
86

Compositional Optimizations for CertiCoq

ZOE PARASKEVOPOULOU, Northeastern University, USA

JOHN M. LI, Princeton University, USA

ANDREW W. APPEL, Princeton University, USA

Compositional compiler verification is a difficult problem that focuses on separate compilation of program
components with possibly different verified compilers. Logical relations are widely used in proving correctness
of program transformations in higher-order languages; however, they do not scale to compositional verification
of multi-pass compilers due to their lack of transitivity. The only known technique to apply to compositional
verification of multi-pass compilers for higher-order languages is parametric inter-language simulations (PILS),
which is however significantly more complicated than traditional proof techniques for compiler correctness.
In this paper, we present a novel verification framework for lightweight compositional compiler correctness. We
demonstrate that by imposing the additional restriction that program components are compiled by pipelines
that go through the same sequence of intermediate representations, logical relation proofs can be transitively
composed in order to derive an end-to-end compositional specification for multi-pass compiler pipelines.
Unlike traditional logical-relation frameworks, our framework supports divergence preservationÐeven when
transformations reduce the number of program steps. We achieve this by parameterizing our logical relations
with a pair of relational invariants.

We apply this technique to verify a multi-pass, optimizing middle-end pipeline for CertiCoq, a compiler from
Gallina (Coq’s specification language) to C. The pipeline optimizes and closure-converts an untyped functional
intermediate language (ANF or CPS) to a subset of that language without nested functions, which can be
easily code-generated to low-level languages. Notably, our pipeline performs more complex closure-allocation
optimizations than the state of the art in verified compilation. Using our novel verification framework, we prove
an end-to-end theorem for our pipeline that covers both termination and divergence and applies to whole-
program and separate compilation, even when different modules are compiled with different optimizations.
Our results are mechanized in the Coq proof assistant.

CCS Concepts: • Software and its engineering→ General programming languages.

Additional Key Words and Phrases: compositional compiler correctness, logical relations, separate compilation,
compilation by transformation, A-normal form, closure conversion, lambda lifting

ACM Reference Format:

Zoe Paraskevopoulou, John M. Li, and Andrew W. Appel. 2021. Compositional Optimizations for CertiCoq.
Proc. ACM Program. Lang. 5, ICFP, Article 86 (August 2021), 30 pages. https://doi.org/10.1145/3473591

1 INTRODUCTION

The state of the art in compiler verification is devising proof techniques that support not only
whole-program compilation but also separate compilation of program components with the same
or different compilers. The specification of a compiler is typically expressed as a relation between a
source and a target program, R (esrc, etrg). For R to be a meaningful compiler specification, it must
be an adequate relationÐit must imply that the target program refines the behavior of the source

Authors’ addresses: Zoe Paraskevopoulou, Northeastern University, USA, z.paraskevopoulou@northeastern.edu; John M. Li,
Princeton University, USA, johnli@princeton.edu; Andrew W. Appel, Princeton University, USA, appel@princeton.edu.

© 2021 Copyright held by the owner/author(s).
2475-1421/2021/8-ART86
https://doi.org/10.1145/3473591

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 86. Publication date: August 2021.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3473591
https://doi.org/10.1145/3473591

86:2 Zoe Paraskevopoulou, John M. Li, and Andrew W. Appel

program. A compiler specification is compositional when it is compatible with linking. That is, if
R (esrc, etrg) and R (e ′src, e

′
trg) then R ([e ′src]esrc, [e

′
trg]etrg), where [e

′]e denotes linking programs e
and e ′. This property is also called horizontal compositionality. Relations that are both adequate
and compatible with linking allow us to prove that the whole program obtained by linking two
separately compiled programs in the target language refines the behavior of the whole program
obtained by linking the programs in the source language.

Developing relations that are both adequate and compatible with linking is a hard problem and
the subject of growing research [Hur et al. 2012; Neis et al. 2015; Ramananandro et al. 2015; Stewart
et al. 2015; Patterson and Ahmed 2019; Song et al. 2019]. Logical relations are widely-used as a
technique for showing program equivalence and refinement, and they have long been used in
compiler correctness [Benton and Hur 2009; Hur and Dreyer 2011; Hur et al. 2012; Perconti and
Ahmed 2014; RodrÃŋguez et al. 2016; Owens et al. 2017]. Logical relations are preserved under
linking and therefore they have horizontal compositionality. But logical relations lack vertical

compositionality: the correctness theorems of adjacent transformations that are independently
proved correct cannot be composed to derive a top-level theorem for the whole pipeline. Therefore,
they do not scale to compositional correctness for multi-pass compilers. To address this limitation,
Neis et al. [2015] devise parametric inter-language simulations (PILS), a novel relation for composi-
tional compiler correctness that combines logical relations and bisimulations and is both adequate
and compatible with linking. However, PILSÐthe only relations known to apply to compositional
compiler verification for higher-order, functional languagesÐare much more complicated than
traditional logical relations and involve quite complex metatheory.

In this paper, we propose a new lightweight technique for compositional compiler correctness for
higher-order functional languages. We demonstrate that if we restrict ourselves to compilers that
go through the same intermediate representations, we can use step-indexed logical relations to build
a top-level compiler relation that has both vertical and horizontal compositionality. Our key insight
is that adequacy and compatibility with linking are properties closed under relation composition.
Therefore, we define our top-level relation to be the composition of the logical relations that
are used to verify adjacent compiler passes. This top-level relation is adequate, compatible with
linking, and independent of the transformations that are usedÐit only depends on the changes of
representation through compilation. Pipelines that go through the same changes of representation
can be given the same specification regardless of the particular transformations that are used. As
a corollary of this top-level compositional theorem, we can derive that compiling modules with
different verified pipelines and linking them in the target produces the same behavior as linking
the modules in the source language and compiling them as a whole. Our compositional verification
approach can be applied to standard (and relatively simple), untyped, step-indexed logical relations.
Such relations have been used in whole-program compiler verification before [Owens et al. 2017].
The top-level refinement relation that we establish for the compiler and each individual trans-

formation is in the form of a forward simulation: we show that whenever the source exhibits
a behaviorÐwhich can be either termination or divergenceÐthen the target exhibits the same
behavior. This is an appropriate compiler specification since we are in a deterministic language
setting.1 But logical relations only specify what happens when the source program terminates, and
they do not capture diverging source program executions. Building on a previous technique for
reasoning about resource bounds [Paraskevopoulou and Appel 2019], we show how to apply logical
relations to show that divergence is preserved. We achieve that by using a big-step, fuel-based

1Compilers are typically specified with a backwards simulation: every behavior that is exhibited by target program should
be a valid behavior of the source program. In deterministic languages, forward simulations are often preferred as they are
simpler to prove and they imply backwards simulations. For a detailed discussion see Leroy [2009b].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 86. Publication date: August 2021.

Compositional Optimizations for CertiCoq 86:3

semantics and parameterizing our logical relation with a relational invariant, a binary relation
that relates the fuel consumption of the source and target programs. We then show that for an
appropriate class of relational invariants the logical relation implies that divergence is preserved.
A similar approach is used in the verified CakeML compiler. CakeML’s forward simulations

establish that the fuel consumption of the source never exceeds that of the target; this implies
divergence preservation. But this condition is not satisfied by transformations that reduce the
number of program steps. Therefore, CakeML introduces (in each intermediate language) a Tick
instruction that has no computational meaning other than consuming fuel. Transformations will
insert Tick instructions as needed to keep the fuel consumption of the target equal that of the
source program. This approach requires a Tick-removal pass that must be proved correct with
a backwards simulation. In our framework, we show that a more general relation between fuel
consumption suffices to show divergence preservation and hence, we do not need to add a Tick
instruction to our language.
We apply this framework to verify the multi-pass optimizing middle-end pipeline of Certi-

Coq [Anand et al. 2017]. CertiCoq is a compiler from Gallina (Coq’s specification language) to
machine language. Its front end uses MetaCoq to reify Coq functions and erase types with a
proved-sound transformation [Sozeau et al. 2019]. Constructor applications are then converted to
η-long form. The program is CPS-converted [Paraskevopoulou and Grover 2021] or ANF-converted
into the intermediate language λANF, a higher-order, functional intermediate representation in an
A-normal form [Flanagan et al. 1993]. CertiCoq’s optimizer and closure-converter translates to
λC
ANF

, a closureless, flat-scope subset of λANF. Lastly, there is a proved-correct translation [Savary
Bélanger et al. 2019] to CompCert Clight [Leroy 2009a]. Any C compiler can be used as the back
end, but only CompCert can yield an end-to-end correctness guarantee.
Our λANF pipeline follows a compilation by transformation approach [Kelsey and Hudak 1989;

Fradet and Le Métayer 1991; Jones and Santos 1995]: through the interaction of small and modular
transformations it optimizes the code and gradually compiles away language features that cannot
be mapped directly to the target language. The pipeline comprises 7 distinct transformations: shrink
reduction [Appel and Jim 1997a; Benton et al. 2005], inlining, uncurrying, lambda lifting, hoisting,
and dead-parameter elimination. Similar transformations have been implemented and described in
other compilers [Adams et al. 1986; Steele 1978; Appel 1992; Jones 1996; Kennedy 2007; Leroy et al.
2020], where it is observed that simplifications performed by one phase can łcascadež, enabling
more simplifications by the same or other phases. Through the interaction of these passes our
pipeline achieves efficient closure allocation strategies, avoiding useless heap allocation of function
closures. To our knowledge, CertiCoq’s closure allocation strategies are the most advanced among
formally verified compilers. Our preliminary experimental results show that CertiCoq with our λANF
pipeline runs at native-code speed and that the performance of the code is improved by our closure
allocation optimizations. Our verification framework is particularly suitable for the design of the
pipeline. New transformations can be easily added (and proved correct with the same machinery)
and old transformations can be reordered without any effect on the compositional top-level theorem.
Our separate compilation theorem applies to programs compiled with different versions of the
pipeline.
Contributions. In summary, we present:

• A novel lightweight technique for compositional compiler correctness. The technique is compati-
ble with standard logical relations and supports compositional verification of different pipelines
that go through the same representation changes.
• A novel method for proving divergence preservation using logical relations, compatible with
optimizations that reduce the number of program steps and compositional compiler correctness.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 86. Publication date: August 2021.

86:4 Zoe Paraskevopoulou, John M. Li, and Andrew W. Appel

• λANF, an optimizing, modular, general-purpose, extensible, compilation pipeline for pure, higher-
order functional languages, verified with the above techniques. Our pipeline implements more
sophisticated closure strategies than previous verified compilers.

Our results are fully mechanized in the Coq proof assistant. We begin with a language-generic
overview of our novel compositional verification approach and our technique for showing diver-
gence preservation.

2 OVERVIEW OF THE VERIFICATION APPROACH

2.1 Compositional Reasoning

Step-indexed logical relations [Appel andMcAllester 2001; Ahmed 2006] are a useful tool for proving
a variety of properties about lambda calculus and related languages. Binary logical relations are
commonly used to show program equivalence and refinement [Benton and Hur 2009; Perconti
and Ahmed 2014; Owens et al. 2016, 2017; Timany et al. 2017], making them a useful tool for
compiler verification. A particularly desirable property of binary logical relations in compiler
verification [Benton and Hur 2009; Hur and Dreyer 2011] is horizontal compositionality: two
pairs of language expressions that are independently shown to inhabit the logical relation will still
inhabit the logical relation when they are pairwise composed with the same language construct.
For example, if for a logical relation R and for two pairs of expressions we have that R (e1, e2)
and R (e ′1, e

′
2), then we can show that applying e1 to e ′1 and e2 to e

′
2 yields related expressions, i.e.,

R (e1 e
′
1, e2 e

′
2). This is established by the so-called compatibility lemmas of the logical relation.

Since linking is typically defined using language constructs, logical relations are compatible with
linking. This is a crucial property for compositional compiler correctness: two pairs of logically
related programs of arbitrary provenance can be linked together to obtain two logically related
programs. For example, assume that compilers comp1 and comp2 are independently verified to
satisfy a logical relation R: ∀ e, R (e, compi (e)), with i ∈ {1, 2}. Then, for any programs elib and eclient,
we can derive that R ([elib]eclient, [comp1 (elib)]comp2 (eclient)), where [elib]eclient denotes linking the
library program elib with the client program eclient.
Unfortunately, cross-language logical relations2 are not transitively (or vertically) composable.

That means, that if R1−2, R2−3, and R1−3 are logical relations between languages L1 and L2, L2 and
L3, and L1 and L3, one cannot derive that ∀ e1 e2 e3, R1−2 (e1, e2) ⇒ R2−3 (e2, e3) ⇒ R1−3 (e1, e3)

Therefore, logical relations cannot be used to prove compositional specifications for multi-pass
compilers. To understand this, consider the definition of logical relations for function values: two
functions are logically related if they map logically related values to logically related results. To
show that R1−3 (f1, f3) given R1−2 (f1, f2) and R1−3 (f2, f3) for functions f1, f2, and f3, one would
have to show that given arguments v1 and v3 such that R1−3 (v1,v3), R1−3 relates the expressions
f1 v1 and f3 v3. But the proof is stuck: there is no way to use the hypotheses since there is no value
v2 such that R1−2 (v1,v2) and R2−3 (v2,v3).

To address this limitation, Hur et al. [2012] develop parametric bisimulations (PBs), a new relation
that combines ideas from Kripke logical relations and bisimulations to derive a relation that is both
horizontally and vertically composable. Later, Neis et al. [2015] develop parametric inter-language
simulations (PILS) that generalize PBs to a cross-language setting. Roughly, PBs and PILs work
by parameterizing the relation with an unknown, arbitrary relation, the łassumed equivalencež
and drawing function arguments from this relation. But applying related functions to łassumed
equivalentž arguments is not guaranteed to produce the same observable behavior since nothing is

2Same-language logical relations may or may not be transitive. Typed same-language logical relations can be made transitive
by imposing additional requirements about typing [Ahmed 2006]. Some untyped logical relations are transitive [Owens
et al. 2017], others, like the ones we will use in these paper, are not.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 86. Publication date: August 2021.

