and Sons, February 1998.

[Gib96] Steve Gibbons. Personal communication, February 1996.

[GJS96] James Gosling, Bill Joy, and Guy Steele. The Java Language Specification.
Addison-Wesley, 1996.

[GKCR98] R.S. Gray, D. Kotz, G. Cybenko, and D. Rus. D’agents: Security in a
multiple-language, mobile-agent system. In Mobile Agents and Secu-
rity, volume 1419 of Lecture Notes in Computer Science, pages 154–187.
Springer-Verlag, 1998.

[GLDW87] Robert A. Gingell, Meng Lee, Xuong T. Dang, and Mary S. Weeks.
Shared libraries in SunOS. In USENIX Conference Proceedings, pages
131–145, Phoenix, AZ, 1987.

[GM82] Joseph A. Goguen and José Meseguer. Security policies and security
models. In Proceedings of the 1982 IEEE Symposium on Security and Pri-
vacy, pages 11–20, 1982.

[GM84] Joseph A. Goguen and José Meseguer. Unwinding and inference con-
trol. In Proceedings of the 1984 IEEE Symposium on Security and Privacy,
pages 75–86, 1984.

[GM96] James Gosling and Henry McGilton. The Java Language Environment.
Sun Microsystems Computer Company, 2550 Garcia Avenue, Moun-
tain View, CA 94043 USA, May 1996. http://java.sun.com/doc/
language_environment.html.

[Gos95] James Gosling. Personal communication, October 1995.

[GS98] L. Gong and R. Schemers. Signing, sealing, and guarding Java objects.
In Mobile Agents and Security, volume 1419 of Lecture Notes in Computer
Science, pages 206–216. Springer-Verlag, 1998.

[Gup92] Aarti Gupta. Formal hardware verification methods: A survey. Formal
Methods in System Design, 1:151–238, 1992.

[GW96] Ian Goldberg and David Wagner. Randomness and the Netscape
browser. Dr. Dobb’s Journal, January 1996.

[Has96] Lee Hasiuk. Personal communication, February 1996.

158

[Haw97] Chris Hawblitzel. Re: Packages, class loaders and secu-
rity. Usenet Message-Id: <32EE8704.3B69@cs.cornell.edu> in
comp.lang.java.security, January 1997. Available from http://
www.dejanews.com or this author.

[HDDY92] Alan J. Hu, David L. Dill, Andreas J. Drexler, and C. Han Yang.
Higher-level specification and verification with BDDs. In Computer-
Aided Verification: Fourth International Workshop. Springer-Verlag, July
1992. Published in 1993 as Lecture Notes in Computer Science Num-
ber 663.

[Hen94] Fritz Henglein. Dynamic typing: Syntax and proof theory. Science of
Computer Programming, 22(3):197–230, June 1994.

[Hop96a] David Hopwood. Another Java attack. RISKS Forum, 18(18), June
1996. ftp://ftp.sri.com/risks/risks-18.18.

[Hop96b] David Hopwood. Java security bug (applets can load native meth-
ods). RISKS Forum, 17(83), March 1996. ftp://ftp.sri.com/risks/
risks-17.83.

[Hu91] Wei-Ming Hu. Reducing timing channels with fuzzy time. In Pro-
ceedings of the 1991 IEEE Symposium on Research in Security and Privacy,
pages 8–20, 1991.

[Hu95] Alan John Hu. Techniques for Efficient Formal Verification Using Binary
Decision Diagrams. PhD thesis, Stanford University, December 1995.
STAN-CS-TR-95-1561.

[Hu97] Alan J. Hu. Formal hardware verification with BDDs: An introduc-
tion. In IEEE Pacific Rim Conference on Communications, Computers, and
Signal Processing, pages 677–682, 1997.

[Jag94] Suresh Jagannathan. Metalevel building blocks for modular systems.
ACM Transactions on Programming Languages and Systems, 16(3):456–
492, May 1994.

