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Abstract The theory of arrays has been widely investigated. But concatenation, an 
oper-ator that consistently appears in specifications o f f unctional-correctness v erification 
tools (e.g., Dafny, VeriFast, VST), is not included in most variants of the theory. Arrays 
with con-catenation need better solvers with theoretical guarantees. We formalize a theory 
of arrays with concatenation, and define t he a rray p roperty f ragment w ith c oncatenation. 
Although the array property fragment without concatenation is decidable, the fragment with 
concate-nation is undecidable in general (e.g., when the base theory for array elements 
is linear integer arithmetic). But we characterize a “tangle-free” fragment; we present an 
algorithm that classifies verification goals in the array property fragment with 
concatenation as tangle-free or entangled, and that decides validity of tangle-free goals. We 
implement the algorithm in Coq and apply it to functional-correctness verification of C 
programs. The result shows our algorithm is reasonably efficient and reduces a 
s ignificant amount of  human effort in verification tasks. We also give an algorithm for 
using this array theory solver as a  theory solver in SMT solvers.

Keywords array theory · program verification · decision procedure · correctness proof · 
proof automation

1 Introduction

We are interested in interactive automated verification of program correctness (beyond 
shal-low safety properties). Semi-automated verifiers, e.g. Dafny [16], VeriFast [15] and 
VST [3], have made great progress in this area. These verifiers provide rich specification 
languages
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to describe programs’ behavior. Of course, rich specification languages lead to undecid-
ability, so these verifiers require more or less human intervention. The style of interaction
varies: in Dafny and Verifast, the user keeps incrementally adding and modifying assertions,
preconditions, postconditions, and loop invariants until the automatic verifier can prove the
remaining straight-line code segments; in VST, the user provides similar information to the
verifier in the proof script but still makes use of automatic decision procedures for subgoals.

To reduce the amount of human interaction required, we want improved decision pro-
cedures for the commonly used underlying theories. Since many programs use arrays with
subscripting or lists with get-nth and update-nth, many verification tools support the theory
of arrays with integer subscripting.

To describe the state of a program at some point, we often need to say the contents of
array a is the concatenation of sequences s1 · s2, for example when an array consists of two
different parts, or a string is formed by concatenation. The statements in the program read
from and write to the array a, so we also need nth and update. We may also have length,
slice (the consecutive subsequence from index i to j−1), and map (apply function f to every
element). These operators all together form our theory of arrays with concatenation. Even
if one did not have an explicit concatenation operator, it is still often necessary to say that
one part of an array satisfies one property and the other part satisfies another. The existing
array solvers do not support this (see the related work paragraph later in this section).

An example of such cases is slicing arrays into pieces and operating on the pieces (as
quicksort does). Figure 1 shows a few more examples that arose in the actual verification of
a C array reversal function. Another example is that when reasoning about null-terminated
character strings in the C language, we have the formula,

cstring(r,s) := r = s·[null] ∧ ∀ i. 0 ≤ i < |s| =⇒ s[i] ̸= null.

That is, cstring(r,s) says that r represents a string s; so r is a sequence of n+ 1 characters,
where |s| = n, the last character (and only the last) is null. As another example, VigNAT
[24] is a verification of network address translation (NAT) (using the VeriFast separation
logic tool) whose proof of data structures heavily uses arrays (lists) and concatenation. For
example, lists are used to represent the contents of arrays in the C program, and to represent
sets and maps to reason about the program. Concatenation and slicing are used to merge and
decompose these objects.

Indeed, concatenation can be encoded by using a universal quantifier. The concatenation
a·b can be represented by a new variable c with constraints

|c|= |a|+ |b| ∧ ∀i. (0 ≤ i < |a| =⇒ c[i] = a[i]) ∧ (0 ≤ i < |b| =⇒ c[i+ |a|] = b[i]).

Although this conversion is easy and useful (our solver uses it, too), using quantifiers in-
creases difficulty for both users and solvers. For users, using concatenation instead of quan-
tifiers is more intuitive and concise, provides better abstraction, and will result in a com-
putable functional model,1 which is helpful for testing during development. That’s why
users of VST and VeriFast have used concatenation in functional models for program veri-
fication. For solvers, quantifiers present challenges, as we now explain.

There is no existing decision procedure to discharge proof goals involving concatenation
and slicing. Bjørner et al.’s sequence theory [6] is just what we want, but they do not give a
decision procedure. If encoded using quantifiers, Bradley et al.’s array property fragment [7]

1 Concatenation is a computable function and is easy to use in a functional program that defines the
behavior of the original program. Without using concatentation, it is not simple to compute the value of an
array characterized by quantified formulas.
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void reverse(int a[], int n) {
int lo=0, hi=n, s, t;
while (lo<hi−1)
invariant ∃ j. 0 ≤ j ≤ n− j ∧ lo= j ∧ hi= (n− j)

∧ a = slice(0, j, rev(a0)) · slice( j,n− j,a0) · slice(n− j, |a0| , rev(a0))
{ t = a[lo];

s = a[hi−1];
a[hi−1] = t;
a[lo] = s;
lo++; hi−−;

}
postcondition a = rev(a0)

}

|c|= n 0 ≤ j n− j−1 ≤ j ≤ n− j
slice(n−n,n− (n− j),c) · slice( j,n− j,c) · slice(n− j,n−0,c) = c

n = |c| 0 ≤ j < n− j−1 |rev(c)|= |c|
∀i,c. 0 ≤ i < |c| → (rev(c))[i] = c[|c|− i−1]

update
(

j,

update
(
n− j−1,

slice(0, j, rev(c))·slice( j,n− j,c)·slice(n− j,n, rev(c)),
slice(0, j, rev(c))·slice( j,n− j,c)·slice(n− j,n, rev(c))[ j]

)
,

slice(0, j, rev(c))·slice( j,n− j,c)·slice(n− j,n, rev(c))[n− j−1]
)

= slice(0, j+1, rev(c)) · slice( j+1,n− ( j+1),c)
·slice(n− ( j+1),n, rev(c))

|c|= n 0 <= j < n− j−1 |rev(c)|= |c|
c[n− j−1] = slice(0, j, rev(c)) · slice( j,n− j,c) · slice(n− j,n, rev(c))[n− j−1]

0 ≤ j < |c|− j−1 |b|= |c|
update( j,update(|c|− j−1,b,b[ j]),c[|c|− j−1])
= slice(0, j,b) · slice(|c|− j−1, |c|− j,c) · slice( j+1, |c| ,slice(0, |c|− j−1,b) · slice(|c|− j, |c| ,b))

Fig. 1: C program and some of the array-theory problems that arise in its proof.
Our solver handles all of these, but in the second example (since it has no primitive knowledge of the rev
function or its properties), the user must “manually” apply the quantified formula shown just above the line.

does not allow index shifting (expressions of the form a[i+n]), which is necessary to encode
concatenation and slicing. To fill this gap, we describe a property called entanglement. Our
algorithm classifies proof goals into tangle-free or entangled and (if tangle-free) decides
their validity. In verifying imperative programs, we find informally that most proof goals
are tangle-free2; and on entangled goals our solver fails quickly and shows the reason of

2 Not only in our own program verifications: We examined the VigNAT [24] proofs (github.com/vignat)
in files listexex.gh and map−impl.c. Of the 73 lemmas in listexex.gh, 50 are expressible in our theory. The
rest of lemmas involve operators unsupported in our theory, e.g. filter and elements-are-distinct. Of these, 37
lemmas are quantifier-free (hence tangle-free) and 13 lemmas are quantified and tangle-free; none are entan-
gled. (We determined this by inspection—none have the kind of recurrence that would lead to entanglement.)
All 50 lemmas would be solved by our solver. In fact, if VeriFast had been equipped with our solver, none
of these 50 lemmas in listexex.gh would be needed. The file map−impl.c has 110 lines of C code and 2500
lines of specification and proof. Within the proof there are approximately 100 applications of list-operation
lemmas (such as the ones in listexex.gh, listex.gh, and list.gh) which could be fully or partially automated
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entanglement to the user as a hint to perform some manual proof steps until the solver can
solve the goal.

Our algorithm exploits the idea that concatenation can be encoded by universally quan-
tified elementwise equations. Intuitively, a proof goal with quantification is hard to solve
if its quantified assumptions encode recurrences. For example, consider a proof goal of the
form

(∀i : Z. 0 ≤ i < |a|−1 =⇒ P(a[i],a[i+1])) =⇒ Q(a[0],a[|a|−1]). (1)

This is hard to decide, because the relationship between a[0] and a[|a|−1] can be intricate,
even if P and Q can be expressed in a decidable theory.

Remark 1 There exists a decidable base theory for which the array property fragment with
concatenation is undecidable.

Proof Let the base theory (for array elements) be linear integer arithmetic with tuples of
integers. The halting problem for two-counter machines (which is undecidable [20, Theo-
rem 14.1-1]) can be encoded in such a proof goal. The elements of a are tuples of three
integers each, corresponding to the values of the two counters and the program counter. The
transition relation between states, namely P, can be expressed in the quantifier-free linear
integer arithmetic theory. Let Q encode that a[0] is the starting state and a[|a|− 1] is not a
halting state. Then the proof goal is valid if and only if the two-counter machine does not
halt, so it is undecidable.

Another example that may arise in string matching is assumptions of the form a·b1 =
b2·a. If |a|> |b2|, then some suffix of a equals a prefix of a. In other words, for some integer
n,

∀i : Z. 0 ≤ i < |a|−n =⇒ a[i] = a[i+n]. (2)

That implies a has a periodic structure a = a0a0 . . .a0a1, where a0 is the periodic part and
a1 is a prefix of a0. This periodic structure is very hard to analyze.

Actually, the examples in (1) and (2) share the same difficulty, which is relating a[i] and
a[i+ 1] (a[i] and a[i+ n], respectively) in a quantified formula. We call this phenomenon
index shifting. We apply a test to detect index shifting in proof goals. A proof goal is tangle-
free if it does not have index shifting; otherwise it is entangled. And then we show tangle-
free proof goals can be decided by our algorithm.

Contributions. (1) We describe a decision procedure for a useful fragment of arrays/lists/-
sequences with concatenation and indexing. (2) The algorithm uses quantifiers to repre-
sent equations, which allows simple manipulation of equations together with other formulas
quantified on indices. (3) It improves on the fragment of Bradley et al. [7] by allowing non-
constant index offsets, which can express general concatenation. It improves on the semide-
cision procedure by Ge and de Moura [12], by giving a clear condition of when it can decide
validity. (4) We implement our algorithm in Coq and Ltac, and integrate with VST. The
implementation not only solves proof goals but also generates proof terms in Coq. (5) We
demonstrate that the solver substantially reduces human effort in verification of imperative
programs.

using our solver—which would significantly reduce the number of lines of human-written proof-script. In all
of these subgoals we did not identify any that have the kind of recurrence that would lead to entanglement.
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Related work. Theories of arrays, lists, or sequences have been intensively researched.
Many works treat arrays as functions mapping integers to elements. McCarthy [19] gave
a decision procedure for the quantifier-free fragment of the array theory with read and write.
Stump et al. [23] gave a decision procedure for arrays with extensionality. Bradley et al. [7]
proposed the array property fragment, a decidable fragment that allows universal quantifiers
on integer variables with certain restrictions. This fragment is expressive enough to encode
some useful properties such as sortedness. Ge and de Moura [12] further generalized this
fragment to allow index offset; but where our algorithm detects and informs the user when a
goal is outside the fragment, theirs does not distinguish between “outside the fragment” and
“invalid” (and in either of those cases may not terminate). Ge and de Moura’s fragment can
encode concatenation by index offset; Bradley et al.’s cannot (no index offset).

