
Bringing order to the separation logic jungle

Qinxiang Cao, Santiago Cuellar, and Andrew W. Appel

Princeton University

Abstract. Research results from so-called “classical” separation logics
are not easily ported to so-called “intuitionistic” separation logics, and
vice versa. Basic questions like, “Can the frame rule be proved inde-
pendently of whether the programming language is garbage-collected?”
“Can amortized resource analysis be ported from one separation logic
to another?” should be straightforward. But they are not. Proofs done
in a particular separation logic are difficult to generalize. We argue that
this limitation is caused by incompatible semantics. For example, emp
sometimes holds everywhere and sometimes only on units.
In this paper, we introduce a unifying semantics and build a framework
that allows to reason parametrically over all separation logics. Many
separation algebras in the literature are accompanied, explicitly or im-
plicitly, by a preorder. Our key insight is to axiomatize the interaction
between the join relation and the preorder. We prove every separation
logic to be sound and complete with respect to this unifying semantics.
Further, our framework enables us to generalize the soundness proofs
for the frame rule and CSL. It also reveals a new world of meaningful
intermediate separation logics between “intuitionistic” and “classical”.

Keywords: Separation logic, Order, Separation Algebra

1 Introduction

Separation logic, introduced at the turn of the millennium by Reynolds [32], has
led to tremendous progress in modular verification in a multitude of applications:
for reasoning about multiple languages, including those with C-like (malloc/free)
or Java-like (garbage-collected) memory model; for reasoning about concurrency;
for amortized resource analysis; or for static automated bug analysis. Unfortu-
nately, many of those instances disagree on the definitions of separation logic
itself. In 2010, Parkinson [27] warned us about this indiscriminate proliferation
of separation logics.

The problem with this proliferation of logics is that each logic requires
a new soundness proof.

— The Next 700 Separation Logics

Seven years later, separation logics are still tailored for particular uses, which
makes them incompatible and hard to extend; they have different proof rules,
they use custom underlying models and impose conflicting semantics.

To appear in APLAS'17: 15th Asian Symposium on Programming
Languages and Systems, November 2017.

2

The best example of the divide originates from the conventional wisdom
[1][5][18][28] that “intuitionistic separation logics are for garbage-collected lan-
guages, classical separation logics are for malloc/free languages.” We think that
intuitionistic vs. classical is not the right way to look at it; the problem with the
nomenclature is twofold.

First, it creates a false dichotomy. The literature has almost exclusively dealt
with these two flavors of logic, while ignoring a large variety of intermediate log-
ics. For example, it is known that the elimination rule of separating conjunction
(` ϕ ∗ ψ → ϕ) is incompatible with the law of excluded middle [19] but, as
we show in this paper, it is compatible with some weaker forms. The resulting
intermediate separation logics are rich and meaningful but have largely been ne-
glected. In fact, we found separation logic instances that admitted intermediate
rules unbeknownst to the authors [1,17,11].

Second, the naming convention creates two seemingly incompatible bodies of
work. Since authors choose one or the other framework, results are often hard
to extend and different works are hard to compare. For instance, the soundness
of the frame rule given the frame property [19] has to be proved anew for every
different semantic model. Similarly, the soundness of concurrent separation logic
proved by Brookes [7] does not naturally extend to garbage-collected languages.
Other works that are hard to extend include the discussion of preciseness and
the conjunction rule [26] [16], and recent advances in logics for concurrency [22].

The main difficulty in unifying the two worlds is that authors use different
and sometimes incompatible semantics. For instance, one side enforces that emp
holds only on units, while for the other side it is simply equal to True. In fact,
even within each side there are several conflicting semantics.

Ideally, the semantics of the separating operators would be given by the
intuitive definitions

m � ϕ ∗ ψ , exists m1 m2 s.t.⊕ (m1,m2,m) and m1 � ϕ and m2 � ψ (4.1)

m � ϕ−∗ψ , for any m1 m2, if ⊕ (m,m1,m2),m1 � ϕ implies m2 � ψ (4.2)

where ⊕ is a join operation on the underlying model, called a separation algebra
[10]. Unfortunately, when the objects of interest are not just simple heaplets—
when step-indexing [17][6] or topology [31, §3] or amortized analysis [4] or buffer
flushing [11] is involved—authors have had to define more intricate semantics;
the simple semantics is (apparently) unsound. We explain this in section 5.3.
Not only are these “messier” semantic definitions inconvenient, they cause non-
portability of results.

In this paper we show that all of those semantics are in fact instances of
a flat semantics over the generalized ordered separation algebras. An ordered
separation algebra is just a separation algebra together with a preorder ≤.

Ordered separation algebras are not a new idea. In fact, the heap model
defined by Reynolds in his first paper on separation logic [32] is ordered by
heap extension. Similarly, the monotonic state of Pilkiewicz and Pottier [29] and
the amortized resource of Atkey [4] are also ordered. Furthermore, Pym et al.
[31], Galmiche et al. [15] and Jensen [20] have used ordered separation algebras

3

explicitly as their semantic model. Despite this common trend, orders have been
used to define different semantics, tailored to specific models, and no unification
had yet been discovered.

Contributions. We argue that all models of separation logic are ordered sepa-
ration algebras (section 5.1) and we show that all semantics in the literature, to
the best of our knowledge, can be formulated as instances of our flat semantics
(thm. 3). Our unification holds for the “classical” side, the “intuitionistic” side
and all separation logics in between.

By this unifying semantics, we establish a correspondence between all differ-
ent separation logics and classes of ordered separation algebras. We prove that
any separation logic is sound and complete w.r.t. flat semantics in its corre-
sponding class of models (section 6).

We generalize two theoretical applications of separation logics (section 7).
We show that the frame rule (given frame property) and CSL are sound para-
metrically on different separation logic semantics.

All the definitions, propositions, lemmas and theorems in this paper have
been formalized in Coq. We will often omit uninteresting proofs, but a curious
reader can find them in our publicly available development.

2 Related Work

Authors use both “separation logic” and “bunched logic” to describe a proposi-
tional logic extended with separating connectives (∗ and −∗). Usually, “bunched
logics” (or bunched implication, BI) [25] are used when the semantics are de-
fined over abstract relational Kripke models while“separation logics” [32] are
used when the semantics are defined over some specific memory model. This
distinction is not absolute. Calcagno el. al [10] first studied separation logic over
abstract models, i.e. separation algebras. In this paper, we always use the name
“separation logic”. What the bunched logic literatures call BI is, in our terminol-
ogy, the proof theory IP + SL; what they call Boolean BI (BBI) we characterize
as IP + SL + EM. Some authors also use “separation logic” to describe Hoare
logics whose assertion languages contain ∗ and −∗. In this paper, we call them
Hoare separation logics.

Ishtiaq and O’Hearn [19] showed a modal translation (·)◦ that embeds sepa-
ration logic without excluded middle [32] into their logic with excluded middle.
The translation preserves validity; i.e s, h �Reynolds P ⇔ s, h �Ishtiaq P◦. The
translation is enough to show the soundness of both logics with respect to their
model, but not for other models. Of particular interest, they show the frame
rule is sound w.r.t. operational semantics with the frame property. We extend
the soundness of the frame rule, parametrically on different semantic models.