[Jan74] Philippe Arnaud Janson. Removing the dynamic linker from the se-
curity kernel of a computing utility. Master’s thesis, Massachusetts
Institute of Technology, June 1974. Project MAC TR-132.

[JL76] Anita K. Jones and Barbara H. Liskov. A language extension for con-
trolling access to shared data. IEEE Transactions on Software Engineer-
ing, SE-2(4):277–285, December 1976.

159

[KLO98] G. Karjoth, D.B. Lange, and M. Oshima. A security model for aglets.
In Mobile Agents and Security, volume 1419 of Lecture Notes in Computer
Science, pages 188–205. Springer-Verlag, 1998.

[LaD] Mark LaDue. Hostile applets home page. http://www.prism.gatech.
edu/~gt8830a/HostileApplets.html.

[LaD98] Mark LaDue. Applets can create subclasses of applet-
classloader in communicator 4.04 and 4.05. Usenet
Message-ID: <352D5749.E7B2C7E1@mindspring.com> in
comp.lang.java.security, April 1998. Available from
http://www.dejanews.com or this author.

[Lam71] Butler W. Lampson. Protection. In Proceedings of the Fifth Princeton
Symposium on Information Sciences and Systems, pages 437–443, Prince-
ton University, March 1971. Reprinted in Operating Systems Review,
8(1):18–24, Jan. 1974.

[Lan81] Carl E. Landwehr. Formal models for computer security. Computing
Surveys, 13(3):247–278, September 1981.

[LB98] Sheng Liang and Gilad Bracha. Dynamic class loading in the java
virtual machine. In OOPSLA98, volume 35, pages 36–44, Vancouver,
BC, October 1998. ACM.

[Lev84] Henry M. Levy. Capability-Based Computer Systems. Digital Press, 1984.

[LF93] Shinn-Der Lee and Daniel P. Friedman. Quasi-static scoping: sharing
variable bindings across multiple lexical scopes. In Proceedings of the
20th Annual ACM Symposium on Principles of Programming Languages,
pages 479–492, January 1993.

[LM93] Xavier Leroy and Michel Mauny. Dynamics in ML. Journal of Func-
tional Programming, 3(4):431–463, 1993.

[Low96] Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key
protocol using CSP and FDR. In 2nd International Workshop on Tools and
Algorithms for the Construction and Analysis of Systems. Springer-Verlag,
1996.

[LR80] Butler W. Lampson and David D. Redell. Experience with processes
and monitors in Mesa. Communications of the ACM, 23(2):105–117,
February 1980.

160

[LR93] Patrick Lincoln and John Rushby. Formal verification of an algorithm
for interactive consistency under a hybrid fault model. In Costas
Courcoubetis, editor, Computer-Aided Verification, CAV ’93, volume 697
of Lecture Notes in Computer Science, pages 292–304, Elounda, Greece,
June/July 1993. Springer-Verlag.

[LY96] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification.
Addison-Wesley, 1996.

[McM96] Chuck McManis. The basics of Java class loaders. JavaWorld, 1(8),
October 1996. http://www.javaworld.com/javaworld/jw-10-1996/
jw-10-indepth.html.

[MF96] Gary E. McGraw and Edward W. Felten. Java Security: Hostile Applets,
Holes, and Antidotes. John Wiley and Sons, 1996.

[Mit90] J. C. Mitchell. Type systems for programming languages. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science, volume B:
Formal Models and Semantics, chapter 8. Elsevier Science Publishers
B.V., 1990.

[Mit96] John C. Mitchell. Foundations for Programming Languages. MIT Press,
Cambridge, MA, 1996.

[MMS97] John C. Mitchell, Mark Mitchell, and Ulrich Stern. Automated analysis
of cryptographic protocols using murphi. In Proceedings of the 1997
IEEE Symposium on Security and Privacy, pages 141–151, 1997.

[MTH90] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Stan-
dard ML. MIT Press, Cambridge, MA, 1990.

[MTHM97] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The
Definition of Standard ML (Revised). MIT Press, Cambridge, MA, 1997.

