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One can write dependently typed functional programs in Coq, and prove them correct in Coq; one can write

low-level programs in C, and prove them correct with a C verification tool. We demonstrate how to write

programs partly in Coq and partly in C, and interface the proofs together. The Verified Foreign Function

Interface (VeriFFI) guarantees type safety and correctness of the combined program. It works by translating

Coq function types (and constructor types) along with Coq functional models into VST function-specifications;

if the user can prove in VST that the C functions satisfy those specs, then the C functions behave according

to the user-specified functional models (even though the C implementation might be very different) and the

proofs of Coq functions that call the C code can rely on that behavior. To achieve this translation, we employ

a novel, hybrid deep/shallow description of Coq dependent types.
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1 Introduction
We want to write functional programs, because proving those correct is simpler than proving

imperative pointer programs. After we prove our programs correct, we want to compile and run

them. One can prove programs using Coq, whose logic contains a pure functional programming

language along with the proof theory for proving that those programs satisfy logical specifications.

Then one can “extract” the programs to OCaml, and compile and run them. But the OCaml compiler

(written in OCaml) is not proved correct; nor is the OCaml runtime system and garbage collector

(written in C). We want foundational verification, in which the application program and all these

tools can be proved correct in the same machine-checked logic, in theorems that compose together

to make a single end-to-end correctness theorem.

For proved-correct compilation, one can use CertiCoq, a compiler from Coq to C that is verified

in Coq. It composes with the CompCert verified C compiler and the CertiGC verified garbage
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24:2 Korkut, Stark, and Appel

collector (see section 2). Thus, a verified functional program in Coq compiled and executed with

CertiCoq+CompCert+CertiGC can have the desired end-to-end correctness theorem in Coq.
1

However, large programs are rarely written in a single language; additional languages are used

for better performance or for capabilities that the primary language lacks. In particular, because

Coq lacks primitive types,
2
mutation, and input/output actions, CertiCoq-compiled code must

interact with another language to have those capabilities. Specifically (for the CertiCoq back-end

targeting C), Coq code must be able to call C code and C code must be able to inspect and generate

Coq data structures and call Coq code. There are already foreign function interface (FFI) systems to

handle the operational interface between functional languages (ML, Haskell, etc.) and C [Blume

2001; Leroy 1999], or Java-like languages and C [Liang 1999]. Some of these provide APIs for the

functional language to traverse C data structures, others provide APIs for C to traverse the functional

language’s data structures; and all provide APIs for the functional language to call C functions. In

these systems, a type-directed “glue code generator” produces APIs and interface functions. Those

FFIs make a dynamic (operational) connection between the high-level and low-level language; and

some work has even addressed type safety [Tan et al. 2006].

But previous work has not addressed dependently typed high-level languages, and most im-

portantly, has not shown how to connect correctness proofs of high-level client programs with

correctness proofs of low-level primitives. When we prove a functional program correct in Coq’s

proof theory (the Calculus of Inductive Constructions) and we prove a C program correct in a

program logic for C, how does the “glue code” work to connect these proofs together?

We provide a solution to that problem: VeriFFI, a Verified Foreign Function Interface between
Coq and C (Figure 1). Coq program components are proved correct directly in Coq, C program

components are locally proved correct using the Verified Software Toolchain (VST) [Appel et al.

2014], and the connection is made via VST function specifications that are generated by VeriFFI.

Compared to some other verified FFI systems (in section 14 we discuss related work), it’s

important that our high-level language is a higher-order dependently typed pure functional language

embedded in a logic (i.e., Coq). “Functional" programming languages with mutation (such as OCaml)

require separation logic for their reasoning on both sides of the FFI [Meijer 2014]; our approach

limits separation logic only to the C side. And (unlike other verified FFI systems) our C language

verification can be done using a powerful and general proof tool, the Verified Software Toolchain.

Contributions
• VeriFFI guarantees both type safety and correctness (except for termination) of the foreign

functions, and supports both data abstraction (C functions on types that are opaque to the

Coq side) and data transparency (C functions on Coq inductive types).

• We achieve this by calculating C function specifications (pre/postconditions) from Coq

dependent types; the user can use VST to prove that the C functions satisfy these specs.

• We calculate these specs using a novel hybrid deep/shallow description of Coq types that

allows annotation on each component of a type; the annotations allow analysis and translation

of Coq’s dependent type structure for this and other applications in metaprogramming.

• Our semantic approach and our glue code generators provide language-local reasoning on

the Coq side and the C side without the need for a multi-language semantics.

1
Each of these components is verified in Coq to specifications that are consistent with each other, but CertiCoq’s composed

end-to-end correctness theorem has not yet been demonstrated. In fact, our work in this paper informs the statement of

that theorem; see section 13.

2
Or, to the extent that Coq supports primitive types such as 63-bit integers, the correctness of their implementation can be

proved by considering their operations as foreign functions.
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Fig. 1. Typical usage of VeriFFI. User
writes an interface spec model.v and a
proved-correct client program client.v
in Coq; writes a C program prims.c
that implements the interface; and
proves in verif.v in Coq that the C pro-
gram is correct.

(Clightgen is CompCert’s

front end that parses C

into a Clight AST,

to be verifiable by VST)
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2 Background
CertiCoq3 compiles Coq functions by first reifying them into ASTs using MetaCoq [Sozeau et al.