Galmiche and Larchey-Wendling [14] prove the completeness of classical sep-
aration logics (BBI). Our soundness and completeness proof generalizes their
result to nonclassical logics.

Pym, O’Hearn and Yang [31] derive a Kripke semantic model for separa-
tion logics (called PDM) from topology semantics and prove its soundness and

4

completeness. It is later used by other authors as a unifying semantic model.
This semantics is equivalent to downwards semantics in this paper. Their model
cannot cover step indexed models [17][6] and some variants of FSCQ’s semantic
model [11], which are instances of upwards semantics in this paper.

Jensen [20] has a thorough review of separation logics and separation alge-
bras. The chapter is expositional, but he explicitly imposes an order on each sep-
aration algebra. Our presentation of separation logic semantics is closely related
to his. In particular, his Propositions 3.6 and 3.7 correspond to our definitions
13.1 (upwards semantics) and 13.2 (downwards semantics), of which he writes:

The conditions of neither Proposition 3.6 nor Proposition 3.7 generalise
the conditions of the other, so perhaps a unifying theorem is still waiting
to be discovered.

Our theorem 3 is exactly that theorem.
It is well known that separation logic is a kind of binary modal logic [31]. Some

authors have proposed different semantics of intuitionistic (unary) modal logic—
Simpson [33] showed that the main disagreement among them is a choice between
requiring the frame to satisfy a closure property and building the monotonicity
property into the semantic definition of modalities. Our discussion of upwards
semantics, downwards semantics and flat semantics for separation logic is similar
to that discussion in Simpson’s thesis about modal logic. But we go further in
this paper, we show a unifying solution of all these semantics.

3 Taxonomy Of Separation Logic

In this section, we formally define the scope of separation logics based on their
proof systems. In turn, this allows us to group the separation logics to provide
parametric proofs of soundness and completeness in section 6. This classification
will hopefully dispel the unfortunate nomenclature (classical vs. intuitionistic)
that has been prevalent.

3.1 Defining separation logic

We take the syntax below to be the assertion language of separation logic.

Definition 1 (Separation logic syntax). For a given set of atomic assertions
Σ, we use L(Σ) to represent the smallest language with all following assertions:

ϕ ::= p(∈ Σ) | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 → ϕ2 | ϕ1 ∗ ϕ2 | ϕ1−∗ϕ2 | ⊥ | emp

As usual, we use the following connectives as abbreviations: ϕ1 ↔ ϕ2 , (ϕ1 →
ϕ2) ∧ (ϕ2 → ϕ1), ¬ϕ , ϕ→ ⊥, > , ⊥ → ⊥.

We will define separation logics based on a Hilbert-style proof system; that
is a set of axioms and proof rules. Intuitionistic propositional logic is defined by
the the rules IP in fig. 1. EM, GD and WEM in fig. 2 are optional axioms for

5

` ϕ ` ϕ→ ψ
(MP)

` ψ

` ϕ→ (ψ → ϕ)
(→1)

` ϕ→ ψ → ϕ ∧ ψ
(∧I)

` ϕ ∧ ψ → ϕ
(∧E1)

` ϕ ∧ ψ → ψ
(∧E2)

` ϕ→ ϕ ∨ ψ
(∨I1)

` ψ → ϕ ∨ ψ
(∨I2)

` ⊥ → ϕ (⊥E)

` (ϕ→ ψ → χ)→ (ϕ→ ψ)→ (ϕ→ χ)
(→2)

` (ϕ→ χ)→ (ψ → χ)→ (ϕ ∨ ψ → χ)
(∨E)

Fig. 1: Axioms and rules of intuitionistic propostional logic (IP)

` ¬ϕ ∨ ¬¬ϕ (WEM)

` ϕ→ ψ ∨ ψ → ϕ (GD)

` ϕ ∨ ¬ϕ (EM)

Fig. 2: Optional axioms for proposi-
tional logic

` ϕ ∗ ψ → ϕ (*E)

` emp ∧ (ϕ ∗ ψ) → ϕ (eE)

` emp ∧ ϕ → ϕ ∗ ϕ (eDUP)

Fig. 3: Optional axioms for separat-
ing connectives

propositional logic. A logic with EM is classical, while the weaker axioms GD
and WEM give rise to intermediate logics. Many other similar axioms give rise
to more intermediate logics; we omit them here for the sake of space.

The axioms and rules for minimun separation logic (SL) are in fig. 4: commu-
tativity, associativity, adjoint property of the separating operators, monotonicity
of separation over implication and the fact the emp is a separation unit. The dou-
ble line in ∗ADJ implies the derivation works both ways. The axioms ∗E, eE and
eDUP in fig. 3 are optional: ∗E is the elimination rule of the separating conjunc-
tion; eE enforces that every empty piece to be non-splittable; and eDUP says all
empty pieces are duplicable.

(*COMM)
` ϕ ∗ ψ → ψ ∗ ϕ

` ϕ ∗ ψ → χ
(*ADJ)

` ϕ→ ψ−∗χ
(EMP)

` ϕ ∗ emp↔ ϕ

(*ASSOC)
` (ϕ ∗ ψ) ∗ χ→ ϕ ∗ (ψ ∗ χ)

` ϕ1 → ψ1 ` ϕ2 → ψ2
(*MONO)

` ϕ1 ∗ ϕ2 → ψ1 ∗ ψ2

Fig. 4: Axioms and rules for separating connectives (SL)

Even with the axioms and proof rules in minimum separation logic (IP +
SL), many useful properties can be derived. For example, all of the following
assertions are provable in any separation logic: ` (ϕ−∗ψ)∗ϕ→ ψ, ` (ϕ∨ψ)∗χ↔
(ϕ ∗ χ ∨ ψ ∗ χ), ` (ϕ ∧ ψ) ∗ χ→ (ϕ ∗ χ ∧ ψ ∗ χ).

To dispel the unfortunate nomenclature, we call a separation logic with EM
classical, those with ∗E garbage-collected and those with eE and eDUP mal-
loc/free.

6

Degenerate separation logic Reynolds [32] and Ishtiaq and O’Hearn [19] infor-
mally postulated that EM and ∗E are “incompatible”. It turns out that if a
separation logic Γ is classical and garbage-collected, its separating connectives
collapses, i.e. for any ϕ and ψ: `Γ ϕ ∗ ψ ↔ ϕ ∧ ψ and `Γ (ϕ−∗ψ)↔ (ϕ→ ψ).

Brotherston and Kanovich [8] prove that a separation logic collapses if it
is malloc/free and garbage-collected at the same time. They also show that a
classical and garbage-collected separation logic is malloc/free.

4 Background

4.1 Separation Algebra

The semantics of all separation logics are built on structures (e.g., heaps, his-
tories, amortized resources) that share common properties such as associativity
and commutativity.

Definition 2 (Commutativity). For a set M , the relation ⊕ ⊆ M ×M ×M
is commutative iff for all m1, m2, and m: ⊕(m1,m2,m) implies ⊕(m2,m1,m).

