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Abstract. Typed Assembly Languages (TALSs) can be used to validatedtietys
of assembly-language programs. However, typing rules suelly trusted as ax-
ioms. In this paper, we show how to build semantic modelsyfping judgments
in TALs based on an induction technique, so that both the-tgfety theorem
and the typing rules can be proved as lemmas in a simple [dégademonstrate
this technique by giving a complete model to a sample TALsThodel allows
a typing derivation to be interpreted as a machine-cheeksélety proof at the
machine level.

1 Overview

Safety properties of machine code are of growing concern in both indarstirgcademia.
If machine code is compiled from a safe source language, compiler verificatioan-
sure the safety of the machine code. However, it is generally prolahdido verifica-
tion on an industrial-strength compiler due to its size and complexit

In this paper, we do validation directly on machine code. Necula introd uasaf-P
Carrying Code (PCC) [1], where a low-level code producer supplieafetysproof
along with the code to the consumer. He used types to specify loopantsuiand lim-
ited the scope of the proof to type safety. Typed Assembly Languagk) ([} by
Morrisett et al. refined PCC by proposing a full-fledged low-level type system and a
type-preserving compiler that can automatically generate type annotationslassw
the low-level code. Once an assembly-language program with type aomstiitype
checked, the code consumer is assured of type safety.

Take a typing rule from the Cornell TAL [2],

WAT Frov[]llh AT
WAT Fjnpr

which means that a “jump to registerinstruction type-checks if the value inis a
code pointer with preconditioRY, and the current type environmenis a subtype of
I’. This rule is intuitively “correct” based on the semantics of the jungprirction. (In
this paper we won’t be concerned whHh A, etc. of the Cornell TAL; we show this rule
just to illustrate the complexity of that system’s trusted axigms.

* To appear irbth International Conference on Verification, Model Chagkiand Abstract In-
terpretation (VMCAI '04),January 2004. This research was, supported in part by DARPA
award F30602-99-1-0519 and by NSF grant CCR-0208601.



In the Cornell TAL system and its variant [3] , such typing rules are acceged
axioms. They are a part of the Trusted Computing Base (TCB). Howkweievel
type systems tend to be complex because of intricate machine semantiasigumy
derstanding of the semantics could lead to errors in the type system.d.egalu[4]
found an unsound proof rule in the SpecialJ [5] type system. Inttbegss of refining
our own TAL [6], we routinely find and fix bugs that can lead to unsounslines

In systems that link trusted to untrusted machine code, errors in tfBecB@ be
exploited by malicious code. A more foundational approach is to moveritiee type
system out of the TCB by proving the typing rules as lemmas, instetxdsiing them
as axioms; also by verifying the type-safety theorem: type checking ofiogals the
safety policy, or the slogan—well-typed programs do not go wrong.

1.1 A foundational approach

In the type-theory community, there is a long tradition of givirgdtational semantics
[7] to types and proving typing rules as lemmas. Appel and Felty [8] aglis idea
to PCC and gave a semantic model to types and machine instructionsher-aigler
logic. In the following years, semantic models of types have been extetadinclude
recursive types [9] and mutable references [10]. With these models, dssilpe to
reason locally about types and operations on values, but unfortunatelydel imas
been provided to typing judgments suchHg\; " + jmpr and no method is provided
to construct the safety proof for an entire program.

The main contribution of this paper is to use a good set of abstradtiarige mod-
els to judgments so that both typing rules and the type-safety theorenegandhan-
ically verified in a theorem-proving system. Our approach is truly fatiodal in that
only axioms in higher-order logic and the operational semantics alicttns need to
be trusted; it has a minimal trusted base. Our approach can be viewed as amay to
a typing derivation to a machine-checkable safety proof at the machine heeeluse
each application of a typing rule in the typing derivation can be seen asstheflua
(proved) lemma.

1.2 Model of TALs

In this section, we give an informal overview of our model of a typectadsy lan-
guage, particularly an induction technique to prove program safety. Weawirefer to
any specific TAL in this section.