Compositional Optimizations for CertiCoq 86:5

known about assumed equivalence. The solution is to define a local term equivalence relation that
asserts that two terms have the same observable behavior, excluding what happens in calls related
by assumed equivalence. These definitions are more convoluted than standard logical relations
used in compiler correctness (e.g., the one in [Owens et al. 2017]). Even though they avoid the usual
step-indexing that is needed to make logical relations well-founded, they need to be coinductively
defined and hence, proofs require coinductive reasoning. As those authors say in their papers, the
metatheory of PBs and PILS (including the proof of transitivity) are significantly complicated. For
example, a very subtle point in the transitivity proof is decomposing the assumed equivalence
between e1 and e3 to derive assumed equivalences between e1 and e2 and e2 and e3. Furthermore,
in their original form, PBs and PILS do not admit η−conversion (which many transformations
perform) and further adjustments are needed to make the rule admissible [Hur et al. 2014].
In this work, we show that if we are willing to restrict our compositional specification to only

apply to compilers that encompass the same sequence of intermediate representations, standard
logical relations can be used to derive a compositional specification for multi-pass compilers. We
observe that adequacy and horizontal compositionality are closed under relation composition,
under the assumption that program refinement is transitively composable (which is true in our
setting and in many other settings as well [Leroy 2009b; Chlipala 2010; Tan et al. 2016]). This follows
immediately by the definition of horizontal compositionality, adequacy, and relation composition.
Therefore, we can obtain a top-level compositional relation by composing the logical relations

that are used to verify each pass. For example, we might have compilers that go through languages
L1, L2 and L3 with two passes each that are verified with logical relations R1−2 and R2−3. We define

a top-level relation R
def
= R1−2 ◦ R2−3. Then, it is easy to show that R is adequate and compatible

with linking.
The above top-level relation will work for any compilers that have two passes, one between L1

and L2, and one between L2 and L3, that satisfy R1−2 and R2−3 respectively. However, compilers often
perform one or more same-language transformations on the same intermediate representation. We
may want to verify compilers that include an arbitrary number of same language transformations on
language L2 that satisfy a same-language logical relation R2−2. To that end, we define the following
relation:

R+2−2
def
= { (e1, e2) | ∃ n ≥ 1, (e1, e2) ∈ R2−2 ◦ . . . ◦ R2−2

︸ ︷︷ ︸

n-times

}

Because untyped, same-language logical relations, like R2−2, are reflexive,3 R+2−2 is satisfied by zero
or more L2 transformations. Therefore, the top-level relation

R
def
= R1−2 ◦ R

+

2−2 ◦ R2−3

is satisfied by compilers that encompass a pass from L1 to L2 that satisfies R1−2, (possibly) an
arbitrary number of L2 passes that satisfy R2−2, and a pass from L2 to L3 that satisfies R2−3. As we
will explain, the proof of horizontal compositionality for R+2−2 makes use of reflexivity.

We apply this approach to prove correct our multipass λANF pipeline. In our pipeline, only one
representation change happens (by our closure conversion transformation) and the rest of the
passes are same-language transformations before and after closure conversion. In our setting, we
only need two logical relations: a cross-representation logical relation (for closure conversion that
changes the representation of function values), and a same-language, reflexive logical relation (for
all other same-language transformations). The benefit of this approach is that each pass can be

3Typed same-language logical relations are also reflexive but for well-typed programs; this property is usually called the
fundamental property of the logical relation [Ahmed 2006]. In principle, we could apply our technique to typed logical
relations but that would require proving that transformations preserve typing.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 86. Publication date: August 2021.

86:6 Zoe Paraskevopoulou, John M. Li, and Andrew W. Appel

proved correct with a standard logical relation that has well-understood metatheory. Then the
compositionality framework can be built on top of the logical relations without any changes to the
logical-relations machinery. We found that defining the top-level compositional compiler relations
and proving adequacy and compatibility with linking was mostly straightforward. The definitions
of the top-level relations and the proofs of adequacy and compatibility (including the top-level
behavioral refinement) comprise 319 lines of code and 490 lines of proof.

2.2 Divergence Preservation

Correct compilers are expected to preserve divergent behaviors: if the source program infinite-
loops, then the target program should not return a result. Another contribution of our verification
framework is a general technique to show that divergence is preserved using a forward simulation
between big-step, fuel-based semantics. This is a delicate verification problem, especially when
transformations reduce the number of program steps. Existing techniques apply to simulations
that use small-step or big-step semantics.
Showing divergence preservation with a forward simulation between small-step semantics

requires reasoning about stuttering steps [Leroy 2009b; Barthe et al. 2019]. The problem is that a
small-step simulation for a step-reducing transformation states that whenever the source takes a
step (esrc → e ′src), then the target may take zero or more steps (etrg →∗ e ′trg). This, however, does
not exclude the possibility of the source program taking an infinite reduction sequence while the
target program terminates to a value. This is called the stuttering problem. The standard solution is
to define a well-founded measure on program states and show that it is strictly decreasing when
a source step does not correspond to a target step. However, small-step semantics complicate
semantic preservation proofs for transformations that introduce administrative redexes [Plotkin
1975; Dargaye and Leroy 2007] (our closure conversion, uncurrying, and lambda lifting all introduce
administrative redexes). Therefore, big-step semantics are often favored in semantics preservation
proofs. But big-step semantics do not usually capture terminating behaviors. One solution is to do a
separate proof using a big-step coinductive judgment that captures divergent behaviors [Leroy and
Grall 2009]. But this tends to be rather complicated and as requires formalizing two judgments and
carrying out a separate semantics preservation proof for each of them. To avoid the complications
of both small-step semantics and coinductive big-step semantics, the CakeML compiler uses a
fuel-based big-step semantics [Owens et al. 2016, 2017] that, just like ours, can capture divergent
behaviors. But to show divergence preservation, CakeML proofs require that the compiled program
consumes at least as much fuel as the source program. Since this is not true for all transformations,
CakeML uses a special instruction, Tick, in all of its intermediate representations that decreases
the amount of available fuel. Transformations introduce a Tick instruction whenever steps are
compiled away to keep the fuel consumption of the source upper bounded by the fuel consumption
of the target program. The instruction is propagated through all intermediate languages and it is
erased before code generation. It complicates correctness proofs by requiring an extra Tick-removal
pass that has to be proved correct with a backwards simulation [Owens et al. 2017, Section 7].

In our work, we take a more general approach: we weaken the csrc ≤ ctrg relation that is enforced
by CakeML to the fuel consumption of the source and target programs to a relation csrc ≤ f (ctrg),
where f can be any strictly monotonic function. Therefore, we allow the target to consume less
fuel than the source program and we do not need to add Tick instructions to our intermediate
representations.

First, we define a fuel-based big-step evaluation judgment, written e ⇓c r , that asserts that with
some fuel value c , the evaluation of an expression e yields a result r . Each evaluation rule consumes
a unit of fuel. The result can be either a value or an out-of-time exception (OOT) if there is not

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 86. Publication date: August 2021.

Compositional Optimizations for CertiCoq 86:7

enough fuel to evaluate the expression. We say that a program diverges if for all fuel values the

evaluation of a program times out: e ⇑
def
= ∀ c, e ⇓c OOT.

We formally prove (for our λANF semantics in section 4) that in order to show preservation of
divergence, it is enough to show that when the source program times out with some fuel csrc,
then so does the target program with some fuel ctrg, such that csrc ≤ f (ctrg) for some strictly
monotonic function f . In order to prove this more general bound, which is typically different for
each transformation, we use a logical relation that is parameterized by relational invariants on
the fuel consumption of the two programs. The compatibility lemmas of the logical relation are
adjusted so that we can compositionally prove that the invariants hold.
More precisely, we define a step-indexed logical relation is parameterized by two relational

invariants: QL the local invariant, and QG the global invariant:

Ek (e1, e2) {QL ;QG }
def
= ∀ c1 r1, e1 ⇓c1 r2 ⇒

∃ c2 r2, e2 ⇓c2 v2 ∧ QL (c1, c2) ∧ Rk−c1 (r1, r2) {QG }

The logical relation asserts, as usual, that if expression e1 evaluates to a result r1 for any fuel
value c1 that is less than the step-index, then the target expression e2 evaluates with some fuel
value c2, to some result r2 such that the two results are related with a result relation. Crucially,
it enforces that the fuel values of the two executions are related with the local invariant QL . The
resulting relation relates results that are either both out-of-time exceptions or both related values.
It is parameterized by the global invariant QG . This is more subtle; we defer its explanation to
section 5 where we give a concrete definition of the result relation.

By showing that a transformation, trans, inhabits the relation for an appropriate choice of local
invariant we show that divergence is preserved. That is, wemust prove∀ e, Ek (e, trans(e)) {QL ;QG }

for some QL that implies that when QL (c1, c2), then c1 ≤ f (c2) for some strictly monotonic f . We
found that such an upper bound was quite hard to find for the inlining transformation (but quite
easy to establish with our logical relation once found). It required us to tweak our semantics to
keep track of the total number of function calls that are executed by the program in addition to the
fuel consumption.
This approach is inspired by that of Paraskevopoulou and Appel [2019] who show (among

other things) that a closure conversion transformation preserves diverging behaviors. In particular,
they use a logical relation parameterized by pre- and postconditionsÐwhich are analogous to our
relational invariantsÐto impose a lower bound on the steps of the closure-converted program.
However, they do not show how this technique can be applied to transformations that reduce the
number of program steps.

In the next section, we describe our the intermediate representation and the multi-pass pipeline
on which we apply these verification technique. In section 5, we set up our verification framework
that incorporates these ideas.

3 THE λANF PIPELINE

Our λANF pipeline efficiently compiles away first-class functions and transforms the code to a
representation that can be readily compiled to a first-order, low-level language. The pipeline will
create a known and an escaping instance for each function [Appel 1992]. Known instances are
used only in statically known function calls, whereas escaping instances are used when a function
escapes to a different scope either through function return or parameter passing. Known instances
can be compiled more efficiently using specialized calling conventions. Known curried functions
can be uncurried by compiling them to functions that receive all of their arguments simultaneously.
In addition, closure records of known functions can be eliminated and their closure environments

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 86. Publication date: August 2021.

86:8 Zoe Paraskevopoulou, John M. Li, and Andrew W. Appel

can be allocated either in a heap-allocated environment or in registers. The latter is achieved
with a lambda-lifting transformation that transforms functions to receive their free variables as
parameters. In this section we formally define the λANF intermediate representation and we give an
overview of the λANF pipeline.

3.1 The λANF Intermediate Language

The λANF language (fig. 1) is a lambda-calculus in A-normal form [Flanagan et al. 1993], extended
with constructors, projections, case analysis and (mutually) recursive function definitions. There
are two kinds of function calls: let-bound function application, where the control returns to the
caller, and tail call. The patterns in case-analysis statements discriminate only the constructor and
do not bind any arguments; arguments of constructors must be projected explicitly in the body of

each case-clause. We use overbar to indicate repetition, so fun f x = e1 in e2 defines a list of zero
or more mutually recursive functions, each of which may have zero or more parameters. We use
metanotation for operations on such lists: [] for empty list, x :: x for consing an element at the
beginning of a list, x ++ y for list concatenation, and |x | for list length.

x ,y, f ∈ Var Variables
C ∈ Constr Constructors

e ∈ Exp ::= let x = C(y) in e Constructor
| let x = y.i in e Projection
| case y of [Ci → ei]i ∈I Case

| fun f x = e1 in e2 Function def .
| let x = f y in e Function call
| f x Tail call
| ret(x) Return

Fig. 1. The λANF language.

The input λANF program may have nested functions with free variables. The output program is in

a closure-converted subset λC
ANF

. In this restricted subset, programs have the form fun f x = ef in e ,
where all the functions are closed, and neither e nor the function bodies ef contain function
definitions. There are only two levels of scope in the program: the scope that contains the global
definitions of the mutually defined functions and the local scope of each function body. In λC

ANF
,

function values can be represented as bare function pointers and do not require closures. In
addition, all intermediate results are explicitly evaluated and stored in variables. Therefore, λC

ANF
is

straightforward to code-generate to low-level languages such as C or assembly.

3.2 λANF Transformations

The λANF pipeline consists of 13 passes: Shrink-Uncurry-Inline-Shrink-λLift-Inline-Shrink-
ClosureConvert-Hoist-Inline-Shrink-DPE-Shrink, built from the following 7 transformations.
Shrinking is a transformation that performs shrink reductions [Appel and Jim 1997b]: case

and projection folding (i.e., static evaluation of case statements and projections of values that are
statically known), dead code elimination, and inlining of functions that are called exactly once. We
use the proved-correct shrink-reducer of Savary Bélanger and Appel [2017] which operates on the
CPS subset of our λANF. We extended the implementation and the proof to apply to the full λANF
language and we adapted the proof to our verification framework. The previous proof of the shrink
reducer showed semantic preservation only for terminating programs.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 86. Publication date: August 2021.

