
Formal Methods in System Design (to appear 2020 or 2021)

Abstraction and Subsumption in Modular
Verification of C Programs

Lennart Beringer · Andrew W. Appel

Received: February 2020 / Accepted: November 2020

Abstract The type-theoretic notions of existential abstraction, subtyping,
subsumption, and intersection have useful analogues in separation-logic proofs
of imperative programs. We have implemented these as an enhancement of the
Verified Software Toolchain (VST).

VST is an impredicative concurrent separation logic for the C language, im-
plemented in the Coq proof assistant, and proved sound in Coq. For machine-
checked functional-correctness verification of software at scale, VST embeds
its expressive program logic in dependently typed higher-order logic (CiC).
Specifications and proofs in the program logic can leverage the expressiveness
of CiC—so users can overcome the abstraction gaps that stand in the way
of top-to-bottom verification: gaps between source code verification, compila-
tion, and domain-specific reasoning, and between different analysis techniques
or formalisms.

Until now, VST has supported the specification of a program as a flat col-
lection of function specifications (in higher-order separation logic)—one proves
that each function correctly implements its specification, assuming the spec-
ifications of the functions it calls. But what if a function has more than one
specification?

In this work, we exploit type-theoretic concepts to structure specification
interfaces for C code. This brings modularity principles of modern software
engineering to concrete program verification. Previous work used representa-
tion predicates to enable data abstraction in separation logic. We go further,
introducing function-specification subsumption and intersection specifications
to organize the multiple specifications that a function is typically associated
with. As in type theory, if φ is a funspec-sub of ψ, that is φ <: ψ, then x : φ

This work was funded by the National Science Foundation under the awards 1005849 (Veri-
fied High Performance Data Structure Implementations, Beringer) and 1521602 Expedition
in Computing: The Science of Deep Specification, Appel).

Department of Computer Science, 35 Olden St, Princeton University, Princeton, NJ 08540
E-mail: eberinge@cs.princeton.edu, appel@princeton.edu

2 Lennart Beringer, Andrew W. Appel

implies x : ψ, meaning that any function satisfying specification φ can be
used wherever a function satisfying ψ is demanded. Subsumption incorporates
separation-logic framing and parameter adaptation, as well as step-indexing
and specifications constructed via mixed-variance functors (needed for C’s
function pointers).

Keywords Foundational Program Verification · Separation Logics ·
Specification Subsumption · Intersection specifications

1 Introduction

Even in the 21st century, the world still runs on C: operating systems, run-
time systems, network stacks, cryptographic libraries, controllers for embedded
systems, and large swaths of critical infrastructure code are written in C, or
employ C as intermediate target of compilation or code synthesis. Analysis
methods and verification tools for C remain a vital area of research.

Given the complexity of such code bases and C’s flexibility in organiz-
ing code into multiple layers and libraries, verification tools must scale both
algorithmically and logically. Algorithmic scalability means reduced specifica-
tion overhead and increased automation (less manual interactivity) in verify-
ing individual function bodies. Verification tools based on SAT/SMT do this
well. Tools based on interactive proof assistants have achieved scalability using
tactic-based and reflectional automation [10], although the performance still
lags behind SMT-based tools.

Logical scalability means modular verification of modular programs: the
ability to compose verified code units either horizontally or vertically in accor-
dance with the principles of modern software engineering, and to link them to
verified compilers or domain-specific reasoning formalisms. Compared to SMT-
based tools, proof-assistant-based tools can use more expressive (higher-order,
or dependently typed) logics—which can be accessed in the program logic’s
assertion language, allowing more accurate modeling of the C program’s func-
tional correctness. And those expressive logics allow us to reason about the
program logic—that is, prove it sound from first principles—within the proof
assistant, for end-to-end machine-checkable assurance arguments.

This article focuses on aspects of logical scalability that allow modular rea-
soning about modular programs: abstraction, subsumption, and intersection
of function specifications for C. We demonstrate that these concepts can be
formulated in a way that mirrors the type-theoretic formulations of (existen-
tial) abstraction, subtyping, and intersection types, in the concrete setting of
the Verified Software Toolchain (VST) [5].

Background. VST is a semi-automated proof system for functional-correctness
verification of C programs, that integrates two long-standing lines of research:
(i) program logics with machine-checked proofs of soundness; (ii) practical
verification tools for industrial strength programming languages. VST consists
of three main components:

Abstraction and Subsumption in C 3

Verifiable C [4] is a higher-order impredicative concurrent separation logic
covering almost all the control-flow and data-structuring features of C (we
currently omit goto and by-copy whole-struct assignment);

VST-Floyd [10] is a library of lemmas, definitions, and automation tactics
that help the user apply the program logic to a program, using forward
symbolic execution, with separation logic assertions as symbolic states;

The semantic model [5] justifies the proof rules, exploiting the theories of
step-indexing, impredicative quantification, separation algebras, and con-
current ghost state. The semantic model is the basis of a machine-checked
proof that the Verifiable C program logic is sound w.r.t. the operational
semantics of CompCert Clight. Thus the user’s Coq proof in Verifiable
C composes with our soundness proof of Verifiable C and with Leroy’s
CompCert compiler correctness proof [24] to yield an end-to-end proof of
the functional correctness of the assembly-language program.

VST’s key feature—distinguishing it from tools such as VCC [12], Frama-
C [19], or VeriFast [15]—is that it is entirely implemented in the Coq proof as-
sistant. A user imports C code into the Coq development environment and ap-
plies VST-Floyd’s automation—computational decision procedures from Coq’s
standard library, plus custom-built tactics for forward symbolic execution
and entailment checking—to construct formal derivations in the Verifiable C
program logic. The full power of Coq and its libraries are available to ma-
nipulate application-specific mathematics. The semantic validity of the proof
rules—machine-checked by Coq’s kernel—connects these derivations to Clight,
i.e. CompCert’s representation of parsed and determinized C code.

Applications of VST include the verification of cryptographic primitives
from OpenSSL [3,9] and mbedTLS [37], an asynchronous communication mech-
anism [26], an internet-facing server component [21], a generational garbage
collector [35], and a malloc-free library [6]. Of these, the cryptographic appli-
cations [9,37] and the reactive server [21] best illustrate the ability of proof-
assistant-embedded program logics to bridge the abstraction gap between
code-level verification and model-level (semantic) reasoning: in the crypto-
graphic examples, Coq’s functional programming language, Gallina, is em-
ployed to implement executable (and hence testable) specification programs
that are referred to in the pre- and post-conditions of the VST specifications.
On the other hand, these functions are also the object of model-level rea-
soning, to formally establish cryptographic security; the functional programs
hence decouple semantic reasoning from C-level code verification. In the case of
the server, the VST specifications refer to interaction trees [36], an executable
embedding of effectful functional programs in Coq that is equipped with a
theory of (weak) bisimulation. Again, model-level reasoning is decoupled from
but connected to the verification of the C code.

The need for subsumption. Appel and Nauman’s VST verification of a malloc-
free system [6] is an application of the new funspec-subsumption method that
we describe here. That verification uses abstract predicates with existentially

4 Lennart Beringer, Andrew W. Appel

hidden definitions (which verifiably prevent user programs from breaking the
abstraction barrier of the library); and it uses subsumption: the implementa-
tions of malloc and free are first verified w.r.t. a library-wide abstraction pred-
icate (and corresponding function specifications) that exposes the existence of
internal freelists for objects of different size. This specification is immediately
useful to clients that are resource-aware at the granularity of (approximate)
object sizes. As a benefit, such clients need not check that a pointer returned
by malloc is nonnull: allocation (provably) never fails. A second, more abstract
API specification employs a less informative predicate that does not keep track
of the available free space; clients using this interface must check the return
value of malloc against NULL, to learn whether malloc could satisfy the re-
quest for N bytes. The two library specifications are related by the notion of
funspec-sub developed in the present paper.

The use of abstract predicates to facilitate data abstraction in separation
logics is well established [30], and captures the software engineering princi-
ple of representation hiding: just as the client program of an abstract data
type (ADT) can be written without knowing the representation, verification
of the client can proceed without knowing the representation invariant. In type
theory, this is the principle of existential types [27].

But as the malloc-free case study illustrates, the same function may want
more than one specification: different clients may need different abstractions;
indeed, some clients even require full representation exposure (see our running
example below). Of course, one should not have to verify the function-body
twice, once for each specification; instead, one should verify the function-body
with respect to the most concrete specification and then prove that it implies
the more abstract one(s). Again, type theory provides an appropriate notion:
subtyping [31]. In other cases, it may be convenient to specify different use
cases of a function—applying, for example, to different input configurations,
or to different control flow paths—using different specifications, perhaps using
different abstract predicates. Yet again, type theory provides a useful analogue:
intersection types, a form of ad-hoc polymorphism.

These observations motivate to let type-theoretic principles guide the devel-
opment of specification mechanisms and automation features for abstraction.
This article takes a principled step in this direction, focusing primarily on the
notion of subtyping. The observation that Hoare’s original rule of consequence
is insufficiently powerful in languages with (recursive) procedures motivated
research into parameter adaptation, by (among others) Kleymann, Nipkow,
and Naumann [20,29,28]. Indeed, Kleymann observed that ([20], page 9)

– in proving that the postcondition has been weakened, one may also assume
the precondition of the conclusion holds. . .