A TAL program consists of two parts: code and type annotations. As amgbe,
the following code snippet has a number of basic blocks; each one isaylabel (like
lo) and is composed of a sequence of instructions. Each basic block has an edsociat
type annotation (likep) that is the basic block’s precondition.

() lo:add 1,1,2

jmpls
(0] l1:1d23

Om Im:...



Type annotations are generated by a type-preserving compiler from saurce |
guage types. They serve as a specification (types as specifications). &oc@n iy, is
{r1:int} N{r2: box(int)}, it expresses that register one is of type integer and register
two is a pointer to an integer.

Since we need to show the type-safety theorem, the first ingredientédite dvhat
the safety of code means. Following the standard practice in type the®dgfine code
is safe if it will not get stuck before it naturally stops. Note thekthere is to define
the machine’s operational semantics in such a way that the machine will gktitu
it violates the safety policy (see Section 2). To simplify the presemaive treat only
nonterminating programs that do not stop naturally.

We first informally explore how to prove a TAL program is safe. Wentefia label
| in a state is safe fdt steps” to mean that when the control of the state Isthte state
can run fork steps. The goal then is to prove that if entry conditpgrinolds, labelg is
safe fork steps for any natural numbkr A natural thought is to show it by induction
overk. The base casé & 0) is trivial; the inductive case is to show labigis safe for
k+ 1 steps given that it is safe flrsteps. But at this moment we have no idea in which
state the code will be aftdrsteps, so we cannot prove that the state can go ahead one
more step.

The solution is to do induction simultaneously over all labels, ireve each label
li is safe fork+ 1 steps with respect to its preconditipnassuming all labels are safe
for k steps with respect t@;. Let us take labelp in the example to see why this new
induction works. Basic bloclky has length two, and ends with a jump to lakewhich
has been assumed to be safekateps, provided that preconditign is met. Suppose
by inspecting the two instructions in blotk we have concluded thhtis safe for two
steps and after two steggs will be true. Combined with the assumksestep safety of
labells, labellg is safe fork+ 2 steps, which implies that it is safe fior- 1 steps.

In this proof method, we still need to inspect each instruction in eviergkb For
example, in blochg, we check if the preconditioqy is enough to certify the safety of
its two instructions and i will be met after their execution. What we have described
essentially is a proof method to combine small proofs about instmginto a proof
about the safety of the whole program. In the rest of this sectionnfeemally give
models to typing judgments based on this technique. Before that, wenbtsvate what
kind of typing judgments a TAL would usually have.

To type check a TAL program, the type system must have a wellformeglrdgss
ment for programs. Since a TAL program is composed of basic blockeghi®rmed-
ness judgment for programs requires another judgment, a wellformgddgssent for
basic blocks. Similarly, the type system should also have a weilfdness judgment
for instructions.

The model of the wellformedness judgment for programs can be that alslatee!
safe with respect to their preconditions. In the following sections,will develop
abstractions so that this model can be written down in a succinct subtfgimula:
A(C) c T'. The model of wellformedness of a basic block can be that this particular ba-

1 Every program can be transformed into this form by giving ébatinuation at the beginning
and letting the last instruction be a jump to this continuatiThe continuation could return to
the operating system, for example.



sic block is safe fok+ 1 steps assuming all the other basic blocks are safle $teps.

Based on the induction technique and this model, we can prove the typéidat con-

cludes the wellformedness of a program from the wellformedness of blagiks. The

model of wellformedness of instructions is similar to the one ofdbkicks and we do
not go into details at this stage.

In Section 2, we present the model of a RISC architecture (Sparc) and fprmall
define the safety of code based on a particular safety policy (memory s&ettjon 3
shows the syntax of a sample TAL; Section 4 shows an indexed modgles nd its
intuition. The material in these three sections has been described by aegspl1, 6,
9] as part of the foundational PCC project; we briefly sketch them to sefrapn@work
within which our proof method can be formally presented in section 5.