Compositional Optimizations for CertiCoq 86:9

Inlining inlines nonrecursive function calls picked based on a heuristic or marked for inlining
by a different pass (uncurrying and lambda lifting). Our current heuristic is to inline small-bodied
functions. Inlining let-bound function calls suffers from the usual problems of inlining in A-normal
form languages [Kennedy 2007]. When inlining a let-bound function call, our inliner will perform
a renormalization step so that the program is in A-normal form. Inlining let-bound function calls
whose body is a case expression requires introducing a join point [Maurer et al. 2017]. Our current
inliner will not inline such functions, but this is not a fundamental limitation of our approach.
Uncurrying. After ANF conversion, all functions are unary (or 2-ary if CPS conversion is used,

which adds an additional continuation argument). Multi-argument functions in Coq are curried:
they receive an argument and return a new function until all of the arguments are consumed,
causing a closure allocation for each intermediate function return. Our uncurrying transformation
converts calls to statically known curried functions into efficient multi-argument calls. It does so by
detecting curried functions based on their syntactic structure and introducing a newmulti-argument
function. The approach is described by Appel [1992].
Closure conversion and hoisting convert the input program to a program with flat function

structure. Closure conversion eliminates free variables in functions by introducing explicit closures.
Then a separate pass hoists all functions into a top-level block of mutually recursive closed function
definitions. After this pass, all variable references are either references to function parameters and
local variables or references to function names defined in the top-level function block.

Our closure-conversion transformation treats all functions uniformly. It closure-converts every
function by installing a new environment parameter and creating a heap-allocated closure. The
rest of the λANF transformations eliminate redundant closures: lambda lifting creates known and
escaping instances and (selectively) converts known functions to receive their free variables as
parameters, shrink-reduction statically evaluates projections from statically known closure pairs,
dead parameter elimination removes useless environment parameters.
Lambda Lifting [Hughes 1982; Johnsson 1985] runs before closure conversion and is key to

the implementation of our efficient closure allocation strategies. This transformation creates closed
functions by passing free variables as extra arguments so that they do not have to be passed through
a closure environment. Effectively, this stores known-function closure environments in registers
(instead of allocating them in the heap). Lambda lifting typically lifts closed function definitions to
the top-level (hence its name); but we defer that step to our hoisting transformation. Our lambda
lifting can be expressed as the congruent, transitive closure of the following local rewrite step.

fun f ′ (fv ++ x) =

fun f x = e1 in e2 ⇝ fun f x = f ′ (fv ++ x) in e1
in

fun f x = f ′ (fv ++ x) in e2 where fv ⊆ fv(fun f x = e1)

It defines a known copy f ′ of the function f that receives its free variables as parameters. The
function f is then redefined in terms of f ′ in both the local scope of the function and after the
function definition. Known calls to f inside e1 or e2, will be inlined to call f ′. When the function
escapes, f ′ is called through the escaping wrapper f . Recursive calls will always call the known
function instance f ′. The known and the unknown instances are not mutually defined, because
mutually defined functions share their closure environment. Therefore, the closure environment of
the known instance would not become eliminated.

Our lambda lifting transformation is selective: not every known function instance will receive its
free variables as parameters. As observed in other compilers [Santos 1995; Jones 1996] [Leroy et al.
2020, Chapter 21], lambda lifting every function indiscriminately may result in worse performance.
We devise a new set of criteria for lambda lifting that, according to our preliminary experimental

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 86. Publication date: August 2021.

86:10 Zoe Paraskevopoulou, John M. Li, and Andrew W. Appel

results, avoid worsening performance in the set of benchmarks we consider. Furthermore, selective
lambda lifting achieves considerable performance improvement (6%-7%) in some cases. The criteria
are as follows:

(1) The total number of a function’s arguments after lambda lifting should not exceed the
available registers in the machine in order to avoid register spilling.

(2) When a nontail call is performed, parameters and locals in (caller-save) registers must be
pushed into the stack before the call and popped after it. If a free variable is used only late
in a function-body, after such calls, it would be fetched late from the closure environment
and no such pushing and popping would have occurred. But when such a free variable
becomes a parameter (live across several calls), this generates more memory traffic than
fetching its value from a heap-allocated closure environment. So we lambda-lift free variables
only if they are live across at most one function call. To our knowledge, we are the first to
make this observation about the performance of lambda lifting. As we demonstrate in our
evaluation section, lambda lifting without taking this criterion into account does not give as
good performance improvement.

(3) When a lambda-lifted function is called, the extra arguments can bloat the size of the calling
function’s closure if these variables are not part of the caller’s local variables or closure envi-
ronment. Our lambda lifting will (optionally) not inline calls to escaping function wrappers
if that would cause an increase the size of the caller’s closure environment. Note that this
heuristic is off by default. Often there is a cascading effect and the closure of the caller can
be avoided too, so this strategy can miss opportunities for optimization.

We believe these are the most refined lambda lifting strategies implemented by any compiler.
Flambda’s lambda lifter is not selective, and GHC’s Core-to-Core (selective) lambda lifter [Santos
1995; Jones 1996; Graf and Jones 2019] only considers strategy (3). We also considered inlining
the known function call inside the escaping wrapper (as OCaml’s Flambda [Leroy et al. 2020,
Chapter 21] optimizing pipeline does) but we did not observe performance improvementÐprobably
because the back end implements tail calls to known functions as efficient jumps with arguments,
or even by fall-through.
Dead parameter elimination removes unused arguments from functions. It performs liveness

analysis around (mutually) recursive functions to find which arguments are truly needed by the
computation, and it marks other arguments as unused. Some of the unused arguments will be
useless closure environments installed by closure conversion: if (before closure conversion) a
function is closed and has only known calls, then no closure environment is needed. Rather than
adding this special case to our closure-conversion algorithm, we just build the closure anyway, and
then clean it up with DPE and shrink-reduction.

3.3 Compilation by Example

We illustrate the compilation of a program through the λANF pipeline with an example. We deviate
slightly from the syntax of λANF in order to keep the code shorter and more readable. In the following
program, the function interleave traverses a list interleaving the free variables x and y among its
elements. Then the function is applied to list l1 and it is also applied to each element of the list (of
lists) l using the map function.

fun interleave l =

case l of

| [] => []

| z : : l => x : : y : : z : : (interleave l)

end in

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 86. Publication date: August 2021.

Compositional Optimizations for CertiCoq 86:11

let l1 = [1 , 2 , 3] in let l = [l1 , l1 , l1] in

let l1 ' = interleave l1 in

let l ' = map interleave l in . . .

In the above program, uncurrying has already been done, and the known function map (assuming
that it is defined earlier in the program) is applied to both of its arguments simultaneously. Next,
lambda lifting is applied. It creates two copies of interleave. The known copy, interleave_known,
receives its free variables as arguments and is a closed function. The escaping copy, interleave,
is defined both inside the function body and after the function definition and will be used at
escaping positions. Our inliner will inline statically known interleave calls. The shrinker will
eliminate the dead code (e.g., the definition of interleave inside interleave_known). After these
transformations, we have:

fun interleave_known l x y =

case l of

| [] => []

| z : : l => x : : y : : z : : (interleave_known l x y)

end in

fun interleave l = interleave_known l x y in

let l1 = [1 , 2 , 3] in let l = [l1 , l1 , l1] in

let l1 ' = interleave_known l1 x y in

let l ' = map_known interleave l in . . .

Closure conversion runs next, after which all function applications will fetch the code and the
environment from the closure pair. We use the constructor Ccc for closure pairs and the construc-
tor Cf for the closure environment of the function interleave. The projections from statically
known closure-pairs will be statically evaluated by shrinking, and the constructed closure will
be dead code, and therefore deleted. The redundant environment argument of known functions
interleave_known and map_known will be deleted by dead parameter elimination. The only func-
tion that will get a heap-allocated environment and closure pair is the escaping interleave

function. The final code is shown below.

fun interleave_known l x y =

case l of

| [] => []

| z : : l => x : : y : : z : : (interleave_known l x y)

end in

fun interleave l env = let x = env . 1 in let y = env . 2 in interleave_known l x y in

let env = Cf (x ,y) in let interleave_clo = Ccc (interleave ,env) in

let l1 = [1 , 2 , 3] in let l = [l1 , l1 , l1] in

let l1 ' = interleave_known l1 x y in

let l ' = map_known interleave_clo l in . . .

4 SEMANTICS AND COMPILER CORRECTNESS

Our goal is to prove that our λANF pipeline compiles programs correctly, that is, the target program
preserves the source program’s observable behaviors, such as termination and divergence. We
will prove compiler correctness both for closed, whole programs and open programs, compiled
separately and linked at the target level. A program obtained after linking modules at the target level
should preserve the behavior of the program obtained by linking the modules at the source-level.
We are interested not only in compiling programs separately, but also in compiling them with

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 86. Publication date: August 2021.

86:12 Zoe Paraskevopoulou, John M. Li, and Andrew W. Appel

different optimizations enabled. Not every optimization will be beneficial for every program so we
might turn optimizations off. We might also improve some λANF optimizations (e.g., implement more
efficient closure environment representations [Shao and Appel 2000]) or add new λANF optimizations.
Then we should be able to link newly compiled modules with previously compiled modules.

For simplicity, we omit mutually defined functions from the formal definitions the rest of the
paper. Our implementation and mechanization fully support mutually recursive functions.

4.1 Semantics

To prove correctness of a compiler we formalize the semantics of the source language (λANF) and
target language (also λANF).4 The semantics of λANF is a fuel-based, big-step semantics. It relates a
term with a final result under a fuel value; the final result will be an out-of-time exception if there
is insufficient fuel to carry out a computation. Using this fuel-based definition we can semantically
characterize nonterminating terms and hence state and prove that divergence is preserved through
our compiler.

We first define λANF values, evaluation environments, and results (fig. 2). A λANF value is either a
constructed value or a closure value consisting of an environment and a function definition. An
environment is a partial map from variables to values. The final result returned by the semantics is
either a value (wrapped in a Res constructor) or an out-of-time exception (OOT).

v ∈ Val ::= C(v) | ⟨σ , fun f x = e⟩ Values

σ ∈ Env = Var⇀ Val Environments

r ∈ Res ::= Res(v) | OOT Results

Fig. 2. λANF values, environments, and results.

Our semantic definition is indexed with a fuel and a trace value. The fuel keeps track of the
length of the derivation tree of the evaluation. It is used to define diverging executions and show
that diverging behaviors are preserved. The trace value counts the number of application steps
(let-bound or tail) in the derivation tree. We found that this is necessary in order to express an
invariant for the inlining transformation in ANF form. In section 6, we give an upper bound of the
fuel consumption of a program before inlining as a function of both the fuel consumption of the
inlinlined program and the trace of the input program. Our mechanized semantic definitions are
parameterized by two abstract commutative monoids that can be instantiated with different fuel
and trace models. But since in this paper we use one concrete fuel and trace instantiation, we only
present those.

We now have all the tools we need to define the semantics. The judgment (σ , e) ⇓c t r asserts that
the configuration consisting of environment σ and term e evaluates with fuel c to result r incurring
a trace t . Recall that a result is either a value or an out of time exception. The semantic judgment is
mutually defined with the auxiliary judgment (σ , e)

c t
r . Conceptually, ⇓ is responsible for the

fuel and trace profiling, whereas evaluates the outermost constructor of the term.
Each evaluation step first goes through the rule Step that does the bookkeeping of trace and fuel

resources and invokes the judgment to evaluate the outermost constructor of the term. The fuel
needed to evaluate the outermost constructor of a term e is always one unit (given by fuel(e)). The

4Our target program is in the λC
ANF

subset. Any λC
ANF

program can be interpreted using λANF semantics or using a simpler

λC
ANF

semantics, which does not use closure values, and the observable result will be the same. We move to closure-less

semantics during our code generation proof, so we don’t need λC
ANF

semantics for the results covered in this paper.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 86. Publication date: August 2021.

Compositional Optimizations for CertiCoq 86:13

σ (y) = v (σ [x 7→ C(v)], e) ⇓c t r

(σ , let x = C(y) in e)
c t

r
Constr

σ (x) = Ci (v) (σ , ei) ⇓
c t r

(σ , case x of {Ci → e}i ∈I)
c t

r
Case

σ (y) = C(v1, . . . ,vj , . . . ,vn)

(σ [x 7→ vj], e) ⇓
c t r

(σ , let x = y.j in e)
c t

r
Proj

(σ [f 7→ ⟨σ , fun f x = e1⟩], e2) ⇓
c t r

(σ , fun f x = e1 in e2)
c t

r
Fun

σ (f) = ⟨σд , fun д z = eд⟩ |y | = |z | σ (y) = v

(σд[z 7→ v][д 7→ ⟨σд , fun д z = eд⟩], eд) ⇓
c1 t1 Res(v1) (σ [x 7→ v1], e) ⇓

c2 t2 r

(σ , let x = f y in e)
c1+c2 t1+t2 r

Let-app

σ (f) = ⟨σд , fun д z = eд⟩

|y | = |z | σ (y) = v (σд[z 7→ v][д 7→ ⟨σд , fun д z = eд⟩], eд) ⇓
c t OOT

(σ , let x = f y in e)
c t

OOT
Let-app-oot

σ (f) = ⟨σд , fun д z = eд⟩

|y | = |z | σ (y) = v (σд[z 7→ v][д 7→ ⟨σд , fun д z = eд⟩], eд) ⇓
c t r

(σ , f y)
c t

r
App

σ (x) = v

(σ , ret(x))
0 0

Res(v)
Ret

i < fuel(e)

(σ , e) ⇓i 0 OOT
OOT

(σ , e)
c t

r

(σ , e) ⇓c+fuel(e) t+trace(e) r
Step

where fuel(e) = 1 trace(f y) = 1
trace(let x = f y in e) = 1

trace(e) = 0 if e is not a function call

Fig. 3. The semantics of λANF.

trace is unit only when the expression is an application and zero otherwise (given by trace(e)). The
rules of are straightforward. Observe that the semantics of λANF does not permit partial application
of functions. All functions must be fully applied to their arguments. This trivially holds after ANF
translation since functions are curried and all functions and applications are unary. Multi-argument
functions are introduced by the λANF pipeline and are never partially applied. The rule oot throws
an out-of-time exception whenever there is not enough fuel to evaluate the outermost constructor
of the term. In this case, an empty trace is recorded.