– one may adjust the auxiliary variables in the premise. Their value may
depend on the value of auxiliary variables in the conclusion and the value
of all program variables in the initial state.

But these developments were carried out for small languages and predate the
emergence of separation logic. The present article revisits these ideas in the

Abstraction and Subsumption in C 5

context of VST, by developing a powerful notion of function-specification sub-
typing for higher-order impredicative separation logic. Our treatment improves
on previous work in several regards:

– We support specifications of function pointers, a key construct of the C
programming language that requires the program logic to support higher-
order reasoning. When a function pointer at location v is communicated as
an argument of a call to some function g, g’s precondition needs to associate
v with a specification— so that the invocation within g of the function at
v can be verified. A similar issue occurs in spawning threads. To support
these language features, VST’s semantic model contains—and specifica-
tion subsumption must hence support—a step-indexed “predicates-in-the-
heap” construction [5] that is substantially more complex that the simple
state spaces employed in Kleymann’s and Nipkow’s formalizations. Indeed,
Kleymann only considers a single (anonymous, parameterless, but possi-
bly recursive) procedure, while Nipkow supports mutual recursion between
named procedures. In short, previous developments were carried out for
research languages whereas our work supports virtually all of C (i.e., as
noted above, except for goto and by-copy struct assignment).

– Our notion of subtyping avoids direct quantification over states. Indeed,
“assertion” in VST (and in the similarly expressive Iris framework [17]) is
not simply state→Prop, but is an abstract type that hides the complexities
of the step-indexed model; no state type is visible in the program logic. In
contrast, Kleymann’s and Nipkow’s assertions are predicates over states,
and the side conditions of their adaptation rules explicitly quantify uni-
versally over states. Naumann’s formulation using predicate transformers
captures the same relationship as Kleymann and Nipkow, slightly more
abstractly.

– VST’s proof context ∆ maps globally named functions to their specifi-
cations; VST’s separation-logic assertion func-at attaches specifications to
function-pointer values. Our treatment integrates subsumption coherently
into proof contexts, func-at, and the soundness judgment. We support sub-
sumption at function call sites but also incorporate subsumption in a no-
tion of proof-context subtyping that is reminiscent of record subtyping [31].
This allows bundling function specifications into specifications of objects
or modules that can be abstractly presented to client programs and are
reminiscent of behavioral subtyping [25,22,32].

– We introduce intersection specifications and show that their interaction
with subsumption precisely matches that of intersection types.

– A technical advance over the conference version of this paper [8] is that
function specifications avoid any mentioning of formal parameter names.
This permits function implementations to be modified more freely (α-
conversion) and adds flexibility in the definition of intersection specifica-
tions.

– VST’s program logic, including the new subsumption features, is proved
sound with a machine-checked proof in Coq.

6 Lennart Beringer, Andrew W. Appel

Our presentation is example-driven: we illustrate several use cases of sub-
sumption on concrete code fragments in Verifiable C. Technical adaptations
of the model that support these verifications have been machine-checked for
soundness, but are only sketched. The full Coq proofs are in the VST repo,
github.com/PrincetonUniversity/VST, commit 948f536: our running exam-
ple is in directory progs/pile.

Relationship to conference version: a preliminary version of this arti-
cle appeared at FM’19, under the same title [8]. The main technical improve-
ment, since that publication, is the elimination of formal parameter names
from the surface syntax and the semantic interpretation of function specifica-
tions. A key aspect of this improvement is a restructuring of the way parameter
passing is modeled in VST’s function call rule. Besides simplifying this proof
rule and its associated automation tactics, this restructuring also enables the
proof of a technical lemma that mirrors the effect of subsumption (which is
formulated from the perspective of the caller) at the callee-side. Another in-
gredient is a new rule of adaptation for VST’s statement-level judgment that
again resembles Kleymann’s rule but additionally supports framing and the
multiple ways in which control flow may exit from a code block in C.

Surface-level effects of these improvements are visible in the modified func-
tion specifications throughout this aricle; high-level aspects are described in
Sections 3 and 6. Technical details are contained in the Coq formalization.
Specifically, (i) the soundness proof required intricate surgery, particularly in
the rules for function calls and the interpretation of the auxiliary judgement
form for function bodies; (ii) the automation scripts that drive concrete veri-
fications needed syntactically minor, but technically nontrivial modifications,
in the tactics for function calls, in the notations and definitions for introducing
function specifications and attaching them to function definitions, and in the
tactic that initiates the verification of a function body, to correctly treat the
logical counterpart of frame stack creation and of binding arguments to local
variable names.

main.c

pile list
32

triang.c apile.conepile.c

pile.h pile_private.h

pile.c

onepile.h triang.h apile.h

main.c

pile
5

onepile.c triang.c fastapile.c

fastpile_private.hpile.h

fastpile.c

triang.honepile.h apile.h

Fig. 1 Module dependency diagrams of two configurations of the pile program.

Abstraction and Subsumption in C 7

2 Motivating example: managing piles

Our main example is an abstract data type (ADT) for piles, simple collections
of integers.

/∗ pile.h ∗/
typedef struct pile ∗Pile;
Pile Pile-new(void);
void Pile-add(Pile p, int n);
int Pile-count(Pile p);
void Pile-free(Pile p);

/∗ onepile.h ∗/
void Onepile-init(void);
void Onepile-add(int n);
int Onepile-count(void);

/∗ apile.h ∗/
void Apile-add(int n);
int Apile-count(void);

/∗ triang.h ∗/
int Triang-nth(int n);

/∗ triang.c ∗/
#include ”pile.h”
int Triang-nth(int n) {

int i,c;
Pile p = Pile-new();
for (i=0; i<n; i++)
Pile-add(p,i+1);

c = Pile-count(p);
Pile-free(p);
return c;
}

/∗ onepile.c ∗/
#include ”pile.h”
Pile the-pile;
void Onepile-init(void)
{the-pile = Pile-new();}

void Onepile-add(int n)
{Pile-add(the-pile, n);}

int Onepile-count(void)
{return Pile-count(the-pile);}

/∗ pile-private.h ∗/
struct list {int n; struct list ∗next;};
struct pile {struct list ∗head;};

/∗ pile.c ∗/
#include <stddef.h>
#include ”stdlib.h”
#include ”pile.h”
#include ”pile-private.h”
Pile Pile-new(void) {
Pile p = (Pile)surely-malloc(sizeof ∗p);
p→ head=NULL;
return p;
}
void Pile-add(Pile p, int n) {

struct list ∗head = (struct list ∗)
surely-malloc(sizeof ∗head);

head→ n=n;
head→ next=p→ head;
p→ head=head;
}
int Pile-count(Pile p) {

struct list ∗q;
int c=0;
for(q=p→ head; q; q=q→ next)
c += q→ n;

return c;
}
void Pile-free(Pile p) { . . . }

/∗ apile.c ∗/
#include ”pile.h”
#include ”pile-private.h”
#include ”apile.h”
struct pile a-pile = {NULL};
void Apile-add(int n)
{Pile-add(&a-pile, n);}

int Apile-count(void)
{return Pile-count(&a-pile);}

Fig. 2 The pile.h abstract data type has operations new, add, count, free. The triang.c client
adds the integers 1–n to the pile, then counts the pile. The pile.c implementation represents
a pile as header node (struct pile) pointing to a linked list of integers. At bottom, there are
two modules that each implement a single “implicit” pile in a module-local global variable:
onepile.c maintains a pointer to a pile, while apile.c maintains a struct pile for which it needs
knowledge of the representation through pile-private.h.

8 Lennart Beringer, Andrew W. Appel

Figure 2 shows a modular C program that throws numbers onto a pile, then
adds them up. Figure 1(left) shows that pile.c is called upon by onepile.c (which
manages a single pile), apile.c (which manages a single pile in a different way),
and triang.c (which computes the nth triangular number). The latter three
modules are imported by main.c. Onepile.c and triang.c import the abstract in-
terface pile.h; apile.c imports also the low-level concrete interface pile-private.h
that exposes the data representation—a typical use case for this organization
might be when apile.c implements representation-dependent debugging or per-
formance monitoring. Thus, representation-revealing and representation-hiding
specifications must both be supported.

Figure 1(right) shows that when pile.c is replaced by a faster implementa-
tion fastpile.c (code in Figure 4) using a different data structure, apile.c must
be replaced with fastapile.c, but the other modules need not be altered, and
neither should their specification or verification. Of course, the C language
definition does not require the implementation fastpile.c to employ the same
formal parameter names as pile.c, and neither one necessarily uses the same
identifiers as the function prototype in pile.h. Thus, we use formal parameter
name pp in Figure 4. Language-level modularity aspects of API’s, including
the opacity of parameter names, should be respected by specifications and their
subsumption.

Figure 3 presents the specification of the pile module, in the Verifiable
C separation logic. Each C-language function identifier (such as -Pile-add) is
bound to a funspec, a function specification in separation logic.

Before specifying the functions (with preconditions and postconditions),
we must first specify the data structures they receive as arguments and return
as results. Linked lists are specified as usual in separation logic: listrep is a
recursive definition over the abstract (“mathematical”) list value σ, specifying
how it is laid out in a memory footprint rooted at address p. Then pilerep
describes a memory location containing a pointer to a listrep.