[Mue95] Marianne Mueller. Regarding java security. RISKS Forum, 17(45),
November 1995. ftp://ftp.sri.com/risks/risks-17.45.

[Mue96] Marianne Mueller. Personal communication, January 1996.

[Nat85] National Computer Security Center. Department of Defense Trusted
Computer System Evaluation Criteria. National Computer Security Cen-
ter, 1985.

[NBF+80] Peter G. Neumann, Robert S. Boyer, Richard J. Feiertag, Karl N. Levitt,
and Lawrence Robinson. A provably secure operaging system: The
system, its applications, and proofs. Technical Report CSL-116, 2nd
Ed., SRI International, May 1980.

161

[Neu95] P.G. Neumann. Computer-Related Risks. Addison-Wesley, Reading,
Massachusetts, 1995. ISBN 0-201-55805-X.

[NIS95] NIST. Secure hash standard. Federal Information Processing Stan-
dards Publication, April 1995. FIPS PUB 180-1, US Dept. of Commerce,
National Institute of Standards and Technology.

[NL96] George C. Necula and Peter Lee. Safe kernel extensions without run-
time checking. In Second Symposium on Operating Systems Design and
Implementation (OSDI ’96) Proceedings, pages 229–243, Seattle, WA, Oc-
tober 1996.

[NL98] G.C. Necula and P. Lee. Safe, untrusted agents using proof-carrying
code. In Mobile Agents and Security, volume 1419 of Lecture Notes in
Computer Science, pages 61–91. Springer-Verlag, 1998.

[OBLM93] Douglas B. Orr, John Bonn, Jay Lepreau, and Robert Mecklenburg.
Fast and flexible shared libraries. In Proceedings of the 1993 Summer
USENIX Conference, Cincinnati, OH, 1993.

[Org72] E.I. Organick. The Multics System: An Examination of its Structure. MIT
Press, Cambridge, Massachusetts, 1972.

[OSR93] S. Owre, N. Shankar, and J. M. Rushby. User Guide for the PVS Specifi-
cation and Verification System. Computer Science Laboratory, SRI Inter-
national, Menlo Park, CA, February 1993. Three volumes: Language,
System, and Prover Reference Manuals.

[Pey87] Simon L. Peyton Jones. The Implementation of Functional Programming
Languages. Prentice Hall, 1987.

[PvO95] Bart Preneel and Paul C. van Oorschot. MDx-MAC and building
fast MACs from hash functions. In Don Coppersmith, editor, Proc.
CRYPTO 95, pages 1–14. Springer, 1995. Lecture Notes in Computer
Science No. 963.

[R+80] D. Redell et al. Pilot: An operating system for a personal computer.
Communications of the ACM, 23(2), February 1980.

[Ree96] Jonathan A. Rees. A security kernel based on the lambda-calculus.
Technical Report A.I. Memo No. 1564, Massachusetts Institute of Tech-
nology, Artificial Intelligence Labortory, March 1996.

[Rey74] John C. Reynolds. Towards a theory of type structure. In Proceedings,
Colloque sur la Programmation, volume 19 of Lecture Notes in Computer
Science, pages 408–425, Berlin, 1974. Springer-Verlag.

162

[Riv91] Ronald L. Rivest. The MD4 message digest algorithm. In A.J. Menezes
and S. A. Vanstone, editors, Proc. CRYPTO 90, pages 303–311. Springer,
1991. Lecture Notes in Computer Science No. 537.

[Riv92a] Ronald L. Rivest. The MD4 message-digest algorithm. Internet Re-
quest for Comments, April 1992. RFC 1320; obsoletes RFC 1186.

[Riv92b] Ronald L. Rivest. The MD5 message-digest algorithm. Internet Re-
quest for Comments, April 1992. RFC 1321.

[Ros96] Jim Roskind. Java and security. In Netscape Internet Devel-
oper Conference, Netscape Communications Corp., 501 E. Mid-
dlefield Road, Mountain View, CA 94043 USA, March 1996.
http://developer.netscape.com/misc/developer/conference/
proceedings/j4/index.html.