Definition 3 (Associativity). For a set M , the relation ⊕ ⊆ M × M ×
M is associative iff for all mx my mz mxy and mxyz , if ⊕(mx ,my ,mxy) and
⊕(mxy ,mz ,mxyz), there exists myz such that ⊕(my ,mz ,myz) and ⊕(mx ,myz ,mxyz)

Calcagno, O’Hearn and Yang [10] first called such structures (M ,⊕) separa-
tion algebras and proposed them to be also cancellative, functional (i.e. ⊕(a, b, c)
and ⊕(a, b, c′) implies c = c′) and with a unit. Since then, the definition has
been revisited several times [13] [16] [12] [30]. We follow Brotherston and Villard
[9] in that the ⊕ relation is neither functional nor cancellative. We depart from
them in that we require no units, so we only require a separation algebra to be
commutative and associative.

Using the algebras, Calcagno, O’Hearn and Yang define the semantics of
separation logic as in definition 4. This is the most widely used and intuitive
definition. Foreshadowing the stronger definition (12), we will call them weak
semantics.

Definition 4 (Weak Semantics).

m � ϕ ∗ ψ , exists m1 m2 s.t.⊕ (m1,m2,m) and m1 � ϕ and m2 � ψ (4.1)

m � ϕ−∗ψ , for any m1 m2, if ⊕ (m,m1,m2), m1 � ϕ then m2 � ψ (4.2)

4.2 Kripke semantics for intuitionistic logic

The Kripke semantics [23] for the propositional language is defined on Kripke
models.

Definition 5 (Kripke model). For an intuitionistic logic with atomic propo-
sition set Σ, a Kripke model is a tuple (M ,≤, J) in which

7

1. ≤ is a preorder on M
2. J ∈ M → P(Σ) is an interpretations of atomic propositions and is mono-

tonic, i.e., for any m,n ∈ M , if m ≤ n then J (m) ⊆ J (n).

We also call such tuple (M ,≤) a Kripke structure.

Definition 6 (Kripke Semantics). Given a Kripke model (M ,≤, J), the sat-
isfaction relation (· �(M ,≤,J) ·) is defined as follows (when the Kripke model is
unambiguous from the context, we will omit it for conciseness)

m � p , p ∈ J (m) m � ϕ ∨ ψ , m � ϕ or m � ψ
m � ⊥ , never m � ϕ→ ψ , for any m0, if m ≤ m0

m � ϕ ∧ ψ , m � ϕ and m � ψ then m0 � ϕ implies m0 � ψ

Intuitionistic propositional logic is sound and complete w.r.t. this semantics.
Moreover, Kripke semantics is a unifying solution of intuitionistic and classical
propositional logics: the identity relation is a trivial order and classical logic is
sound and complete w.r.t. Kripke semantics in all models with a discrete order.

5 Model And Semantics

In this section, we introduce a framework to define flat semantics on ordered
separation algebras which unifies all different semantics of separation logic (we
know of) in the literature.

We introduce ordered separation algebras, define properties that they and
their elements may have (increasing, unital, upwards-closed, downwards-closed).
We show examples from the literature of algebras with and without these prop-
erties. We show ways of constructing downwards-closed upwards-closed algebras.
We demonstrate examples from the literature of different semantics of separation
logic and we show that they are all equivalent to instances of flat semantics.

5.1 Ordered separation algebras

Using a Kripke semantics is a motivation to impose an order over separation
algebras and in fact this is a very common practice (implicitly or explicitly). For
example, the heap model defined by Reynolds in his first paper of separation
logic [32] is ordered by heap extension, and the resources of a monotonically
increasing counter [29] [21] are ordered by the order of natural numbers.

More interesting examples are those that impose an execution order. For
instance, states that are step indexed [2] will be ordered by the index, which
decreases with execution. In the same vein, Pottier [30] has an active execution
order1 for elements of his algebra. The separation algebra by Jung et al. [6] is
ordered both by heap extension and step index.

1 Pottier also adds a passive execution order which constitutes what he calls a mono-
tonic separation algebra. The idea is similar but goes in a different direction, aiming
for a type system and not a separation logic.

8

Since the identity relation is also a preorder, it is not overly restrictive to
require separation algebras to be ordered—any separation algebra is trivially
ordered by the discrete order. With that in mind we define ordered separation
algebra as a more expressive way to view separation algebras.

Definition 7 (Ordered separation algebra). An ordered separation algebra
is a tuple (M ,≤,⊕), where M is the carrier set, ≤ is a preorder on M and
⊕ ⊆ M ×M ×M is a three-place relation that is commutative and associative.

Just like in Dockins et al. [13], OSA form an algebra closed under cartesian
product, disjoint sum and exponentiation.

If the order is irrelevant or can be inferred by context we will simply call it a
separation algebra. Also, we call a tuple (M ,≤,⊕, J) an extended Kripke model
if (M ,≤,⊕) is an OSA and (M ,≤, J) is a Kripke model.

The most obvious example of OSAs are heaps HV : adr ⇀ V , which are most
commonly discrete (i.e. ordered by ∆2 , {(h, h) | h ∈ HV }) or ordered by heap
extension (i.e. vHV

, {(h1, h2) | dom h1 ⊆ dom h2 and ∀x ∈ dom h1, h1(x) =
h2(x)}). Many other resources are OSAs, such as ordered monoids, which are
used for amortized resource analysis [4].

5.2 Increasing elements and algebras

Definition 7 imposes almost no constraints on ≤ other than being a preorder.
Particularly, there is no relation between ⊕ and ≤. We do this in order to be
as general as possible and we will revisit this goal in section 5.3. However, it
is worth spelling out an intuitive and important connection between the two
relations. In heaps with heap-extension order, joining two heaps always results
in a larger heap. We capture this property in the following definitions.

Definition 8 (Increasing element and algebra). For a separation algebra
(M ,≤,⊕), an increasing element e ∈ M is one such that for all m,n ∈ M , if
⊕(e,m,n) then m ≤ n. Similarly, a separation algebra is increasing if all its
elements are increasing.

The increasing OSAs also form an algebra closed under cartesian product,
disjoint sum and exponentiation. The intuition towards increasing will be made
clear throughout the paper; it is used for the semantics of emp (section 5.5) and
it is key for defining separation logics for garbage-collected languages (thm.5).

5.3 Extending Kripke semantics

It is a fundamental property of Kripke semantics that the denotations of all
assertions are monotonic, not just those of atomic assertions. More precisely,

Definition 9 (Monotonic denotation). An assertion ϕ has monotonic deno-
tation in a Kripke model (M ,≤) w.r.t. a semantics (· � ·) iff for any n,m ∈ M ,

If n ≤ m then n � ϕ implies m � ϕ (1)

9

This property is critical in proving soundness of intuitionistic logic and any
of its extensions (e.g. intuitionistic first order logic or intuitionistic modal logic).

Therefore, in extending Kripke semantics with separating connectives, prop-
erty (1) must be preserved. To do so, if separating conjunction is defined as in
(4.1), then the separation algebra must be upwards-closed :

Definition 10 (Upwards-closed separation algebra (UCSA)). An OSA
(M ,≤,⊕) is upwards-closed if the join relation is upwards-closed with respect to
the order. In other words, for all m1, m2, m and n, If ⊕(m1,m2,m) and m ≤ n,
then there exist n1 and n2 s.t. ⊕(n1,n2,n)and m1 ≤ n1 and m2 ≤ n2.