Using this semantics, we can define what it means for a term to diverge. A term diverges, written
(σ , e)⇑, if for all fuel values, the computation runs out of time.

(σ , e)⇑
def
= ∀c,∃t , (σ , e) ⇓c t OOT

When e is closed and evaluates in the empty environment we will write e ⇓c t r and e ⇑.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 86. Publication date: August 2021.

86:14 Zoe Paraskevopoulou, John M. Li, and Andrew W. Appel

4.2 Correctness Specification

With the semantics in hand, we can state the top-level correctness specification for the λANF pipeline.
First, we state program refinement for whole program compilation. If a closed source program
terminates yielding a final value, then the target term must terminate yielding a value that refines
the source value. If a source program diverges, then so must the target program. This is captured
by a behavioral refinement specification esrc ⊇B etrg.

esrc ⊇B etrg
def
= (esrc ⇓ Res(vsrc) ⇒ ∃ vtrg, etrg ⇓ Res(vtrg) ∧ vsrc ⊇V vtrg) ∧

esrc⇑ ⇒ etrg⇑

We say that a compiler comp is correct for whole programs if for all terms e , e ⊇B comp(e). The
value refinement relation ⊇V specifies when a target value refines a source value:

C1 (v1, . . . ,vm) ⊇V C2 (v
′
1, . . . ,v

′
n)

def
= C1 = C2 ∧ n =m ∧ ∀i, vi ⊇V v

′
i

⟨σ , fun f x = e⟩ ⊇V Ccc (vf , ef)
def
= True

The value refinement relates constructed values that have the same outermost constructor and
pairwise related values. It relates λANF closure values with explicitly constructed closure values
(with constructor tag Ccc), but it does not specify anything about the behavior of the function parts
of the closure. Why? We use behavioral refinement to relate closed, top-level programs. When
we run a whole, top-level program we can observe only the first-order components of the result.
First order results are constructed values that can be inspected with appropriate knowledge of the
memory representation. In contrast, to observe a function value, a program must be linked with
another program that will apply the result to some arguments. We address this next.

First, we need to define what linking programs means in the λANF language. Our linking operation
links a client program eclient that has a free variable x with a library program elib that computes the
value of the variable x . It is defined below.

[x 7→ elib]eclient
def
= fun f [] = elib in let x = f [] in eclient

Intuitively, we can think of the linking operator as a closing substitution that substitutes the variable
x in the client program with the term elib. But the syntactic restrictions of A-normal form mean that
in λANF we cannot simply substitute an identifier for an expression or write let x = elib in eclient.
Therefore we use a zero-arity function to wrap the computation elib and we bind the result of
application of this function to an empty list of arguments to the variable x . The linking operator
can be generalized to multiple external references.

Using behavioral refinement and the linking operator we can define what it means for separate
compilation to be correct. Two programs e and e ′ that are separately compiled with compilers
comp1 and comp2 may be safely linked if we have:

[x 7→ e ′]e ⊇B [x 7→ comp2 (e
′)]comp1 (e)

The specification for separate compilation asserts that the whole target program obtained by linking
the two compiled programs refines the behavior of the whole source program obtained by linking
the two programs at the source level.

When the same compiler is used to compile both programs (i.e., comp1 = comp2) and compilation
commutes with linking (i.e., comp1 ([x 7→ e ′s]es) = [x 7→ comp1 (e

′
s)]comp1 (es)), it is trivial to prove

behavioral refinement for linking. However, neither is true for the λANF pipeline. We want to be
able to use different optimizations when compiling programs separately. Even if we were willing to
restrict ourselves to the same pipeline, the commutation requirement does not hold for multiple
reasons (e.g., alpha-conversion, possible inlining of the zero-arity linking function f). So there is

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 86. Publication date: August 2021.

Compositional Optimizations for CertiCoq 86:15

no easy recipe to show correctness for separate compilation. The novel compositional compiler
correctness technique that we introduce in section 5 allows us to show behavioral refinement for
separate compilation.

4.3 Divergence Preservation

We now formalize the statement that we outlined in section 2.2: in order to show that divergence is
preserved it suffices to show that the fuel consumption of the source program is upper bounded by
a strictly monotonic function of the fuel consumption of the target program.
First, we need to prove a fuel-monotonicity property for our semantics: if a program times out

for some fuel value c , then it times out for all smaller fuel values.

Lemma 4.1 (Fuel monotonicity). Assume that (σ , e) ⇓c t OOT. Then, for any c ′ ≤ c , there exist

t ′ ≤ t such that (σ , e) ⇓c
′ t ′ OOT.

Using the above lemma, we can prove the desired divergence preservation lemma.

Lemma 4.2 (Divergence preservation). Let f be a function N→ N such that f (x) ≤ f (y) ⇒

x ≤ y. Assume that for two configurations (σ1, e1) and (σ2, e2) we know that if (σ1, e1) ⇓c1 t1 OOT
then there exist c2 and t2 such that (σ2, e2) ⇓

c2 t2 OOT and c1 ≤ f (c2). Then if (σ1, e1)⇑ we have that

(σ2, e2)⇑.

Proof. Let c be a fuel value. We must show that there exists t such that (σ2, e2) ⇓c t OOT. From
the hypothesis that e1 is a diverging program, we know that (σ1, e1) ⇓f (c) t1 OOT for some t1.
Therefore, we can derive that (σ2, e2) ⇓c2 t2 OOT for some c2 and t2 such that f (c) ≤ f (c2). But
from the hypothesis about f we have that c ≤ c2. From the fuel monotonicity property of our
semantics we obtain t ≤ t2 such that (σ2, e2) ⇓c t OOT. □

In the next section we will set up a logical relation that let us impose arbitrary binary relations
on the fuel consumption of two programs. If such relation implies the required bound of lemma 4.2,
then we can establish divergence preservation. For transformations that do not reduce fuel we take
f to be the identity function. In order express to express an upper bound the fuel consumption of
the program before inlining in terms of the fuel consumption of the program after inlining, we will
use the number of function applications performed during the source program’s execution, which
is captured by the trace value of the semantics of λANF.

5 COMPOSITIONAL PROOF FRAMEWORK

To prove correctness of λANF transformations, we use untyped, step-indexed logical relations.
Although logical relations are more commonly indexed by types, untyped logical relations also
appear in the literature [Acar et al. 2008; Paraskevopoulou and Appel 2019; Owens et al. 2017;
Georges et al. 2021]. We set up two different logical relations: a reflexive relation to prove correct
transformations that don’t change the representation of function values, and a nonreflexive relation
to prove correct closure conversion, which does change the representation of functions. Then, as we
outlined in section 2, we compose these relations to derive a top-level relation that is both adequate
and compatible with linking. Ultimately, that will allow us to derive a separate compilation theorem
for our pipeline that asserts that we can safely link programs complied through the λANF pipeline,
perhaps using different λANF optimizations.

The reflexive logical relation is shown in fig. 4. It consists of a value relation V , a result relation
R, an expression relation E , and an environment relation C.
The expression relation is Ek ((σ1, e1), (σ2, e2)) {QL ;QG }. The first argument k is the usual step

index that is needed for the well-foundedness of the definition. The next two arguments are

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 86. Publication date: August 2021.

86:16 Zoe Paraskevopoulou, John M. Li, and Andrew W. Appel

the configurations (pairs of environments and expressions) that are being related. The last two
arguments are two relational invariants: a local invariant and a global invariant. This is the only
nonstandard feature of our logical relations. These invariants are binary relations over pairs of
a fuel and trace value. The relational invariants allow us to establish the bound that we need to
show divergence preservation (lemma 4.2). This bound will typically be different for each λANF
transformation. The local invariant is imposed on the fuel and trace values of the executions of the
current configurations while the global invariant is imposed on the future execution of functions
in the results through the value relation. Local and global invariants need to be separate because
global invariants are used to relate only whole-function executions, while local invariants relate
programs at arbitrary points during execution. Hence, they might need to be instantiated with a
different relation; we give an example of this later in this section.

The result relation R relates two results that are either out-of-time exceptions or related values.
The value relation V relates λANF values. Two constructed values are related if they are constructed
with the same constructor and their constructor arguments have the same lengths and are pairwise
related (written Vk (v1,v2) {Q }). Two closure values are related if for any two lists of parameters
related at some strictly smaller step index i , the two configurations that consist of the body of the
function part of the (corresponding) closure and the environment part of the closure (extended
with appropriate bindings) are related. The closure environments are extended with bindings that
map the formal parameters to the actual parameters and the function name to its closure value,
which is needed for recursive functions. The value relation is indexed only with a global invariant
that relates the fuel and trace consumption of related function bodies. When the expression relation
is invoked from the value relation for closures, the global invariant is used to instantiate both the
local and the global invariant of the expression relation.
The environment relation C lifts the value relation to a subdomain S of two environments and

it is defined using an auxiliary variable relation X . In particular, for any variable in the set S , we
assert that if it is defined in the domain of the first environment then it is also defined in the domain
of the second environment and their values are related with the value relation. The environment
relation is used to assert that the environment parts of two configurations are logically related. It is
convenient to restrict this relation to a variable subset S that is relevant for a program’s execution
(which is typically the set of free variables of a term).

The closure-conversion relation is shown in fig. 5. Only the closure case of the value relation VCC

is different than the reflexive relation; therefore, we show only show this. The other cases of VCC

and the rest of the definitions (ECC, CCC, andRCC) are defined as before. TheVCC relation for closures
relates a λANF closure value with a constructed closure value. The first component for the constructed
value is a closure value (i.e., the code component of the closure) and the second component an
environment (which is also a constructed value). It might seem odd that the code component
of the constructed closure is itself a (primitive, not constructed) closure. However, after closure
conversion, functions do not become immediately closed. They might still contain free variables that
are references to other (known, not escaping) functions. Functions will become closed when they
are all moved to a mutually defined function block after the hoisting transformation. We formally
prove that after hoisting all functions are hoisted to the top-level and are closed. The compiler
moves to a semantics without closure values but just bare functions during the code-generation
phase proof. Technically speaking, we could transition to a representation without closures within
this framework by using a third logical relation that moves to a closure-less semantics and function
representation.
Correctness. We show correctness of transformations by showing that under any logically

related environments the source and target terms are related for an appropriate choice of local and

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 86. Publication date: August 2021.

Compositional Optimizations for CertiCoq 86:17

Value relation

Vk (C1 (v1), C2 (v2)) {Q }
def
= C1 = C2 ∧ Vk (v1,v2) {Q }

Vk (⟨σ1, fun f x = e1⟩, ⟨σ2, fun д y = e2⟩) {Q }
def
=

∀ i < k v1 v2, V
i (v1,v2) {Q } ⇒ |x | = |v1 | ⇒ |y | = |v2 | ∧ E i ((σ ′1, e1), (σ

′
2, e2)) {Q ;Q }

Where σ ′1 = σ1[x 7→ v1, f 7→ ⟨σ1, fun f x = e1⟩]
and σ ′2 = σ2[y 7→ v2,д 7→ ⟨σ2, fun д y = e2⟩].

Vk (v1,v2) {Q }
def
= False Otherwise.

Result relation

Rk (OOT,OOT) {Q }
def
= True

Rk (Res(v1),Res(v2)) {Q }
def
= Vk (v1,v2) {Q }

Rk (r1, r2) {Q }
def
= False Otherwise.

Expression relation

Ek ((σ1, e1), (σ2, e2)) {QL ;QG }
def
=

∀c1 r1 t1, c1 ≤ k ⇒ (σ1, e1) ⇓
c1 t1 r1 ⇒

∃ c2 r2 t2, (σ2, e2) ⇓
c2 t2 r2 ∧ QL (c1, t1) (c2, t2) ∧Rk−c1 (r1, r2) {QG }

Variable relation

X k (σ1,x) (σ2,y) {Q }
def
= σ1 (x) = v1 ⇒ ∃v2,σ2 (y) = v2 ∧ Vk (v1,v2) {Q }

Environment relation

S ⊢ Ck (σ1,σ2) {Q }
def
= ∀ (x ∈ S), X k (σ1,x) (σ2,x) {Q }

Fig. 4. The reflexive logical relation.

Vk
CC
(⟨σ1, fun f x = e1⟩, CCC (⟨σ2, fun д γ :: y = e2⟩, e)) {Q }

def
=

∀ i < k v1 v2, V
i
CC
(v1,v2) {Q } ⇒ |x | = |v1 | ⇒ |y | = |v2 | ∧ E i

CC
((σ ′1, e1), (σ

′
2, e2)) {Q ;Q }

Where σ ′1 = σ1[x 7→ v1, f 7→ ⟨σ1, fun f x = e1⟩]
and σ ′2 = σ2[γ 7→ e,y 7→ v2, f 7→ ⟨σ2, fun д y = e2⟩].

Fig. 5. The closure conversion logical relation (excerpt).

global invariants. In particular, we define a top-level logical relation:

E (e1, e2) {QL ;QG }
def
= ∀ k σ1 σ2, fv(e1) ⊢ C

k (σ1,σ2) {QG } ⇒ fv(e) ⊆ dom(σ1) ⇒

Ek ((e1,σ1), (e2,σ2)) {QL ;QG }

Similarly, we define ECC (e1, e2) {QL ;QG } for the ECC relation. Then for each transformation, trans,
we show thatE (e, trans(e)) {QL ;QG } (or in the case of closure conversionECC (e, trans(e)) {QL ;QG })
for appropriate QL and QG .
Notice that we require that the free variables of the source term must be defined in the source

environmentÐthis is required by the proofs of certain transformations (lambda lifting and closure

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 86. Publication date: August 2021.