Some procedures are specialized to integer arrays. Habermehl et al. [13] gave a method
for the satisfiability of integer arrays with constraints of the form

∀i. l ≤ i < r =⇒ a[i]≤ a[i+ c]+d,

where c and d are integer literals, by encoding the formulas into counter automata. Daca et
al. [10] generalized this method to decide the array folds theory, an integer array theory with
a fold operator. Fold allows the accumulator to contain a state from a finite set of states and
some integer counters. On each step, the folding function determines an operation based on
the state and the current array element, and the operation includes the transition of state and
the increment/decrement of the counter by constants. These two pieces of work only support
constant index offsets, so they do not support concatenation in general.

Another track of research is the theory of sequences with concatenation, which can be
regarded as a free monoid. Makanin [18] gave a decision procedure for quantifier-free equa-
tions in a free monoid, which was improved by Plandowski [21,22]. Neither of these theories
supports the length operator, which is crucial to express indexing, update, and slicing.

The theory of strings has attracted recent interest because of applications in web safety
problems, such as protection from cross-site scripting (XSS) attacks and SQL injections [9,
14]. Most string theories support word equations (between concatenations of string variables
and constants), length constraints, and membership in regular languages. Some theories [14]
also support regular transducers. String theories have a much simpler base type (finite al-
phabets without arithmetic), and it remains unclear whether the satisfiability of the string
theory with word equations and length constraints is decidable [11]. Some decidable frag-
ments have been investigated, such as straight-line fragment [14,17], acyclic fragment [1],
chain-free fragment [2], and nonoverlapping condition [25]. These fragments all capture the
same difficulty as this paper, namely direct or indirect equations between different parts of
the same array/string variable; see the further discussion in Section 5. But string theories
do not permit the element sort to be a sort from some other theory with cooperating de-
cision procedures, so strings are not the best abstraction for our applications in program
verification.

2 Theory of arrays with concatenation

We describe the theory in terms of the standard many-sorted first-order logic for satisfiability
modulo theories (SMT). For detailed formalization of the logic, we refer the reader to Barrett
and Tinelli’s book chapter [4]. In particular, a theory is a class of interpretations. Consider a
base theory TB on base signature ΣB and sort set SB. For simplicity, we assume that TB has
only one interpretation, denoted by IB, but the correctness of our algorithm is not hard to
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Family Type signature Standard Interpretation
lengthS A(S)→ Z lengthS ([x0,x1, . . . ,xn−1]) = n

nthS Z×A(S)→ S nthS (i, [x0,x1, . . . ,xn−1]) =

{
xi, if 0 ≤ i < n
dS, otherwise

repeatS S×Z→ A(S)
repeatS (x,n) = [x,x, . . . ,x]︸ ︷︷ ︸

max(0,n) times

appS A(S)×A(S)→ A(S)
appS ([x0,x1, . . . ,xn−1], [y0,y1, . . . ,ym−1])

= [x0,x1, . . . ,xn−1,y0,y1, . . . ,ym−1]

sliceS Z×Z×A(S)→ A(S)

sliceS(i, j, [x0,x1, . . . ,xn−1])

=

{
[xl , . . . ,xr−1], if l < r,
[ ], otherwise,

where l = max(i,0),r = min( j,n)

map f
A(S1)×·· ·×A(Sk)→ A(S′)

for f : S1 ×·· ·×Sk → S′

map f ([x1,0, . . . ,x1,n1−1], . . . , [xk,0, . . . ,xk,nk−1])

= [ f (x1,0, . . . ,xk,0), . . . ,

f (x1,nmin−1, . . . ,xk,nmin−1)]

where nmin = min(n1, . . . ,nk)

Fig. 2: Array operators

generalize to the case with multiple interpretations, since it is proved for any single interpre-
tation. We assume IB interprets the sort Z and arithmetic operators as the standard integers
and arithmetic. Assume there is a base solver OB to decide the TB-validity of quantifier-free
formulas with uninterpreted functions, which means whether a formula is satisfied by every
interpretation that extends IB on uninterpreted functions and free variables. Without loss of
generality, we assume (min,max : Z×Z → Z) ∈ ΣB and IB gives them standard interpre-
tations. We write min(n1, . . . ,nk−1,nk) for min(n1, . . .min(nk−1,nk) . . .), and the same for
max. We assume each sort S ∈ SB has at least one element and there is a special variable dS
in the sort S serving as the “default” value of S. The default value is necessary in order to
define the nth-element function as a total function, as it can yield dS when the index is out
of bounds.

The theory of arrays with concatenation has an array sort A(S) for each base sort S ∈SB,
in addition to SB. Its universe consists of finite length sequences of S: UA(S) =

⋃
∞
n=0(U

IB
S )n.

There are six array operators:

lengthS (a) returns the length of an array (notation |a|);
nthS (i,a) returns the i-th (0-indexed) element (notation a[i]);
repeatS (x,n) generates an array by repeating x for n times (notation xn);
appS (a,b) concatenates two arrays into one array (notation a·b);
sliceS(i, j,A) takes a slice of an array from position i to position j;
map f (·) applies f elementwise to corresponding elements of k arrays.

Fig. 2 defines their behavior, including exceptional cases. The update operator is not in-
cluded here, because it can be defined using other operators as

update(i,a,x) = if 0 ≤ i < |a| then slice(0, i,a)·x1·slice(i+1, |a| ,a) else a.

Equality between arrays will be interpreted by extensionality, i.e. we interpret a =A(S) b
as the formula

|a|=Z |b| ∧ ∀i. 0 ≤ i < |a| =⇒ a[i] =S b[i]. (3)
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The quantifier-free fragment permits such array equations only in positive positions, so that
the ∀i can be removed and i can be replaced with a fresh free variable.

The array property fragment with concatenation (APFC) allows quantified formulas of
the form

∀⃗ i . ϕI (⃗ i) =⇒ ϕV (⃗ i),

where i⃗ is a vector of integer variables, ϕI is the index guard, and ϕV is the value constraint.
The index guard is written in the grammar,

iguard := iguard∧ iguard | iguard∨ iguard | atom

atom := expr ≤ expr

expr := uvar+pexpr | pexpr

uvar := (any variable from i⃗)

pexpr := (any term without variables from i⃗).

The value constraint is a quantifier-free formula of sort P (i.e., Proposition) in which

– array subscripts (arguments of nth) take only the form [uvar+pexpr] or [uvar] or [pexpr];
– quantified variables uvar appear only in array subscripts; and
– arguments of map, repeat, and slice are pexprs—that is, contain no variables from i⃗ (not

even in subscripts).

Proof goals in the APFC are Boolean combinations of quantified formulas and quantifier-
free formulas using conjunction, disjunction, and negation (and implication). Let P be a
predicate on an array element. A simple example of a proof goal in the APFC is

(∀i. 0 ≤ i < |a·b| =⇒ P((a·b)[i])) =⇒ (∀i. 0 ≤ i < |b·a| =⇒ P((b·a)[i])). (4)

That is, if each element of a·b satisfies property P, then each element of b·a satisfies P.
Throughout this paper, we describe the problem as deciding validity of formulas since

it is our main interest. To decide satisfiability, one can reduce it to validity.

Comparison with the array property fragment. Comparing with the array property fragment
of Bradley et al. [7], the APFC allows array indices of the form i + n, and comparison
between i+n and j+m in index guards. This makes it possible to express concatenation but
also raises a challenge. We will address the challenge by classifying formulas into tangle-
free and entangled ones and only deciding validity of tangle-free formulas.

3 Classification and decision procedure

We describe the algorithm as a procedure that reduces the original formula into an equivalid
formula in the base theory, and decide its validity using the base solver OB. We assume
that no uninterpreted functions have array arguments or array results. (In §9, we discuss
the extension with uninterpreted functions and combining with other theories through the
Nelson-Oppen procedure.)

The classification and decision procedure for goals in the APFC consists of six phases.

1. Preprocessing: Substitute with definitional equations, unfold shorthands and Skolemize
quantified variables in positive positions.
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2. Reducing subscripted expressions whose subscript-terms have no quantified variables
until all such subscripted terms are simply (free) variables.

3. Reducing array-subscript terms with quantified variables in quantified formulas until
all subscripted terms are variables; denote the result with ψ1.

4. Classification: Construct the index propagation graph and the test formula ∆ whose
validity indicates whether the goal is tangle-free or entangled, and invoke the base solver
OB to decide it. If it is entangled, report that the goal is entangled with the reason of
entanglement and then terminate.

5. Instantiation: Instantiate the quantifiers by a set calculated from the array indexing terms
in ψ1 and the index propagation graph, resulting in ψ2.

6. Decision: Convert ψ2 into a formula ψB in the base theory TB; invoke the base solver
OB to decide validity of ψB, which implies the validity of ψ2 and (therefore) ψ .

The intuition of the algorithm is that it first performs reductions to remove app, repeat,
slice, and map. Then it needs to handle quantified formulas. If it sees a term a[n] and a
quantified formula ∀i : Z. ϕ(a[i+m]), it instantiates i with n−m, so that a[n] is the same as
the instantiated a[i+m]. This instantiation may not terminate—so before instantiation we
need to analyze whether it terminates, which is the classification phase. If it terminates, we
say the goal is tangle-free. Then we can show that the instantiation is not only sound but
also complete. So the algorithm can decide validity.

We explain this algorithm in detail in the rest of this section. We will use the following
running example, which is slightly modified from (4)—if every element of a·b satisifies P,
then so does every element of b·a:

Example 1 Let a,b,c,d be array variables (of a certain base sort), and P be a predicate on
an array. The example goal is

(c = a·b∧d = b·a∧∀i. 0 ≤ i < |c| =⇒ P(c[i])) =⇒ ∀i. 0 ≤ i < |d| =⇒ P(d[i]). (5)

3.1 Preprocessing

The first step is to substitute with definitional equations, which are array equations that
appear as global assumptions and one of whose sides is an array variable. A formula ϕ is
a global assumption in a goal ψ if ψ can be converted to the form ϕ =⇒ ψ ′ by Boolean
conversions. For example, in (5), c = a·b and d = b·a are definitional equations. We can
substitute c and d and the result is

(∀i. 0 ≤ i < |a·b| =⇒ P((a·b)[i])) =⇒ ∀i. 0 ≤ i < |b·a| =⇒ P((b·a)[i]).

The second step is to unfold shorthands. For example, if there are array equations, we
can use (3) to convert to quantified formulas.