Similarly, if separating implication is defined as in (4.2), then we must require
our separation algebra to be downwards-closed :

Definition 11 (Downwards-closed separation algebra (DCSA)). An OSA
(M ,≤,⊕) is downwards-closed if the join relation is downwards-closed w.r.t. the
order. In other words, for all m1, m2, m, n1 and n2 : If ⊕ (m1,m2,m),n1 ≤
m1 and n2 ≤ m2 then there exists n s.t. ⊕ (n1,n2,n) and n ≤ m.

Theorem 1 (Weak semantics monotonicity). For any assertions ϕ and ψ
with monotonic denotation,

1. the weak denotation of ϕ ∗ ψ (4.1) is monotonic in any UCSA
2. the weak denotation of ϕ−∗ψ (4.2) is monotonic in any DCSA

Here, these two definitions are justified by theorem 1. Moreover, a separation
algebra with a discrete order is UCSA and DCSA. Also UCSA and DCSA are
closed under cartesian product, disjoint sum and exponentiation.

Unfortunately, many separation algebras don’t satisfy requirements 10 and
11. For instance, the following example describes a heap where short is two bytes
long. It is motivated by the treatment of multibyte locks in VST [1, pp. 366-7] .

Example 1 (Typed Heaps). Let a typed heap be HT : N⇀ {char, short1, short2},
such that H (n) = short1 iff H (n + 1) = short2. Define ⊕ as the typical heap
addition (i.e. disjoint map union) and define the order as follows

H1 vHT H2 , ∀n ∈ dom H1, n ∈ dom H2 and H1(n) = H2(n) or H1(n) = char

Then (HT ,vHT ,⊕) is an OSA which is DCSA but not UCSA.

In order to be as inclusive as possible, it is desirable to avoid requirements
10 and 11. With that goal, stronger semantics of ∗ and −∗ have been proposed
[17] [31] to be monotonic by design. Theorem 2 justifies the choice.

Definition 12 (Strong semantics).

m � ϕ ∗ ψ , ∃ m0, m1, m2 s.t. m0 ≤ m,⊕(m1,m2,m0)

and m1 � ϕ and m2 � ψ
(12.1)

m � ϕ−∗ψ , for any m0, m1, m2 if m ≤ m0,⊕(m0,m1,m2)

then m1 � ϕ implies m2 � ψ
(12.2)

10

Theorem 2 (Strong semantics monotonicity). For any assertion ϕ and ψ,
if their denotations are both monotonic, then

1. strong semantics of separating conjunction (12.1) ensures the denotation of
ϕ ∗ ψ to be monotonic

2. strong semantics of separating implication (12.2) ensures the denotation of
ϕ−∗ψ to be monotonic.

Alas, it is not always possible to use both strong semantics (12.1) and (12.2).
These definitions enforce monotonicity, but might break other proof rules. As we
show with the following example, separation logic becomes unsound w.r.t such
strong semantics in the OSAs that are closed in neither direction.

Example 2. Consider the following separation algebra:

– Let M be {⊥, a1, a2, b1, b2,>}.
– Let ⊕ be {(a1, a1, a2), (b1, b1, b2)}.
– Let ≤ be {(⊥, a1), (a2, b1), (b2,>)} ∪ {(s, s)|s ∈ M }

On this model, ∗ASSOC is unsound w.r.t. the semantics of ∗ and −∗ defined by
(12.1) and (12.2).

Consequently, one must accept at least one restriction (i.e. upwards-closed
or downwards-closed) over OSAs. There are only three viable semantics, each
paired with a family of OSAs:

Definition 13 (Separation Logic semantics). Over the propositional con-
nectives (i.e. ∧, ∨, →, ⊥), the semantics of separation logic is defined by
definition 6. The semantics of the separating connectives is then defined as fol-
lows

1. In upwards semantics (· �⇑ ·), which is defined on upwards closed OSAs, the
conjunction is weak and implication strong (i.e. 4.1 and 12.2);

2. In downwards semantics (· �⇓ ·), which is defined on downwards closed
OSAs, the conjunction is strong and implication weak (i.e. 12.1 and 4.2).

3. In flat semantics (· �= ·), which is defined on OSAs closed in two directions,
both separating connectives are weak (i.e. 4.1 and 4.2).

Lemma 1. If a separation algebra is upwards-closed, the weak semantics of ∗
on it is equivalent to the strong semantics. If a separation algebra is downwards-
closed, the weak semantics of −∗ on it is equivalent to the strong semantics.

Corollary 1. For separation algebras with discrete order, upwards semantics,
downwards semantics and flat semantics are equivalent.

A flat semantics is by far the most common and intuitive; it is used whenever
the algebra is discrete, as suggested by corollary 1, and was used in Reynolds’s
original logic [32]. But in many applications, there is no natural flat semantics
since the underlying model is not closed in both ways. The upwards semantics is
used by Dockins et al. [13]. The downwards semantics appears in [15] [31] [24].

To the best of our knowledge, all semantics are covered by definition 13,
although in some cases it is not immediately obvious [4] [5] [6]. The followings
are typical examples.

11

Example 3 (Step-indexed heap). Consider a heap (unordered) separation algebra
(H,⊕H), the following is a semantics of separation logic defined on N×H:

(i , h) � ϕ ∗ ψ , ∃ h1 h2 s.t.⊕H (h1, h2, h) and (i , h1) � ϕ and (i , h2) � ψ

(i , h) � ϕ−∗ψ , for any j , h1 and h2

if i ≥N j and ⊕ (h, h1, h2) then (j , h1) � ϕ implies (j , h2) � ψ

Such models are used to define mixvariant recursive predicates [3] inside heaps.

In fact, this semantics on step indexed heap is just an upwards semantics
on a product algebra, as formalized in proposition 1. It seems like a hybrid
semantics: upwards for the indices (in the inverted order of naturals) and flat
for the heap. But since the monotonic heap is upwards-closed, by lemma 1, such
hybrid semantics is equivalent to an upwards semantics.

Proposition 1. The semantics defined in ex.3 is equivalent to upwards seman-
tics on the cartesian product of the index algebra (i .e.N,≥N, ∆3) and the heap
(i .e.H,vH,⊕H). Here, ∆3 , {(n,n,n)|n ∈ N}.

The following example is first used in FSCQ [11] to reason about a file system
in which the hardware may crush. This separation logic is so powerful that its
developer has verified a crush-recovery program even if a crush may happen
again in the recovery process. In their separation logic, an assertion is required
to be invariant w.r.t. buffer flushing, i.e. if an assertion is true before flushing
then it should be true after flushing.

Example 4 (Heap with write buffer). Let V + be the set of non-empty lists of V .
Such a nonempty list of values can represent one storage location with a write
buffer. We call l ′ ∈ V + a flushing result of l ∈ V + if l ′ is a suffix of l , i.e. exists
l ′′ such that l = l ′′l ′. A heap with write buffer is an OSA (B,⊕B,≤B):
B , adr ⇀ V +, ⊕B is heap-join relation and ≤B , {(b1, b2) | dom b1 =
dom b2 and ∀x ∈ dom b1. ∃l . b1(x) = l b2(x)}

This OSA is upwards closed and downwards closed, and the separational logic
defined by FSCQ is actually the flat semantics on it. The following variants of
it show the flexibility of our framework.