[RRV95] Sreeranga Rajan, P. Venkat Rangan, and Harrick M. Vin. A formal
basis for structured multimedia collaborations. In Proceedings of the
2nd IEEE International Conference on Multimedia Computing and Systems,
pages 194–201, Washington, DC, May 1995. IEEE Computer Society.

[RSS96] H. Rueß, N. Shankar, and M. K. Srivas. Modular verification of
SRT division. In Rajeev Alur and Thomas A. Henzinger, editors,
Computer-Aided Verification, CAV ’96, volume 1102 of Lecture Notes in
Computer Science, pages 123–134, New Brunswick, NJ, July/August
1996. Springer-Verlag.

[SA98] Raymie Stata and Martı́n Abadi. A type system for Java bytecode
subroutines. In Proceedings of the 25th ACM Symposium on Principles of
Programming Languages, pages 149–160. ACM, January 1998.

[Sco93] Dana S. Scott. A type-theoretical alternative to ISWIM, CUCH,
OWHY. Theoretical Computer Science, 121(1–2):411–440, December
1993.

[SFPB96] Emin Gün Sirer, Marc E. Fiucynski, Przemyslaw Pardyak, and
Brian N. Bershad. Safe dynamic linking in an extensible operating
system. In Workshop on Compiler Support for System Software, February
1996. See also: http://www.cs.washington.edu/research/projects/
spin/www/papers/index.html.

[SM95] Mandayam K. Srivas and Steven P. Miller. Formal verification of
the AAMP5 microprocessor. In Michael G. Hinchey and Jonathan P.
Bowen, editors, Applications of Formal Methods, Prentice Hall Interna-
tional Series in Computer Science, chapter 7, pages 125–180. Prentice
Hall, Hemel Hempstead, UK, 1995.

163

[SR98] Allan M. Schiffman and Eric Rescorla. The secure hypertext transfer
protocol, June 1998.

[Str91] Bjarne Stroustrup. The C++ Programming Langauge. Addison-Wesley,
2nd edition, 1991.

[Str94] Bjarne Stroustrup. The Design and Evolution of C++. Addison-Wesley,
1994.

[Sym97] Don Syme. Proving Java type soundness. Technical Report 427, Com-
puter Laboratory, Cambridge University, June 1997.

[Uni94] Unisys Corporation. Unisys A18 System Architecture MCP/AS (Ex-
tended): Support Reference Manual, April 1994. http://www.unisys.
com/marketplace/aseries/pdf/70081781.pdf.

[Vig98] G. Vigna, ed. Mobile Agents and Security, volume 1419 of Lecture Notes
in Computer Science. Springer-Verlag, Berlin, 1998.

[VS98] D. Volpano and G. Smith. Language issues in mobile program secu-
rity. In Mobile Agents and Security, volume 1419 of Lecture Notes in
Computer Science, pages 25–43. Springer-Verlag, 1998.

[Wal99] Daniel S. Wallach. A New Approach to Mobile Code Security. PhD thesis,
Princeton University, January 1999.

[WBDF97] Dan S. Wallach, Dirk Balfanz, Drew Dean, and Edward W. Felten. Ex-
tensible security architectures for Java. In Proceedings of the Sixteenth
Symposium on Operating System Principles, Saint Malo, France, October
1997.

[WF88] Mitchell Wand and Daniel P. Friedman. The mystery of tower re-
vealed: A non-reflective description of the reflective tower. Lisp and
Symbolic Computation, 1(1):11–37, 1988. Reprinted in Meta-Level Archi-
tectures and Reflection, P. Maes and D. Nardi, eds., North Holland, 1988.

[Wir83] Niklaus Wirth. Programming in Modula-2. Springer-Verlag, 2nd edi-
tion, 1983.

[Yel95] Frank Yellin. Low level security in Java. In Fourth International World
Wide Web Conference, Boston, MA, December 1995. World Wide Web
Consortium. http://www.w3.org/pub/Conferences/WWW4/Papers/
197/40.html.

164