The third step is to Skolemize quantified variables in positive positions (i.e. remove
universal quantifiers that appear in positive positions, and rename the variables with fresh
names, so they become free variables, which are implicitly quantified at the top level). Pre-
processing our running example, the second quantified formula is at positive position, so we
rename i to k and make it implicitly quantified at the top level. The result is

(∀i. 0 ≤ i < |a·b| =⇒ P((a·b)[i])) =⇒ 0 ≤ k < |b·a| =⇒ P((b·a)[k]).
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LENGTH REPEAT
ψ(max(0,n))

ψ(|xn|)
LENGTH APP

ψ(|a|+ |b|)
ψ(|a·b|)

LENGTH SLICE

max(i,0)< min( j, |a|) =⇒ ψ(min( j, |a|)−max(i,0))
max(i,0)≥ min( j, |a|) =⇒ ψ(0)

ψ(|slice(i, j,a)|)

LENGTH MAP
ψ(min(|a1| , . . . , |ak|))
ψ(

∣∣map f (a1, . . . ,ak)
∣∣)

NTH REPEAT
0 ≤ i < n =⇒ ψ(x) ¬(0 ≤ i < n) =⇒ ψ(dS)

ψ(xn[i])

NTH APP

0 ≤ i < |a| =⇒ ψ(a[i])
|a| ≤ i < |a|+ |b| =⇒ ψ(b[i−|a|])) ¬(0 ≤ i < |a|+ |b|) =⇒ ψ(dS)

ψ((a·b)[i])

NTH SLICE

cond(a, i, j,k) =⇒ ψ(a[i+max( j,0)])
¬cond(a, i, j,k) =⇒ ψ(dS) where cond(a, i, j,k) := 0 ≤ i∧ i+max( j,0)< min(k, |a|)

ψ(slice( j,k,a)[i])

NTH MAP

0 ≤ i < min(|a1| , . . . , |ak|) =⇒ ψ( f (a1[i], . . . ,ak[i]))
¬(0 ≤ i < min(|a1| , . . . , |ak|)) =⇒ ψ(dS′ )

ψ(map f (a1, . . . ,ak)[i])

Fig. 3: Reduction rules for array expressions without quantified variables. Proof goals
matching the bottom of a rule will be replaced by the top of the rule.

3.2 Reducing subscripted expressions without quantified variables

We simplify terms without quantified variables so that the only array-sorted terms are (free)
variables. Observe that no predicates have arguments of array sorts, so arrays can only be
subterms of these arguments. If any subterm has array sort, there is at least one highest-level
subterm of array sort, whose parent term has a base sort. The only functions with array
arguments and nonarray results are length and nth. Each array argument is either a variable
or a functional term led by repeat, app, slice or map. So we can reduce the number of distinct
array subterms by simplifying subterms of these 2×4 possible forms. This is what the rules
in Fig. 3 do: match the bottom of the rule to the proof goal, yielding new proof goals as the
top of the rule. Then the running example becomes three subgoals

0 ≤ k < |b| =⇒
(∀i. 0 ≤ i < |a|+ |b| =⇒ P((a·b)[i])) =⇒ 0 ≤ k < |b|+ |a| =⇒ P(b[k])

|b| ≤ k < |b|+ |a| =⇒
(∀i. 0 ≤ i < |a|+ |b| =⇒ P((a·b)[i])) =⇒ 0 ≤ k < |b|+ |a| =⇒ P(a[k−|b|])

k < 0∨ k ≥ |b|+ |a| =⇒
(∀i. 0 ≤ i < |a|+ |b| =⇒ P((a·b)[i])) =⇒ 0 ≤ k < |b|+ |a| =⇒ P(dS).

Notice that the last case can be solved immediately because the assumptions on the range of
k are contradictory.
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∀NTH REPEAT

ψ


(
∀⃗ i : Z. ϕI (⃗ i)∧0 ≤ i < n =⇒ F(x)

)
∧
(
∀⃗ i : Z. ϕI (⃗ i)∧¬(0 ≤ i < n) =⇒ F(dSx )

)


ψ(∀⃗ i : Z. ϕI (⃗ i) =⇒ F((xn)[i]))

∀NTH APP

ψ


(
∀⃗ i : Z. ϕI (⃗ i)∧0 ≤ i < |a| =⇒ F(a[i])

)
∧
(
∀⃗ i : Z. ϕI (⃗ i)∧|a| ≤ i < |a|+ |b| =⇒ F(b[i−|a|])

)
∧
(
∀⃗ i : Z. ϕI (⃗ i)∧¬(0 ≤ i < |a|+ |b|) =⇒ F(dS)

)


ψ(∀⃗ i : Z. ϕI (⃗ i) =⇒ F((a·b)[i])

∀NTH SLICE

ψ


(
∀⃗ i : Z. (ϕI (⃗ i)∧ cond(a, i, j,k)) =⇒ F(a[i+max( j,0)])

)
∧
(
∀⃗ i : Z. (ϕI (⃗ i)∧¬cond(a, i, j,k)) =⇒ F(dS)

)


where cond(a, i, j,k) := 0 ≤ i∧ i+max( j,0)< min(k, |a|)
ψ(∀⃗ i : Z. ϕI (⃗ i) =⇒ F(slice( j,k,a)[i]))

∀NTH MAP

ψ


(
∀⃗ i : Z. ϕI (⃗ i)∧0 ≤ i < min(|a1| , . . . , |ak|) =⇒ F( f (a[i], . . . ,ak[i]))

)
∧
(
∀⃗ i : Z. ϕI (⃗ i)∧¬(0 ≤ i < min(|a1| , . . . , |ak|)) =⇒ F(dS)

)


ψ(∀⃗ i : Z. ϕI (⃗ i) =⇒ F(map f (a1, . . . ,ak)[i])

∀PRUNE
ψ(⊤) ¬ψ(⊤) =⇒ ∀⃗ i : Z. ¬ϕI (⃗ i)

ψ(∀⃗ i : Z. ϕI (⃗ i) =⇒ ϕV (⃗ i))

Fig. 4: Rewrite rules for quantified formulas. F may have free variables from i⃗ , as it is a value
constraint ϕV (⃗ i) with a hole.

All these rewrite rules are sound and do not turn a valid goal into an invalid goal. That is,
we have proved in Coq from the interpretation of the array theory (Fig. 2) that the formulas
before and after rewriting are equivalent.

3.3 Reducing subscripted expressions with quantified variables

The next phase puts the goal into the APFC without app, repeat, slice, or map. The rewrite
rules for quantified formulas are displayed in Fig. 4. The first four rules simplify array terms
under quantifiers. These rules concern one quantified variable at a time, so we use i to denote
the variable concerned and use i⃗ to denote all variables in the quantified formula, including
i. These rewrite rules are sound and complete (do not turn provable goals into unprovable
goals) whether the formula appears in a positive or a negative position, but the algorithm
only uses them in negative positions. Each rewrite rule converts a quantified formula into a
conjunction of quantified formulas. Given a formula in the APFC, the formula produced by
the rewriting procedure is still in the APFC, and only has array length and indexing terms
of the forms |a| and a[i+n].

The last rewrite rule ∀PRUNE removes quantified formulas whose index guard clauses
are unsatisfiable. This avoids unnecessary instantiation. In §3.4, we will see that this prun-
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ing removes edges from the index propagation graph and allows classifying more goals as
tangle-free. When attempting to apply this rule, the second premise is decided using a con-
servative approximation that all the quantified formulas are replaced by ⊤. Then its validity
is decided using OB (described in detail later in §3.6). The rule is applied only when the
second premise is decided valid.

After reducing array expressions inside quantifiers, the goal will be in the APFC without
any app, repeat, slice, or map. The running example’s first subgoal is reduced to,

0 ≤ k < |b| =⇒
(∀i. 0 ≤ i < |a| =⇒ P(a[i])) =⇒
(∀i. |a| ≤ i < |a|+ |b| =⇒ P(b[i−|a|])) =⇒ 0 ≤ k < |b|+ |a| =⇒ P(b[k]),

by applying ∀NTH APP and applying ∀PRUNE on the out-of-bounds branch.

3.4 Classification

At this stage, we need to consider instantiating the quantifiers. We first rename the univer-
sally quantified variables into distinct names, in order to handle them clearly. So the running
example’s first subgoal is turned into

0 ≤ k < |b| =⇒
(∀i. 0 ≤ i < |a| =⇒ P(a[i])) =⇒
(∀ j. |a| ≤ j < |a|+ |b| =⇒ P(b[ j−|a|])) =⇒ 0 ≤ k < |b|+ |a| =⇒ P(b[k]).

Let us imagine a “straw-man” naive instantiation algorithm: Intuitively, since we have
b[k], we should instantiate j with k+ |a| because then b[ j−|a|] is just b[k]. Generally, for
a universally quantified variable i that is used as a[i+ n] in the value constraint, we should
instantiate i with x−n when we have a term a[x]. And having instantiated i with y, we will
have a term a[y+ n], which may trigger more instantiation. Also, when there is an index
guard atom of the form i+n ≤ j+m and i is instantiated with x, then we have x+n ≤ j+m,
i.e. x+n−m ≤ j, which is a hint to instantiate j with x+n−m.

Such instantiation may cause instantiation loops. So we introduce the index propagation
graph (IPG) as a way to analyze instantiation and detect loops. The nodes of the IPG are
array variables and quantified variables, and each edge is labeled with an integer term (also
called weight). To instantiate completely, for a term a[x], the algorithm should traverse the
graph from node a, propagate x through the edges, add x with the labels (e.g. it becomes x+n
after propagating through as edge with label n), and instantiate the quantified variables with
the resulted indices. If the IPG has a cycle that produces a[x+n] when instantiating a[x], then
(unless n= 0) instantiation would go into an infinite loop. Here n is actually the accumulated
weight (the sum of the labels) of the cycle. If the IPG has a cycle with nonzero accumulated
weight, that signals entanglement; with no cycles, or only zero-weighted cycles, tangle-free.
We summarize the construction of the IPG formally.

Definition 1 (Index Propagation Graph) For formula ψ such that array subterms are vari-
ables and universally quantified variables have distinct names, its index propagation graph
(IPG) is a directed multigraph (V,E) with an integer term on each edge. The node set V
consists of array variables and universal variables. We use (u,v,w) to denote an edge from
u to v with label w. For each subterm of the form a[i+ n] in each value constraint ϕV , add
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i

j
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b

0

−|a|

(a) Example 1

i a

0

1

(b) Example 2

i

k

j

a

b

0

n

0

−m

l

(c) Example 3

δ (a) = 0
δ (i) = 0
δ ( j) = l
δ (b) = l −m
δ (k) = l −m

(d) δ of Example 3

Fig. 5: Index propagation graphs for examples. For clarity, we only draw one of each pair of
edges in the IPG, so each displayed edge implies another edge with an opposite label in the
opposite direction.

edges (i,a,n) and (a, i,−n). If there is a comparison in the form of i+ n ≤ j +m in the
guard formula ϕI , add edges (i, j,n−m) and ( j, i,m−n). Edges in an IPG are in pairs, such
that each pair of edges connects the same pair of nodes in opposite directions with opposite
labels.

Besides the running example, we also demonstrate the IPG using the following two
examples.