Example 5 (More refined buffer flushing). (1) 4B , {(b1, b2) ∈ ≤B | ∀x ∈
dom b1. either b1(x) = b2(x) or b2(x) is a singleton list}. This denies any partial
flushing on every single location. (2) vB , {(b1, b2) ∈ ≤B | either ∀x ∈
dom b1. b1(x) = b2(x) or ∀x ∈ dom b1. b2(x) is a singleton list}. This denies any
partial flushing on the whole heap.

The OSA defined by the first variant is still closed in both directions. How-
ever, the second variant is only upwards closed. Thus, only upwards semantics
can be defined on it.

12

5.4 Semantic equivalence

For now, we have defined upwards semantics on upwards closed OSAs, down-
wards semantics on downwards closed OSAs, and have defined flat semantics on
OSAs closed in both directions.

In this subsection, we show that they are all equivalent to instances of each
other. This is not to say that we can define flat semantics on OSAs with only
one closed property. Instead, we demonstrate a practical way of converting an
upwards closed or downwards closed OSA into an upwards closed and down-
wards closed OSA. We show an equivalence between the flat semantics on the
new OSA and the upwards or downwards semantics on the original OSA.

As our first step, we define the following two model transformations:

Definition 14 (Upwards closure and downwards closure). Given a sep-
aration algebra (M ,≤,⊕), its upwards closure is the triple (M ,≤,⊕⇑) where
⊕⇑(m1,m2,m) iff there is m ′ such that m ′ ≤ m and ⊕(m1,m2,m

′).
Given a separation algebra (M ,≤,⊕), its downwards closure is the triple

(M ,≤,⊕⇓) where ⊕⇓(m1,m2,m) iff there are m ′1 and m ′2 such that m1 ≤ m ′1,
m2 ≤ m ′2 and ⊕(m ′1,m

′
2,m).

For example, the downwards closure of index algebra (i .e.N,≥N, ∆3) is the
minimum algebra (N,≤N,⊕min), with ⊕min , {(x , y , z) | z ≤N x and z ≤N y}.

Lemma 2. Given an ordered separation algebra (M ,≤,⊕): If (M ,≤,⊕) is up-
wards closed, (M ,≤,⊕⇓) is a downwards closed and upwards closed ordered sep-
aration algebra. If (M ,≤,⊕) is downwards closed, (M ,≤,⊕⇑) is a downwards
closed and upwards closed ordered separation algebra.

At this point, you might think that any OSA can be made downwards- and
upwards-closed by taking both of its closures. Unfortunately, such a two-sided
closure might not be an ordered separation algebra at all!

Proposition 2. Let (M ,≤,⊕⇓⇑) be the upwards closure of the downwards clo-
sure of example 2. Then (M ,≤,⊕⇓⇑) is not associative.

When the algebra is upwards- or downwards-closed the closure is upwards-
and downwards-closed. Then, we can use the flat semantics on closures, which
happens to be equivalent with a stronger semantics over the original algebra:

Theorem 3. Given an extended Kripke model M = (M ,≤,⊕, J)

1. if it is downwards closed, then the flat semantics on M⇑ is equivalent to the
downwards semantics on M, i.e. for any ϕ and m, m �=M⇑ ϕ iff m �⇓M ϕ

2. if it is upwards closed, then the flat semantics on M⇓ is equivalent to the
upwards semantics on M, i.e. for any ϕ and m, m �=M⇓ ϕ iff m �⇑M ϕ

Here, M⇑ , (M ,≤,⊕⇑, J) and M⇓ , (M ,≤,⊕⇓, J).

Recall that flat semantics are direct instances of upwards semantics and
downwards semantics: the theorem follows as a corollary of lemma 1.

13

Theorem 4. Given an extended Kripke model M =
(M ,≤,⊕, J) with downwards closed and upwards closed separation algebra, for

any ϕ and m: (1) m �=M ϕ iff m �⇑M ϕ (2) m �=M ϕ iff m �⇓M ϕ

Thus, in summary, flat semantics is a direct instance of upwards semantics and
downwards semantics (thm. 4). Upwards semantics and downwards semantics
are instances of flat semantics via the closures (thm. 3).

As far as we know, the idea of our model transformation and the semantic
preservation is completely novel. However, we consider Atkey’s separation logic
for amortized resource analysis [4] a precursor worth mentioning. To use separa-
tion logic for amortized resource analysis, Atkey used the cartesian product of
a discrete heap and a consumable resource (which is just an ordered monoid).
The author wanted to use the usual and simpler flat semantics, but this is im-
possible because ordered monoids are not necessarily upwards-closed. To solve
the problem, he defined an unusual separation algebra that is equivalent to the
product of a discrete heap and the closure of the resource.

Example 6 (Resource-bounds). Suppose (R,⊕R,≤R) is an ordered commutative
monoid (for any r1 ≤R r ′1 and r2 ≤R r ′2, r1⊕Rr2 ≤R r ′1⊕Rr ′2), and (H,⊕H) is an
unordered heap. The following OSA on the product type, (R×H,⊕R×H,≤R×H
), is upwards closed and downwards closed.

≤R×H,{(i , h), (j , h) | i ≤R j}
⊕R×H ,{(i1, h1), (i2, h2), (i3, h3) | ⊕H (h1, h2, h3) and i1 ⊕R i2 ≤R i3}

This OSA is equivalent with (R,⊕R,≤R)⇑ × (H,=,⊕H).

5.5 Semantics of emp

Garbage-collect separation logic and malloc/free separation logic disagree on the
semantics of emp. In a malloc/free separation logic,

m � emp , m is a unit (Emp1)

and for a garbage-collected separation logic, emp just means True, i.e.

m � emp , always (Emp2)

We propose the following unification of the semantics of emp:

Definition 15 (Semantics of emp). For a separation algebra (M ,≤,⊕) and
m ∈ M , m � emp iff m is increasing

Definition 15 will not be sound if the set of increasing elements is not mono-
tonic. To solve that, just like we did in section 5.3, we can define a stronger
semantics to ensure soundness. This stronger semantics is an instance of defini-
tion 15 via the downwards closure, just like in theorem 3. Nevertheless, we know
of no practical application of such semantics, we omit the discussion here. In
what follows we just assume that the increasing set is monotonic.

14

Lemma 3. If the algebra is downwards-closed, the increasing set is monotonic.

For increasing algebras, all elements are increasing, so the semantics of emp
is equivalent to (Emp2). For algebras with discrete order, as stated in the lemma
below, only units are increasing, so the semantics of emp is equivalent to (Emp1)

Lemma 4. In a separation algebra with discrete order, an element is increasing
iff it is a unit.

Finally, we define a unital separation algebra as one in which each element
has a “increasing part”.

Definition 16 (Residue). In a separation algebra (M ,≤,⊕), we say m is a
residue of n if there exists n ′ such that ⊕(m,n ′,n) and n ≤ n ′.