86:18 Zoe Paraskevopoulou, John M. Li, and Andrew W. Appel

conversion). In both transformations, the target term accesses free variables earlier than the source
term, and we need this additional assumption so that target terms do not get stuck earlier than
source terms.
Local vs. global invariants. Typically, when we consider top-level programs the local and the

global invariants are the same. But during a proof, a local invariant may become (locally) different
from the global invariant as we consider intermediate states of the execution of the source and
target programs. We illustrate this with an example. Let =k be a relation that relates two pairs
(c1, t1) and (c2, t2) of a fuel and trace value if and only if c1 + k = c2 (we ignore the trace value in
this example for simplicity). The logical relation (as we will formally state later on) is reflexive.
Hence, we can establish that:

E
k ((σ , fun f x = e ′ in e), (σ , fun f x = e ′ in e)) { =0 ; =0 }

Unsurprisingly, the fuel consumption is the same for the left and right configurations since it is
exactly the same program.
Now assume that we wish to relate the configuration (σ [f 7→ ⟨σ , fun f x = e ′⟩], e) with the

configuration (σ , fun f x = e ′ in e). These configurations are clearly related: they compute exactly
the same result. The only difference is that in the first configuration, we have performed execution
step. The global invariant should still be =

0 since the results are identical and therefore any
two related functions in the results will still have the same fuel consumption. However, the local
invariant is not the same anymore. If the first configuration consumes fuel f then the second
configuration consumes fuel f + 1 since it has to execute one more step. Therefore we have:

E
k ((σ [f 7→ ⟨σ , fun f x = e ′⟩], e), (σ , fun f x = e ′ in e)) { =1 ; =0 }

The above two programs are related with a different local and global invariant. Therefore, keeping
the local and the global invariants separate gives us the flexibility to relate programs at points of
execution where the global invariant does not hold.
Compatibility Lemmas. As usual, we formally prove compatibility rules for the logical relation,

asserting that the logical relation is closed under language constructions. These lemmas are used
to reason compositionally about program relatedness. Because our relation is indexed with local
and global invariants, to prove the compatibility lemmas we need to assume that the invariants
satisfy some compatibility properties too. These help us establish the invariants compositionally,
by asserting that the invariants are preserved when a step of computation happens. As an example,
we consider the compatibility rule for constructors. The lemma states that two constructors are
related if their arguments are pairwise related in the environments, and their continuations are
related in the environments extended with related bindings.

Lemma 5.1 (Compatibility (constructor)). Assume that QL (0, 0) (0, 0) and that
QL (c1, t1) (c2, t2) ⇒ QL (c1 + 1, t1) (c2 + 1, t2). If

• X k (σ1,y1) (σ2,y2) {QG }

• ∀ v1 v2, V
k (v1,v2) {QG } ⇒ Ek ((σ1[x1 7→ C(v1)], e1), (σ2[x2 7→ C(v2)], e2)) {QL ;QG }

then Ek ((σ1, let x1 = C(y1) in e1), (σ2, let x2 = C(y2) in e2)) {QL ;QG }.

The above lemma requires that the local invariant holds for zero fuel and trace value. This is
useful to establish the local invariant when both configurations time out. It also assumes that the
local invariant is preserved when adding the fuel needed to evaluate a constructor to two related
fuel values. This is needed to establish the local invariant. Assume that c1 and t1 (resp. c2 and t2)
is the fuel and trace of expression e1 (resp. e2). From the hypothesis that e1 and e2 are related, we
know that QL (c1, t1) (c2, t2). Using the compatibility assumption for the local invariant, we derive

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 86. Publication date: August 2021.

Compositional Optimizations for CertiCoq 86:19

that QL (c1 + 1, t1) (c2 + 1, t2), which relates the fuel and trace values of let x1 = C(y1) in e1 and
let x2 = C(y2) in e2.

Similarly, we need compatibility rules for resource invariants to show the rest of the compatibility
lemmas of the logical relation. We define the predicate Compat QG QL to mean that the local
invariant QL and global invariant QG satisfy these compatibility rules. It asserts that:

(1) QL (0, 0) (0, 0). This is required when both configurations time out.
(2) QL (1, 0) (1, 0). This is required when both configurations return. Recall from the definition

of the semantics that return does not incur any trace.
(3) QL (c1, t1) (c2, t2) ⇒ QL (c1 + 1, t1) (c2 + 1, t2).

This is required for the inductive constructors of the language that are not function applica-
tions, as illustrated in lemma 5.1.

(4) QG (c1, t1) (c2, t2) ⇒ QL (c3, t3) (c4, t4) ⇒ QL (c1 + c3 + 1, t1 + t3 + 1) (c2 + c4 + 1, t2 + t4 + 1).
This is required for the compatibility lemma of let-bound application. The first premise holds
for the fuel and trace values of the function bodies, which are related by the global invariant.
The second premise holds for the fuel and trace values for the expressions that are evaluated
after the function calls (i.e., the expressions that the calls are let-bound in). The result adds
the fuel and trace values of the function calls and their continuations and adds a unit to both
the fuel and the trace values (since applications require a unit of fuel and a unit of trace).

(5) QG (c1, t1) (c2, t2) ⇒ QL (c1 + 1, t1 + 1) (c2 + 1, t2 + 1).
This is required for the compatibility lemma of tail-call applications.

Reflexivity. The E relation is reflexive. We take advantage of this property later on, in order
to prove a linking theorem for pipelines that use an arbitrary number for same-representation
transformations. Reflexivity is proved using the compatibility lemmas for the logical relation; hence,
it assumes that the invariants satisfy the compatibility rules of the previous paragraph.

Lemma 5.2 (Reflexivity).

Assume that Compat QG Q . If fv(e) ⊢ Ck (σ1,σ2) {Q } then Ek ((σ1, e), (σ2, e)) {Q ;QG }.

Transitivity. The E relation can be transitively composed:

Lemma 5.3 (Transitivity). Assume that Compat QG QG and that QG ◦ QG ⊆ QG . If

Ek ((σ1, e1), (σ2, e2)) {Q1;QG } and ∀ k, E
k ((σ2, e2), (σ3, e3)) {Q2;QG } then E

k ((σ1, e1), (σ3, e3)) {Q1 ◦

Q2;QG }.

This lemma requires that the global invariant is semi-idempotent: (QG ◦ QG ⊆ QG). This is
necessary in order to transitively compose the value relation when the results are closures (using
the induction hypothesisÐthe induction is on the step-index).We use this property in the correctness
proof of the uncurrying transformation, which is expressed as the transitive closure of a rewrite step.
For the simple invariant of this transformation the semi-idempotency requirement holds. However,
the relation E is not transitive in the general case. We cannot compose the proofs of transformations
that have different global invariants or have global invariants that are not idempotent.
Adequacy and Compatibility with Linking are two important properties of the logical rela-

tions. A relation is adequate if it implies the behavioral refinement that we wish to establish. To
prove adequacy we need to establish divergence preservation. Therefore, we need to know that the
local invariant implies the upper bound of lemma 4.2. This is captured by the following definition.

Definition 5.4 (Invariant, upper bound). UpperBound Q holds iff there exists a function f such
that∀x y, f (x) ≤ f (y) ⇒ x ≤ y and for all fuel values c1, c2 and trace values t1, t2 ifQ (c1, t1) (c2, t2)

then c1 ≤ f (c2).

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 86. Publication date: August 2021.

86:20 Zoe Paraskevopoulou, John M. Li, and Andrew W. Appel

Using the UpperBound predicate we can state and prove adequacy for the logical relations. The
logical relation ECC implies the behavioral refinement of the previous section. This is stated below
(∅ is the empty environment).

Lemma 5.5 (Adeqacy). Assume UpperBound QL . Then,

(∀ k, Ek
CC ((∅, e1), (∅, e2)) {QL ;QG }) ⇒ e1 ⊇B e2

The logical relation E is also adequate but with respect to a different behavioral refinement that
relates closure values to primitive closure values (not constructed closures).
Using adequacy, we can derive whole-program correctness for our compiler by showing each

transformation correct with respect to the logical relation and then transitively composing behav-
ioral refinement (which is transitive). But this approach does not support compositional correctness.
The logical relations are also compatible with linking. This means that linking related modules

with related modules yields related modules and it is captured by the following lemma. It holds for
both relations, but we state it only for E .

Lemma 5.6 (Linking compatibility). Assume that Compat QG QL . The following holds.

(∀k σ1 σ2, E
k ((e lib1 ,σ1), (e

lib
2 ,σ2)) {QL ;QG }) ⇒

(∀k σ1 σ2, {x } ⊢ C
k (σ1,σ2) {QG } ⇒ Ek ((e1,σ1), (e2,σ2)) {QL ;QG }) ⇒

∀k σ1 σ2, E
k ((σ1, [x 7→ e lib1]e1), (σ2, [x 7→ e lib2]e2)) {QL ;QG }

In the literature, this property is also referred to as horizontal compositionality [Neis et al. 2015;
Song et al. 2019]. By combining linking compatibility with adequacy, we can derive a corollary: If
a transformation inhabits the logical relation then it also satisfies the behavioral refinement for
separate compilation we defined in the previous section.

Unfortunately, logical relations are not (in the general case) transitively composable. Therefore,
there is no obvious way to specify the whole pipeline with a relation that is both adequate and
compatible with linking.

5.1 Compositionality

To show the desired behavioral refinement for separate compilation we need to prove that the entire
pipeline inhabits a relation that is adequate and compatible with linking. Since logical relations
are not transitively composable, we cannot prove that the end-to-end pipeline inhabits a logical
relation. However, we make a crucial observation: adequacy and compatibility with linking are
closed under relation composition. We can devise a new relation that is adequate and compatible
with linking by composing individual logical relations. Since each transformation is proved correct
with respect to a logical relation, the entire pipeline can be easily shown to inhabit the composition
of these logical relations. Therefore, we can show that it satisfies the correctness specifications for
both whole-program and separate compilation.

We begin by defining the relation E
+

(fig. 6), the transitive closure of the reflexive logical relation
(strengthened with some additional requirements). At the base case (rule Step), we require that

two expressions are related with the top-level logical relation E . The local and global invariants
are existentially quantified and do not appear in the top-level definition. We only require that
they satisfy the compatibility rules (required for proving linking compatibility) and that the local
invariant implies the desired upper bound (required for adequacy). Lastly, we require that the
names of the free variables are preserved, which is required to show linking compatibility.

Lemma 5.7 (Linking compatibility of E
+

). Assume that closed(e lib1) and that fv(e1) ⊆ {x }. Then:

E
+

(e lib1 , e
lib
2) ⇒ E

+

(e1, e2) ⇒ E
+

(([x 7→ e lib1]e1), ([x 7→ e lib2]e2))

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 86. Publication date: August 2021.

Compositional Optimizations for CertiCoq 86:21

Compat QG QL UpperBound QL fv(e2) ⊆ fv(e1) E (e1, e2) {QL ;QG }

E
+

(e1, e2)
Step

E
+

(e1, e) E
+

(e, e2)

E
+

(e1, e2)
Trans

Fig. 6. The E
+

relation.

Lemma 5.7 implies that any program that has been transformed with a series of transformations
that satisfy the E relation can be linked with a program that has been transformed with a (possibly
different) series of transformations that satisfy E . All transformations of the λANF other than closure
conversion satisfy the E relation. Because E is reflexive, the identity transformation also satisfies
the E relation. For example, a program that has been inlined and shrink reduced can be safely
linked with a program that had its dead parameters remove.

The proof of this property makes use of reflexivity. In the two premises, the number of transitivity

steps of E
+

need not be the same. If the first premise hasm transitivity steps and the second n

transitivity steps the result will havem + n transitivity steps. We explain this with an example.
Assume that we translate the client program e1 to a program e2 with two transformations and

the library program e lib3 to e lib4 with only one transformation. We want to link e2 with e lib4 . For the

client, we have that E (e1, e
′
1) {Q

1
L ;Q

1
G } and E (e ′1, e2) {Q

2
L ;Q

2
G } for an intermediate program e ′1 and

some local and global invariants. For the library, we have that E (e lib3 , e
lib
4) {Q3

L
;Q3

G
}. We construct

E
+

(([x 7→ e lib3]e1), ([x 7→ e lib4]e2)) with the following transitivity steps:

(1) E (([x 7→ e lib3]e1), ([x 7→ e lib3]e ′1)) {Q
1
L ;Q

1
G }

(2) E (([x 7→ e lib3]e ′1), ([x 7→ e lib3]e2)) {Q2
L ;Q

2
G }

(3) E (([x 7→ e lib3]e2), ([x 7→ e lib4]e2)) {Q3
L
;Q3

G
}

Each one of these relations is proved by lemma 5.6 where one of the premises is obtained by
reflexivity.

SepCompCert [Kang et al. 2016] uses the fact that compilation commutes with linking to derive a
separate compilation theorem for CompCert. This technique also relies on reflexivity. By modifying
syntactic simulations of optional transformations to be reflexive relations (so that they are inhabited
by the identity transformation too) it allows separately compiled programs to use different optional
optimizations. That is, a program may use an optional optimization or the identity transformation
instead. Unlike ours, this technique is not compositional. The linking theorem is not stated with
respect to a general relation but it depends on the particular pipeline. Hence, it has to be reproved
when new transformations are added or when transformations are reordered.

Next, we define the E
+

CC relation (fig. 7), which is the top-level closure conversion relation ECC

composed with E
+

on the left and on the right. Our pipeline inhabits this relation.
As before, the local and global invariants are existentially quantified and we require that they

satisfy Compat and UpperBound. The terms related with the closure conversion relation are also

required to preserve free variables. Crucially, the E
+

CC relation is adequate and compatible with
linking.

Lemma 5.8 (Adeqacy of E
+

CC). If E
+

CC (e1, e2) and closed(e1) we have that e1 ⊇B e2.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 86. Publication date: August 2021.

86:22 Zoe Paraskevopoulou, John M. Li, and Andrew W. Appel

Compat QG QL UpperBound QL

fv(e ′1) ⊆ fv(e ′2)

E
+

(e1, e
′
1) ECC (e

′
1, e
′
2) {QL ;QG } E

+

(e ′2, e2)

E
+

CC (e1, e2)
Compose

Fig. 7. The E
+

CC relation.