Example 2 For array variable a and integer variable j,

(∀i : Z. 0 ≤ i < |a|−1 =⇒ a[i] = a[i+1]) =⇒ 0 ≤ j < |a| =⇒ a[0] = a[ j].

Example 3 For array variables a and b and integer variables l,m,n, consider a proof goal
with two quantified assumptions as follows:

∀k : Z. 0 ≤ k < |b| =⇒ a[k+n] = b[k],

∀i j : Z. 0 ≤ i < |a|∧0 ≤ j−m < |b|∧ i ≤ j− l =⇒ a[i]≤ b[ j−m].

The IPGs of these examples are as shown in Fig. 5. Example 1 has no cycles. Example 2
has a cycle, which has accumulated weight 1. So the cycle has nonzero weight and the goal is
entangled (that is, Example 2 has a recursive restriction). Example 3 also has a cycle, whose
accumulated weight is l +n−m. So the algorithm will first decide whether l +n−m = 0 is
provable to determine whether the goal is tangle-free.

Checking the IPG for nonzero cycles. We now describe a graph algorithm for detecting
nonzero cycles in the IPG. It is unnecessary to enumerate all the (exponentially many) cy-
cles. Instead, it is enough to choose a spanning forest F of the IPG (a spanning tree from each
component), ignoring edge direction, and then construct a function δ : V →{integer terms}
as follows. For each connected component C of the IPG, arbitrarily choose a reference node
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uC, and set δ (uC) = 0. We then define δ for the remaining nodes by depth/breadth first
search through F such that

δ (u)+w = δ (v), (6)

for every directed edge (u,v,w)∈ F . The construction of δ for Example 3 is shown in Fig. 5.
Then we try to prove that (6) also holds for edges not in F . If we can prove that (6) holds for
edges not in F from the assumptions, then (6) holds for every edge, and the IPG’s cycles are
all zero-weighted, because for every cycle C, we have the following formula by applying (6)
on each edge of C and taking the sum:

∑
(u,v,w)∈C

δ (u)+ ∑
(u,v,w)∈C

w = ∑
(u,v,w)∈C

δ (u), (7)

and then ∑(u,v,w)∈C w = 0.
Conversely, if we can prove that the IPG’s cycles are all zero-weighted from the assump-

tions, we can prove (6) for each off-forest edge. That is because there is a cycle C for each
off-forest edge e, that C contains only e and some on-forest edges. Then ∑(u,v,w)∈C w = 0
implies (7), which implies (6) since we have (6) for all on-forest edges.

Proving equations in the form of (6) might need assumptions from ψ1 (e.g. Example
3). In other words, we need to prove ¬ψ1 =⇒ (6). Then we have the same challenge
of instantiation as in the original goal. So we construct an approximated version of ψ1,
denoted by ψ ′

1, by overapproximating quantified formulas with ⊤, i.e. dropping quantified
assumptions. Then define the test formula

∆ := ¬ψ
′
1 =⇒

∧
(u,v,w)∈E\F

δ (u)+w = δ (v).

We then check the validity of ∆ by invoking the base solver as we will describe in §3.6.
Note that the validity of ∆ is independent of the choice of F and reference nodes, because
it only depends on all cycles in the IPG. The goal is classified as tangle-free if ∆ is proved
valid, and otherwise entangled.3 If ∆ cannot be proved, the algorithm identifies the equation
that it failed to prove and stops.4 The user may prove the equation manually and put it into
the assumptions, so the algorithm can classify the goal as tangle-free.

Example 2 is entangled because we cannot prove 1= 0. For Example 3, we need to prove
(6) for the off-forest edge (k,a,n), i.e. l−m+n = 0. The goal is tangle-free if l−m+n = 0
is provable from ¬ψ ′

1.

3.5 Instantiation

We now instantiate quantifications over Z with a finite set and turn them into finite con-
junctions. Instantiating quantifiers is sound and very common in decision procedures and
SMT solvers.5 Although we postpone the full elaboration and proof of completeness to §4,

3 One can also perform a more precise (but more expensive) analysis by checking the validity of ∆ ′,
defined as ¬ψ2 =⇒

∧
(u,v,w)∈E\F δ (u)+w = δ (v), where ψ2 is the instantiation of ψ1 constructed in Sec-

tion 3.5. This classifies more goals as tangle-free. The validity of ∆ ′ depends on the choice of F and reference
nodes.

4 To give more hints, the algorithm may also identify the off-forest edge which causes the unprovable
equation, then reconstruct and print the nonzero cycle—see §8.

5 Replacing arbitrary quantifiers over Z in negative positions with finitely many instantiations is sound (if
the resulting formula is valid, then the original formula is also valid), but not complete (the opposite direction
as soundness). [4]



14 Q. Wang and A. W. Appel

the basic idea of this conversion is that it is enough to only consider finite crucial points in
the arrays instead of an infinity of indices. The crucial points divide arrays into segments.
The indices in the same segment share the same constraints, so they can be represented by a
close crucial point.

For each connected component of the IPG, we first calculate an index set.

Definition 2 (Index Set) The index set I is a set of integer terms for a connected component
constructed as follows:

1. Initialize I with the empty set;
2. For every array variable a in the component, add −1−δ (a) and |a|−δ (a) to I;
3. For every occurrence a[n], where n is an expression without universal quantified vari-

ables, add n−δ (a) to I;
4. For every occurrence i+ n ≤ m or m ≤ i+ n in index guards, where i is a universally

quantified variable and n,m are terms without quantified variables, add m−n− δ (i) to
I;

For an integer term k, define I + k as { j + k | j ∈ I}. Now, in ψ1, we replace every
quantification ∀⃗ i :Zn. F (⃗ i) with

∧⃗
e∈I+δ (⃗ i ) F (⃗e), yielding the formula ψ2, where the notation

e⃗ ∈ I + δ (⃗ i) means {⃗e | ∀t.et ∈ I + δ (it)}. That is, quantification over Z has been replaced

by conjunction over a finite set. The number of conjuncts is |I||⃗ i |.
In the first subgoal of the running example, δ (i) = δ (a) = δ ( j) = 0 and δ (b) = −|a|.

Component 1 contains a and i and Component 2 contains b and j. The index sets are

I1 = {−1, |a|}∪{}∪{0, |a|−1}
I2 = {−1+ |a| , |b|+ |a|}∪{k+ |a|}∪{|a| , |a|+ |b|−1}.

I1 and I2 are written as unions of three sets. These sets are terms added in steps 2, 3 & 4,
respectively. And we instantiate i with I1 and j with I2 (because δ (i) = δ ( j) = 0), and we
get

0 ≤ k < |b| =⇒∧
i∈I1

(0 ≤ i < |a| =⇒ P(a[i])) =⇒

∧
j∈I2

(|a| ≤ j < |a|+ |b| =⇒ P(b[ j−|a|])) =⇒ 0 ≤ k < |b|+ |a| =⇒ P(b[k]).

3.6 Decision

The algorithm invokes the base solver OB as follows. For each array variable a, create a
fresh uninterpreted function fa from integer to the element sort of a to represent the content
of a, and a fresh integer variable La to represent the length of a. Replace terms of the form
a[i] with fa(i) and replace terms of the form |a| with La. Because the lengths of arrays are
nonnegative, add an assumption La ≥ 0 for each variable La. Because out-of-bounds access
yields dS, add an assumption i < 0∨ i ≥ La =⇒ fa(i) = dS for each distinct occurrence of
fa(i). So

ψB := (assumptions) =⇒ (ψ2 in the base theory).

The resulting formula ψB is quantifier-free in the base theory with uninterpreted functions,
which falls in the range of the base solver OB. So we use OB to decide its validity.
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For the first subgoal of the running example, the formula sent to the base solver is

La ≥ 0∧Lb ≥ 0 =⇒
∧
i∈I1

(i < 0∨ i ≥ La =⇒ fa(i) = dS) =⇒

∧
j∈I2

( j−La < 0∨ j−La ≥ Lb =⇒ fb( j−La) = dS) =⇒

(k < 0∨ k ≥ Lb =⇒ fb(k) = dS) =⇒
0 ≤ k < Lb =⇒∧
i∈I1

(0 ≤ i < La =⇒ P( fa(i))) =⇒

∧
j∈I2

(La ≤ j < La +Lb =⇒ P( fb( j−La))) =⇒ 0 ≤ k < Lb +La =⇒ P( fb(k)).

4 Correctness

In this section, we show that the algorithm in §3 is correct, i.e. sound and complete.
Proving soundness of the algorithm is more straightforward. The rewrites in §3.1–3.3

all use provably correct equations; the versions of those rules that we use in our Coq im-
plementation are all proved as Coq lemmas. The classification in §3.4 is sound as it only
renames variables. Instantiating quantifiers in negative positions as in §3.5 makes ψ2 have
weaker assumptions than ψ1, so it is sound. The following lemma shows §3.6 is sound and
complete, which will also be used later in the completeness proof.

Lemma 1 Given a quantifier-free formula ψ2 in the array theory, let ψB be the base the-
ory formula constructed as in §3.6, then ψ2 and ψB are equivalid. Furthermore, given a
counterexample MB of ψB, we can construct a counterexample M2 of ψ2, and vice versa.

Proof For each model M2 in the array theory, there is a corresponding model MB in TB,
such that MBJLaK = M2J|a|K and MBJ fa(i)K = M2Ja[i]K for 0 ≤ i < |a|. This is a one-to-one
correspondence between models in the array theory and models in TB that satisfy La ≥ 0
and where accessing fa out-of-bounds yields dS. For each pair of corresponding models M2
and MB, model M2 satisfies ψ2 if and only if MB satisfies ψ2’s correspondence in TB (the
conclusion part of ψB). A model in TB is a counterexample of ψB if and only if it satisfies the
additional assumptions that La ≥ 0 and accessing fa out-of-bounds yields dS, and it falsifies
ψ2’s correspondence in TB. So other models in TB cannot be counterexamples of ψB, and the
one-one correspondence above is also a one-one correspondence between counterexamples
of M2 and MB, which completes the proof.

Our Coq implementation uses these principles to generate a formal correctness proof for
every solved goal.

Completeness. If a tangle-free formula ψ is valid, then our algorithm will prove it, by reduc-
ing it to a valid ψbase. The most difficult part of the proof is to prove the finite instantiation
in §3.5 is correct. The main idea for proving this step is that given a concrete index set S, we
can delegate each element in an array to the nearest element in the index set. So we define
the projection function:
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Definition 3 (Projection Function) For a nonempty finite integer set S, the projection func-
tion projS : Z→ S is defined as

projS(n) =

{
minS, if n < minS,
max{m ∈ S | m ≤ n}, otherwise.

An intuitive understanding of the projection function is that we partition integers into a finite
number of segments and project each segment to a representative element, so we only need
to consider a finite set of representatives, instead of all integers.

The projection function projS is indeed projective, in the sense that for any n ∈ S, we
have projS(n) = n. The projection function is monotone, i.e. for all integers n and m,

n ≤ m =⇒ projS(n)≤ projS(m).