Definition 17 (Unital separation algebras). A separation algebra is uni-
tal if all elements have an increasing residue. For antisymmetric orders this is
equivalent to: all elements have a identity element.

Unital OSAs are closed under product, sum and exponentiation.

6 Parametric Soundness And Completeness

It is known that different propositional logics are sound and complete with re-
spect to their corresponding class of Kripke models. Intuitionistic logic is sound
and complete w.r.t. Kripke semantics in all models [23]; Classical logic is sound
and complete w.r.t. Kripke semantics in the Kripke models with a discrete order.

In this section, we determine corresponding classes of extended Kripke mod-
els for each separation logic, as defined in section 3, based on the framework
for separation algebras developed in section 5. We then proceed to prove sound-
ness and completeness for each separation logic w.r.t the flat semantics in it’s
corresponding class of models. According to the equivalence theorem proved in
section 5.4, separation logics are then also proven sound and complete w.r.t.
upwards semantics and downwards semantics.

Definition 18. An order ≤ is nonbranching iff for any m, n and n ′, with m ≤
n and m ≤ n ′ then n ≤ n ′ or n ′ ≤ n.

An order ≤ always-joins iff for any m, n and n ′, if m ≤ n and m ≤ n ′ then
exists n ′′ s.t. n ≤ n ′′ and n ′ ≤ n ′′.

Definition 19. An OSA has its increasing elements self-joining iff for any m,
if it is increasing then ⊕(m,m,m).

An OSA has normal increasing elements iff for any n1, n2 and m, if n1⊕n2 =
mm is increasing then n1 ≤ m. In other words, an increasing element can only
be split into smaller pieces.

15

Definition 20 (Corresponding class of extended Kripke models). Given
a separation logic Γ , its corresponding class of extended Kripke models are the
set of models which (1) are upwards-closed (2) are downwards-closed (3) are
unital (4) satisfies the canonical properties of all optional axioms in Γ , as listed
in this table:

Optional axiom Canonical property

EM ∈ Γ Discrete order
GD ∈ Γ Nonbranching order
WEM ∈ Γ Always-joining order
∗E ∈ Γ Increasing
eDUP ∈ Γ Increasing elements self-joining
eE ∈ Γ Have normal increasing elements

Theorem 5 (Parametric soundness and completeness). A separation logic
Γ is sound and complete w.r.t. the flat semantics in Γ ’s corresponding class of
models.

Here, soundness and completeness are defined in the usual way. The sound-
ness proof is trivial. We establish completeness by a Henkin-style proof. An
interesting thing here is that the canonical model (constructed by derivable-
closed disjunction-witnessed consistent sets of assertions) is upwards closed and
downwards closed. This in some sense justifies our unifying solution. We put a
detailed proof in an online appendix.

Remark. The correspondences between GD and nonbranching order, and be-
tween WEM and always-joining order, are standard results in propositional log-
ics. But we find separation logic instances that admitted these intermediate rules
unbeknownst to the authors For example, the step-indexed model of VST [1] has
a nonbranching order so its separation logic should have GD. The order used in
FSCQ [11] is always-joining so its separation logic should have WEM.

7 Applications Of The Unifying Semantics

In the past 15 years, separation logic has been prolific tool for modular program
verification. However, until now, most research was only applicable to one specific
semantic model. For example, Ishtiaq and O’Hearn [19] showed that the frame
rule is sound as long as the operational semantics has the frame property, but
their conclusion was only demonstrated for unordered separation algebras (in
our framework, separation algebra with discrete order). So, their work does not
directly benefit separation-logic-based verification tools such as VST [1] and
Iris [22], since their semantics are based on step-indexed models. Similarly, the
soundness of CSL [7] was only established on unordered separation algebra.

We have already shown one example of how to generalize results about sepa-
ration logic. The soundness proof of IP + SL, in section 6, holds for all semantics
of separation logic (because they are instances of the flat semantics). In this sec-
tions, we will further shows that the two soundness results mentioned above—
frame rule and CSL— can be generalized to any ordered separation algebra with
flat semantics, and thus for all separation logics.

16

7.1 Frame rule

The frame is a fundamental rule for modular reasoning in separation logic.

{ϕ} c {ψ}
(FRAME)

{ϕ ∗ ξ} c {ψ ∗ ξ}

Ishtiaq and O’Hearn [19] showed that the frame rule is sound with their “classi-
cal” separation logic, as long as the operational semantics has, what the called,
the frame property. Here, we generalize the definition of frame property for all
OSAs, and show that the soundness of frame rule still holds.

Definition 21 (Small-step semantics). A small-step semantics of a pro-
gramming language is a tuple (M , cmd,) in which M represents program
states, cmd represents program commands and is a binary relation between
(M ×cmd) and (M ×cmd+{Err,NT}). Here, Err and NT means error state
and nonterminating state respectively.

We write ∗ to mean the transitive reflexive closure of

Definition 22 (Accessibility from small-step semantics). Given a small-
step semantics (M , cmd,), we define accessibility as a binary relation between
M and M + {Err,NT}:

1. m
c−→ m ′ iff (m, c) ∗ (m ′, skip)

2. m
c−→ Err iff (m, c) ∗ Err

3. m
c−→ NT iff (m, c) ∗ NT or there exist infinite sequences {mk} and {ck}

(for k ∈ N) such that (m, c) (m0, c0) and (mk , ck) (mk+1, ck+1).

Definition 23 (Frame property). An accessibility relation (· c−→ ·) satis-
fies frame property w.r.t. an ordered separation algebra (M ,≤,⊕) if for all
m,mf ,n,n

′ ∈ M and any command c,

1. if ⊕(m,mf ,n) and n
c−→ Err, then m

c−→ Err

2. if ⊕(m,mf ,n) and n
c−→ NT, then m

c−→ NT

3. if ⊕(m,mf ,n), n
c−→ n ′ and executing c terminates normally from m, then

there exists m ′f ,m
′ ∈ M s.t. m

c−→ m ′, ⊕(m ′,m ′f ,n
′) and mf ≤ m ′f

Definition 24 (Validity of Hoare triple). Given a small-step semantics, a
Hoare triple {ϕ} c {ψ} is valid if and only if for any m ∈ M , if m �= ϕ then

(1) m 6 c−→ Err (2) for any n, if m
c−→ n then n �= ψ.

Theorem 6 (Soundness of frame rule). If the operational semantics sat-
isfies the frame property w.r.t. an ordered separation algebra (M ,≤,⊕) which
is upwards closed and downwards closed, then the frame rule is sound, i.e. if
{ϕ} c {ψ} is valid then {ϕ ∗ χ} c {ψ ∗ χ} is valid.

17

7.2 Concurrent separation logic

Concurrent separation logic is an extension of separation Hoare logic to reason
about concurrent programs. Brookes [7] proved CSL to be sound for unordered
heap models; in particular, he required cancellativity of the algebra. But separa-
tion logics with ghost resources [22] don’t have cancellative algebras: the ghosts
don’t naturally cancel. Is CSL with ghost resources sound? As we show, the
Brookes’s soundness proof of CSL can be generalized to any models of ordered
separation algebra, even without cancellativity.