2 Safety specification

Our machine model consists of a set of formulas in higher-order lbgicspecify the
decoding and operational semantics of instructions. Our safety polenifigs which
addresses may be loaded and stored by the program (memory safety) and defines wh
the safety of code means. Our machine model and safety policy are truste@ antbdir
enough to be “verifiable by inspection”.

A machine statér,m) consists of a register barrfkand a memorym, which are
modeled as functions from numbers to contents (also numbers). A mankingction
is modeled by a relation between machine states) and(r’,m) [11]. For example, a
load instruction( d) is specified by

Idsd=Ar,mr’ m.r'(d)=m(r(s)) A (Vx;é d.r'(x) = r(x)) A m =m A readablér(s))

The machine operational semantics is modeled by a step relatitnat steps from
one statgr,m) to another statér’, ') [11], where the staté’,m') is the result of first
decoding the current machine instruction, incrementing the progranteroamd then
executing the machine instruction.

The important property of our step relation is that it is deliberatelyiglait omits
any step that would be illegal under the safety policy. For exampl@asgin some
state(r,m) the program counter points td @ instruction that would, if executed, load
from an address that is unreadable according to the safety policy. Thee,asin d
instruction requires that the address must be readable, there will isof®xm') such
that(r,m) — (r’,nm).

The mixing of machine semantics and safety policy is to follow the stechpractice
in type theory so that we can get a clean and uniform definition of code s&faty.
instance, we can define that a state is safe if it cannot lead to a stuck state.

safgr,m) =vr',m. (r,m) —* (r',m) = 3Ir" m’". (r';m) — (r",m")
where—* denotes zero or more steps.

2 Our step relation first incremengs, then executes an instruction. Thus, the semanti¢siof
does not include the semantics of incrementinggbe



To show safé&, m), it suffices to prove that the state is “safe fosteps,” for any
natural numben.

safen(n,r,m) = vr’,m. Vj < n. (rm) —J (', m) = 3r". m". (r',m) — (" m")

where—! denoteg steps being taken.
An assembly-language progradis a list of assembly instructions. For example,

C=addrlrl,r2; jnpls; 1d[r2],r3; ...
We use predicate pragadedm,C) to mean that cod€ is loaded in memoryn:
progloadedm,C) = V 0 < k < |C|. decodém(4k),C)

where|C| is the length of the list; predicate decdd&,) means that word is decoded
into instructionCy (thek-th instruction inC). In this paper, we assume codés always
loaded at start address 0 and thuskttle instruction will be at addres&4n the memory
(Sparc instructions are four bytes long).

We define that an assembly progréxs safe if any initial statér, m) satisfying the
following is a safe state: codgis loaded insiden; the program counter initially points
to address 0; when the program begins executing, entry congiffdmolds on the state
(r,m).

safecod€C) = Vr,m. (progloadec{m,c) A r(pc)=0A (r,m): (p0> = safdr,m)

3 Typed Assembly Language

In this section, we introduce a typed assembly language. We will shosvéhemall
subset of our actual implementation. Our full language has hundredscditops and
rules, as necessary for production-scale safety checking of real softwats ésgaod
thing that our full soundness proof is machine-checkable).

3.1 Syntax

Figure 1 shows our TAL syntax. A TAL program consists of assembdgmamC and
type annotatioi . Assembly progrart is a sequence of assembly instructions, which
include addition 4dd), load ( d) and branch alwayg).* Type annotatiorl” takes
the form of a label environment, which summarizes the preconditions tifealabels

of the program. Our TAL has 32 registers, and labels are divisible by 4

3 In our implementation, the initial conditiop is simple enough to be described directly in our
underlying logic so that semantic model of types is not a pfittie specification of the safety
theorem; it is contained entirely within thpeoof of the theorem.