Another property is the shifting transformation, that for all integers n and m,

projS+m(n) = projS(n−m)+m,

where S + m = {x + m | x ∈ S}. This is because if n < min(S + m), then min(S + m) =
minS+m and n−m < minS, so both sides are minS+m. Otherwise

projS+m(n) = max{x ∈ S+m | x ≤ n}= max{x | x−m ∈ S∧ x ≤ n},
projS(n−m)+m = max{y ∈ S | y ≤ n−m}+m = max{y+m | y ∈ S∧ y ≤ n−m}.

They are equal because {x | x−m ∈ S∧x ≤ n} and {y+m | y ∈ S∧y ≤ n−m} are the same
set by taking x := y+m.

Outline of completeness proof. Suppose ψ is tangle-free (i.e. ∆ is valid6), and ψB is created
by transforming ψ by the algorithm in §3. We will show that given any counterexample MB

for ψB, we can construct a counterexample M for ψ . First, Lemma 1 shows that we can
construct a counterexample M2 for ψ2.

Remark. Since M2 is a counterexample for ψ2, as ∆ is valid, then M2 satisfies∧
(u,v,w)∈E\F

δ (u)+w = δ (v).

Because δ is constructed by propagating through F , we have M2 satisfies∧
(u,v,w)∈E

δ (u)+w = δ (v). (8)

Definition 4 (Construction of counterexamples) Let ψ be tangle-free. Let ψ2 be created
by instantiating ψ as in §3.5. Suppose M2 is a counterexample for ψ2. Then we will construct
M (a counterexample for ψ) as follows.

6 or ∆ ′ is valid; see footnote 3
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For every nonarray variable to which M2 gives an interpretation, we let M give the same
interpretation. (The only difference between ψ and ψ2 is that ψ2 interrogates arrays at a
subset of the indices at which ψ does, but scalar variables are treated the same.)

For the interpretation of array variables in M: let I be the index set defined in Defini-
tion 2, which is a set of terms. For every array variable a, the value in M is defined as

a = [a0, . . . ,aM2J|a|K−1] where ai = M2JaK
[
projM2JI+δ (a)K(i)

]
.

Remark. Our implementation does not construct models, since it is focused on deductive
proofs. But in an SMT setting where it is useful to present counterexamples, the complexity
of constructing M will be only |I| times the number of array variables.

Lemma 2 For every term e in ψ1 such that e does not contain quantified variables and the
sort of e is not an array, then MJeK = M2JeK.

Proof The proof is by strong induction on the structure of e. So we prove that MJeK =
M2JeK by assuming every nonarray proper subterm of e, denoted by e′, has MJe′K = M2Je′K.
If e is a nonarray variable/constant/literal, M and M2 have the same values for it, so the
equation holds. If e is an application of a nonarray function/predicate, the interpretation of
the function/predicate is also the same in M and M2. Then by the induction hypothesis on
subterms MJeK = M2JeK. If e is in form of |a| for an array variable a, by the definition of M,
we have MJ|a|K = M2J|a|K.

If e is in form of a[n] for an array variable a and an integer expression n, by the induction
hypothesis, MJnK= M2JnK. According to the construction of the index set I, term n−δ (a) is
in I. Because the projection function is projective, projM2JI+δ (a)K(M2JnK) = M2JnK. For the
term a[n], if MJnK is out of bounds, MJa[n]K = dS = M2Ja[n]K. Otherwise,

MJa[n]K = M2JaK
[
projM2JI+δ (a)K(M2JnK)

]
= M2JaK [M2JnK] = M2Ja[n]K.

So we conclude MJa[n]K = M2Ja[n]K. The enumeration above contains all kinds of terms, so
we have MJeK = M2JeK for all terms e by induction.

Corollary 1 MJIK=M2JIK, MJδ (a)K=M2Jδ (a)K and MJδ (i)K=M2Jδ (i)K, for every array
variable a and every quantified variable i.

Throughout the proof, the projection function will only be applied with S being I with
a shift of δ (a) or δ (i) in assignment M (or M2, which is the same). When dealing with
quantifiers, we will use an assignment M′ that extends M with quantified variables. So we
use the shorthands

projM
′
(e) := projMJIK(M

′JeK),

projM
′

a (e) := projMJI+δ (a)K(M
′JeK),

projM
′

i (e) := projMJI+δ (i)K(M
′JeK).

Theorem 1 (Completeness) Let ψB be created by processing ψ as in §3. For tangle-free
ψ , if ψB is invalid, then so is ψ . Furthermore, if we have a counterexample MB for ψB, we
can construct a counterexample M for ψ .
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Proof Because (as mentioned in §3.2 and §3.3) the rewrite rules are sound and complete, ψ1
is equivalent to ψ , so we only need to consider ψ1. Construct M2 from MB as in Lemma 1
and M as in Definition 4. Then M2 is a counterexample of ψ2. By Lemma 2, the quantifier-
free formulas in ψ1 (which are the same in ψ2) have the same truth values in M and M2.
So to prove M is a counterexample of ψ1, it is enough to consider the quantified formulas.
Recall that each quantified formula ϕ in ψ1,

ϕ = ∀⃗ i : Z. ϕI (⃗ i) =⇒ ϕV (⃗ i),

is converted into ϕ2 in ψ2,

ϕ2 =
∧

{⃗e|∀t.et∈I+δ (it )}

(
ϕI (⃗e) =⇒ ϕV (⃗e)

)
.

Because these formulas only appear in negative positions, we only need to show that if M2
satisfies ϕ2, then M satisfies ϕ .

Let (i1, . . . , ik) be the elements of i⃗ . Let M′ be any extension of M by binding i1, . . . , ik to
arbitrary integer values. We need to show M′ satisfies ϕI (⃗ i) =⇒ ϕV (⃗ i). For convenience,
we define a notation for applying the projection function to a sequence of variables:

projM
′

i⃗ (⃗ i) =
(

projM
′

i1 (i1), . . . ,projM
′

ik (ik)
)
.

Since projM
′

it (it) ∈ M2(I +δ (it)), there is a vector e⃗ such that projM
′

i⃗ (⃗ i) = M2(⃗e) and a con-
junct of ϕ2 is (ϕI (⃗e) =⇒ ϕV (⃗e)). So M2 satisfies the conjunct and then also satisfies

ϕI(projM
′

i⃗ (⃗ i)) =⇒ ϕV (projM
′

i⃗ (⃗ i)).

Because projM
′

i⃗ (⃗ i) is a constant vector, this is a quantifier-free formula whose nonconstant
terms are in ψ1, so M also satisfies it:

MJϕI(projM
′

i⃗ (⃗ i))K =⇒ MJϕV (projM
′

i⃗ (⃗ i))K.

To prove M′JϕI (⃗ i)K =⇒ M′JϕV (⃗ i)K, it is enough to show

M′JϕI (⃗ i)K =⇒ MJϕI(projM
′

i⃗ (⃗ i))K (9)

and MJϕV (projM
′

i⃗ (⃗ i))K =⇒ M′JϕV (⃗ i)K. (10)

We show (9) as follows. Because ϕI is a positive Boolean combination of atoms, it is
enough to show that, for every atom ϕatom in ϕI ,

M′Jϕatom(⃗ i)K =⇒ MJϕatom(projM
′

i⃗ (⃗ i))K. (11)

ϕatom(⃗ i) has three possible forms. We analyze these three forms as follows, using n and m
for terms without universally quantified variables and using i and j for universally quantified
variables.

1. If ϕatom(⃗ i) is of the form n ≤ m, then ϕatom(⃗ i) does not depend on i⃗ and (11) is straight-
forward.
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2. If ϕatom(⃗ i) is of the form i+n ≤ m or i+n ≥ m, we first consider the case i+n ≤ m. We
can replace ϕatom with i ≤ m−n, and (11) is reduced to

M′JiK ≤ MJm−nK =⇒ projM
′

i (i)≤ MJm−nK. (12)

The construction of index set I guarantees that MJm−n−δ (i)K ∈ MJIK. So MJm−nK ∈
MJIK+MJδ (i)K, and then MJm−nK= projM

′
i (m−n). By monotonicity of the projection

function, (12) holds. The proof is the same for i+n ≥ m.
3. If ϕatom(⃗ i) is in the form of i+n ≤ j+m, then we may replace ϕatom with i− j ≤ m−n,

and (11) is reduced to

M′Ji− jK ≤ MJm−nK =⇒ projM
′

i (i)−projM
′

j ( j)≤ MJm−nK.

There is an edge (i, j,n−m) in the IPG—because ϕatom(⃗ i) is part of the formula from
which the IPG is constructed, and Definition 1 will have constructed this edge. Then, by
(8), MJδ (i)K+MJn−mK = MJδ ( j)K. So MJδ (i)− δ ( j)K = MJm− nK and it is enough
to show

M′Ji− jK ≤ MJδ (i)−δ ( j)K =⇒ projM
′

i (i)−projM
′

j ( j)≤ MJδ (i)−δ ( j)K.

By moving terms and expansion of denotation, it is enough to show

M′JiK−MJδ (i)K ≤ M′J jK−MJδ ( j)K

=⇒ projM
′

i (i)−MJδ (i)K ≤ projM
′

j ( j)−MJδ ( j)K.

By definition and then by the properties of the projection function,

projM
′

i (i) = projM
′

I+δ (i)(i) = projM
′

I (i−δ (i))+MJδ (i)K.

Then we have
projM

′
i (i)−MJδ (i)K = projM

′
I (i−δ (i)).

The same result also holds for j, so it is enough to show

M′JiK−MJδ (i)K ≤ M′J jK−MJδ ( j)K =⇒ projM
′

I (i−δ (i))≤ projM
′

I ( j−δ ( j)),

which follows from monotonicity of the projection function.

To prove (10), recall (from the definition of the value constraint in §2) that these univer-
sally quantified variables only occur as indices in the form of a[i+ n], where n is a term
without quantified variables. The construction of a’s value in M implies M′Ja[i + n]K =
MJa[projM

′
a (i+ n)]K when M′Ji+ nK is in bounds. When M′Ji+ nK is out of bounds, be-

cause {−1, |a|} ⊆ I + δ (a), the projected index projM
′

a (i+ n) is also out of bounds. So in
either case, we always have M′Ja[i+ n]K = MJa[projM

′
a (i+ n)]K. The occurrence of a[i+ n]

implies an IPG edge (i,a,n). By (8), we have MJδ (i)+ nK = MJδ (a)K. So by the shifting
transformation,

projM
′

i (i)+MJnK = projM
′

I+δ (i)(i)+MJnK = projM
′

I (i−δ (i))+MJδ (i)K+MJnK

= projM
′

I (i+n−δ (a))+MJδ (a)K = projM
′

I+δ (a)(i+n) = projM
′

a (i+n).