A funspec takes the form WITH −→x : −→τ PRE . . . POST For example,
take Pile-add-spec from Figure 3: the −→x are bound Coq variables visible in both
the precondition and postcondition, in this case, p:val, n:Z, σ:list Z, gv :globals,
where p is the address of a pile data structure, n is the number to be added to
the pile, σ is the sequence currently represented by the pile, and gv is a way to
access all named global variables. The PREcondition first lists the C-language
types of all formal parameters and then contains an assertion of the form

PROP(propositions) PARAMS(pvals)
GLOBALS(global bindings) SEP(spatial conjuncts).

In this case the PROP asserts that n is between 0 and max-int; PARAMS
lists the values received via the formal parameters; GLOBALS associates the
global bindings (typically, exactly gv , or empty) to VST’s semantic space of
global identifiers; SEP contains a list of spatial (memory affecting) predicates.
This precondition’s SEP clause has two conjuncts: the first one says that there’s
a pile data structure at address p representing sequence σ; the second one
represents the memory-manager library. The spatial conjunct (mem-mgr gv)

Abstraction and Subsumption in C 9

(∗ spec-pile.v ∗)
(∗ representation of linked lists in separation logic ∗)
Fixpoint listrep (σ: list Z) (x: val) : mpred :=
match σ with
| h::hs ⇒ EX y:val, !! (0≤h≤ Int.max-signed) &&

data-at Ews tlist (Vint (Int.repr h), y) x
∗ malloc-token Ews tlist x ∗ listrep hs y

| nil ⇒ !! (x = nullval) && emp
end.

(∗ representation predicate for piles ∗)
Definition pilerep (σ: list Z) (p: val) : mpred :=
EX x:val, data-at Ews tpile x p ∗ listrep σ x.

Definition pile-freeable (p: val) :=
malloc-token Ews tpile p.

Definition Pile-new-spec :=
DECLARE -Pile-new
WITH gv : globals
PRE [] PROP() PARAMS ()

GLOBALS (gv) SEP(mem-mgr gv)
POST[tptr tpile]
EX p: val,
PROP() RETURN(p)
SEP(pilerep nil p; pile-freeable p; mem-mgr gv).

Definition Pile-add-spec :=
DECLARE -Pile-add
WITH p: val, n: Z, σ: list Z, gv : globals
PRE [tptr tpile, tint]

PROP(0≤n≤ Int.max-signed)
PARAMS (p; Vint (Int.repr n))
GLOBALS (gv)
SEP(pilerep σ p; mem-mgr gv)

POST[tvoid]
PROP() LOCAL()
SEP(pilerep (n::σ) p; mem-mgr gv).

Definition sumlist : list Z →Z := List.fold-right Z.add 0.

Definition Pile-count-spec :=
DECLARE -Pile-count
WITH p: val, σ: list Z
PRE [tptr tpile]

PROP(0≤ sumlist σ≤ Int.max-signed)
PARAMS (p) GLOBALS () SEP(pilerep σ p)

POST[tint]
PROP()
RETURN(Vint (Int.repr (sumlist σ)))
SEP(pilerep σ p).

Notation key

mpred predicate on memory

EX existential quantifier
!! injects Prop into mpred
&& nonseparating conjunction
data-at π τ v p is p 7→ v,

separation-logic mapsto
at type τ , permission π

malloc-token π τ x represents
“capability to deallocate x”

Ews the “extern write share”
gives write permission

-Pile-new is a C identifier

WITH quantifies variables
over pre/post of funspec

The C function’s return type,
tptr tpile, is “pointer
to struct pile”

PROP(. . .) are pure
propositions on the
WITH-variables

PARAMS lists the arguments
that will be associated
with the formal parameters
during (logical) stack
frame construction

GLOBALS (gv) establishes gv as
mapping from C global
vars to their addresses

SEP(R1; R2) are separating
conjuncts R1 ∗R2

mem-mgr gv represents
different states of the
malloc-free system in
PRE and POST of
any function that
allocates or frees

Fig. 3 Specification of the pile module (Pile-free-spec not shown).

10 Lennart Beringer, Andrew W. Appel

represents the private data structure of the memory-manager library, that is,
the global variables in which the malloc-free system keeps its free lists.

The parameter values are all of (Coq) type val, i.e. are all CompCert val-
ues. Here, p represents the pointer to the pile, wheras the second argument,
Vint(Int.repr n) projects the mathematical integer n into the space of 32-bit
machine integers and then injects it into val using the constructor Vint.

The Coq type of each spatial conjunct is mpred, VST’s opaque abstrac-
tion of step-indexed memory predicates. To first approximation, mpred can be
thought of as (mem×R)→ Prop where mem is the space of CompCert mem-
ories, R is the space of VST’s resource maps (an instrumentation that assigns,
among other things, specifications to locations that hold function-pointers;
see [5] for details on VST’s predicates-in-the-heap model) and Prop is Coq’s
type of propositions. However, an abstraction barrier hides this expansion
from the user, providing instead logical operators to combine and manipulate
memory predicates; indeed, Coq’s list notation (semicolon) is interpreted as
separating conjunction ∗ in SEP clauses.

The SEP clause of the POSTcondition says that the pile at address p now
represents the list n::σ, and that the memory manager is still there. In addition,
the POSTcondition lists the return type. When the return type is nonvoid (see
e.g. Pile-new), the POSTcondition’s RETURN clause gives the value.

In VST, the proposition that a function body f satisfies its specification φ
is written semax-body, or in mathematical notation,

Γ `semax body f : φ

where Γ is the list of all funspecs of functions that the body of f might call.
To prove a `semax body claim, one does a Hoare-logic proof on the function-

body f , with respect to the precondition and postcondition of φ.
Verifying that pile.c’s functions satisfy the specifications in Fig. 3 using

VST-Floyd is done by proving Lemmas like this one (in file verif-pile.v):

Lemma body-Pile-add: semax-body Vprog Gprog f-Pile-add Pile-add-spec.
Proof. ... (∗16 lines of Coq proof script∗).... Qed.

This says, in the context Vprog of global-variable types, in the context Gprog
of function-specs (for functions that Pile-add might call), the function-body
f-Pile-add satisfies the function-specification Pile-add-spec.

Returning to the discussion of fastpile.c, note that while the optimized
representation does not actually maintain a list, the functions still satisfy the
specifications in spec-pile.v, which pretend maintenance of integer sequences.
This is crucial for enabling the code substitution as described above. However,
we will (in Section 4) additionally equip fastpile.c with a second specification,
for a representation predicate that is not phrased in terms of sequences.

Linking. We organize a modular proof of a modular program as follows: For
each module M (such as M = pile), CompCert parses M.c into the AST file
M.v. Then we write the specification file spec-M.v containing funspecs as in

Abstraction and Subsumption in C 11

Figure 3. We write verif-M.v which imports spec files of all the modules from
which M.c calls functions, and contains semax-body proofs of correctness for
each of the functions in M.c.

So, for example, pile.c is parsed into the file pile.v that just contains its
abstract syntax tree; the user writes spec-pile.v containing specifications (fun-
specs) for the functions in pile.c, and the user writes verif-pile.v containing
correctness proofs for those functions.

What’s special about the main() function is that its separation-logic pre-
condition has all the initial values of the global variables, merged from the
global variables of each module. In spec-main we merge the ASTs (global vari-
ables and function definitions) of all the M.v files by a simple, computational,
syntactic function. This is illustrated in the Coq files in VST/progs/pile.

VST’s main soundness statement is that, when running main() in Comp-
Cert’s operational semantics, in the initial memory induced from all global-
variable initializers, the program is safe and correct—with a notion of partial
correctness that interacts with the world via effectful external function calls
[21] and returns the “right” value from main.

3 Parameter-nameless function specifications

The previous section introduced the surface notation for specifications as typ-
ically seen by VST users. Desugaring this notation indicates that such defini-
tions yield nondependent function specifications, which suffice for most cases,
except for certain higher-order situations (see below):

NDmk-funspec (tsig : typesig) (cc: calling-convention)(A: Type)
(Pre: A → argsEnviron →mpred)(Post: A → environ →mpred): funspec.

To construct a nondependent (ND) function spec, one thus gives the func-
tion’s C-language type signature (typesig), the calling convention (usually
cc-default; this is also what the notation mechanism silently expands to), the
precondition, and the postcondition. A gives the type of variable (or tuple of
variables) “shared” between the precondition and postcondition. Pre and Post
are each applied to the shared value of type A and yield an mpred, i.e. a spa-
tial predicate on memories. Postconditions additionally take an environment,
comprising bindings for global variables, addressable local variables, and (non-
addressable) temporaries:

Inductive environ :=
mkEnviron: forall (ge: genviron) (ve: venviron) (te: tenviron), environ.

Preconditions take a global-variable envronment and a list of (CompCert)
values:

Definition argsEnviron:Type := genviron ∗ (list val).

