
CertiCoq: A verified compiler for Coq

Abhishek Anand1 Andrew W. Appel2 Greg Morrisett1 Zoe Paraskevopoulou2

Randy Pollack3 Olivier Savary Bélanger2 Matthieu Sozeau4 Matthew Weaver2
1 Cornell University 2Princeton University 3Edinburgh University 4Inria

CoqPL workshop, Paris, January 21, 2017

Abstract
CertiCoq is a mechanically verified, optimizing compiler for Coq
that bridges the gap between certified high-level programs and their
translation to machine language. We outline its design as well as the
main foundational and engineering challenges involved in building
and certifying a compiler for Coq in Coq.

1. Introduction
Certified programs, i.e. programs that come equipped with machine-
checked proofs of specifications, are becoming more and more
prevalent since the emergence of dependently typed languages
that allow the users to express and prove properties of programs
within the language itself. Notably, Coq has been used to certify a
considerable amount of realistic software, including compilers [7],
web servers [5] and databases [9]. A commonly used practice in
software certification within Coq is to write programs in Gallina,
the core language of Coq, mechanically verify them, and then use
one of the provided extraction mechanisms in order to obtain an
executable version of the certified program. However, the existing
extraction pipelines and the compilers of the languages they are
targeting are not certified, and thus they provide no guarantee
that the low-level code will match the specification of the source
program. CertiCoq aims to bridge this gap by providing a verified
extraction pipeline from Coq to machine language. Currently, we
are targeting CompCert C light, thus we can compose with the
CompCert compiler (and its correctness proof) to get a verified
compilation pipeline from Gallina to machine language. But we are
also exploring an LLVM back end, for composition with a possible
future verified LLVM [13]. All phases of our compiler are written in
Gallina, and we are proving them correct in Coq. Most phases have
already been proven correct while the rest have proofs in progress.

The area of formal compiler certification has grown extensively
since the CompCert [7] project. Significant efforts have been made
in building certified compilers for functional languages, including
CakeML [12], which has reached a remarkable level of realism,
and the compositional Pilsner compiler [11]. Although correct
compilation is important on its own sake, the source languages
of these compilers lack a proof theory that allows the user to
certify properties about the source programs, and thus they do
not provide end-to-end correctness guarantees. Towards this end,
the VST project provides a program logic to reason about deep
embeddings of C programs within Coq. The program logic is proved
sound with respect to the C semantics and the C program is compiled
with the CompCert C compiler, providing an end-to-end correctness
specification. The great advantage of Gallina over C is that its proof
theory (CiC) is much easier to use than C’s proof theory (separation
logic).

In the following sections we present the guiding principles and
the design of CertiCoq, and we give an overview of the research
challenges tackled by this effort.

2. Principles
Principle 1: Erase the types! Compiler correctness is a stronger
property than type preservation, anyway. We compile through a
series of untyped IRs, maintaining a record of useful information
on the side—such as the arities of data constructors of inductive
data types, from which we can derive tagged data representations
in memory. With erased types, we avoid the need for a full Coq-in-
Coq; all we need to deeply embed is evaluation semantics of the
computational part.

Principle 2: Use properties of the source language to simplify
reasoning about transformations! For example, we can restrict our
reasoning to terminating programs since Coq is strongly normalizing.
This way we avoid backward simulations (forward simulation proofs
are much simpler) and avoid proving preservation of divergence.

Principle 3: Write compilers in a purely functional language with
a good proof theory! This principle is already well established [7];
we choose Coq.