So M′Ja[i+ n]K = MJa[projM
′

i (i)+ n]K. By replacing every subterm of the form a[i+ n] in
ϕV (⃗ i) with a[projM

′
i (i)+n], (10) holds. Hence, Theorem 1 holds.
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5 Discussion on entanglement

Why rewriting is needed. One could calculate an IPG before step 3 of the algorithm—that
is, without rewriting the quantified formulas. But this IPG would be less precise, classify-
ing more goals as entangled. The method would directly calculate the positions in arrays
accessed by universal variables. For example, in the property formula ∀i : Z. P((a·b)[i]),
the indexing (a·b)[i] indicates either a[i] or b[i−|a|]. So we could construct an IPG without
rewriting using the following procedure written in OCaml-like pseudocode for indexing of
the form e[i+n], where e is an array expression.

let addEdge i n e =
match e with
| array variable a → connect i and a with edges labelled n and (−n)
| xk → ()
| e1·e2 → addEdge i e1 n; addEdge i e2 (n+ |e2|)
| slice(e1, j,k)→ addEdge i e1 (i+ j)
| map f (e1, . . . ,ek)→ addEdge i n e1; · · ·; addEdge i n ek

Unfortunately, this IPG construction without rewriting and pruning is more likely to have
nonzero cycles. For example, if there is an assumption

∀i. 0 ≤ i < |a|+ |b| =⇒ P(a·b[i])

constructing the IPG without rewriting will produce edges (i,a,0) and (i,b,−|a|). So a
and b are connected. But after rewriting into two separated assumptions and renaming the
quantified variable with i and j respectively, the IPG edges (i,a,0) and ( j,b,−|a|) will not
connect a and b. So it will be less likely to be entangled when there are other assumptions.

Another way to avoid rewriting. Our rewrite rules simplify the app operator. One could
imagine a different method: for each term of the form a·b, replace with a fresh variable c
and add the assumption c = a·b as

|c|= |a|+ |b| ∧ ∀i. 0 ≤ i < |a| =⇒ c[i] = a[i]

∧ ∀ j. 0 ≤ j < |b| =⇒ c[ j+ |a|] = b[ j].

Then we leave the elimination of c to the base solver OB, and we would not need rewriting.
Unfortunately, this method classifies many more goals as entangled. It implies edges in
the IPG: (i,c,0), (i,a,0), ( j,c, |a|), ( j,b,0). If there is another edge, or path, from a to b
and the shift is 0, there is a nonzero cycle (a, i,0),(i,c,0),(c, j,−|a|),( j,b,0),(b,a,0). The
advantage of rewriting is avoiding these additional edges and nonzero cycles.

Comparison with string solvers. Our classification of tangle-free and entangled goals is
not arbitrary—it is similar to nonoverlapping [25] and acyclicity [1,2] restrictions in the
literature of string solvers—but not identical, as we now explain.

Recall the example discussed in the introduction, a·b1 = b2·a. If |a| > |b2|, then a has
a periodic structure, a = a0a0 . . .a0a1. Such periodic structure is the difficulty in using this
assumption to prove the conclusion.

A more complicated example is, a·c1 = b·c2 c3·b = c4·a.
The first equation shows a and b have a common prefix of length min(|a| , |b|), while the
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second shows a and b have a common suffix of the same length. If |b| < |a|, then a has a
common prefix and suffix, which is the same case as the first example. If |a|< |b|, we have
the same for b.

In our theory we would express the first example as |a|+ |b1|= |b2|+ |a| and

∀i. 0 ≤ i < |a|+ |b1| =⇒ (a·b1)[i] = (b2·a)[i].

After rewriting the quantified formula, one of the branches is

∀i. (0 ≤ i < |a|∧ |b2| ≤ i < |b2|+ |a|) =⇒ a[i] = a[i−|b2|].

So the IPG has edges (i,a,0) and (a, i, |b2|), which form a nonzero cycle. The second exam-
ple is expressed as length equations and

∀i. 0 ≤ i < |a|+ |c1| =⇒ (a·c1)[i] = (b·c2)[i] (13)

∀i. 0 ≤ i < |c3|+ |a| =⇒ (c3·a)[i] = (c4·b)[i]. (14)

After rewriting, one branch of (13) is ∀i. (0 ≤ i < |a|∧0 ≤ i < |b|) =⇒ a[i] = b[i]. One of
the branches of (14) is

∀ j. (0 ≤ j−|c3|< |a|∧0 ≤ j−|c4|< |b|) =⇒ a[ j−|c3|] = b[ j−|c4|].

There are IPG edges (i,a,0), (i,b,0), ( j,a,−|c3|), ( j,b,−|c4|). Unless |a| = |b| (note that
we have |c3|+ |a| = |c4|+ |b|), there is a nonzero cycle, (i,a,0), (a, j, |c3|), ( j,b,−|c4|),
(b, i,0), of accumulated shift |c3|− |c4|. In these two examples, our classification of tangle-
free and entangled goals captures the same difficulty as the nonoverlapping and acyclic
conditions.

The major difference between our solver and those string solvers is that we manipulate
string equations by extensionality, i.e. converting to a quantified equation for elements. This
allows expressing more complicated elementwise relations between sequences, including
transducers that can be expressed as elementwise relations. Comparing with regular expres-
sions, elementwise relations can only express a part of regular expressions, but can use
predicates from other theories (including uninterpreted functions/predicates for all element
sorts but not array sorts) and communicate with them, to express properties such as “the
elements in an integer sequence are in a certain range.”

Abdulla’s acyclic condition [1] is less liberal than our nonzero acyclicity: their graph
has no offset-labels, so they cannot distinguish nonzero cycles from zero-offset cycles.

The conditions proposed in [2] and [25] are not covered by our condition, but the power
of those solvers comes from case splitting. Both those solvers split a into a1·a2 if there is
an equation a·b = c·d and |c| < |a|, to split the equation into a1 = c and a2·b = d. If the
relationship between |a| and |c| is unknown, those solvers split into three cases, namely
|a| < |c|, |a| = |c| and |a| > |c|. This makes the solvers more powerful, but less efficient,
especially when there are constraints like a·b·c·d·e = f ·g·h·i· j, there will be

(8
4

)
cases, even

without counting the cases with concatenation points sharing same positions.
The algorithm described by Zheng et al. [25] was embodied in the Z3str2 solver. We

tested the two successors of this algorithm, Z3str3 and Z3str4.
We compared our solver with Z3str3 and Z3str4 on this goal, which requires quite a bit

of case splitting:

0 ≤ n < |a·b·c·d·e|−1∧a·b·c·d·e = f ·g·h·i· j =⇒
slice(n,n+1,a·b·c·d·e)·slice(n+1,n+2,a·b·c·d·e) = slice(n,n+2, f ·g·h·i· j).
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Our solver (see §6) proved this goal in 412s.7 We did not include this example in our bench-
mark suite, since it was not motivated by a real verification—it is meant to illustrate how the
different algorithms handle case-splitting.

Our algorithm does less case-splitting on this goal. Although we would have expected
Zheng’s algorithm to solve this goal, the implementation Z3str3 reports unknown after sev-
eral seconds. Z3str4’s behavior is unpredictable: in 10 trials, it succeeded 4 times in 1.5s on
average, reported unknown 5 times in 6.6s on average, did not terminate 1 time. Our solver
is more reliable on this kind of goal.

6 Implementation

We implemented a solver using our algorithm in the built-in tactic language, Ltac, of the
Coq proof assistant, and installed it into distribution 2.7 of the Verified Software Toolchain’s
VST-Floyd prover [8].

We choose the combination of linear integer arithmetic (LIA) and uninterpreted func-
tions (UF) as the base theory, while allowing customization with other theories by providing
additional theory solvers. The algorithm requires a complete base solver, but Coq does not
provide a combined decision procedure for LIA+UF. So we use a heuristic base solver,
which compromises the completeness of our implementation—it may not be able to solve
some goals that our algorithm can solve, because the base solver cannot solve the goal af-
ter reduction. In some cases, the user must use our solver to reduce the original goal and
manually prove some remaining subgoals (see “with help” in Fig. 6).

Arrays are represented by inductive lists and array operators are implemented as func-
tions. The default value dS appears as an implicit argument of the nth function, and is filled
automatically using a typeclass (Inhabitant S). The inference rules for array operators are
proved correct as lemmas in Coq. For efficiency,8 we add update as a primitive, using infer-
ence rules derived from identities:

|update(i,a,x)|= |a| and update( j,a,x)[i] = if i = j then x else a[i].

The solver takes a proof goal expressed as a series of assumptions and a conclusion.
Each assumption can be a logical combination of integer equations and inequalities, a (dis-)
equality of terms with uninterpreted functions, an uninterpreted predicate (a literal of the
form P(x, . . .) or ¬P(x, . . .)), or a quantified array property formula. The solver destructs
the existentially quantified assumptions by introducing fresh variables. If the conclusion
is of the form A∧B, the solver proves them separately. If the conclusion has a universal
quantifier after conversion, e.g. equation or weakening relation between arrays, an element
is not in an array, or an array is sorted, the solver converts the conclusion into its quantified
version and puts the quantified variables and their ranges into the assumptions by the intros
tactic.

Our solver treats goals on three levels: length level, quantifier-free fragment level, and
array property level.

The length solver solves linear integer equations and inequalities involving array lengths.
The length solver is frequently called because all inference rules for array elements require

7 As discussed in §7, we believe our algorithm is fast but our implementation is slow because of the use
of Ltac.

8 Two-case i = j, i ̸= j case splits, rather than three-case i < j, i = j, i > j.
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length facts, so it needs to be efficient. The length of the same array term may be used re-
peatedly, so the length solver maintains a table to cache length results. It calls the linear
integer arithmetic solver in Coq to prove equations and inequalities.

The quantifier-free fragment solver solves goals that do not require instantiating quan-
tifiers in the assumptions. We implement a rewrite procedure to apply the inference rules
for the quantifier-free fragment as shown in Fig. 3 (in addition with the rule for update).
We preferentially apply rules that produce fewer subgoals—that is, only one subgoal (such
as LENGTH REPEAT), or where all but one subgoal is immediately provable. An example
of the latter is NTH REPEAT in the case where 0 ≤ i < n is provable, the second subgoal is
immediately provable by contradiction. We use the length solver in such tests, e.g. for the
last subgoal of NTH APP.

When there are no branches to rewrite, the solver picks a term of the form (a·b)[i] or
update(i,x,a)[i] and performs case splitting before continuing rewriting and repeating this
procedure until there are no more array operators other than length and nth.

The array property solver is called, when the first two levels fail to prove the goal. This
solver proves the goal using quantified formulas in assumptions. Our Ltac implementation
handles only a limited set of quantified forms with at most two quantified variables and
at most two different array positions accessed by quantified variables each. These special
forms are,

forall range(l,r,a,ϕ) : ∀i. l ≤ i < r =⇒ ϕ(a[i])

forall range2(l,r,d,a,b,ϕ) : ∀i. l ≤ i < r =⇒ ϕ(a[i],b[i+d])

forall triangle(l1,r1, l2,r2,d,a,b,ϕ) : ∀i j. l1 ≤ i < r1 ∧ l2 ≤ j < r2 ∧ i ≤ j+d

=⇒ ϕ(a[i],b[ j])

These three forms cover common predicates, e.g. elementwise predicate, equality and sort-
edness. And any bounded tangle-free domain of one or two indices defined by the index
guard clauses can be covered by a set of quantified formulas in these three forms. The solver
reduces over array operations until the array terms are variables, by applying the rules in
Fig. 4 and putting the additional index constraint with min/max with the original bounds.
If the range of an index can be proved to be empty, that quantified assumption will be re-
moved. Then the solver calculates whether the index propagation graph has nonzero cycles,
by calculating the index shift δ for each array (index shifts for quantified variables are not
maintained—we can find them from the arrays they use). If the goal is found to be entan-
gled, the solver reports it. If not, it instantiates the quantified formulas using the indices that
appear in the assumptions and the conclusion. Due to the lack of a combined (LIA + unin-
terp. funcs) decision procedure, the solver tries to determine whether the index clause holds
in the instance, and performs case splitting if it cannot be determined.