This definition of NDmk-funspec differs from the conference version of this
article [8], and from previous expositions of VST [10,5]; the previous definition

12 Lennart Beringer, Andrew W. Appel

NDmk-funspec (funsig : funsig) (cc: calling-convention)(A: Type)
(Pre Post: A → environ →mpred): funspec.

included the formal parameter names in the signature and used a local-variable
environment for binding these to actual values in the precondition. The elim-
ination of parameter names has several benefits:

– it simplifies the proof rule for function calls by allowing us to define a
simpler parameter-passing mechanism;

– it captures the fact that formal parameter names are invisible (irrelevant)
to callers of a function;

– concretely, the previous notion of specification was not compatible with α-
renaming of parameters; trying to explicitly incorparate α-renaming into
our earlier definitions of funspec-sub [8] and of specification intersection
turned out to be overly complex;

– the simplified parameter passing mechanism enables two additional lemmas
related to parameter adaptation – see rules semax-body-funspec-sub and
semax-adapt-frame in Section 6.

To illustrate, consider an increment function that has a formal parameter

-p pointing to an integer in memory. We let A = int. The previous system
would express the contract as

Pre = λi : A. λρ. ρ(p) 7→ i and Post = λi : A. λρ. ρ(p) 7→ (i+ 1).

Now, we can express the precondition without referring to -p:

Pre = λi : A. λ(g, [p]). p 7→ i.

Here, g represents the global-variable environment (ignored in the body of this
simple precondition) and [p] is a singleton list of arguments. Thus, a client can
directly instantiate p with some value v rather than having to construct the
singleton environment ρ = p 7→ v (which requires knowing p).

General function specifications. Nondependent function specifications suffice
for most C programming. But sometimes in the presence of higher-order func-
tions (and hence: function pointers!), one wants impredicativity: A may be a
tuple of types that includes the type mpred. If this is done naively, it cannot
typecheck in CiC (there will be universe inconsistencies).

While the details of higher-order function specifications are beyond the
scope of this paper, we briefly sketch some key aspects. First, when precondi-
tion and postcondition are higher-order, in that their auxiliary variables are
predicates (such as mpred), we must ensure that each is a bifunctor. That is,
we must keep track of covariant and contravariant occurrences of mpred. That
means that the type of a WITH-list, A, must be given in (semi)deeply em-
bedded form called a TypeTree. That is: each “ordinary” Coq type τ may be
shallowly embedded as ConstType(τ) constructor; τ may include arrow types,
product types, etc., as long as there are no mentions of mpred. Around this we
wrap a deeply embedded description of types, including the special constructor

Abstraction and Subsumption in C 13

Mpred, and then ProdType for product types, ArrowType, SigType, PiType,
et cetera.

The purpose of this (semi)deep embedding is to keep track of the covariant
and contravariant occurrences of mpred; we can reflect TypeTree into Type,
but we can also inspect the TypeTree to calculate the required pattern of
covariance and contravariance proofs required as part of a funspec definition—
concrete pre- and postconditions need to come equipped with proofs that they
are nonexpansive. This approach was outlined by America and Rutten [2] and
has been implemented both in Iris [17] and VST.1

For most functions, whose WITH-list does not mention mpred, all of this
complexity is hidden from the user: effectively, the entire WITH-list-type is
embedded in a single ConstType constructor, and the covariance/contravari-
ance proofs are trivial. And therefore, for defining subsumption of these non-
dependent (ND) funspecs, we can use the simple NDmk-funspec constructor
shown above. But really, NDmk-funspec is a shallowly embedded definition (in
Coq) for an instance of the general (dependent) case, that is, the mk-funspec
constructor; see the Appendix.

4 Subsumption of function specifications

We now turn to the replacement of pile.c by a more performant implementa-
tion, fastpile.c, and its specification—see Figure 4. As fastpile.c employs a dif-
ferent data representation than pile.c, its specification employs a different rep-
resentation predicate pilerep. As pilerep’s type remains unchanged, the function
specifications look virtually identical2; however, the VST-Floyd proof scripts
(in file verif-fastpile.v) necessarily differ. Clients importing only the pile.h in-
terface, like onepile.c or triang.c, cannot tell the difference (except that things
run faster and take less memory), and are specified and verified only once (files
spec-onepile.v / verif-onepile.v and spec-triang.v / verif-triang.v).

But as we mentioned in Section 2, the functions in fastpile.c can also be
equipped with specifications that refer to a different representation predicate,
countrep (see Figure 5). In reasoning about clients of this low-level interface,
we do not need a notion of “sequence”—in contrast to pilerep in Fig. 4. The
new specification is less abstract than the one in Fig. 4, and closer to the im-
plementation. The subsumption rule (to be introduced shortly) allows us to
exploit this relationship: we only need to explicitly verify the code against the
low-level specification and can establish satisfaction of the high-level specifi-
cation by recourse to subsumption. This separation of concerns extends from
VST specifications to model-level reasoning: for example, in our verification

1 Bifunctor function-specs in VST were originally the work of Qinxiang Cao, Robert
Dockins, and Aquinas Hobor, but were adapted to the new form of preconditions as part of
the present work.

2 Existentially abstracting over the internal representation predicates would further em-
phasize the uniformity between fastpile.c and pile.c—a detailed treatment of this is beyond
the scope of the present article, but is a key ingredient of an abstract component system
that we are currently building on top of VST.

14 Lennart Beringer, Andrew W. Appel

/∗ fastpile-private.h ∗/
struct pile { int sum; };

/∗ fastpile.c ∗/
#include . . .
#include ”pile.h”
#include ”fastpile-private.h”
Pile Pile-new(void)
{Pile p = (Pile)surely-malloc(sizeof ∗p); p→ sum=0; return p; }

void Pile-add(Pile pp, int n)
{int s = pp→ sum; if (0≤ n && n≤ INT-MAX-s) pp→ sum = s+n; }

int Pile-count(Pile pp) {return pp→ sum;}
void Pile-free(Pile pp) {free(pp);}

(∗ spec-fastpile.v ∗)
Definition pilerep (σ: list Z) (p: val) : mpred :=
EX s:Z, !! (0≤ s≤ Int.max-signed ∧ Forall (Z.le 0) σ ∧

(0≤ sumlist σ≤ Int.max-signed → s=sumlist σ))
&& data-at Ews tpile (Vint (Int.repr s)) p.

Definition pile-freeable := (∗ looks identical to the one in fig.3 ∗)
Definition Pile-new-spec := (∗ looks identical to the one in fig.3 ∗)
Definition Pile-add-spec := (∗ looks identical to the one in fig.3 ∗)
Definition Pile-count-spec := (∗ looks identical to the one in fig.3 ∗)

Fig. 4 fastpile.c, a more efficient implementation of the pile ADT. Since the only query
function is count, there’s no need to represent the entire list, just the sum will suffice. In the
verification of a client program, the pilerep separation-logic predicate has the same signature:
list Z → val →mpred, even though the representation is a single number rather than a linked
list.

of cryptographic primitives we found it convenient to verify that the C pro-
gram implements a low-level functional model and then separately prove that
the low-level functional model implements a high-level specification (e.g. cryp-
tographic security).3 In our running example, fastpile.c’s low-level functional
model is integer (the Coq Z type), and its high level specification is list Z.

To formally state the desired subsumption lemma, observe that notation
like DECLARE -Pile-add WITH ... PRE ... POST ... is merely VST’s syntactic
sugar for a pair that ties the identifier -Pile-add to the funspec WITH...PRE...POST.
For -Pile-add we have two such specifications,

spec-fastpile.Pile-add-spec: ident∗funspec (∗ in Figure 4 ∗)
spec-fastpile-concrete.Pile-add-spec: ident∗funspec (∗ in Figure 5 ∗)

and our notion of funspec subtyping will satisfy the following lemma

3 For example: in our proof of HMAC-DRBG [37], before VST had function-spec
subsumption, we had two different proofs of the function f-mbedtls-hmac-drbg-seed, one
with respect to a more concrete specification drbg-seed-inst256-spec and one with re-
spect to a more abstract specification drbg-seed-inst256-spec-abs. The latter proof was 202
lines of Coq, at line 37 of VST/hmacdrbg/drbg protocol proofs.v in commit 3e61d29 of
https://github.com/PrincetonUniversity/VST. Now, instead of reproving the function-
body a second time, we have a funspec sub proof that is only 55 lines of Coq (at line 42 of
the same file).

Abstraction and Subsumption in C 15

(∗ spec-fastpile-concrete.v ∗)
Definition countrep (s: Z) (p: val) : mpred := EX s′:Z,
!! (0≤ s ∧ 0≤ s′≤ Int.max-signed ∧ (s≤ Int.max-signed → s′=s)) &&
data-at Ews tpile (Vint (Int.repr s′)) p.

Definition count-freeable (p: val) := malloc-token Ews tpile p.

Definition Pile-new-spec := ...

Definition Pile-add-spec :=
DECLARE -Pile-add
WITH p: val, n: Z, s: Z, gv : globals
PRE [-p OF tptr tpile, -n OF tint]

PROP(0≤n≤ Int.max-signed) PARAMS (p; Vint (Int.repr n)
GLOBALS (gv) SEP(countrep s p; mem-mgr gv)

POST[tvoid]
PROP() LOCAL() SEP(countrep (n+ s) p; mem-mgr gv).

Definition Pile-count-spec := ...