Lemma 5.9 (Linking compatibility of E
+

CC). Assume that closed(e lib1) and that fv(e1) ⊆ {x }. Then:

E
+

CC (e
lib
1 , e

lib
2) ⇒ E

+

CC (e1, e2) ⇒ E
+

CC (([x 7→ e lib1]e1), ([x 7→ e lib2]e2))

We can easily derive a separate compilation theorem for any pipeline that is in the E
+

CC relation;

pipelines that are in the E
+

CC relation need not use the same transformations. All transformations
that satisfy E are optional; we can safely link modules regardless of whether these transformations
are enabled or not during compilation. The only restriction is that pipeline encompass a closure
conversion transformation that satisfies ECCÐwhich is quite general. It would permit, for example,
sophisticated closure representations such as Shao and Appel’s safe-for-space hybrid flat/linked
closures [Shao and Appel 1994]. This is another crucial difference with SepCompCert’s theorem:
SepCompCert only supports separate compilation with different optional transformations whereas
our stronger compositional theorem supports separate compilation of programs with entirely
different transformations as long as they satisfy the same logical relations.
Extension to cross-language setting. Even though we stay in the same λANF language, our

closure-conversion logical relation behaves as a cross-language logical relation. This technique
supports separately compiling programs through pipelines that go through n ≥ 0 representation
changes that are surrounded by n + 1 chunks of same-representation passes, with each chunk
comprising of an arbitrary number of passes. A top-level compositional relation is obtained by
composing the adjacent cross-language relations, adding an intermediate reflexive relation for the
IRs where same-language transformations happen. In our application n = 1 (closure conversion),
but the principle generalizes to any n.
The rest of CertiCoq’s pipeline is proved correct (or is in the process of being proved correct)

with syntactic simulations. We can still derive an end-to-end theorem for separate compilation
(with arbitrary λANF optimizations), but it will not be compositional. The passes that are proved
correct with a simulation will have to be the same in separately compiled programs.

6 COMPOSITIONAL CORRECTNESS

In this section, we establish the end-to-end correctness properties of our pipeline. First, we discuss
the individual correctness proof of each transformation. Then, we show how to compose these
correctness proofs to derive an end-to-end compositional compiler theorem for the whole pipeline.

6.1 Correctness of λANF Transformations

We first discuss the resource invariants that we use in the correctness proof of each transformation.
For now, we ignore fresh variable generation in order to simplify the type of transformations and
the correctness statements. We make this explicit late in this section. Transformations that do
not decrease the program steps satisfy a very simple invariant that states that the target steps are
always greater or equal to the source steps. We define ≤ to be the invariant that maps two pairs of
fuel and trace (c1, t1) and (c2, t2) to c1 ≤ c2.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 86. Publication date: August 2021.

Compositional Optimizations for CertiCoq 86:23

Closure conversion. The conclusion of the top-level theorem of the closure conversion trans-

formation (denoted cc) states: ECC (e, cc(e)) {≤; ≤}.
Lambda lifting, uncurrying, hoisting, DPE. These transformations satisfy the invariant ≤,

therefore they satisfy E (e, trans(e)) {≤; ≤}, where trans is any of these transformations.
Inlining. The specification of inlining is trickier as this transformation can decrease the program

steps. This is where we make use of the trace kept by our semantics. Recall that the trace is keeping
track of how many function applications are executed by a program. First, consider that for each
function that is inlined the target program will perform one or two steps less than the source. One
step is removed because the target does not perform then function call. A second step might also
be removed when we inline a let-bound call of a function that ends with return because the return
statement will be removed in the inlined code. For example, consider the program let z = f x y in e

where f is defined (earlier in the program) to be fun f x y = let w = Constr(x ,y) in ret(w).
After inlining f the program becomes let z = Constr(x ,y) in e . The program before inlining
consumes 3 + c units of fuel, where c is the fuel consumption of e , whereas the program after in
lining consumes 1 + c units of fuel.
Let c1 and t1 be the fuel and trace (i.e., the total number of function applications) of the source

and c2 and t2 the fuel and trace of the target. LetG be the maximum number of calls that are inlined
inside the body of a source function and L the total number of calls that are inlined in the top-level
expression of the source program (without considering inlined calls in nested function definitions).
The total number of inlined calls when the program runs is therefore upper bounded by G ∗ t1 + L,
where t1 is the total number of function calls executed by the source program, captured by the trace
value. For each one of these inlined calls, the target might perform at most two evaluation steps less
than the source program. So we have the bound c1 ≤ c2 + 2 ∗G ∗ t1 + 2 ∗ L. Using similar reasoning,
we also have that t1 ≤ t2 +G ∗ t2 + L for the total number of calls performed by the source program.
Because the total number of calls that a program performs is less or equal to the total number of
steps, we have that t2 ≤ c2. Using these three inequalities, we can derive a bound c1 ≤ A ∗ c2 +B for
some A and B that depend on G and L. This upper bound satisfies the requirements for divergence
preservation of lemma lemma 4.2. We define:

Qinline L G (c1, t1) (c2, t2)
def
= c1 ≤ c2 + 2 ∗G ∗ t1 + 2 ∗ L ∧ t1 ≤ t2 +G ∗ t1 + L ∧

t2 ≤ c2

Q
top
inline

L G (c1, t1) (c2, t2)
def
= c1 ≤ A(L,G) ∗ c2 + B (L,G)

For inlinining (inline) we show: E (e, inline(e)) {Qinline G G;Qinline G G} where G is the maximum
number of inlined calls in individual function bodies and the top-level expression (the transformation
keeps track of that). Because the logical relation is monotonic in the local (but not the global)

invariant we derive E (e, inline(e)) {Q
top
inline

G G;Qinline G G}.
Shrinking. The shrinking transformation performs inlining as well as other static reductions

and satisfies the same bound as inlining. We express shrinking (shrink) as the transitive closure
of a transformation that performs one shrinking step (shrink_one). For the one-step shrinking,

we prove E (e, shrink_one(e)) {Qinline 1 1;Qinline 1 1}. By local invariant monotonicity, we derive

E (e, shrink_one(e)) {Q
top
inline

1 1;Qinline 1 1}. Observe that G = L = 1 since only one reduction is

performed. Then, for the shrinking transformation we obtain E
+

(e, shrink(e)).

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 86. Publication date: August 2021.

86:24 Zoe Paraskevopoulou, John M. Li, and Andrew W. Appel

6.2 Composition and End-to-End Correctness

So far, we presented λANF transformations as total programs, but in reality they are partial programs:
they may fail to produce an output for some inputs. Their type is

anf_trans
def
= exp→ comp_data→ error exp ∗ comp_data

where exp is the type of λANF terms and comp_data the type of the compilation state. The sum type
error has two variants: programs can successfully return a term (written Ret e), or can return an
error message (written Err s). Our transformations receive a compilation state comp_data as an
argument threaded through the computation. They use it to generate fresh names for binders.
We show that whenever some input term e is well-scoped (written well_scoped(e)), meaning

that e has unique bindings and its free variables are disjoint from its bound variables, then the
transformation successfully produces an output term that is also well-scoped and semantically

related to the input term with either E
+

or E
+

CC. We assume that the next available free variable is
strictly greater than the identifiers (free or bound) that are used in the input term (variables are
represented as binary natural numbers). This implies that the freshly generated free variables are
disjoint from the identifiers of the program, which is required for correctness and for preserving
well-scopedness. The full top-level correctness specification of λANF transformations is shown
below.

Definition 6.1 (Correctness w.r.t. E
+

). We say that a λANF transformation trans ∈ anf_trans is

correct w.r.t to E
+

(written correct trans) if the following holds.

∀ e c, well_scoped(e) ∧ max_var e < next_var c →

∃ e ′c ′, trans e c = (Ret e ′, c ′) ∧ well_scoped(e ′) ∧ max_var e ′ < next_var c ′ ∧ E
+

(e, e ′)

Similarly, we define correct_cc, a predicate over λANF transformations that has the same shape as

correct, with the difference that it uses the E
+

CC relation.
λANF transformations can be sequentially composed to derive complex λANF transformations. Their

correctness specifications can be composed as well. We have that:

• correct t1 ⇒ correct t2 ⇒ correct (t1; ; t2)
• correct t1 ⇒ correct_cc t2 ⇒ correct_cc (t1; ; t2)
• correct_cc t1 ⇒ correct t2 ⇒ correct_cc (t1; ; t2)

We use these facts to derive end-to-end correctness.
The λANF pipeline, comp_anf, is a λANF transformation that takes an additional argument that

determines which optional optimizations are enabled. We prove that whatever the choice of optional

transformations is, the λANF pipeline is correct w.r.t. to E
+

CC.

Theorem 6.2 (Correctness of the λANF pipeline.). ∀ opt , correct_cc (comp_anf opt).

Using this top-level theorem for the λANF pipeline, we can prove correctness of whole-program
compilation and correctness for separate compilation as easy corollaries.

Corollary 6.3 (Correctness ofwhole-program compilation.). Assume thatwell_scoped(esrc)
and closed(esrc). Then, there exists etrg such that comp_anf opt esrc = Ret etrg and esrc ⊇B etrg.

Corollary 6.4 (Correctness of separate compilation.). Assume that well_scoped(e libsrc),
closed(e libsrc),well_scoped(esrc) and fv(esrc) ⊆ {x }. Then, for all compilation options opt1 and opt2, there

exist target programs e libtrg and etrg such that comp_anf opt1 e
lib
src = Ret e libtrg and comp_anf opt2 esrc =

Ret etrg and [x 7→ e libsrc]esrc ⊇B [x 7→ e libtrg]etrg

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 86. Publication date: August 2021.

Compositional Optimizations for CertiCoq 86:25

(New) (Traditional)

No Selective Nonselective
λ lifting λ lifting λ lifting

sha 1±.012 0.994±.016 0.994±.019
color 1±.022 0.984±.019 0.997±.019
binom 1±.014 0.999±.020 1.000±.026
vs-hard 1±.008 0.935±.006 0.951±.007
vs-easy 1±.012 0.928±.008 1.047±.012

Fig. 8. Execution time of programs compiled with
different lambda-lifting strategies, normalized to
łno lambda liftingž. Standard deviations shown
are for 100 runs.

CertiCoq CertiCoq OCaml
(clang) (CompCert) Native

Code
sha 1±.006 1.343±.007 .730±.010
color 1±.027 1.202±.029 ∞

binom 1±.022 4.462±.040 .235±.007
vs-hard 1±.007 1.522±.029 .457±.006
vs-easy 1±.027 1.456±.007 .328±.005

Fig. 9. Execution time of OCaml native code gen-
erator versus λANF with selective lambda lifting.
Coq’s built-in extraction produces illegal OCaml
code for color, so OCaml could not compile it.

7 EVALUATION

Does selective lambda lifting (which pays attention to variable liveness) achieve better performance
improvements than traditional non-selective lambda lifting? Does CertiCoq with the optimizing
λANF pipeline succeed in generating native-speed code that is comparable to standard extraction
with optimizing OCaml native-code compilation?

Since there is no standard benchmark suite for Gallina, we devised four benchmarks to estimate
answers to these questions:

sha: Secure Hash Algorithm 2 (SHA-256) computing the cryptographic hash of a 484-character
string, as in Appel [2015].

color: A formally verified implementation of the Kempe/Chaitin graph-coloring algorithm [Chaitin
et al. 1981] from Appel [2020], coloring a graph with 156 nodes and 1168 edges.

binom: A verified binomial queue implementation [Vuillemin 1978] from Appel [2020], construct-
ing two priority queues with 1000 elements each, merging them, and finding the max.

vs-easy: VeriStar [Stewart et al. 2012], a formally verified decision procedure for a decidable
fragment of separation logic, based on a state-of-the-art paramodulation algorithm [Navarro
Pérez and Rybalchenko 2011], on an easy entailment.

vs-hard: VeriStar deciding validity of a harder entailment.

We then compared three versions of lambda-lifting (never, selective, always). For overall perfor-
mance, we compared CertiCoq+llvm (clang 10.0.1 with omit-frame-pointer), CertiCoq+CompCert
(3.8), and Coq-extraction+ocamlopt (4.07.1). The experiments ran on a 2.5 GHz Intel Core i7.

Figure 8 demonstrates that (on these benchmarks) selective lambda lifting speeds up some
programs and slows down none, which is not true of traditional nonselective lambda lifting.
CertiCoq’s performance is not yet competitive with OCaml native code, as shown in Figure 9.

We suspect that this is mainly because CertiCoq does not have a native code generator specialized
for functional languagesÐit goes through C’s calling convention5 for all control flow, including
loops (λC

ANF
would be suitable for direct generation of efficient machine language with the addition

of a register allocator and, of course, a native code generator for each target machine.) Adding
more optimizations in λANF would probably further improve performance.

5 We use clang with standard C calling conventions. Savary Bélanger et al. [2019] report that performance improves
significantly when using clang with llvm’s łGHC calling conventionž which has no callee-save registers and passes more
arguments in registers than the standard. CompCert does not support nonstandard calling conventions.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 86. Publication date: August 2021.