3. Structure of the Compiler
Our compiler is a pipeline of several phases through several interme-
diate languages. For each phase we prove that (weak) call by value
big-step semantics are preserved.
L0: Gallina, repr. in Ocaml data constructors in the Coq kernel

Annotate proofs, reify into Coq using template-coq.
L1: Gallina, represented in Coq inductive data constructors

Proof erasure: replace proofs by noninformative nonces [8].
Erase type labels (λ, ∀, match).
L2: Type-erased Gallina
η-expand constructors, flatten spine applications to unary.
L3: Simplified Gallina

Close program by let-binding definitions from the environment.
L4: Closed Gallina

Move from deBruijn bindings to named, abstract binding trees to
use the SquiggleLazyEq theory of substitution [1].
L4a: Named λ calculus

CPS conversion: similar to [4].
L5: named CPS with substitution-based evaluation

Make variable names globally unique, ensure that arguments to
constructors are variables.
L6: machine-oriented CPS with environment-based evaluation

Uncurrying: Uncurry function applications using η-expansions.
Shrink-reductions: function inlining, constant folding, dead variable
elimination using an efficient algorithm [3] adapted and improved.

1



Lambda lifting: replace calls to known functions with calls to
functions whose free variables have become formal parameters.
This “unboxes” closure environments.
Closure conversion: replace functions with pairs of closed functions
(with an extra environment parameter) and their environment.
Hoisting: unnest functions and move them to top-level.
L6c: CPS with no nested functions

Generate stackless closure-passing code in the style of SML/NJ [2]
and Manticore [6], represented as tail calls (and function pointers)
in C.
L7: CompCert C light

Compile with CompCert.
L∞: assembly language

4. Research Challenges and Future Directions
Axioms. Coq’s logic is known to be consistent with axioms like
UIP and functional extensionality, which are used in several Coq de-
velopments. However, axioms can wreak havoc with Coq’s computa-
tion – they can cause programs to get stuck. Following Letouzey [8],
early phases of our compiler eliminate proofs (including axioms) so
that they cannot get into the way of computations. We plan to extend
Letouzey’s analysis of the method by developing mechanized proofs
of stronger properties (observational equivalence instead of just the
agreement of head constructors), and that these properties hold even
in the presence of some blessed axioms. Furthermore, to enable
optimizations such as hoisting a closed term out of a lambda, we
may need to extend Letouzey’s method to keep track of enclosing
binders during erasure.

Effects. Even though Coq is a pure language, one can encode
effects as pure monadic values denoting actions like reading and
writing memory or files [9, 10]. Because this approach does not
sacrifice purity, or extend Coq with any new construct, no change
would be needed to the initial phases of the compiler (L0-L6). In
particular, we would not need to worry about effects in optimizations
such as common subexpression elimination1. We plan to design a
coinductively defined monad in Coq to encode common effectful
primitive actions in C. We will also investigate a specification of
how some of those actions change the world (e.g. heap) and the
soundness of the specification w.r.t. the CompCert C semantics.

Compositionality. We aim to prove the compiler correct in a
compositional way. This compositionality property is three-fold:
(a.) the correctness statements of each phase should compose
vertically, (b.) CertiCoq’s end-to-end theorem should compose
with CompCert’s end-to-end theorem, and (c.) each one of these
correctness statements should compose horizontally in order to
support separate compilation and linking. Our goal is to show
semantics preservation; since we are only interested in safe programs
and the semantics is deterministic, semantics preservation implies
semantics refinement.

Portability. By targeting C instead of machine language, we can
leverage the verified phases of CompCert while gaining portability
to all of CompCert’s target machines (x86-32, x86-64, ARM, Power,
Risc-V). But this comes at a cost: C’s calling conventions are not a
perfect match for continuation-based (all tail-call) programs. There
may be simple mitigations of this problem, e.g., equip CompCert
with different calling conventions for C, as is already done in the
GHC→LLVM compiler.

1 Currently, because of the lack of common subexpression elimination,
two definitionally equal Coq programs, when executed after extraction to
OCaml, may have drastically different asymptotic complexity – see https:
//sympa.inria.fr/sympa/arc/coq-club/2016-01/msg00177.html

Interface. We use Ocaml data representations with C calling
conventions, so our compiled Gallina programs should be easily
callable from Ocaml or C.