Fig. 5 The fastpile.c implementation could be used in applications that simply need
to keep a running total. That is, a concrete specification can use a predicate
countrep: Z → val →mpred that makes no assumption about a sequence (list Z). In countrep,
the variable s′ and the inequalities are needed to account for the possibility of integer over-
flow.

Lemma sub-Pile-add: funspec-sub (snd spec-fastpile-concrete.Pile-add-spec)
(snd spec-fastpile.Pile-add-spec).

and similarly for Pile-new and Pile-count. Specifically, we permit related spec-
ifications to have different WITH-lists, in line with Kleymann’s adaptation-
complete4 rule of consequence

` {P ′}c{Q′}
` {P}c{Q}

∀Z.∀σ. PZσ → ∀τ. ∃Z ′.(P ′Z ′σ ∧ (Q′Z ′τ → QZτ))

where assertions are binary predicates over auxiliary and ordinary states, and
Z,Z ′ are the WITH values.5 Our subsumption applies to function specifica-
tions, not arbitrary statements c. In the rule for function calls, it ensures that a

4 Kleymann’s program logic, like ours, uses auxiliary variables (which we call WITH-lists)
to relate the precondition to the postcondition. When auxiliary variables are used, one must
be able to choose them freely to express this relation between pre and post. Two funspecs for
the same function, related by funspec sub, may have quite different auxiliary variables. This
is the parameter adaption aspect of Kleymann’s system, and of ours. Kleymann pointed out
that parameter adaption is necessary in order to achieve adaptation completeness, which is
the property that if ∀c. |= {P}c{Q} ⇒|= {P ′}c{Q′} then one can derive that ` {P}{Q}
implies ` {P ′}{Q′}, independent of c.

5 We give Kleymann’s rule for total correctness here. Kleymann’s partial-correctness adap-
tation rule cannot guarantee safety. That is: Kleyman’s total-correctness Hoare triple says,
“If the start state satisfies P , then the command c will terminate, and will terminate in
a state satisfying Q.” Kleymann’s partial-correctness Hoare triple says, “If the start state
satisfies P , then if the command c terminates, then the final state satisfies Q.” The problem
is that c might crash (or “get stuck” in operational-semantic terms), in which case Kley-
mann’s partial-correctness Hoare triple is still satisfied. For unsafe languages such as C, that

16 Lennart Beringer, Andrew W. Appel

concretely specified function can be invoked where callers expect an abstractly

specified one, just like the subsumption rule of type theory:
Γ ` e : σ σ <: τ

Γ ` e : τ
.

It is also reflexive and transitive.

Support for framing An important principle of separation logic is the frame
rule:

{P}c{Q}
{P ∗R}c{P ∗R}

modifiedvars(c) ∩ freevars(R) = ∅

We have found it useful to explicitly incorporate framing in funspec-sub, be-
cause abstract specifications may have useless data. Consider a function that
performs some action (e.g., increment a variable) using some auxiliary data
(e.g., an array of 10 integers):

int incr1(int i, unsigned int ∗auxdata) { auxdata[i%10] += 1; return i+1; }
The function specification makes clear that the private contents of the auxdata
is, from the client’s point of view, unconstrained; the implementation is free
to store anything in this array:

Definition incr1-spec := DECLARE -incr1
WITH i: Z, a: val, π: share, private: list val
PRE [tint, tptr tuint]

PROP (0≤ i < Int.max-signed; writable-share π)
PARAMS (Vint (Int.repr i); a) GLOBALS ()
SEP(data-at sh (tarray tuint 10) private a)

POST [tint]
EX private ′: list val, PROP() RETURN(Vint (Int.repr (i+1)))

SEP(data-at π (tarray tuint 10) private ′ a).

You might think the auxdata is useless, but (i) real-life interfaces often have
useless or vestigial fields; and (ii) this might be where the implementation keeps
profiling statistics, memoization, or other algorithmically useful information.

Here is a different implementation that should serve any client just as well:

int incr2(int i, unsigned int ∗auxdata) { return i+1; }
Its natural specification has an empty SEP clause:

Definition incr2-spec := DECLARE -incr2
WITH i: Z
PRE [-i OF tint, -auxdata OF tptr tuint]

PROP (0≤ i < Int.max-signed)
PARAMS (Vint (Int.repr i); a) GLOBALS () SEP()

POST [tint]
PROP() RETURN(Vint (Int.repr (i+ 1))) SEP().

is not a very useful Hoare triple, nor is his partial-correctness adaptation rule useful. VST
is a logic for partial correctness, but its Hoare triple means, “If the start satisfies P , then
it is safe to execute c (c will not crash); c will either infinite-loop, will safely exit by (e.g.)
returning from the function, or will terminate in a state satisfying Q”. This is useful for
unsafe languages.

Abstraction and Subsumption in C 17

The formal statement that incr2 serves any client just as well as incr1 is another
case of subsumption:

Lemma sub-incr12: funspec-sub (snd incr2-spec) (snd incr1-spec).

In the proof, we use (data-at π (tarray tuint 10) private a) as the frame.
If the auxdata is a global variable instead of a function parameter, all the

same principles apply:

int global-auxdata[10];
int incr3(int i) { global-auxdata[i%10] += 1; return i+1; }
int incr4(int i) { return i+1; }
We define a funspec for incr3 whose SEP clause mentions the auxdata, we
define a funspec for incr4 whose SEP clause is empty, and we can prove,

Lemma sub-incr34: funspec-sub (snd incr4-spec) (snd incr3-spec).

For another example of framing, consider again Figure 3, the specifica-
tion of pilerep, pile-freeable, Pile-new-spec, etc. One might think to combine
pile-freeable (the memory-deallocation capability) with pile-rep (capability to
modify the contents) yielding a single combined predicate pilerep’. That way,
proofs of client programs would not have to manage two separate conjuncts.

That would work for clients such as triang.c and onepile.c, but not for apile.c
which has an initialized global variable (a-pile) that satisfies pilerep but not
pile-freeable (since it was not obtained from the malloc-free system). Further-
more, the specifications of pile-add and pile-count do not mention pile-freeable
in their pre- or postconditions, since they have no need for this capability.

By using funspec-sub (with its framing feature), we can have it both ways.
One can easily make a more abstract spec in which the funspecs of pile-new,
pile-add, pile-count, pile-free all take pilerep’ in their pre- and postconditions;
onepile and triang will still be verifiable using these specs. But in proving
funspec-sub, therefore, specifications for pile-add and pile-count now do implic-
itly take pile-freeable in their pre- and postconditions, even though they have
no use for it; this is the essence of the frame rule.

5 Definitions of funspec subtyping

Too-special funspec subtyping. Let’s consider the obvious notion of funspec
subtyping: φ1 is a subtype of φ2 if the precondition of φ2 entails the precon-
dition of φ1, and the postcondition of φ1 entails the postcondition of φ2.

Definition far-too-special-NDfunspec-sub (f1 f2 : funspec) :=
match f1, f2 with
NDmk-funspec tsig cc1 A1 P1 Q1, NDmk-funspec (ptypes, rt) cc2 A2 P2 Q2 ⇒
let ∆ := rettype-tycontext rt in
tsig = (ptypes, rt) ∧ cc1 = cc2 ∧ A1=A2 ∧
(∀x : A1, ∆, P2 nil x `P1 nil x) ∧
(∀x : A1, (ret0-tycon ∆), Q1 nil x `Q2 nil x)

end.

18 Lennart Beringer, Andrew W. Appel

We write ∆, P2 nil x `P1 nil x, where P1 and P2 are the preconditions of
f1 and f2, nil expresses that these are nondependent funspecs (no bifunctor
structure), and x is the value shared between precondition and postcondition.
The type-context ∆ provides the additional guarantee that the formal param-
eters are well typed, and ret0-tycon ∆ guarantees that the return-value is well
typed.

This notion of funspec-sub is sound (w.r.t. subsumption), but barely useful:
(1) it requires that the witness types of the two funspecs be the same (A1=A2),
(2) it doesn’t support framing, and (3) it requires Q1`Q2 even when P2 is not
satisfied. Each of these omissions prevents the practical use of funspec-sub in
real verifications, but only (1) and (3) were addressed in previous work [20,
29].

Useful, ordinary funspec subtyping. If NDmk-funspec were a constructor, we
could define,

Definition NDfunspec-sub (f1 f2 : funspec) :=
match f1, f2 with
NDmk-funspec tsig cc1 A1 P1 Q1, NDmk-funspec (ptypes, rt) cc2 A2 P2 Q2 ⇒

let ∆ := rettype-tycontext rt in
tsig = (ptypes, rt) ∧ cc1 = cc2 ∧
∀x2 : A2 ρ: argsEnviron,
∆, P2 nil x2 ρ `
EX x1:A1, EX F :mpred, (F ∗ P1 nil x1 ρ) &&

!! (∀ τ . (tc-environ ∆), F ∗ Q1 nil x1 τ `Q2 nil x2 τ)
end.

Here, each of the three deficiencies is remedied: the witness value x1 : A1 is
existentially derived from x2 : A2, the frame F is existentially quantified, and
the entailment Q1 ` Q2 is conditioned on the precondition P2 being satisfied.