4 Since our sample TAL cannot deal with delay slots,iheinstruction is really da followed
by anop in Sparc.



(program) C ::=1i | i;C (typeg T ::=int | int=(n)
(instruction) i :=addrrr|ldrr|bal | box(T) | codeptr (@)
(label eny I ::= {l : codeptr (@)} N... (typeeny @ =Ty | Lg|{n:T1}
(registernum r :=0|1] ... |31 | @N@ | @n— T
(label) 1 :=01]4]8] ... (na) n:=0[11]2]...
Fig. 1. Syntax: Typed assembly language syntax Fig. 2. Syntax: Types

Figure 2 lists the type and type environment constructors. Theyde integer type
int and immutable reference typex (1). The language also has singleton tyjpe. (n)
containing only valua. An address$ has typecodeptr (@) if it is safe to pass the control
to addres$ provided that preconditiog@is met.

A type environmentp specifies types of slots in a vector, such as a register bank
or the list of program labels. Any vector satisfies environmegtand no vector can
satisfy L. A singleton environmen{n : T} means slon (e.g., registen or labeln)
has typet. Intersection typep N @, can be used to type several slots of a vector, e.g.
{n1:1a}Nn{ny: 12} specifies that slots; andn, have typer; andt, , respectively.

We useg C {n: 1} to describe tha{n: 1} is one of the conjuncts ip. We write
@(n) for the type of sloh in @. Notationg[n — t] updates the type of slotto T, by first
removing the old entry fon in @ (if one exists), then intersecting it win : t}.

The type annotatiof, or the label environment, specifies the type of each label
in terms of the code pointer type, so it is also a type environment;sgethe same
operators fof as forq.

3.2 Type checking
There are three kinds of judgments in our type system:

— Program judgmentt-, C: I means that assembly prograris wellformed with
respect to type annotatidn

— Block judgment’;| -, C: " means that assembly progra&instarting at address
[, is wellformed with respect tb’, assuming the global label-environmé&n&nvi-
ronmentl” provides preconditions of labels to whi€hmight jump; Environment
I’ is the collection of preconditions of labels insi@eand is a part of . Superfi-
cially, it seems semantically circular to judge the wellformedness of sainsd
(') by assuming the wellformedness of all labél}. (However, as indicated in the
overview section, the model &1, is that from a weaker assumption abbéuevery
label inside is safe fok steps), we prove a stronger result abbl{every label
inside is safe fok+ 1 steps).

— Instruction judgment’;| ; {@}i{@} means that assembly instructigrat ad-
dresd, is wellformed with respect to preconditiga and postconditiog,. As in
kv, I provides label preconditions. The purpose of having locatinthe judgment
is to be able to compute the destination address for pc-relative justpiations.



Typing rules except for instructions are shown in Figure 3. To chemtiqfogranC
is wellformed, theeroGrule will call T';0 -, C: T, thus recursively cabLock_1 and
BLOCK_2 rules to check that each basic bloclQis wellformed.

RuleBLock_1 first looks up preconditiop; and postcondition, in " for the cur-
rent block, composed of one instructigrchecks the wellformedness of instruction
with respect top; and @; then checks the rest of the code with respedt’towith-
out loss of generality, we assume that each block has exactly one ingtruatiaule
BLOCK_2, the postcondition of the last instructioms Ly, because the control is not
allowed to be beyond the last instruction (an unconditional brancsfigatithis post-
condition).

(1) = codeptr (1) (I 4+4) = codeptr (@)

M0k, C:T Ml {oyi{e} Ml+4k,C:I7 SLoCK 1
pcir ol [l o 1;C: {1 : codeptr (@)} AT -

F(I) =codeptr(q) Tl ks {@}i{Lle}
M1 by iz {l: codeptr (@)}

BLOCK_2

Fig. 3. Syntax: Typing rules (except for instructions)

Figure 4 shows typing rules for instructions. The rule foriastionadd requires
that the source registers are of typebeforehand and the destination register gets type
int afterward. The rule for instructioba needs to look up the type of the destination
label through™ and check the current preconditigmrmatches the destination one (A
TAL usually has subtyping rules allowing the current preconditiobgcstronger than
the destination one).