Brookes defines the behavior of his imperative programming language (with
concurrent primitives) via trace semantics.

Definition 25 (Trace semantics). A trace semantics of a programming lan-
guage is defined by a program state set M , a set R of resource identifiers, a
command denotation function J · K and a enable relation · a ·. Specifically, for
any program c, its denotation JcK is a set of traces; every trace is a finite or
infinite list of actions. For any action a, · a · is a relation between P(R)×M
and P(R)×M + {Err}.

In all actions, two kinds are special: rel(r) and acq(r) which means releasing
and acquiring a resource r respectively. All other actions are nonresource actions.
Actions’ behavior satisfies the following properties:

(A,m) rel(r) (B ,n) iff r 6∈ B ,A = B ∪ {r} and m = n

(A,m) acq(r) (B ,n) iff r 6∈ A,B = A ∪ {r} and m = n

(A,m) 6 rel(r) Err and (A,m) 6 acq(r) Err

If a is a nonresource action and (A,m) a (B ,n) then A = B

If a is a nonresource action,· a · satisfies a frame property like definition 23.

From a trace semantics, we can define the validity of guarded Hoare triples
following Brookes’s method.

Definition 26 (Thread-local enable relation). Suppose Γ is a partial func-
tion from resource identifiers to their resource invariants and the program state
is the underlying set of an upwards closed and downwards closde OSA, M =
(M ,≤,⊕), then the thread-local enable relation · a,Γ · is defined as follows:

1. (A,m) rel(r),Γ (B ,n) iff r 6∈ B ,A = B ∪ {r} and exists f such that
f �= Γ (r) and ⊕(m, f ,n)

2. (A,m) 6 rel(r),Γ Err

3. (A,m) acq(r),Γ (B ,n) iff r 6∈ A,B = A∪{r} and n is the greatest element
in {n | exists f such that f �= Γ (r) and ⊕ (n, f ,m)}

4. (A,m) acq(r),Γ Err iff r 6∈ A and there is no n and f such that f �= Γ (r)
and ⊕(n, f ,m)

5. If a is a nonresource action, · a,Γ · is the same as · a ·

18

Definition 27 (Accessibility from trace semantics). For any invariant
mapping Γ , any trace t, α ∈ P(R) × M and β ∈ P(R) × M + {Err,NT},
α

c−→
Γ
β iff exists t ∈ JcK such that α ∗t,Γ β. Here · ∗t,Γ · is defined by · a,Γ ·

like definition 22.

We call · c−→
Γ
· the thread-local accessibility relation. Similarily, we define

· c−→ · from the (nonlocal) enable relation · a ·. We omit the details here.

Definition 28 (Validity of guarded Hoare triple). A guarded Hoare triple
Γ ` {ϕ} c {ψ} is valid if and only if for any m ∈ M , if m �= ϕ then (1)

({},m) 6 c−→
Γ

Err (2) for any n, if ({},m)
c−→
Γ

({},n) then n �= ψ.

Brookes showed that if Γ ` {ϕ} c {ψ} is valid and m �= ϕ then (1) ({},m) 6 c−→
Err (2) for any n, if ({},m)

c−→ ({},n) then n �= ψ. This means: although triples’
validity is defined on a thread-local view, it ensures global safety.

Another preparation before presenting Hoare rules is defining the concept of
preciseness. In heap model, an assertion ϕ is precise when inside any memory m
there is at most one submemory m1 which satisfies ϕ. The following is our gen-
eralization. It is reasonable since it is the original preciseness on any cancellative
separation algebra with discrete order.

Definition 29 (Preciseness). Given an upwards closed and downwards closed
separation algebra (M ,≤,⊕), an assertion ϕ is precise iff for any m, if S ,
{m1 | exists m2 such that ⊕ (m1,m2,m),m2 �= ϕ} is nonempty then S has a
greatest element.

We are now ready to state our generalized theorem for the soundness of CSL.

Theorem 7 (Soundness of CSL). If all resource invariants are precise, then
Hoare rules in CSL are sound w.r.t. flat semantics of separation logic. The fol-
lowing are the Hoare rules of concurrent primitives:

1. If Γ ` {ϕ1}c1{ψ1} and Γ ` {ϕ2}c2{ψ2}, then Γ ` {ϕ1 ∗ϕ2} c1||c2 {ψ1 ∗ψ2}
2. If Γ ` {ϕ ∗ ξ} c {ψ ∗ ξ} and r does not freely occur in c, then Γ ; r : ξ `
{ϕ} with r do c {ψ}

Here, Jc1||c2K is the resource coherent interleaving of Jc1K and Jc2K, and Jwith r do cK
is acquiring r, applying JcK and releasing r.

The proof follows the same lines as Brookes’s proof. We formalize it in Coq
and omit it here.

8 Future work

We are particularly excited to use the present work as a starting point to find
a unifying framework of Hoare separation logic. There are many incompatible

19

definitions for the semantics for Hoare triples [22,1,19] which make their differ-
ent results incompatible. We believe the present work is the first step towards
resolving this incompatibility, but there are many issues yet to be solved. For
instance, the two examples in section 7 have first order Hoare logics, but Hoare
logics for programs with function calls are high ordered. Unifying such Hoare
logics is more challenging. It will also be particularly challenging to unify the
operational semantics for verifying concurrent programs. We believe this is the
way to solve Parkinson’s challenge for the next 700 separation logics.

Our hope is that the present work will be a fertile ground for generalizing
many known results, as we did in section 7. Of particular interest to us is whether
precisesness is required in a Hoare logic with the conjunction rule [26], [16]. A
related conundrum is whether a separation algebra must be cancellative in order
to have the conjunction rule. Both questions have been answered for classical,
malloc/free logics, but are open in general.

9 Conclusion

We have clarified the terminology “classical vs. intuitionistic” and “malloc/free
vs. garbage-collected” separation logic. They are two independent taxonomies.

We present flat semantics on upwards-closed and downwards-closed OSA
as a unification for all different semantics of separation logics. All separation
logics are proved sound and complete w.r.t. corresponding model classes. This
unification is powerful enough to generalize related concepts like frame property
and preciseness and to generalize theoretical applications of separation logic like
the soundness of frame rule (given frame property) and the soundness of CSL.

All the definitions, propositions, lemmas and theorems in this paper have
been formalized in Coq. We also put a detailed paper proof of two main theo-
rems of this paper in an appendix: semantic equivalence theorem (thm. 3) and
completeness theorem (thm. 5). Our Coq development and paper proofs are both
accessible online2.

Acknowledgment. This research was supported in part by NSF Grant CCF-
1521602.

References

1. Andrew W. Appel, Robert Dockins, Aquinas Hobor, Lennart Beringer, Josiah
Dodds, Gordon Stewart, Sandrine Blazy, and Xavier Leroy. Program Logics for
Certified Compilers. Cambridge, 2014.

2. Andrew W. Appel and David A. McAllester. An indexed model of recursive
types for foundational proof-carrying code. ACM Trans. Program. Lang. Syst.,
23(5):657–683, 2001.