This version of funspec-sub is, we believe, fully general for NDmk-funspec,
that is, for function specifications whose witness types A do not contain (co-
variant or contravariant) occurrences of mpred. We present the general, de-
pendent funspec-sub in the Appendix, with its constructor mk-funspec, and
show the construction of NDmk-funspec as a derived form. And actually, since
NDmk-funspec is not really a constructor (it is a function that applies the
constructor mk-funspec), we must define NDfunspec-sub as a pattern-match on
mk-funspec; see the Appendix.

6 The subsumption rules

The purpose of funspec-sub is to support subsumption rules.
Our Hoare-logic judgment takes the form ∆ ` {P}c{Q} where the context

∆ describes the types of local and global variables and the funspecs of global
functions. We say ∆ <: ∆′ if ∆ is at least as strong as ∆′; in Verifiable C this
is written tycontext-sub ∆ ∆′. Again, this relation is reflexive and transitive.

Abstraction and Subsumption in C 19

Definition (glob-specs) If i is a global identifier, write (glob-specs ∆)!i to be
the option(funspec) that is either None or Some φ.

Lemma funspec-sub-tycontext-sub.
Suppose ∆ agrees with ∆′ on,

– types attributed to global variables,
– types attributed to local variables,
– current function return type (if any);
– and differs only in specifications attributed to global functions, in par-

ticular: For every global identifier i, if (glob-specs ∆)!i=Some φ then
(glob-specs ∆

′)!i=Some φ′ and funspec-sub φ φ
′.

Then ∆ <: ∆′.

Proof. Trivial from the definition of ∆ <: ∆′.

Theorem (semax-Delta-subsumption)

∆ <: ∆′ ∆′ ` {P}c{Q}
∆ ` {P}c{Q}

Proof. Nontrivial. Because this is a logic of higher-order recursive function
pointers, our Coq proof6 in the modal step-indexed model uses the Löb rule
to handle recursion, and unfolds our rather complicated semantic definition of
the Hoare triple [5].

But this is not the only subsumption rule we desire. Because C has function-
pointers, the general function-call rule is for ∆ ` {P}ef (e1, . . . , en){Q} where
ef is an expression that evaluates to a function-pointer. Therefore, we cannot
simply look up ef as a global identifier in ∆. Instead, the precondition P must
associate the value of ef with a funspec. Without subsumption, the rules are:

(glob specs ∆)!f = Some φ
∆ ` f ⇓ v

∆ ` {func ptr v φ ∧ P}c{Q}
∆ ` {P}c{Q}

∆ ` ef ⇓ v
∆ ` e1 ⇓ v1 . . . ∆ ` en ⇓ vn

P ∗ F ` func ptr v φ
φ(w) = {P}{Q}

∆ ` {P ∗ F}ef (e1, e2, . . . , en){Q ∗ F}

The rule semax-fun-id at left says, if the global context ∆ associates identifier
f with funspec φ, and if f evaluates to the address v, then for the purposes of
proving {P}c{Q} we can assume the stronger precondition in which address
v has the funspec φ.

At right, the semax-call rule says, if ef evaluates to address v, and the
precondition factors into conjuncts P ∗F that imply address v has the funspec
φ, then choose a witness w (for the WITH clause), instantiate the witness of φ
with w, and match the precondition and postcondition of φ(w) with P and Q;

6 See file veric/semax lemmas.v in the VST repo.

20 Lennart Beringer, Andrew W. Appel

then the function-call is proved. (Functions can return results, but we don’t
show that here.)

To turn semax-call into a rule that supports subsumption, we simply replace
the hypothesis φ(w) = {P}{Q} with φ <: φ′ ∧ φ′(w) = {P}{Q}. That is,

call-with-subsumption

∆ ` ef ⇓ v
∆ ` e1 ⇓ v1 . . . ∆ ` en ⇓ vn

P ∗ F ` func ptr v φ
φ <: φ′ ∧ φ′(w) = {P}{Q}

∆ ` {P ∗ F}ef (e1, e2, . . . , en){Q ∗ F}

To reconcile semax-Delta-subsumption and semax-fun-id, we build <: into
the definition of the predicate func-ptr v φ, i.e. we permit φ to be more abstract
than the specification associated with address v in VST’s semantic model
(“rmap”).

Function-definition subsumption. Recall that the proposition “function f sat-
isfies its specification φ” is written,

Γ `semax body f : φ

where Γ is the list of all funspecs of functions that the body of f might call.
The proof is (typically) by proving the Hoare triple ∀x.{P}c{Q}, where x is
the WITH-list of φ, where P and Q are the precondition and postcondition of
φ, and c is the function body of f .

For a fully expressive notion of subsumption, one wants to apply it also at
function definitions. Therefore, we have the rule,

semax body funspec sub
φ <: φ′ Γ `semax body f : φ

Γ `semax body f : φ′

We found this rule almost essential for a fully expressive module system that
can describe data abstraction; but (surprisingly) we could not prove it sound
in our first-generation funspec-sub system [8]. Now that we use nameless formal
parameters in funspecs, we have been able to prove this rule. As the `semax body

judgment is defined in terms of VST’s Hoare-logic judgment for C statements,
it is perhaps not surprising that the proof of semax-body-funspec-sub utilizes
a rule of consequence

semax adapt frame
∆ ` {P ′}c{Q′} SideCondition

∆ ` {P}c{Q}

with a side condition that—just like parameter adaption in funspec-sub—
permits one to exploit the satisfaction of the conclusion’s precondition, P ,
when proving the entailment between the postconditions and also includes
framing. In slightly simplified form, the Side Condition is given by

∆,P ` (EX F . !!(closed-wrt-modvars c F) && (P ′ ∗ F) && !!(Q′ ∗ F `Q)).

Abstraction and Subsumption in C 21

However, the notation Q′ ∗ F `Q here actually abbreviates four slightly dif-
ferent entailments, as statement-level postconditions in VST are quadruples of
assertions, containing separate components for each possible control flow con-
tinuation of a code block: function return, break, continue, and fall-through.

7 Intersection specifications

In some of our verification examples, we found it useful to separate different
use cases of a function into separate function specifications. One can easily do
this using a pattern that discriminates on a boolean value from the WITH list
jointly in the pre- and postcondition:

WITH b : bool,−→x : −→τ
PRE if b then P1 else P2

POST if b then Q1 else Q2.

To attach different WITH-lists to different cases, we may use Coq’s sum
type to define a type such as Variant T := case1: int | case2: string. and use it
in a specification

WITH −→x : −→τ , t : T,−→y : −→σ
PRE [. . .] match t with case1 i ⇒ P1(−→x , i,−→y) | case2 s ⇒ P2(−→x , s,−→y) end
POST [. . .] match t with case1 i ⇒ Q1(−→x , i,−→y) | case2 s ⇒ Q2(−→x , s,−→y) end.

which amounts to the intersection of
WITH −→x : −→τ , i:int, −→y : −→σ PRE [. . .] P1(−→x , i,−→y) POST [. . .] Q1(−→x , i,−→y) and
WITH −→x : −→τ , s:string,−→y : −→σ PRE [. . .] P2(−→x , i,−→y) POST [. . .] Q2(−→x , i,−→y).

Generalizing to arbitrary index sets, we may—for a given function signa-
ture and calling convention—combine specifications into specification families,
by lifting the dependent sum (i.e. sigma, sigT below) type construction from
WITH-lists to function specifications:

Definition funspec-Sigma-ND tsig cc (I:Type) (A : I →Type)
(Pre: forall i, A i → argsEnviron →mpred):
(Post: forall i, A i → environ →mpred): funspec :=

Proof.
apply (NDmk-funspec sig cc (sigT A)).
intros [i Ai] rho; apply (Pre -Ai rho).
intros [i Ai] rho; apply (Post -Ai rho).

Defined.

This shows—using Coq’s definition-by-proof-script feature—the nondependent
(ND) case only, but our Coq development also contains the general case (all
this in veric/seplog.v).

The interaction between this construction and subtyping follows precisely
that of intersection types in type theory: the lemmas

Lemma funspec-Sigma-ND-sub: forall tsig cc I A Pre Post i,
funspec-sub (funspec-Sigma-ND tsig cc I A Pre Post)

(NDmk-funspec tsig cc (A i) (Pre i) (Post i)).

22 Lennart Beringer, Andrew W. Appel

Lemma funspec-Sigma-ND-sub3: forall tsig cc I A Pre Post g (i:I)
(HI: forall i, funspec-sub g (NDmk-funspec tsig cc (A i) (Pre i) (Post i))),

funspec-sub g (funspec-Sigma-ND tsig cc I A Pre Post).

are counterparts of the typing rules ∧j∈Iτj <: τi (for all i ∈ I) and
∀i, σ <: τi
σ <: ∧i∈Iτi

,

the specializations of which to the binary case appear on page 206 of TAPL [31].
We expect these rules to be helpful for formalizing Leavens and Naumann’s
treatment of specification inheritance in object-oriented programs [22].

An ad hoc form of (binary) intersection was already used in our verification
of the hmac-drbg cryptographic component [37]. A more general application
of intersection occurs in a rule for composition of VST-verified compilation
units that is part of a component layer on top of VST (under current devel-
opment). Finally, we showed in previous work [7] how relational (2-execution)
specifications can be encoded as unary VDM-style specifications. Intersection
specifications may be seen as internalization of VDM’s “sets of specifications”.