The implemented solver also allows custom reduction rules to support more array op-
erations for the quantifier-free fragment (see, e.g., † in Fig. 6). Common operations, e.g.
reversal, duplicating each element, creating an array of an integer range, and casting an
array of 32-bit integers into an array of bytes, can be represented by length and indexing
reductions.
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Our algo Our solver Dafny Z3/Z3str3
strcat yes yes (yes) yes

C strcpy yes yes (yes) yes
functions strlen yes yes (yes) yes

strcmp yes** with help yes no
reverse yes† yes† yes* N/A
in app yes yes (yes) (yes)

General not in app yes yes (yes) (yes)
goals assoc list yes** with help yes no

sorted rotate yes yes no no
†† drop drop yes yes yes yes
†† car drop is nth yes yes yes yes
†† disjoint unappend yes yes no no

† † † slice of slice yes yes no yes

“with help”,
see second para. of §6;

(yes) we did not verify
that Dafny/Z3 can
solve these goals;

† with extension, see
last para. of §6.

*Dafny can solve the goal expressed with quantifiers and relations, but not when expressed with
functions.
**Assessed by running our solver to step 6, then checking semimanually that the remaining goals
are in LIA+UIF.
†† These goals are proved (manually) as lemmas in the VigNAT proof [24]; see footnote 2.
† † † This goal, a generalization of drop drop, is from Dafny’s proposed standard library,
https://github.com/dafny-lang/libraries/blob/master/src/Collections/Sequences/Seq.dfy, July 2021.

Fig. 6: Verification power

7 Evaluation

We evaluate the utility and the efficiency of the solver by experiments.

Verification power. We test the power of our array solver using C functions and general
proof goals. The results are shown in Fig. 6. The C functions are provided with human-
written loop invariants; VST generates verification conditions by symbolic execution. We
test whether the array solver can solve the verification conditions. We compare with sim-
ilar functions written in Dafny, with corresponding invariants. We manually translated the
verification conditions of C string functions and tested them in Z3str3. Z3str3 cannot solve
some verification conditions in strcmp that involve quantifiers to express string equations
and null-terminated strings (without internal nulls).

We also test the solver with some other proof goals. The most difficult proof goals are
assoc list and sorted rotate. The assoc list example arises from reasoning about association
lists: given key sort K and value sort V , an association list is a list (or array) of key-value
pairs, i.e. A(K ×V ). Searching an association list is finding the first key-value pair whose
key is a given key k. We can define the search using an auxiliary function,

get index(l,k) :=

{
0, l = [(k,v0), . . . ] or l = []

1+get index(l′,k), l = [(k0,v0)]·l′ and k ̸= k0

A useful lemma to reason about association lists is

∀lki. get index(l,k) = i ⇐⇒ (0 ≤ i < |l|∧ fst(l[i]) = k∧ k ̸∈ mapfst(slice(0, i, l)))
∨(i = |l|∧ k ̸∈ mapfst(slice(0, i, l))).

where x ̸∈ l is expressed as ∀i. 0 ≤ i < |l| =⇒ l[i] ̸= x.
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predicate sorted2(s: seq<int>)
{ forall j, k :: 0 <= j <= k < |s| ==> s[j] <= s[k] }

lemma sorted rotate(s1: seq<int>, s2: seq<int>, s3: seq<int>, N: int)
requires forall i :: 0 <= i < |s1| ==> 0 <= s1[i] < N
requires forall i :: 0 <= i < |s2| ==> 0 <= s2[i] < N
requires sorted2(s1 + s2)
requires |s1| == |s3|
requires forall i :: 0 <= i < |s1| ==> s3[i] == s1[i] + N
ensures sorted2(s2 + s3)

{
assert forall i :: 0 <= i < |s1| ==> (s1 + s2)[i] == s1[i];
assert forall i :: 0 <= i < |s2| ==> (s1 + s2)[i + |s1|] == s2[i];

}

Fig. 7: Proof for sorted rotate in Dafny. If Dafny could solve this fully automatically, the
body (in braces) would be empty.

To prove this lemma, we use an induction on l. In the case that l = [(k0,v0)]·l′ and k ̸= k0,
we need to prove the induction step

k ̸= k0 =⇒ (ϕ(i, l′) ⇐⇒ ϕ(i+1, [(k0,v0)]·l′)),
where ϕ(i, l) := (0 ≤ i < |l|∧ fst(l[i]) = k∧ k ̸∈ mapfst(slice(0, i, l)))

∨ (i = |l|∧ k ̸∈ mapfst(slice(0, i, l))).

This falls within our array theory. With a complete base solver, our algorithm would prove
this goal; in our Coq implementation (with no combined theory of LIA + uninterp. func-
tions), our algorithm successfully reduces the goal to simpler goals that are straightforward
for the human user.

The other example, sorted rotate, is this: Suppose we have an nondecreasing sequence
s = s1 · s2 with every element of s between 0 and N. Then the sequence s2 ·map(+N)(s1) is
also nondecreasing. The proof goal is expressed as,

sorted(s1·s2)∧ (∀i.0≤ i < |s1·s2| =⇒ 0≤(s1·s2)[i]<N) =⇒ sorted(s2·map(+N)(s1)).

Our solver proves sorted rotate automatically.
We encode these goals in Dafny’s and Z3’s sequence theories. Neither supports the map

operator, so we encode formulas with map using an auxiliary variable a f = map f (a) and
add assumptions ∣∣a f

∣∣= |a|∧ (∀i. 0 ≤ i < |a| =⇒ a f [i] = f (a[i])).

Dafny can prove sorted rotate with two human-written auxiliary assertions as hints, as
shown in Fig. 7. The hints are short, but it was not obvious how to find them. In fact, we had
to write a 21-line proof and remove unnecessary hints in order to get the two-line proof. Z3
can prove neither of these two hard examples.

When our solver cannot solve a goal because the base solver in Coq is not complete, it
needs the user’s help, too, as shown in Fig. 6. For example, it cannot solve

(assumptions) =⇒ b2val(i = |l1|∧ i = |l2|) = b2val(⊥),

where b2val converts a Boolean to a C value. The user needs to reduce it to a Boolean
equation by congruence and then solve it by the list solver. This is simpler than Dafny
because the user only needs to handle goals in the base theory.
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manual solver
strlen 3 2
strcpy 31 2
strcat 45 4

strcmp 74 21
reverse 37 3

(Lines of code of proof script)

Fig. 8: Human effort verifying C functions with and without the array solver
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Fig. 9: Performance of quantifier-free goals. We plot time against the difficulty of the goals,
as measured by two parameters: (1) the number of array operators in the proof goal, only
counting update, app, slice, and map; (2) the lines of code of the handwritten proof-script
that users had to write using our previous ad-hoc proof automation for each goal (we only
have this data for a subset of goals).

Application in verifying C programs. We evaluate the utility of our solver in verifying func-
tional correctness of C functions, by comparing the correctness proof of a set of samples
using VST with and without our array theory solver. The sample set includes four func-
tions from the C standard string library—string.h, strlen, strcpy, strcat, and strcmp—in
addition to reverse (which reverses a C array as in Figure 1), to demonstrate the application
of custom operators. A proof in VST consists of two parts: symbolic execution proof and
model-level proof. The symbolic execution proof is almost completely automatic—the user
only needs to use tactics according to the program statements with proper loop invariants
and postconditions. The array solver helps the most in the model-level proof. It automates
the proof goals to show one array abstraction is stronger than another array abstraction, es-
pecially when both array abstractions involve array operators. Fig. 8 shows that our new
array solver allows the user to write far fewer lines of Coq proof-script, compared to our
previous automation.

Performance. We measured our solver on an Intel i7 10th-generation CPU at 2.30GHz with
16GB memory. Fig. 9 shows the results. Most quantifier-free goals are solved within 1 sec-
ond, and goals with array properties are solved in about 2 seconds. Based on other empirical
performance studies of solvers implemented in Coq [5]—comparing the same algorithm in
C++ versus Coq—Fig. 9 suggests that our algorithm may be an order of magnitude better
than Dafny’s. That is, our solver is about 2x slower than Dafny, but our implementation is
in Ltac rather than C++ and ours generates Coq proof witnesses for every goal.
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Goal #∀ LOC Our solver(s) Dafny(s)
strcmp loop if1 2 0.51

strcmp loop exit1 1 0.15
strcmp loop 3 29 1.29 1.06

sorted rotate array prop 3 2.10 1.26
row clear sound1 1 0.12

frame insert sound1 2 0.19
frame query sound2 2 0.21

filter refresh’ sound frame sim1 2 2.42

Fig. 10: Performance on quantified goals. “#∀” indicates the number of quantified array
accesses. For example, ∀i. P(a[i],b[i]) and ∀i j. P(a[i],a[ j]) both count as 2. We suggest
“#∀” is the main factor for quantified goals’ difficulty.

8 Diagnosis

When a decision procedure or semidecision procedure does not find a proof, then it is polite
for it to demonstrate a counterexample or otherwise hint at why no proof was found. Our
implementation in Coq does not give counterexamples, but in some cases it does give useful
explanations.

When a length-equality hypothesis is missing and unprovable: In the last proof goal shown
in Figure 1, there are two premises, the second of which is |b| = |c|. If that hypothesis was
missing from the proof goal, then the goal is not valid. But it may have been that |b| = |c|
would have been provable, but the user has abstracted b or c before proving it; or it may be
that c is a complex expression whose length is not analyzable fully automatically.

In such a case, our solver detects that it must have |b| = |c|, and it prints the following
error message:

[The theory solver] cannot solve this goal. Try asserting above the line, a hypothesis
that will help prove |b|= |c| .

At which point, it’s often straightforward for the user to assert and prove |b| = |c| before
retrying the array theory solver.

When entanglement is detected: For a goal such as Example 2, the solver responds,

List solver cannot solve this goal because it is entangled. That is, some assump-
tion(s) relate some slice of an array to an overlapping slice of the same array, which
sets up a recurrence. The list solve tactic does not attempt to solve such recurrences,
which in general are undecidable.
Entangled: because 0 + 1 = 0 is not provable.

Or, in Example 3, “because l+n−m = 0 is not provable.” If the user can prove that fact and
retry the solver, it will succeed.

Other goals: In other cases where no proof is found, the message is,

list solve cannot solve this goal; list simplify can sometimes diagnose where sub-
goals need extra assistance.