2 Coq development: https://github.com/QinxiangCao/UnifySL. Appendix: http://
www.cs.princeton.edu/~appel/papers/bringing-order-appendix.pdf.

https://github.com/QinxiangCao/UnifySL
http://www.cs.princeton.edu/~appel/papers/bringing-order-appendix.pdf
http://www.cs.princeton.edu/~appel/papers/bringing-order-appendix.pdf

20

3. Andrew W. Appel, Paul-André Melliès, Christopher D. Richards, and Jérôme
Vouillon. A very modal model of a modern, major, general type system. In
Proceedings of the 34th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 2007.

4. Robert Atkey. Amortised resource analysis with separation logic. Logical Methods
in Computer Science, 7(2), 2011.

5. Jesper Bengtson, Jonas Braband Jensen, Filip Sieczkowski, and Lars Birkedal.
Verifying object-oriented programs with higher-order separation logic in coq. In
Interactive Theorem Proving - Second International Conference, 2011.

6. Lars Birkedal, Bernhard Reus, Jan Schwinghammer, Kristian Støvring, Jacob
Thamsborg, and Hongseok Yang. Step-indexed Kripke models over recursive
worlds. In Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, 2011.

7. Stephen D. Brookes. A semantics for concurrent separation logic. In CONCUR
2004 - Concurrency Theory, 15th International Conference, London, UK, August
31 - September 3, 2004, Proceedings, pages 16–34, 2004.

8. James Brotherston and Max Kanovich. Undecidability of propositional separation
logic and its neighbours. In Logic in Computer Science (LICS), 2010 25th Annual
IEEE Symposium on, pages 130–139. IEEE, 2010.

9. James Brotherston and Jules Villard. Parametric completeness for separation the-
ories. In The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 2014.

10. Cristiano Calcagno, Peter W. O’Hearn, and Hongseok Yang. Local action and
abstract separation logic. In Proceedings of the 22Nd Annual IEEE Symposium
on Logic in Computer Science, LICS ’07, pages 366–378, Washington, DC, USA,
2007. IEEE Computer Society.

11. Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans Kaashoek,
and Nickolai Zeldovich. Using crash hoare logic for certifying the FSCQ file system.
In Ethan L. Miller and Steven Hand, editors, Proceedings of the 25th Symposium
on Operating Systems Principles, SOSP 2015, Monterey, CA, USA, October 4-7,
2015, pages 18–37. ACM, 2015.

12. Thomas Dinsdale-Young, Lars Birkedal, Philippa Gardner, Matthew J. Parkinson,
and Hongseok Yang. Views: compositional reasoning for concurrent programs. In
The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, 2013.

13. Robert Dockins, Aquinas Hobor, and Andrew W. Appel. A fresh look at separation
algebras and share accounting. In Proceedings of the 7th Asian Symposium on Pro-
gramming Languages and Systems, APLAS ’09, pages 161–177, Berlin, Heidelberg,
2009. Springer-Verlag.

14. Didier Galmiche and Dominique Larchey-Wendling. Expressivity properties of
boolean BI through relational models. In International Conference on Founda-
tions of Software Technology and Theoretical Computer Science, pages 357–368.
Springer, 2006.

15. Didier Galmiche, Daniel Méry, and David J. Pym. The semantics of BI and resource
tableaux. Mathematical Structures in Computer Science, 15(6):1033–1088, 2005.

16. Alexey Gotsman, Josh Berdine, and Byron Cook. Precision and the conjunction
rule in concurrent separation logic. Electr. Notes Theor. Comput. Sci., 276:171–
190, 2011.

17. Aquinas Hobor, Robert Dockins, and Andrew W. Appel. A theory of indirection via
approximation. In Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, 2010.

21

18. Chung-Kil Hur, Derek Dreyer, and Viktor Vafeiadis. Separation logic in the pres-
ence of garbage collection. In Proceedings of the 26th Annual IEEE Symposium
on Logic in Computer Science, LICS 2011, June 21-24, 2011, Toronto, Ontario,
Canada, pages 247–256, 2011.

19. Samin S. Ishtiaq and Peter W. O’Hearn. BI as an assertion language for mutable
data structures. In Conference Record of POPL 2001: The 28th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, 2001.

20. Jonas Braband Jensen. Techniques for model construction in separation logic. PhD
thesis, IT University of Copenhagen, March 2014.

21. Jonas Braband Jensen and Lars Birkedal. Fictional separation logic. In Program-
ming Languages and Systems - 21st European Symposium on Programming, 2012.

22. Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars
Birkedal, and Derek Dreyer. Iris: Monoids and invariants as an orthogonal basis for
concurrent reasoning. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, 2015.

23. Saul A. Kripke. Semantical analysis of intuitionistic logic i. In Studies in Logic
and the Foundations of Mathematics 50, pages 92–130, 1965.

24. Dominique Larchey-Wendling and Didier Galmiche. Exploring the relation be-
tween intuitionistic BI and boolean BI: an unexpected embedding. Mathematical
Structures in Computer Science, 19(3):435–500, 2009.

25. Peter W O’Hearn and David J Pym. The logic of bunched implications. Bulletin
of Symbolic Logic, 5(2):215–244, 1999.

26. Peter W. O’Hearn, Hongseok Yang, and John C. Reynolds. Separation and infor-
mation hiding. In Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2004, Venice, Italy, January 14-16,
2004, pages 268–280, 2004.

27. Matthew J. Parkinson. The next 700 separation logics - (invited paper). In Verified
Software: Theories, Tools, Experiments, Third International Conference, VSTTE
2010, Edinburgh, UK, August 16-19, 2010. Proceedings, pages 169–182, 2010.

28. Matthew J. Parkinson and Alexander J. Summers. The relationship between sepa-
ration logic and implicit dynamic frames. In Programming Languages and Systems
- 20th European Symposium on Programming, pages 439–458, 2011.

29. Alexandre Pilkiewicz and François Pottier. The essence of monotonic state. In
Proceedings of TLDI 2011: 2011 ACM SIGPLAN International Workshop on Types
in Languages Design and Implementation, pages 73–86, 2011.

30. François Pottier. Syntactic soundness proof of a type-and-capability system with
hidden state. J. Funct. Program., 23(1):38–144, 2013.

31. David J. Pym, Peter W. O’Hearn, and Hongseok Yang. Possible worlds and re-
sources: the semantics of BI. Theor. Comput. Sci., 315(1):257–305, 2004.

32. John C. Reynolds. Intuitionistic reasoning about shared mutable data structure.
In Millennial Perspectives in Computer Science, pages 303–321. Palgrave, 2000.

33. Alex K Simpson. The proof theory and semantics of intuitionistic modal logic.
Technical report, University of Edinburgh. College of Science and Engineering.
School of Informatics., 1994.

	Bringing order to the separation logic jungle
	Introduction
	Related Work
	Taxonomy Of Separation Logic
	Defining separation logic

	Background
	Separation Algebra
	Kripke semantics for intuitionistic logic

	Model And Semantics
	Ordered separation algebras
	Increasing elements and algebras
	Extending Kripke semantics
	Semantic equivalence
	Semantics of emp

	Parametric Soundness And Completeness
	Applications Of The Unifying Semantics
	Frame rule
	Concurrent separation logic

	Future work
	Conclusion