8 Related work

There are other proof tools for languages such as C and Java, but none of them
(to our knowledge) has a full calculus for function-specification subsumption.
Instead of being embedded in a general proof assistant, most current verifi-
cation tools embed their assertions directly in the program code and employ
verification condition discharge using SMT solving. VCC [12] is a verifier for
concurrent C programs, using the Boogie language-independent SMT-based
verifier as a back end. VeriFast [15] is a separation logic for C, that can relate
C programs to functional models with substantial automation based on SMT.
Frama-C [19] is an analysis/verification tool that supports Hoare-logic verifi-
cation of C programs with an assertion language called ACSL [13], which uses
C-like syntax for its first-order assertion language. Dafny [23] is an SMT-based
Hoare-logic verifier for a small but capable language (also called Dafny), with
substantial proof automation using Boogie. KeY [1] is a verifier for Java, with
specifications in JML and an assertion language based on dynamic logic [14]. It
is an interactive theorem prover, programmable by “strategy macros” and with
SMT plug-ins (in that sense, comparable to VST with Ltac programming and
Coq’s linear-integer-arithmetic plugin). A later extension [33] supports heap-
modular reasoning using the theory of dynamic frames [18], backed up by a
formalization in Isabelle/HOL [34] for a core calculus.

None of these verifiers has a machine-checked soundness proof of the tool or
program logic, as VST does. All these verifiers have less expressive functional-
modeling languages than VST, to varying degrees—because VST uses the full
power of Coq’s dependently typed higher-order logic (CiC) for this purpose. All
of them have weaker systems than VST for reasoning about logical properties
of functional models (compared to the power of Coq’s tactical proof assistant,
that VST uses for this).

Abstraction and Subsumption in C 23

VeriFast has a form of funspec sub, called produce-function-pointer-chunk,
that verifies a new specification for a function (with user assistance as for any
VeriFast proof) by proving a function call based on the old specification. This
supports framing and parameter adaption, but not transitivity of funspec sub.7

As far as we can tell from reading the literature, VCC, Frama-C, Dafny, and
KeY’s notion of funspec sub are not formally equipped with a subsumption
rule but directly integrated into proof rules for (virtual) methods. JML sup-
ports explicit intersection specifications using the keyword also, and these are
implicitly employed in these tools’ implementations of behavioral subtyping.
However, the user-interface design of VCC, Frama-C, Dafny, and KeY make
funspec sub and intersection less natural than they are in VST. This has little
to do with VST’s more powerful (impredicative higher-order) semantic model:
it is about separating specifications from implementations. That is, in VST
the function specification is a self-contained syntactic unit, not intermingled
in the same source file with the function body. In those other systems, as-
sertions (preconditions, postconditions, loop invariants) are intermingled with
the C or Java source code, as comments with a special form. Therefore, one
typically has the specification of a function, mixed into the implementation;
syntactically there is no room for more than one.8 In VST it is much more
natural—if we can write one funspec (in a different place from the function
body), then it is easy enough to write more than one, to relate them, and to
have proofs of the same function w.r.t. different specifications, perhaps with
different loop invariants. Although this is not a fundamental, deep semantic
aspect, we believe that fully supporting subsumption in these program veri-
fiers may benefit from revisiting the design decision that mixes specifications
into implementations.

The program logic framework that is most closely related to VST is Iris [17],
which also implements a higher-order concurrent separation logic in Coq and
provides a step-indexed model. At present, applications of Iris predominantly
concern small-scale research languages. However, we anticipate that our de-
velopment could be rather easily transferred to emerging applications of Iris
to Rust [16] or Go [11], although neither of these developments are currently
linked to formally verified compilers.

9 Conclusion

Even without funspec subtyping, separation logic easily expresses data ab-
straction [30]. But real-world code is modular (as in our running example) and
reconfigurable (as in the substitution of fastpile.c for pile.c). Therefore a notion
of specification re-abstraction is needed. We have demonstrated how to extend
Kleymann’s notion from commands to functions, and from first-order Hoare

7 Bart Jacobs, by e-mail, September 2020.
8 VeriFast permits the function specification to be attached to the function definition in

the .c file or to the function declaration in the .h file. This is a limited form of separating
the specification from the implementation.

24 Lennart Beringer, Andrew W. Appel

logic to higher-order separation logic with framing. We have a full soundness
proof for the extended program logic, in Coq. Our funspec-sub integrates nicely
with our existing proof automation tools and our existing methods of verify-
ing individual modules. As a bonus, one’s intuition that function-specs are like
the “types” of functions is borne out by our theorems relating funspec-sub to
intersection types.

Future work When a client module respects data abstraction, such as onepile.c
and triang.c in our example, its Coq proof script does not vary if the imple-
mentation of the abstraction changes (such as changing pile.c to fastpile.c). But
our current proofs need to rerun the proof scripts on the modified definition of
pilerep. As footnote 2 suggests, this could be avoided by the use of existential
quantification, in Coq, to describe data abstraction at the C module level.

Appendix: Fully general funspec sub

NDfunspec-sub as introduced in Section 5 specializes the “real” subtype rela-
tion φ <: ψ in two regards: first, it only applies if φ and ψ are of the NDfunspec
form, i.e. the types of their WITH-lists (“witnesses”) are trivial bifunctors as
they do not contain co- or contravariant occurrences of mpred. Second, it fails
to exploit step-indexing and is hence unnecessarily strong. Our full definition
is as follows (Definition funspec-sub-si in veric/seplog.v):

Definition funspec-sub-si (f1 f2 : funspec):mpred :=
match f1, f2 with
mk-funspec tsig cc1 A1 P1 Q1 - -, mk-funspec (ptypes, rt) cc2 A2 P2 Q2 - -
⇒

let ∆ := rettype-tycontext rt in
!!(tsig = (ptypes, rt) ∧ cc1 =cc2) &&
! (ALL ts2:list Type, ALL x2: F A2, ALL gargs:argsEnviron,

(!!(tc-argsenv ∆ ptypes gargs) && P2 ts2 x2 gargs)

EX ts1:list Type, EX x1: F A1, EX F ,
(F ∗ P1 ts1 x1 gargs) &&
ALL ρ:environ, !((local (tc-environ ∆) ρ && F ∗ Q1 ts1 x1 ρ)

Q2 ts2 x2 ρ))
end.

We first note that funspec-sub-si is not a (Coq) Proposition but an mpred—
indeed, step-indexing has nothing interesting to say about pure propositions!
That is, P ` Q means, “for all resource-maps s, P s implies Qs,” but this can
be too strong: P Q means, “for all resource-maps s whose step-index is ≤
the current ‘age’, P s implies Qs.” Recursive equations of mpreds, of the kind
that come up in object-oriented patterns, can tolerate where they cannot
tolerate ` [5, Chapter 17].

Second, both funspecs are constructors (mk-funspec tsig cc A P Q - -) as
discussed in Section 5, but the two final arguments (the proofs that P and

Abstraction and Subsumption in C 25

Q are super-nonexpansive) are irrelevant for the remainder of the definition
and hence anonymous. We also abbreviate the TypeTree-interpreting operator
alluded to in Section 3, dependent-type-functor-rec, with F .

Third, the definition makes use of the following operators (details on the
penultimate two operators can be found in [5], Chapter 16):

!! inject a Coq proposition into VST’s type mpred
&& (logical) conjunction of mpreds
ALL universal quantification lifted to mpred
EX existential quantification lifted to mpred
! “unfash”

“fashionable implication”

In particular, the satisfaction of P2 implies, only with the “precision” (in
the step-indexed sense) at which P2 is satisfied, that Q1 implies Q2.

Finally, note that the definition internally existentially quantifies over yet
another mpred, the frame F .

It is straightforward to prove that funspec-sub-si is reflexive, transitive,
and specializes to NDfunspec-sub. To obtain soundness of context subtyping
(semax-Delta-subsumption), we Kripke-extend the previous definition of VST’s
main semantic judgment semax. We also refined the definition of the predicate
func-ptr: a stronger version of rule semax-fun-id permits the exposed specifica-
tion f to be a (step-indexed) abstraction of the specification g stored in VST’s
resource-instrumented model:

Definition func-ptr-si f (v: val): mpred := EX b: block,
!!(v = Vptr b Ptrofs.zero) && EX g, funspec-sub-si g f && func-at g (b, 0).

As func-at refers to the memory, this notion is again an mpred. Again,
users who don’t have complex object-oriented recursion patterns can avoid
the step-indexing by using this non-step-indexed variant,

Definition func-ptr f (v: val): mpred := EX b: block,
!!(v = Vptr b Ptrofs.zero) && EX g, !!(funspec-sub g f) && func-at g (b, 0).

as the following lemma shows:

Lemma func-ptr-fun-ptr-si f v: func-ptr f v ` func-ptr-si f v.

As one might expect, both notions are compatible with further subsump-
tion:

Lemma func-ptr-si-mono fs gs v:
funspec-sub-si f g && func-ptr-si f v ` func-ptr-si g v.

Lemma func-ptr-mono fs gs v: funspec-sub f gs → (func-ptr f v ` func-ptr g v).

With these modifications and auxiliary lemmas in place, we have formally
reestablished the soundness proof of VST’s proof rules, justifying all rules
given in this paper.