The list simplify tactic runs our algorithm to step 6, then leaves for the user any goals where
“invoke the base solver” fails. This leaves the Coq proof state in a form readable by the user,
who can examine the failed subgoals and (sometimes) determine which extra facts should
be proved before trying the solver again.
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9 Array solver as an SMT theory solver

So far, we have described the theory of arrays with concatenation as a single theory and
have given a solver for the tangle-free fragment. However, modern SMT solvers utilize
the Nelson-Oppen procedure to combine theories. It is infeasible to directly use the array
solver as a theory solver in Nelson-Oppen, because Nelson-Oppen adds additional array
equality constraints and makes the goal entangled. In this section, we show how our solver
can be used as a theory solver in a general SMT solver and can combine with other theories.
This is useful when only a part of the query is related to arrays and array elements, or
there are uninterpreted functions whose arguments or results are arrays. For example, for
uninterpreted functions f : Z→ A(S) and P : A(S)→ P, we want to prove that

P
(

f (1)·
(

f (2)· f (3)
))

=⇒ P
((

f (1)· f (2)
)
· f (3)

)
. (15)

The work in this section is a bit speculative, as we have only proved it correct, but not
implemented it. We extend the classification of tangle-free and entangled into the combined
theory. Then we run the normal Nelson-Oppen algorithm. But when Nelson-Oppen invokes
the array solver, the latter manipulates the equations from Nelson-Oppen by removing the
equations that are not in a set predetermined by the array solver with respect to the original
formula. Then the array solver determines the satisfiablity of the manipulated constraints
and reports to Nelson-Oppen. Although the array solver is cheating Nelson-Oppen, we show
that the latter can still determine satisfiability correctly. If a model is needed, we provide a
modified Nelson-Oppen to generate a model.

In this section, we describe the problem as satisfiability instead of validity. Let T0 be the
theory of uninterpreted functions, T1 be the theory of arrays with concatenation for some
base theory, and T2, . . . ,Tn be other theories of interest. Without loss of generality, we take
the union of the sorts of all the theories as the sort set. Different theories Ti and Tj must
not share any functions other than equality for each sort. The theory Ti may not have any
functions involving any array sorts including equations, for i ≥ 2.

Recall that each theory is a class of interpretations. The combined theory T =
⊕n

i=0 Ti is
the class of interpretations whose Σi-reduct is isomorphic to an interpretation in Ti for every
i. The standard Nelson-Oppen procedure is correct with respect to this definition of com-
bined theory [4]. Quantified array formulas, including array equations, are handled inside
the array solver, so we abstract them as special predicates when talking about the Nelson-
Oppen procedure, so they are “quantifier-free”. The Nelson-Oppen procedure first purifies
the query into a series of ϕi, each of which is a “quantifier-free” formula in the theory Ti.
So ϕi does not have array equations (or inequalities), for i ≥ 2. Assume ϕ0 is in negation
normal form (NNF). The literals of ϕ0 that are array equations and inequalities must take the
form a ▷◁ b, a ▷◁ f (. . .) or f (. . .) ▷◁ g(. . .), where ▷◁ ∈ {=, ̸=}, a and b are array variables,
and f (. . .) and g(. . .) are uninterpreted functions applied on any terms. We can replace
f (. . .) ▷◁ g(. . .) with a ▷◁ g(. . .) for fresh a and add a = f (. . .) to conjoin with ϕ0, so we can
eliminate this case.

If the SMT solver is a DPLL(T) algorithm [4], it is even simpler: we need only consider
conjunctions of literals. In that case, we only need to consider the case a = f (. . .), because
other cases can be reduced to this case by adding auxiliary variables and moving literals
without uninterpreted functions to ϕ1. But here we consider the general case. (We will use
a,b to range over array variables, and x,y to range over general terms.)

The outline of the algorithm is as follows. After splitting the formula, we construct the
IPG with edges E1 for ϕ1 (array theory) as usual. Then we analyze ϕ0 (equality with un-
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interpreted functions) and add some additional edges E0. After that, we test IPG E1 ∪E0
entanglement, and raise an error if it is entangled. Then, we let Nelson-Oppen nondeter-
ministically choose an equivalence relation R for the shared variables. Since the theory is
many-sorted, it needs to pick an equivalence relation RS for each sort. The choice procedure
is untouched—the Nelson-Oppen implementation can be used unmodified, with any choice
heuristics it uses.

As usual in Nelson-Oppen, define the arrangement

ar(R) =
∧

S is a sort

 ∧
(x,y)∈RS

x = y ∧
∧

(x,y)̸∈RS

x ̸= y

 .

We say a formula ϕ is compatible with ar(R) if ϕ ∧ar(R) is satisfiable. The Nelson-Oppen
procedure then queries the array solver whether ϕ1 is compatible with ar(R). The array
solver redefines the constraint as

ar′(R) =
∧

S is a sort

 ∧
(x,y)∈RS ∧ (S ̸∈{array sorts}∨(x,y,0)∈E0)

x = y ∧
∧

(x,y)̸∈RS

x ̸= y

 . (16)

The array solver decides whether ϕ1 is compatible with ar′(R).9 This is tangle-free, because
we have constructed the IPG and decided it is tangle-free, and for every array equation
x = y in ar′(R), there is an edge (x,y,0) in E1 ∪E0. The model of ϕ1 ∧ ar′(R) implies an
equivalence relation R′. For i ≥ 2, any model of ϕi satisfies either both R and R′ or neither
of them, because ϕi does not have array sorts. We prove that if ϕ0 is compatible with ar(R)
then ϕ0 is compatible with ar(R′) (see Lemma 3). So the original formula is satisfiable if
and only if there exists R, such that ϕ1 is compatible with ar′(R) and ϕi is compatible with
ar(R), for i ̸= 1.

We construct the edges E0 as follows. In order to satisfy ϕ0, consider uninterpreted func-
tions, which can be characterized by congruence: x ̸= y ∨ f (x) = f (y). (It is straightforward
to generalize to multiargument functions.) So we only need to think about these two kinds
of constraints. A constraint of the form x ̸= y does not cause any IPG edges, because even
if x and y are array variables, x ̸= y is considered as quantifier-free in the array solver.10 For
constraints of the form f (x) = f (y), we do need to add IPG edges.

We first examine in ϕ0 the literals of the form a = f (. . .), where a is an array variable.
If there are a = f (. . .) and b = f (. . .), to satisfy ϕ0 we potentially need a = b, so we add an
edge (a,b,0) to E0. For the literals of the form a = b in ϕ0, we also add an edge (a,b,0).
Adding edges is not needed for literals a ̸= b and a ̸= f (. . .). For the example in (15), we
need to add (a spanning tree of) edges between the variables that denote f (1), f (2) and f (3),
but we do not add edges between the variables that denote the arguments of P. Entanglement
is determined on the IPG with the edges E1 ∪E0.

When the Nelson-Oppen procedure queries the array solver with an equivalence relation
R, the array solver ignores the equations that do not correspond to edges in E0 as in (16).
If the array solver determines that the query is satisfiable, that means the model that it uses
to satisfy ϕ1 may have a different equivalence relation R′ for shared array variables. The
following lemma shows that ϕ0 is compatible with ar(R′) if it is compatible with ar(R).

9 We can decide it because the correctness results in Section 4 can be generalized to the case that the IPG
has more edges than the queried formula ϕi ∧ar′(R).

10 In the array solver, a ̸= b is treated as a shorthand for |a| ̸= |b| ∨ ∃i. 0 ≤ i < |a| ∧ a[i] ̸= b[i]. The
existentially quantified i can be treated as a free variable, so it is quantifier-free.
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Lemma 3 For any ϕ0 in T0 in NNF, whose array literals are in the form of a ▷◁ b and a ▷◁
f (. . .) for ▷◁ ∈ {=, ̸=}, for any equivalence relations R and R′ over shared variables, such
that R′ is a subrelation of R, and R′ and R only differ for array-variable pairs (a,b) without
edges in E0 between them: if ϕ0 ∧ar(R) is satisfiable then ϕ0 ∧ar(R′) is also satisfiable.

Proof It is enough to consider that ϕ0 is a conjunction of literals, since there is a clause
in the disjunctive normal form (DNF) of ϕ0 that is compatible with ar(R), and we only
need to prove the same clause is compatible with ar(R′). We then eliminate uninterpreted
functions. Pick an uninterpreted function f (whose arguments and result sorts do not need
to be arrays), and for all its occurrences f (x) in ϕ0, where x is any term, introduce a fresh
variable fx for f (x) and for each pair of fx and fy, add x ̸= y ∨ fx = fy to the conjunction
of ϕ0. Repeat this procedure until all uninterpreted functions are eliminated. Let ϕ ′

0 be the
DNF of the result. We have that, for any equivalence relation R, ϕ ′

0 ∧ar(R) is equisatisfiable
with ϕ0 ∧ ar(R). For the same reason that we consider ϕ0 as a conjunction of literals, it is
enough to consider each clause c′0 of ϕ ′

0, which is a conjunction of equation and inequality
literals. So we can consider each sort separately. The nonarray sort literals are same between
R and R′, so we only need to consider array literals. These literals are either from a literal
of ϕ0 (after eliminating uninterpreted functions) or x ̸= y or fx = fy added as above. In c′0,
if there is an array equation fx = t, we can substitute fx with t and eliminate fx. Repeat
this procedure until all the literals of the form fx = t are eliminated. If, for fx, there are
array inequalities fx ̸= t1, . . . , fx ̸= tk, because array sorts have infinitely many elements, it
is always possible to find a value for fx not equal to any of the ti, so we can remove these
inequalities. So now all variables in c′0 are original variables in ϕ0. For each equation literal
a = b in c′0, it is either an original equation in ϕ0, or it is added because there are a = fx
and b = fy, which are a = f (. . .) and b = f (. . .) in ϕ0. In either case, there is an IPG edge
between a and b. Therefore if (a,b) ∈ R, then (a,b) ∈ R′, too. The inequality literals in c′0
are satisfied by R′ because R′ is a subrelation of R. So c′0 is compatible with R implies c′0 is
compatible with R′. That concludes the proof.

When the Nelson-Oppen procedure finds an equivalence relation R that is claimed com-
patible with each ϕi by each theory solver, it will report SAT as usual. Although the array
solver might actually loosen the constraint, there exists R′ that is compatible with each ϕi. If
it needs to generate a model, the solver of uninterpreted functions must use the equivalence
relation R′ given by the array solver to generate its model.

In summary, in order to support theory combination, we need to add additional edges to
the IPG only for uninterpreted functions with array results. And we use the Nelson-Oppen
procedure off-the-shelf with a loosened but still sound interpretation of the result.

10 Conclusion

We have defined a theory of arrays with concatenation, and we have given a procedure
that classifies goals into tangle-free and entangled and decides validity of tangle-free goals.
We have implemented the procedure in Coq/Ltac, and found it is very useful for semi-
automated program verifiers: it significantly reduces human effort in functional-correctness
verification, and it can give clear feedback.

In the future, we hope to (1) implement our algorithm in an SMT solver, (2) investigate
other applications of the theory, and (3) generalize the theory to multidimensional arrays
and arrays of arrays.
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