@C {s1:int} @C {sp:int} @C {s:box(1)} (I +d) = codeptr (¢)
M1 i {efadd s, ,d{@gd—int]} [;l1+; {@}ldsd{gd—T1]} T[;lF; {@tbad{Lly}

Fig. 4. Syntax: Typing rules for instructions

4 Indexed model of types

In this section, we give a brief description of tinelexednodel of types, which is intro-
duced in [9] to model general recursive types. Our induction techniguineioverview
section is also inspired by the intuition behind the indexed model.

In the indexed model, a type is a set of indexed valigsm,x)}, wherek is a
natural number (“approximation” index)jis a memory, and is an integer.



The indexed model of the types and type environments are listed bedowxm-
ple, typeint_(3) would contain all thelk,m,x) such thatx is 3. Memorym is a part
of a value(k,m,x) because to express thais of typebox (1) we need to say that the
content in the memory, an(x), is related to type.

int = {(k,m,x) |true} int—(n) = {{k,m,X)|x = n}

box (1) = {(k,m,X) |x € dom(m) A V] < k.readabléx) A (j,mm(x)) € T}

codeptr (@) = {(k,m,x)|V]j,r. j <k A r(pc) =x A (m,r):j @ = safen(j,r,m)}
To = {(k,mX) |true} Lo = {(k,mX) |false}

{n 1) = {(km%) | (kM) € T}
N = {{(kmx)| (kmX) € @1 A (kmX) € @}

[n»—>t] = {(k,mX)|Jy. (kmXn—y])eoA (kmX,) €T}

We use(m,x) ik T as a syntactic sugar fdk,m,x) € 1. We write (m,x) : T to mean

(m,Xx) ik T is true for anyk, or (m,x) is a real member of type. Now we explain the
purpose of indeX in the model. In general, ifm,X) : T, value(m,x) may be a real
member of type, or it may be a “fake” member that onkrapproximately belongs

to 1. Any program taking such a “fake” member as an input cannot tell the difference
within k steps.

Let typet be box (box(int)). Supposgm,x) : T, thenx is a two-fold pointer and
m(m(x)) is of typeint. However, suppose we only know th@, x) : box (int), then for
one step (one dereferencé, x) safely simulates membership box (box (int)). In
this case, we can sdm, x) :1 box (box (int)).

One property of types is that they are closed under decreasing approxis) stiat
is, if (m,x) :x Tandj <k, then(m,x) :; .

Another example to understand the approximation irldexthe typecodeptr ().

A real memberm,|) of typecodeptr (¢) means that if conditiop is met, it is safe to
jump to locationl. Then(m,l) :x codeptr () would mean that it is safe to execlke
steps after jumping th Therefore, the definition afodeptr (@) says that for any and

r such thatj is less thark, if the control is at locatioh and the current state satisfigs

the state should be safe fpsteps. In some sense, this definition only guarantees partial
safety: safe withirk steps. To show that locatidris a safe location, we have to prove
that it belongs t@odeptr (@) under anyk.

Sometimes we need to judge not only scalar values suck @sx) but also vector
values(k,m,X) (a vector is a function from numbers to values). One use is to write
(m,r) :x @, which means that the contents of machine registers sagidfy this case,

X is the register bank. Another use of vector types is the label environnignivhich
summarizes the types of all program labels. In this c&smuld be the identity vector
id (mapl tol). For example(m,id) : {I : codeptr ()} means that addresstself has
typecodeptr (@).

With the semantic model of types, all the subtyping rules and intitialo/elimination
rules of types (not shown in the paper) can be proved as lemmas [8, 9]ticupary the
codeptr elimination rulecPTRE is useful for the proof of Theorem 2 in Section 5.3.

(MX) 1 codeptr(g)  r(pg=x  (mr) 3@
safen(k,r,m)

CPTRE



5 Semantic Models of typing judgments

In this section, we develop models for typing judgments based omtheiion tech-
nigue in Section 1.2. From their models, each of the typing rules igepras a derived
lemma. Finally, the type-safety theorem is also proved as a derived lemma.