86:26 Zoe Paraskevopoulou, John M. Li, and Andrew W. Appel

8 RELATED WORK

We compare our work with proved-correct compilers and frameworks for compositional compiler
correctness.
CakeML [Kumar et al. 2014; Tan et al. 2016] is an end-to-end verified compiler for a substan-

tial subset of the ML language. Most closely related to our work is the ClosLang pipeline of
CakeML [Owens et al. 2017; Tan et al. 2019]. Similar to the λANF pipeline, ClosLang introduces
calls to multi-argument functions and optimizes calls to known functions. CakeML uncurries both
statically known and escaping functions. This is possible because the ClosLang semantics allows
partial application (via mismatch semantics). Like λANF, CakeML eliminates closures of statically
known functions, but unlike λANF, CakeML does not implement specialized closure allocation strate-
gies for known functions with free variables. The ClosLang pipeline also performs two passes
to track the flow of known function calls and annotate statically known functions and function
calls. In λANF, we do not need any additional flow analysis for our closure strategies. The ClosLang
intermediate representation needs to distinguishe between ML-style and C-style calls, which is not
needed in our setting.
ClosLang’s verification framework uses untyped step-indexed logical relations. But unlike

our framework, it does not address compositional compiler correctness. CakeML’s theorem only
applies to whole-program compilation. Divergence preservation is handled by requiring that two
related programs have identical fuel consumption, which requires adding a Tick instruction to all
intermediate representations of CakeML. With our work we show how this can be avoided.
Pilsner [Neis et al. 2015] is a multi-pass CPS compiler for an ML subset. Its compositional

compiler correctness theorem is stronger than λANF’s in that it applies to modules compiled from
the same source, regardless of how are they compiled. Our technique works only on pipelines
with the same series of intermediate languages. Pilsner is verified using parametric intra-language

simulations (PILS), a novel relational model that is adequate, compatible with linking, and transitive.
But the metatheory of PILS, including its transitivity proof, is quite complex and required a lot of
proof effort [Neis et al. 2015, Section 4]. We couldn’t have used PILS to verify the λANF pipeline
because it does not support the eta-conversion rule used by our transformations (e.g., uncurrying).
A solution has been suggested [Hur et al. 2014], but has not been incorporated into PILS. Pilsner
performs minimal optimizations; it does not uncurry functions or eliminate closures of known
functions.
Œuf [Mullen et al. 2018] is a prototype compiler from Gallina (Coq’s specification language)

to Clight. Oeuf supports an impoverished subset of Coq: no user defined inductive types (just
predefined bool, list, etc.), no pattern matching, no recursive functions, no dependently typed
programs. CertiCoq supports full Gallina (except coinductive types), representable in λANF. Œuf
does not optimize the code; the authors state that it is a non-goal.
SepCompCert [Kang et al. 2016] extends CompCert’s [Leroy 2009b] proof to separate compilation.

Its theorem supports separate compilation of programs with different optional optimizations. As
we explained in section 5, it is verified using a lightweight technique that is not compositional;
the theorem about separate compilation is not derived from a general relation. Therefore, it has
limitations that are not present in our work. First, SepCompCert requires modification to the
statements and proofs of transformations. Second, in SepCompCert the linking theorem dependes
on the pipeline and must be reproved for each variation of the pipeline. We prove it as a corollary
of our compositional relation. Lastly, the linking theorem of SepCompCert applies only to optional
transformations that can be replaced with the identity transformation. Our framework can be used
to link programs that are compiled with different nonoptional transformations, such as two different
implementations of closure conversion that may use different environment representations.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 86. Publication date: August 2021.

Compositional Optimizations for CertiCoq 86:27

Compositional Compiler Correctness is a challenging problem that has been addressed in
different contexts. There are many extensions of CompCert to compositional correctness: Comp-
CompCert [Stewart et al. 2015], CompCertX [Gu et al. 2015;Wang et al. 2019], and CompCertM [Song
et al. 2019]. CompCompCert and CompCertM’s approaches are based on interaction semantics,
which assumes the same memory representation in the source and target languages; this is not true
for functional languages as the memory representation of closures changes between the source
and target. It is therefore unlikely that these techniques would apply to CertiCoq ([Song et al. 2019,
Section 8.1]). CompCertM uses closed simulations and assumes that unknown functions in the
target are verified against deep specifications; it is not clear if these generalize to higher-order
languages. Benton and Hur [Benton and Hur 2009] and Hur and Dreyer [Hur and Dreyer 2011] set
up step-indexed logical relations between high- and low-level languages to study compositional
equivalence of programs in these languages. But it is not clear how these frameworks could be used
for multi-pass compilers, because the logical relations are not transitive. Perconti and Ahmed [Per-
conti and Ahmed 2014] use multi-language semantics [Matthews and Findler 2007] to support
linking of source programs with arbitrary target code, which is outside the scope of this paper.
Logical Relations do not typically handle divergence preservation. Paraskevopoulou and Ap-

pel [Paraskevopoulou and Appel 2019] use a logical relation to prove their closure conversion
transformation is correct and and safe for space. They parameterize their logical relation with
relational pre- and postconditions that are similar our relational invariants and they use them
to show both space safety and divergence preservation. However, they do not prove divergence
preservation for transformations that reduce the amount of fuel, which is a significantly more
challenging problem. Their framework does not address compositional compiler correctness.

9 CONCLUSION

We presented a novel verification framework that supports lightweight compositional compiler
correctness. In particular, we show how logical relations, which generally do not support vertical
compositionality and cannot be used to show compositional compiler correctness for multi-pass
pipelines, can be composed to derive a compositional compiler correctness theorem for multi-pass
pipelines. The only restriction that we impose is that the pipelines should go through the same
changes in representation. Furthermore, we show how this framework can be used to show diver-
gence preservation for transformations, overcoming some complications of previous approaches.
We applied this framework to prove correct an optimizing multi-pass pipeline on an A-normal

form intermediate representation for the CertiCoq compiler. Our optimizing pipeline compiles
purely functional programs to a flat-scope programs without closures that can be easily code-
generated. We expect that future compiler verification efforts will benefit from the ideas of our
verification framework and the design of our pipeline.

ACKNOWLEDGMENTS

This material is based upon work supported in part by the National Science Foundation under
Grant No. CCF-1521602 and Grant No. CCF-2005545. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the author and do not necessarily
reflect the views of the National Science Foundation. The first author was supported by Computing
Innovation Fellows 2020 Project during part of this research. We wish to thank the anonymous
reviewers for their insightful comments and Norman Ramsey for his valuable feedback in the final
revision of this paper.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 86. Publication date: August 2021.

86:28 Zoe Paraskevopoulou, John M. Li, and Andrew W. Appel

REFERENCES

Umut A. Acar, Amal Ahmed, and Matthias Blume. 2008. Imperative Self-Adjusting Computation. In Proceedings of the 35th

Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San Francisco, California, USA)
(POPL ’08). Association for Computing Machinery, New York, NY, USA, 309ś322. https://doi.org/10.1145/1328438.1328476

Norman Adams, David Kranz, Richard Kelsey, Jonathan Rees, Paul Hudak, and James Philbin. 1986. ORBIT: An Optimizing
Compiler for Scheme. In Proceedings of the 1986 SIGPLAN Symposium on Compiler Construction (Palo Alto, California, USA)
(SIGPLAN ’86). Association for Computing Machinery, New York, NY, USA, 219ś233. https://doi.org/10.1145/12276.13333

Amal Ahmed. 2006. Step-Indexed Syntactic Logical Relations for Recursive and Quantified Types. In Programming Languages

and Systems, Peter Sestoft (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 69ś83.
Abhishek Anand, Andrew W. Appel, John Gregory Morrisett, Zoe Paraskevopoulou, Randy Pollack, Olivier Savary Bélanger,

Matthieu Sozeau, and Matthew Weaver. 2017. CertiCoq: A verified compiler for Coq. In CoqPL’17: The Third International

Workshop on Coq for Programming Languages. 2 pages.
Andrew W. Appel and Trevor Jim. 1997a. Shrinking lambda expressions in linear time. Journal of Functional Programming 7,

5 (Sept. 1997), 515ś540. https://doi.org/10.1017/S0956796897002839
Andrew W. Appel. 1992. Compiling with Continuations. Cambridge University Press, New York.
Andrew W. Appel. 2015. Verification of a Cryptographic Primitive: SHA-256. ACM Trans. Program. Lang. Syst. 37, 2, Article

7 (April 2015), 31 pages. https://doi.org/10.1145/2701415
Andrew W. Appel. 2020. Verified Functional Algorithms. Version 1.4, http://softwarefoundations.cis.upenn.edu.
Andrew W. Appel and Trevor Jim. 1997b. Shrinking Lambda Expressions in Linear Time. J. Funct. Program. 7, 5 (Sept. 1997),

515ś540.
Andrew W. Appel and David McAllester. 2001. An Indexed Model of Recursive Types for Foundational Proof-Carrying

Code. ACM Trans. Program. Lang. Syst. 23, 5 (Sept. 2001), 657ś683. https://doi.org/10.1145/504709.504712
Gilles Barthe, Sandrine Blazy, Benjamin Grégoire, Rémi Hutin, Vincent Laporte, David Pichardie, and Alix Trieu. 2019.

Formal Verification of a Constant-Time Preserving C Compiler. Proc. ACM Program. Lang. 4, POPL, Article 7 (Dec. 2019),
30 pages. https://doi.org/10.1145/3371075

Nick Benton and Chung-Kil Hur. 2009. Biorthogonality, Step-Indexing and Compiler Correctness. In Proceedings of the 14th

ACM SIGPLAN International Conference on Functional Programming (Edinburgh, Scotland) (ICFP ’09). Association for
Computing Machinery, New York, NY, USA, 97ś108. https://doi.org/10.1145/1596550.1596567

Nick Benton, Andrew Kennedy, Sam Lindley, and Claudio Russo. 2005. Shrinking Reductions in SML.NET. In Implementation

and Application of Functional Languages, Clemens Grelck, Frank Huch, Greg J. Michaelson, and Phil Trinder (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 142ś159.

Gregory J Chaitin, Marc A Auslander, Ashok K Chandra, John Cocke, Martin E Hopkins, and Peter W Markstein. 1981.
Register allocation via coloring. Computer languages 6, 1 (1981), 47ś57.

Adam Chlipala. 2010. A Verified Compiler for an Impure Functional Language. In Proceedings of the 37th Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Madrid, Spain) (POPL ’10). Association for
Computing Machinery, New York, NY, USA, 93ś106. https://doi.org/10.1145/1706299.1706312

Zaynah Dargaye and Xavier Leroy. 2007. Mechanized Verification of CPS Transformations. In Proceedings of the 14th

International Conference on Logic for Programming, Artificial Intelligence and Reasoning (Yerevan, Armenia) (LPAR’7).
Springer-Verlag, Berlin, Heidelberg, 211ś225.

Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. 1993. The Essence of Compiling with Continuations.
In Proceedings of the ACM SIGPLAN 1993 Conference on Programming Language Design and Implementation (Albuquerque,
New Mexico, USA) (PLDI ’93). ACM, New York, NY, USA, 237ś247. https://doi.org/10.1145/155090.155113

Pascal Fradet and Daniel Le Métayer. 1991. Compilation of Functional Languages by Program Transformation. ACM Trans.

Program. Lang. Syst. 13, 1 (Jan. 1991), 21ś51. https://doi.org/10.1145/114005.102805
Aïna Linn Georges, Armaël Guéneau, Thomas Van Strydonck, Amin Timany, Alix Trieu, Sander Huyghebaert, Dominique

Devriese, and Lars Birkedal. 2021. Efficient and Provable Local Capability Revocation Using Uninitialized Capabilities.
Proc. ACM Program. Lang. 5, POPL, Article 6 (Jan. 2021), 30 pages. https://doi.org/10.1145/3434287

Sebastian Graf and Simon Peyton Jones. 2019. Selective Lambda Lifting. CoRR abs/1910.11717 (2019). arXiv:1910.11717
http://arxiv.org/abs/1910.11717

Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao, Xiongnan (Newman) Wu, Shu-Chun Weng, Haozhong
Zhang, and Yu Guo. 2015. Deep Specifications and Certified Abstraction Layers. In Proceedings of the 42nd Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Mumbai, India) (POPL ’15). Association for
Computing Machinery, New York, NY, USA, 595ś608. https://doi.org/10.1145/2676726.2676975

R. J. M. Hughes. 1982. Super-Combinators: A New Implementation Method for Applicative Languages. In In Conference

Record of the 1982 ACM Symposium on Lisp and Functional Programming. ACM, 1ś10.
Chung-Kil Hur and Derek Dreyer. 2011. A Kripke Logical Relation Between ML and Assembly. In Proceedings of the 38th

Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Austin, Texas, USA) (POPL ’11).

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 86. Publication date: August 2021.

https://doi.org/10.1145/1328438.1328476
https://doi.org/10.1145/12276.13333
https://doi.org/10.1017/S0956796897002839
https://doi.org/10.1145/2701415
http://softwarefoundations.cis.upenn.edu
https://doi.org/10.1145/504709.504712
https://doi.org/10.1145/3371075
https://doi.org/10.1145/1596550.1596567
https://doi.org/10.1145/1706299.1706312
https://doi.org/10.1145/155090.155113
https://doi.org/10.1145/114005.102805
https://doi.org/10.1145/3434287
https://arxiv.org/abs/1910.11717
http://arxiv.org/abs/1910.11717
https://doi.org/10.1145/2676726.2676975

Compositional Optimizations for CertiCoq 86:29

ACM, New York, NY, USA, 133ś146. https://doi.org/10.1145/1926385.1926402
Chung-Kil Hur, Derek Dreyer, Georg Neis, and Viktor Vafeiadis. 2012. The Marriage of Bisimulations and Kripke Logical

Relations. In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(Philadelphia, PA, USA) (POPL ’12). Association for Computing Machinery, New York, NY, USA, 59ś72. https://doi.org/
10.1145/2103656.2103666

Neis Georg Hur, Chung-Kil, Derek Dreyer, and Viktor Vafeiadis. 2014. Parametric Bisimulations: A Logical Step Forward.
Technical Report.

Thomas Johnsson. 1985. Lambda Lifting: Transforming Programs to Recursive Equations. In Proc. of a Conference on

Functional Programming Languages and Computer Architecture (Nancy, France). Springer-Verlag, Berlin, Heidelberg,
190ś203.