26 Lennart Beringer, Andrew W. Appel

Acknowledgements We are grateful to the members of the VST research group projects
for their feedback, and we greatly appreciate the comments and suggestions made by the
FM’19 program committee and by this journal’s referees.

References

1. Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle, Peter H Schmitt,
and Mattias Ulbrich. Deductive Software Verification–The KeY Book, volume 10001 of
Lecture Notes in Computer Science. Springer, 2016.

2. Pierre America and Jan Rutten. Solving reflexive domain equations in a category of
complete metric spaces. Journal of Computer and System Sciences, 39(3):343–375,
1989.

3. Andrew W. Appel. Verification of a cryptographic primitive: SHA-256. ACM Trans.
on Programming Languages and Systems, 37(2):7:1–7:31, April 2015.

4. Andrew W. Appel, Lennart Beringer, Qinxiang Cao, and Josiah Dodds.
Verifiable C: applying the Verified Software Toolchain to C programs.
https://vst.cs.princeton.edu/download/VC.pdf, 2019.

5. Andrew W. Appel, Robert Dockins, Aquinas Hobor, Lennart Beringer, Josiah Dodds,
Gordon Stewart, Sandrine Blazy, and Xavier Leroy. Program Logics for Certified Com-
pilers. Cambridge, 2014.

6. Andrew W. Appel and David A. Naumann. Verified sequential malloc/free. In Proceed-
ings of the 2020 ACM SIGPLAN International Symposium on Memory Management,
pages 48–59, 2020.

7. Lennart Beringer. Relational decomposition. In Interactive Theorem Proving (LNCS
6898), pages 39–54, Berlin, 2011. Springer.

8. Lennart Beringer and Andrew W. Appel. Abstraction and subsumption in modular
verification of C programs. In Maurice H. ter Beek, Annabelle McIver, and José N.
Oliveira, editors, Formal Methods - The Next 30 Years - Third World Congress, FM
2019, Proceedings, volume 11800 of LNCS, pages 573–590. Springer, 2019.

9. Lennart Beringer, Adam Petcher, Katherine Q. Ye, and Andrew W. Appel. Verified
correctness and security of OpenSSL HMAC. In 24th USENIX Security Symposium,
pages 207–221. USENIX Assocation, August 2015.

10. Qinxiang Cao, Lennart Beringer, Samuel Gruetter, Josiah Dodds, and Andrew W. Ap-
pel. VST-Floyd: A separation logic tool to verify correctness of C programs. J. Autom.
Reasoning, 61(1-4):367–422, 2018.

11. Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and Nickolai Zeldovich. Verifying
concurrent, crash-safe systems with perennial. In Tim Brecht and Carey Williamson,
editors, Proceedings of the 27th ACM Symposium on Operating Systems Principles,
SOSP 2019, Huntsville, ON, Canada, October 27-30, 2019, pages 243–258. ACM, 2019.

12. Ernie Cohen, Markus Dahlweid, Mark A. Hillebrand, Dirk Leinenbach, Michal Moskal,
Thomas Santen, Wolfram Schulte, and Stephan Tobies. VCC: A practical system for
verifying concurrent C. In Stefan Berghofer, Tobias Nipkow, Christian Urban, and
Makarius Wenzel, editors, Theorem Proving in Higher Order Logics, 22nd International
Conference, TPHOLs 2009, Proceedings, volume 5674 of Lecture Notes in Computer
Science, pages 23–42. Springer, 2009.

13. Jens Gerlach, Denis Efremov, Tim Sikatzki, Malte Brodmann, Jochen Burghardt,
Andreas Carben, Robert Clausecker, Liangliang Gu, Kerstin Hartig, Timon
Lapawczyk, Hans Werner Pohl, Juan Soto, and Kim Völlinger. ACSL
by example: Towards a formally verified standard library, version 21.1.0.
https://github.com/fraunhoferfokus/acsl-by-example, 2010.

14. David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. MIT Press, 2000.
15. Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and

Frank Piessens. Verifast: A powerful, sound, predictable, fast verifier for C and Java.
In NASA Formal Methods Symposium, pages 41–55. Springer, 2011.

16. Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. Rustbelt:
securing the foundations of the rust programming language. Proc. ACM Program.
Lang., 2(POPL):66:1–66:34, 2018.

Abstraction and Subsumption in C 27

17. Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, and
Derek Dreyer. Iris from the ground up: A modular foundation for higher-order concur-
rent separation logic. Journal of Functional Programming, 28, 2018.

18. Ioannis T. Kassios. Dynamic frames: Support for framing, dependencies and sharing
without restrictions. In Jayadev Misra, Tobias Nipkow, and Emil Sekerinski, editors, FM
2006: Formal Methods, 14th International Symposium on Formal Methods, Hamilton,
Canada, August 21-27, 2006, Proceedings, volume 4085 of Lecture Notes in Computer
Science, pages 268–283. Springer, 2006.

19. Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris
Yakobowski. Frama-C: A software analysis perspective. Formal Aspects of Comput-
ing, 27(3):573–609, May 2015.

20. Thomas Kleymann. Hoare logic and auxiliary variables. Formal Asp. Comput.,
11(5):541–566, 1999.

21. Nicolas Koh, Yao Li, Yishuai Li, Li-yao Xia, Lennart Beringer, Wolf Honoré, William
Mansky, Benjamin C Pierce, and Steve Zdancewic. From C to interaction trees: specify-
ing, verifying, and testing a networked server. In Proceedings of the 8th ACM SIGPLAN
International Conference on Certified Programs and Proofs, pages 234–248. ACM, 2019.

22. Gary T. Leavens and David A. Naumann. Behavioral subtyping, specification inheri-
tance, and modular reasoning. ACM Trans. on Programming Languages and Systems,
37(4):13:1–13:88, 2015.

23. K. Rustan M. Leino. Dafny: An automatic program verifier for functional correctness.
In Edmund M. Clarke and Andrei Voronkov, editors, Logic for Programming, Artificial
Intelligence, and Reasoning - 16th International Conference, LPAR-16, Dakar, Sene-
gal, April 25-May 1, 2010, Revised Selected Papers, volume 6355 of Lecture Notes in
Computer Science, pages 348–370. Springer, 2010.

24. Xavier Leroy. Formal verification of a realistic compiler. Communications of the ACM,
52(7):107–115, 2009.

25. Barbara Liskov and Jeannette M. Wing. A behavioral notion of subtyping. ACM Trans.
Program. Lang. Syst., 16(6):1811–1841, 1994.

26. William Mansky, Andrew W. Appel, and Aleksey Nogin. A verified messaging sys-
tem. In Proceedings of the 2017 ACM International Conference on Object Oriented
Programming Systems Languages & Applications, OOPSLA ’17. ACM, 2017.

27. John C. Mitchell and Gordon D. Plotkin. Abstract types have existential type. ACM
Trans. on Programming Languages and Systems, 10(3):470–502, July 1988.

28. David A. Naumann. Deriving sharp rules of adaptation for Hoare logics. Technical
Report 9906, Department of Computer Science, Stevens Institute of Technology, 1999.

29. Tobias Nipkow. Hoare logics for recursive procedures and unbounded nondeterminism.
In Julian C. Bradfield, editor, Computer Science Logic, 16th International Workshop,
CSL 2002, 11th Annual Conference of the EACSL, Proceedings, volume 2471 of Lecture
Notes in Computer Science, pages 103–119. Springer, 2002.

30. Matthew J. Parkinson and Gavin M. Bierman. Separation logic and abstraction. In
32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL 2005), pages 247–258, 2005.

31. Benjamin C. Pierce. Types and Programming Languages. MIT Press, Cambridge, Mass.,
2002.

32. Cees Pierik and Frank S. de Boer. A proof outline logic for object-oriented programming.
Theor. Comput. Sci., 343(3):413–442, 2005.

33. Peter H. Schmitt, Mattias Ulbrich, and Benjamin Weiß. Dynamic frames in java dynamic
logic. In Bernhard Beckert and Claude Marché, editors, Formal Verification of Object-
Oriented Software - International Conference, FoVeOOS 2010, Paris, France, June 28-
30, 2010, Revised Selected Papers, volume 6528 of Lecture Notes in Computer Science,
pages 138–152. Springer, 2010.

34. Peter H. Schmitt, Mattias Ulbrich, and Benjamin Weiß. Dynamic frames in java dynamic
logic – formalization and proofs. Technical Report 2010-11, KIT – Karlsruher Institut
für Tchnologie, 2010.

35. Shengyi Wang, Qinxiang Cao, Anshuman Mohan, and Aquinas Hobor. Certifying
graph-manipulating C programs via localizations within data structures. PACMPL,
3(OOPSLA):171:1–171:30, 2019.

28 Lennart Beringer, Andrew W. Appel

36. Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C.
Pierce, and Steve Zdancewic. Interaction trees: representing recursive and impure pro-
grams in coq. PACMPL, 4(POPL):51:1–51:32, 2020.

37. Katherine Q. Ye, Matthew Green, Naphat Sanguansin, Lennart Beringer, Adam
Petcher, and Andrew W. Appel. Verified correctness and security of mbedTLS HMAC-
DRBG. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security (CCS’17). ACM, 2017.