5.1 Subtype induction

Our goal is to provide a proof that codg obeys our safety policy, or a proof of
safecod€C), which means that any state containing the d@desafe arbitrarily many
steps under conditiogy — exactly what the typeodeptr (¢o) denotes. Thus, our goal
is formalized agm,0) : codeptr (qp), for anym containing cod€.

As outlined in the overview section, we will prove a stronger reggtead: all
labels are of code-pointer types under corresponding preconditiomaalgrfor any
labell in the domain of label environmeht we will prove(m,I) : T'(1); another way to
state this igm,id) : .

A condition onm is that it must contain the cod@ This condition can also be
formalized as types. After all, in our model, types are predicates over stateaaie
used to specify invariants of states. Tyipstr (i) expresses that instructians in the
memory.

instr (i) = {(k,m,x)|decodém(x),i)}

Type environment constructdrturns a sequence of assembly instructions into a type
environment that describes the code.

A(ig;ig;...) = {0:instr(ip)} N{4:instr(i1)}N...

With constructod), judgmentm,id) : A(C) formally states that memom contains
codeC. For such a valuém,id), we want to show it also satisfi€s or (m,id) : '. Now
if we define

A(C) cT =vk,m. (mid) :x A(C) = (m,id) i T

thenA(C) C I' expresses that any state containing c6despects invariants under
any approximatios.

We explore how to prov&(C) c I'. Assuming(m,id) :x A(C), we have to show
(m,id) :x I'. We will prove it by induction ovek. Whenk is zero, judgmentm,1) ;o (1)
is trivially true sincel (1) is a code pointer type, which is always true at index zero by
its definition. The inductive case is that, assumingid) :x A(C) = (m,id) : I, we
have to show thatm,id) k.1 A(C) = (m,id) k41 I'. Since code environmer(C)
ignores the index;m,id) :x;1 A(C) is equivalent tqm,id) :x A(C). Therefore, to prove
(m,id) :x+1 I, we have botlim,id) :x A(C) and(m,id) i I".

Our intention is to give models to the typing judgments in our Tédsed on this
proof technigue. To make the models concise, we abstract away from thembg
defining a subtype-plus predicdig & I, to simulate the inductive case.

Maer,=vkm (m,id) kIl = (m, id) kel 2



With the subtype-plus operator, the inductive case to pAf@ C I can be written
asA(C)NTI & I : assuming cod€ is in the memory under inddxandr is true under
indexk, prove that is true under indek+ 1. The following subtype induction theorem
formalizes what we have explained.

AC)NT&T

Theorem 1. (Subtype Induction) AC)CT

5.2 Semantic model of typing judgments

At the heart of our semantic model is a set of concise definitions forytiiag judg-
ments based on the abstractions (especialywe have developed. We hereby exhibit
such definitions:

Fp C:T =AC)CT
Ml C:or’ = offset) (A(C)) NI & I
CEs {o}i{@} = {l:instr()} NI N{l+4:codeptr (@)} & {I : codeptr (¢1)}

whereoffset; ({0: 11} N{4:1a}N...) = {l:tu}n{l+4:14}n....

The model oft-, C: T means that any state having the code inside respects invari-
antsl.

The judgment’;| -, C: T’ judges the validity of ’ by assumind". Sincel’ is the
collection of preconditions of labels insi@zand is a part of, the judgment itself has
a superficial semantic circularity. We solve this circularity by giving model based
on operator&. By assuming’ to approximatiork, we provel”’ to approximatiork+ 1.
Also, since codeC starts at addreds we need to useffset; (A(C)) to make a code
environment that starts at addréss

The semantics of ;| +; {@}i{@} follows the same principle as the one for the
model oft,. We assume that instructiotis at locationl andl™ holds to approximation
k, we prove locatiorl is a code pointer to approximatidnt 1. In the model of-;,
we have an extra assumptigh+ 4 : codeptr (¢2)}. In our sample TAL, since every
basic block has only one instruction, every address would have a liéoonn I.
Therefore,{l +4 : codeptr (¢)} is a part ofl and need not have been specified as a
separate conjunct. However, in the case of multi-instruction basiks]b would only
have preconditions for each basic blogk,in this case would be reconstructed by the
type system and not availablelin

5.3 Semantic proofs of typing rules

Using these models, we can prove both the type-safety theorem and ithg tyles in
Fig.3.