Simon L. Peyton Jones. 1996. Compiling Haskell by program transformation: A report from the trenches. In Programming

Languages and Systems Ð ESOP ’96, Hanne Riis Nielson (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 18ś44.
Simon Peyton Jones and André Santos. 1995. Compilation by Transformation in the Glasgow Haskell Compiler. In Functional

Programming, Glasgow 1994, Kevin Hammond, David N. Turner, and Patrick M. Sansom (Eds.). Springer London, London,
184ś204.

Jeehoon Kang, Yoonseung Kim, Chung-Kil Hur, Derek Dreyer, and Viktor Vafeiadis. 2016. Lightweight Verification of
Separate Compilation. SIGPLAN Not. 51, 1 (Jan. 2016), 178ś190. https://doi.org/10.1145/2914770.2837642

R. Kelsey and P. Hudak. 1989. Realistic Compilation by Program Transformation (Detailed Summary). In Proceedings of

the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Austin, Texas, USA) (POPL ’89).
Association for Computing Machinery, New York, NY, USA, 281ś292. https://doi.org/10.1145/75277.75302

Andrew Kennedy. 2007. Compiling with Continuations, Continued. In Proceedings of the 12th ACM SIGPLAN International

Conference on Functional Programming (Freiburg, Germany) (ICFP ’07). ACM, New York, NY, USA, 177ś190. https:
//doi.org/10.1145/1291151.1291179

Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. 2014. CakeML: A Verified Implementation of ML.
SIGPLAN Not. 49, 1 (Jan. 2014), 179ś191. https://doi.org/10.1145/2578855.2535841

Xavier Leroy. 2009a. Formal verification of a realistic compiler. Commun. ACM 52, 7 (2009), 107ś115. http://xavierleroy.
org/publi/compcert-CACM.pdf

Xavier Leroy. 2009b. A formally verified compiler back-end. Journal of Automated Reasoning 43, 4 (2009), 363ś446.
http://xavierleroy.org/publi/compcert-backend.pdf

Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy, and Jérôme Vouillon. 2020. The OCaml system

release 4.11. Available electronically at https://coq.inria.fr/refman.
Xavier Leroy and Hervé Grall. 2009. Coinductive Big-Step Operational Semantics. Inf. Comput. 207, 2 (Feb. 2009), 284ś304.

https://doi.org/10.1016/j.ic.2007.12.004
Jacob Matthews and Robert Bruce Findler. 2007. Operational Semantics for Multi-Language Programs. In Proceedings of

the 34th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Nice, France) (POPL ’07).
Association for Computing Machinery, New York, NY, USA, 3ś10. https://doi.org/10.1145/1190216.1190220

LukeMaurer, Paul Downen, ZenaM. Ariola, and Simon Peyton Jones. 2017. CompilingWithout Continuations. In Proceedings
of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation (Barcelona, Spain) (PLDI
2017). ACM, New York, NY, USA, 482ś494. https://doi.org/10.1145/3062341.3062380

Eric Mullen, Stuart Pernsteiner, James R. Wilcox, Zachary Tatlock, and Dan Grossman. 2018. Œuf: Minimizing the Coq
Extraction TCB. In Proceedings of the 7th ACM SIGPLAN International Conference on Certified Programs and Proofs

(Los Angeles, CA, USA) (CPP 2018). Association for Computing Machinery, New York, NY, USA, 172ś185. https:
//doi.org/10.1145/3167089

Juan Antonio Navarro Pérez and Andrey Rybalchenko. 2011. Separation logic + superposition calculus = heap theorem
prover. In PLDI. 556ś566.

Georg Neis, Chung-Kil Hur, Jan-Oliver Kaiser, Craig McLaughlin, Derek Dreyer, and Viktor Vafeiadis. 2015. Pilsner: A
Compositionally Verified Compiler for a Higher-Order Imperative Language. In Proceedings of the 20th ACM SIGPLAN

International Conference on Functional Programming (Vancouver, BC, Canada) (ICFP 2015). Association for Computing
Machinery, New York, NY, USA, 166ś178. https://doi.org/10.1145/2784731.2784764

Scott Owens, Magnus O. Myreen, Ramana Kumar, and Yong Kiam Tan. 2016. Functional Big-Step Semantics. In Programming

Languages and Systems, Peter Thiemann (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 589ś615.
Scott Owens, Michael Norrish, Ramana Kumar, Magnus O. Myreen, and Yong Kiam Tan. 2017. Verifying Efficient Function

Calls in CakeML. Proc. ACM Program. Lang. 1, ICFP, Article 18 (Aug. 2017), 27 pages. https://doi.org/10.1145/3110262
Zoe Paraskevopoulou and Andrew W. Appel. 2019. Closure Conversion is Safe for Space. Proc. ACM Program. Lang. 3, ICFP,

Article 83 (July 2019), 29 pages. https://doi.org/10.1145/3341687
Zoe Paraskevopoulou and Anvay Grover. 2021. Compiling with Continuations, Correctly. (2021). Under submission.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 86. Publication date: August 2021.

https://doi.org/10.1145/1926385.1926402
https://doi.org/10.1145/2103656.2103666
https://doi.org/10.1145/2103656.2103666
https://doi.org/10.1145/2914770.2837642
https://doi.org/10.1145/75277.75302
https://doi.org/10.1145/1291151.1291179
https://doi.org/10.1145/1291151.1291179
https://doi.org/10.1145/2578855.2535841
http://xavierleroy.org/publi/compcert-CACM.pdf
http://xavierleroy.org/publi/compcert-CACM.pdf
http://xavierleroy.org/publi/compcert-backend.pdf
https://coq.inria.fr/refman
https://doi.org/10.1016/j.ic.2007.12.004
https://doi.org/10.1145/1190216.1190220
https://doi.org/10.1145/3062341.3062380
https://doi.org/10.1145/3167089
https://doi.org/10.1145/3167089
https://doi.org/10.1145/2784731.2784764
https://doi.org/10.1145/3110262
https://doi.org/10.1145/3341687

86:30 Zoe Paraskevopoulou, John M. Li, and Andrew W. Appel

Daniel Patterson and Amal Ahmed. 2019. The next 700 Compiler Correctness Theorems (Functional Pearl). Proc. ACM
Program. Lang. 3, ICFP, Article 85 (July 2019), 29 pages. https://doi.org/10.1145/3341689

James T. Perconti and Amal Ahmed. 2014. Verifying an Open Compiler Using Multi-Language Semantics. In Proceedings of

the 23rd European Symposium on Programming Languages and Systems - Volume 8410. Springer-Verlag, Berlin, Heidelberg,
128ś148. https://doi.org/10.1007/978-3-642-54833-8_8

G.D. Plotkin. 1975. Call-by-name, call-by-value and the λ-calculus. Theoretical Computer Science 1, 2 (1975), 125 ś 159.
https://doi.org/10.1016/0304-3975(75)90017-1

Tahina Ramananandro, Zhong Shao, Shu-Chun Weng, Jérémie Koenig, and Yuchen Fu. 2015. A Compositional Semantics
for Verified Separate Compilation and Linking. In Proceedings of the 2015 Conference on Certified Programs and Proofs

(Mumbai, India) (CPP ’15). Association for Computing Machinery, New York, NY, USA, 3ś14. https://doi.org/10.1145/
2676724.2693167

Leonardo RodrÃŋguez, Miguel Pagano, and Daniel Fridlender. 2016. Proving Correctness of a Compiler Using Step-indexed
Logical Relations. Electronic Notes in Theoretical Computer Science 323 (07 2016), 197ś214. https://doi.org/10.1016/j.entcs.
2016.06.013

Andre Santos. 1995. Compilation by transformation for non-strict functional languages. Ph.D. Dissertation. University of
Glasgow. https://www.microsoft.com/en-us/research/publication/compilation-transformation-non-strict-functional-
languages/

Olivier Savary Bélanger andAndrewW.Appel. 2017. Shrink Fast Correctly!. In Proceedings of the 19th International Symposium

on Principles and Practice of Declarative Programming (Namur, Belgium) (PPDP ’17). Association for Computing Machinery,
New York, NY, USA, 49ś60. https://doi.org/10.1145/3131851.3131859

Olivier Savary Bélanger, Matthew Z. Weaver, and Andrew W. Appel. 2019. Certified Code Generation from CPS to C. (Oct.
2019). https://www.cs.princeton.edu/~appel/papers/CPStoC.pdf.

Zhong Shao and AndrewW. Appel. 1994. Space-Efficient Closure Representations. In Proceedings of the 1994 ACM Conference

on LISP and Functional Programming (Orlando, Florida, USA) (LFP ’94). Association for Computing Machinery, New York,
NY, USA, 150ś161. https://doi.org/10.1145/182409.156783

Zhong Shao and Andrew W. Appel. 2000. Efficient and Safe-for-Space Closure Conversion. ACM Trans. Program. Lang. Syst.

22, 1 (Jan. 2000), 129ś161. https://doi.org/10.1145/345099.345125
Youngju Song, Minki Cho, Dongjoo Kim, Yonghyun Kim, Jeehoon Kang, and Chung-Kil Hur. 2019. CompCertM: CompCert

with C-Assembly Linking and Lightweight Modular Verification. Proc. ACM Program. Lang. 4, POPL, Article 23 (Dec.
2019), 31 pages. https://doi.org/10.1145/3371091

Matthieu Sozeau, Simon Boulier, Yannick Forster, Nicolas Tabareau, and Théo Winterhalter. 2019. Coq Coq correct!
Verification of Type Checking and Erasure for Coq, in Coq. Proc. ACM Program. Lang. 4, POPL, Article 8 (Dec. 2019),
28 pages. https://doi.org/10.1145/3371076

Guy L. Steele. 1978. Rabbit: A Compiler for Scheme. Technical Report. USA.
Gordon Stewart, Lennart Beringer, and Andrew W. Appel. 2012. Verified Heap Theorem Prover by Paramodulation. In

Proceedings of the 17th ACM SIGPLAN International Conference on Functional Programming (Copenhagen, Denmark)
(ICFP ’12). Association for Computing Machinery, New York, NY, USA, 3ś14. https://doi.org/10.1145/2364527.2364531

Gordon Stewart, Lennart Beringer, Santiago Cuellar, and Andrew W. Appel. 2015. Compositional CompCert. In Proceedings

of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Mumbai, India) (POPL
’15). ACM, New York, NY, USA, 275ś287. https://doi.org/10.1145/2676726.2676985

Yong Kiam Tan, Magnus O. Myreen, Ramana Kumar, Anthony Fox, Scott Owens, and Michael Norrish. 2016. A New
Verified Compiler Backend for CakeML. In International Conference on Functional Programming (ICFP). ACM Press, 60ś73.
https://doi.org/10.1145/2951913.2951924 Invited to special issue of Journal of Functional Programming.

Yong Kiam Tan, Magnus O. Myreen, Ramana Kumar, Anthony Fox, Scott Owens, and Michael Norrish. 2019. The ver-
ified CakeML compiler backend. Journal of Functional Programming 29, Article e2 (2019). https://doi.org/10.1017/
S0956796818000229

Amin Timany, Léo Stefanesco, Morten Krogh-Jespersen, and Lars Birkedal. 2017. A Logical Relation for Monadic Encapsula-
tion of State: Proving Contextual Equivalences in the Presence of runST. Proc. ACM Program. Lang. 2, POPL, Article 64
(Dec. 2017), 28 pages. https://doi.org/10.1145/3158152

Jean Vuillemin. 1978. A Data Structure for Manipulating Priority Queues. Commun. ACM 21, 4 (April 1978), 309ś315.
https://doi.org/10.1145/359460.359478

YutingWang, PierreWilke, and Zhong Shao. 2019. An Abstract Stack Based Approach to Verified Compositional Compilation
to Machine Code. Proc. ACM Program. Lang. 3, POPL, Article 62 (Jan. 2019), 30 pages. https://doi.org/10.1145/3290375

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 86. Publication date: August 2021.

https://doi.org/10.1145/3341689
https://doi.org/10.1007/978-3-642-54833-8_8
https://doi.org/10.1016/0304-3975(75)90017-1
https://doi.org/10.1145/2676724.2693167
https://doi.org/10.1145/2676724.2693167
https://doi.org/10.1016/j.entcs.2016.06.013
https://doi.org/10.1016/j.entcs.2016.06.013
https://www.microsoft.com/en-us/research/publication/compilation-transformation-non-strict-functional-languages/
https://www.microsoft.com/en-us/research/publication/compilation-transformation-non-strict-functional-languages/
https://doi.org/10.1145/3131851.3131859
https://www.cs.princeton.edu/~appel/papers/CPStoC.pdf
https://doi.org/10.1145/182409.156783
https://doi.org/10.1145/345099.345125
https://doi.org/10.1145/3371091
https://doi.org/10.1145/3371076
https://doi.org/10.1145/2364527.2364531
https://doi.org/10.1145/2676726.2676985
https://doi.org/10.1145/2951913.2951924
https://doi.org/10.1017/S0956796818000229
https://doi.org/10.1017/S0956796818000229
https://doi.org/10.1145/3158152
https://doi.org/10.1145/359460.359478
https://doi.org/10.1145/3290375

	Abstract
	1 Introduction
	2 Overview of the Verification Approach
	2.1 Compositional Reasoning
	2.2 Divergence Preservation

	3 The 2=2pt ANF Pipeline
	3.1 The 2=2pt ANF Intermediate Language
	3.2 2=2pt ANF Transformations
	3.3 Compilation by Example

	4 Semantics and Compiler Correctness
	4.1 Semantics
	4.2 Correctness Specification
	4.3 Divergence Preservation

	5 Compositional Proof Framework
	5.1 Compositionality

	6 Compositional Correctness
	6.1 Correctness of 2=2pt ANF Transformations
	6.2 Composition and End-to-End Correctness

	7 Evaluation
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