Garbage collection. We have a high-performance generational
garbage collector. It is particularly simple because Gallina is purely
functional; unlike imperative languages such as ML (ref-update) and
Haskell (thunk-update), there are never stores to already allocated
data. A project is underway in Singapore to prove this collector
correct using Verifiable C. Our programs are also compatible with
the Ocaml collector.

5. Conclusion
This work in progress should soon yield a compiler that is useful
(for compiling Gallina programs that you have proved correct
in Coq), efficient (in compilation time), optimizing (competitive
with Ocaml), verified (with proofs in Coq), compatible (with
C and Ocaml), and elegant. Regarding the last point, we have
carefully structured the intermediate languages so that each phase
does a clearly specified transformation whose proof is clear and
maintainable.

Acknowledgments. This research was supported in part by NSF
grants CCF-1407790, CCF-1407794, and CCF-1521602.

References
[1] A. Anand. Exploiting uniformity in substitution: The Nuprl term model.

International Conference on Mathematical Software, 2016. URL https:
//github.com/aa755/SquiggleEq.

[2] A. W. Appel. Compiling with Continuations. Cambridge University Press,
Cambridge, England, 1992.

[3] A. W. Appel and T. Jim. Shrinking lambda expressions in linear time. J.
Funct. Program., 7(5):515–540, 1997.

[4] Z. Dargaye and X. Leroy. Mechanized verification of CPS transformations.
In Logic for Programming, Artificial Intelligence, and Reasoning, pages
211–225. Springer, 2007.

[5] S. L. Dongseok Jang, Zachary Tatlock. Establishing browser security guar-
antees through formal shim verification. In USENIX Security Symposium,
page 8, 2012.

[6] M. Fluet, M. Rainey, J. Reppy, A. Shaw, and Y. Xiao. Manticore: A
heterogeneous parallel language. In Proceedings of the Workshop on
Declarative Aspects of Multicore Programming, pages 37–44. ACM, 2007.
ISBN 978-1-59593-690-5.

[7] X. Leroy. Formal certification of a compiler back-end, or: programming
a compiler with a proof assistant. In Proceedings of the Symposium on
Principles of Programming Languages, POPL, pages 42–54. ACM, 2006.

[8] P. Letouzey. Programmation fonctionnelle certifiée – L’extraction de
programmes dans l’assistant Coq. PhD thesis, Univ. Paris-Sud, July 2004.

[9] G. Malecha, G. Morrisett, A. Shinnar, and R. Wisnesky. Toward a verified
relational database management system. POPL, pages 237–248. ACM,
2010.

[10] A. Nanevski, G. Morrisett, A. Shinnar, P. Govereau, and L. Birkedal. Ynot:
Reasoning with the awkward squad. In ICFP’08. ACM, 2008.

[11] G. Neis, C.-K. Hur, J.-O. Kaiser, C. McLaughlin, D. Dreyer, and
V. Vafeiadis. Pilsner: A compositionally verified compiler for a higher-order
imperative language. In ICFP’15, pages 166–178. ACM, 2015.

[12] Y. K. Tan, M. O. Myreen, R. Kumar, A. Fox, S. Owens, and M. Norrish.
A new verified compiler backend for CakeML. In ICFP’16, pages 60–73.
ACM, 2016.

[13] J. Zhao, S. Nagarakatte, M. M. Martin, and S. Zdancewic. Formalizing the
LLVM intermediate representation for verified program transformations. In
POPL’12, pages 427–440. ACM, 2012.

2

https://sympa.inria.fr/sympa/arc/coq-club/2016-01/msg00177.html
https://sympa.inria.fr/sympa/arc/coq-club/2016-01/msg00177.html
https://github.com/aa755/SquiggleEq
https://github.com/aa755/SquiggleEq

	Introduction
	Principles
	Structure of the Compiler
	Research Challenges and Future Directions
	Conclusion