FpC:T " C {0:codeptr(¢o)}
safecod€C)

Theorem 2. (Type Safety)

10



Proof. From the definition of safeod€C), we have the following assumptions for state
(r,m) and want to show that sgfem).

i) progloadedC,m) i) r(pc)=0 i) (mr):@

On the other hand, the modellbf C: T isA(C) C I'. The deduction steps frof(C) C
I to safér,m) are summarized by the following proof tree.

prog.loadedC, m) @
(m,id) : A(C) AlC)cT I C {0:codeptr(qn)}
(m,id) : {0 : codeptr (¢p) } s
(m,0) : codeptr (@)

vk. (m,0) :x codeptr (¢p) @ (mr): @
G TN o
VK. (m,0) k11 codeptr (qn) VK. (mr) ik o

vk safentkrm ),

safgr,m)

(6)

Step (1) says to prove, m) is safe, it suffices to prove that m) is safe for an arbi-
trary k steps. Step (2) is justified by ruP TR E in Section 4. Step (3a) is by universal
instantiation. Step (4) is just the unfolding of the syntacticesug(m, 0) : codeptr (@).
Step (5) is by the definition of the singleton environment. Stepg(Byithe transitivity

of subtyping. Step (7) can be easily proved by unfolding definitions. O
Th 3 M PROG
eorem 3. L Cir

Proof. From the models af, andt,, we have to prov&(C) C I fromAC)NTI & T
— exactly the subtype induction theorem (Theorem 1). O

(1) = codeptr (¢n) (I +4) = codeptr (@)
Theorem 4. M {@u}i{g} rl+4+,C:I’
M1y ;C: {l : codeptr (@1)} NI

BLOCK_1

Proof. The models of ;| ; {@}i{@} °andrl;l +4, C:I’ gives us that

{I'tinstr (i)} NI & {l : codeptr (@)} offset; 4(AC))NT & I
The goaloffset| (A(i;C)) NI & {I : codeptr (1)} NI is proved by the following lem-
mas:

INGEEY r&rs;
Frerinra offset; (A(i;C)) = {l : instr (i)} Noffset;;4(A(C))

The proof of ruleBLOCK_2 is similar.

5 The model of-; has another clausg + 4 : codeptr ()} on the left of & However, since
(1 +4) = codeptr (@), we can prove that N {l + 4 : codeptr (@)} =T.
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5.4 Semantic Proofs of Machine Instructions

What remains is the proofs of typing rules for instructions (Big\We will show the
technique by informally proving theoAD rule.

@C {s: box(1)}
M1k {@H dsd{gd— 1]}

The precondition states that regisgais a pointer to typa; the postcondition is that
registerd gets typer and types of other registers remain the same. This typing rule is
intuitively “correct” since operationalliyd s,d loads the content at addregs) in the
memory into registed.

The semantic model of; tells us what the “correctness” of the ruleAb means:

LOAD

{lI'instr(I d s,d)} N N{l +4:codeptr (¢)} & {l : codeptr ()}

whereq@ = @[d — T|. That s, forallk andm, we should provém,|) :x, 1 codeptr (@), or
locationl is safe withink+ 1 steps. We can assume (1) there is an instrudtibs, d
at address$ in m; (2) all the labels in™ are code pointers to approximatikn(3) label
| 4+ 4 is of typecodeptr (@) to approximatiork.

By the definition of(m,1) i1 codeptr (@), we start atr,m) with condition@ met
and control at. By the semantics of d s,d, if the location (locatiorr(s)) to read
is readable, we can find a succeeding stater’) such that(r,m) — (r’,m). Not by
coincidence, ruleoAD has a premise thgtC {s: box (1) }; together with thatpis met
on state(r,m), readablér(s)) can be shown.

Therefore, there is a statg,n) that(r,m) can step to because of the execution of
the instructiorl d s,d. By the semantics dfd, conditiong@ can be proved to hold on
state(r’,m’) and the control ofr’,n7) is at labell + 4. Because labél+ 4 is of type
codeptr (¢) to approximatiork, state(r’,n') is safe withink steps. Taking the step by
| d into account, the first state, m) is safe withink+ 1 steps.

Proofs for other typing rules of instructions follow the same salhdmthe case of
control-transfer instructions likba, the assumption (2) aboiit guarantees that it is
safe to jump to the destination address.

6 Implementation

Our work is a part of the Foundational Proof-Carrying Code proj&2},[which in-
cludes a compiler from ML to Sparc, a typed assembly language called LTAR{@],
semantic proofs of typing rules. We have successfully given modsjpitog judgments
in LTAL based on proof techniques in this paper, with a proved type-stfetrem and
nearly complete semantic proofs of the typing rules.

All the proofs are written and machine-checked in a theorem-proving system
Twelf [13]: 1949 lines of axioms of the logic, arithmetic, and the speaffon of the
SPARC machine; 23562 lines of lemmas of logic and arithmetic, theoriesatifen
matical foundations such as sets and lists; 72036 lines of lemmas aboehtiong of
machine states and semantic model of types; 18895 lines of lemmas about@sachin
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instructions and the LTAL calculus. Most of the incomplete semantofsrare about
machines instruction semantics.

To focus the presentation on the essential ideas, we have not shown eaaume$
of our actual implementation. In this paper we have used immutable refergres
to describe data structures in the memory and proved that programs cancsafedg
these data structures. Our implementation can also deal with mutable refdfdl]ses
that programs can safely update data structures in the memory. Allocatiemwalata
structures in the memory have also been taken into account by followerajltication
model of SML/NJ. However, we do not currently support either exiptleallocation
(f r ee) or garbage collection. LTAL is also more expressive, including tygréables,
quantified types and condition-code types. It can also type-check positiependent
code and multi-instruction basic blocks. Our semantic model supplbbthese features.

7 Related Work

There has been some work in the program-verification community to usmarngic
approach to prove Hoare-logic rules as lemmas in an underlying logid [T5]. Such
proofs have been mechanized in HOL [14]. These works use first-ordégtwrhorder
logic to specify the invariants and have the difficulty that loop irwais cannot be
derived automatically, so the approach does not scale to large programs.

Hamidet al.[16] and Crary [17] use a syntactic approach to prove type soundness.
The first stage of their approach develops a typed assembly language, w/ailso i
given an operational semantics on an abstract machine. Then syntactic typeessind
theorems are proved on this abstract machine following the scheme presgkiteidht
and Felleisen [18]. The second stage uses a simulation relation betweenttaetaha-
chine and the concrete architecture. The syntactic approach does not needding bui
of denotational semantics for complicated types such as recursive typescandilso
have machine-checkable proofs. However, the simulation step betweersttecaima-
chine and a full-fledged architecture is not a trivial task.

In some sense, the problem we solve in this paper is to give modetstaiatured
programs with goto statements and labels. There has been work by de Bliio §ive
goto statements a domain-theoretic model. His approach to prove thatesmkrts
invariants is by approximations over code behavior, i.e. latly approximations of
code behavior respects invariants. In our approach, we use types as itsvaridrdo
approximations over types, i.e. code respectskathyapproximations of types.

In conclusion, we have shown how to build end-to-end foundaticaafaly proofs
of programs on a real machine. We have constructed a semantic model fay jypg-
ments of a typed assembly language and given proofs for both the tygig-Hado-
rem and typing rules. Our approach allows a typing derivation to bepirgtrd as a
machine-checkable safety proof at the machine level.
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