2019], then translating to an untyped intermediate language 𝜆ANF [Paraskevopoulou et al. 2021]

and then to CompCert Clight, a high-level intermediate language of the CompCert verified C

compiler [Leroy 2006]. From there, CompCert can compile to assembly language. Each of these

languages—(reified) Coq, 𝜆ANF, Clight, Assembly—has a formal operational semantics in Coq. Coq’s

formalization is part of MetaCoq, 𝜆ANF’s is part of CertiCoq’s proof, and Clight’s and Assembly’s

are part of the CompCert specification. Each of the translations (as well as each optimization pass

from 𝜆ANF to 𝜆ANF) is proved correct (semantics-refining) with machine-checked proofs in Coq,

with respect to the respective operational semantics.

The first phase of CompCert translates C to Clight. Clight programs are readable as C programs—

Clight can be translated to C with an unverified pretty-printer, when it is useful to compile the

output of CertiCoq with an unverified C compiler such as clang or gcc. Hence we will treat C and

Clight as mostly interchangeable.

CertiCoq had a mechanism for external primitive functions written in C, but had no mechanism

for verifying them. CertiCoq’s correctness proof is w.r.t. the Clight operational semantics, but

for program verification (of external C functions) one might want an axiomatic semantics, a

program logic. And there was the additional challenge of reasoning about shared structure in a

garbage-collected heap, and preserving invariants across garbage collections.

The Verified Software Toolchain (VST) [Appel et al. 2014] is a program logic and tool for proving

functional correctness of Clight programs, and of C programs via their translation to Clight. Clight

3
There is no single citable work that describes all of CertiCoq. Separate papers describe different parts of the compiler

and runtime: • the workshop paper announcing the beginning of the project [Anand et al. 2017] • CertiCoq’s front end
is MetaCoq via PCUIC [Sozeau et al. 2019] • the verified translation from MetaCoq to its 𝜆ANF intermediate language

[Paraskevopoulou and Grover 2021] • the verified shrink-reduction optimization phase [Savary Bélanger and Appel 2017] •
the verified closure-conversion pass [Paraskevopoulou and Appel 2019] • the composition of all 𝜆ANF phase verifications

[Paraskevopoulou 2020] • the verified code generator [Savary Bélanger et al. 2019] • the CertiGC verified garbage collector

[Wang et al. 2019].
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is an easier language than C for program verification as it has no side effects inside expressions.

VST has a formal soundness proof in Coq—that is, if you prove a property of a C program in VST,

then that program running in the operational semantics of Clight will respect that property.

VST is used for the correctness proof of CertiCoq’s garbage collector [Wang et al. 2019], which

is written in C. The Clight code produced by CertiCoq allocates records (from the compilation of

inductive data constructors) on a garbage-collected heap, and from time to time it must call the

garbage collector (g.c.).

The proof of a C function in VST is with respect to a function specification (funspec), that gives

the function precondition and function postcondition, all in higher-order impredicative separation

logic, and all with respect to a set of quantified variables
−→𝑥 : if the program state before calling 𝑓

satisfies pre(−→𝑥 ) and if 𝑓 terminates (in the Clight operational semantics), then the program state

will satisfy post(−→𝑥 ).

Combining Coq and C. Now, suppose a Coq function 𝑔 calls a C function 𝑓 ; or more precisely,

a Coq function 𝑔 translated to a Clight function 𝑔c calls a Clight function 𝑓 . From the MetaCoq

semantics of 𝑔 and a CertiCoq correctness theorem for open programs as proposed in section 13,

one would get a Coq proof about the behavior of 𝑔c (subject to an assumption about 𝑓 ’s behavior)

in Clight operational semantics. Given some appropriate funspec for 𝑓 in VST’s logic, the user can

interact with VST to prove correctness of 𝑓 w.r.t. that funspec. Based on the semantic model of

VST funspecs, that gives a Coq proof about the behavior of 𝑓 in Clight’s operational semantics.

VeriFFI’s job will be to say what that funspec should be, and to provide the appropriate definitions

and tools tomake this connection.With VeriFFI, the foreign C function could be the garbage collector,

a user-written C function, or a VeriFFI glue-code-generated C function. Any of these functions

manipulate C data structures that are the CertiCoq translations of Coq data structures, as well as

other C data structures that the C functions use internally. An important part of VeriFFI’s job is to

enable both concrete data types (C traversal and construction of Coq Inductive types) and abstract

data types (whose representation is not known to the Coq client).

Data representations. CertiCoq represents Coq values in memory using the same low-level

memory representations as OCaml [Minsky and Madhavapeddy 2022].
4
In this discussion, we

assume a 64-bit word size. Unsigned integers 𝑛 up to 2
63 − 1 are represented in memory as 2𝑛 + 1.

Since all pointers are word-aligned (and thus even numbers), this allows the garbage collector to

distinguish pointers from nonpointers.

Inductive nat := O : nat | S : nat -> nat.

Inductive types such as nat are represented as follows. The O constructor, as the first constant

constructor in this datatype, is represented by an unboxed (i.e., tagged as nonpointer) zero, 2 · 0 + 1.

The value S n is represented by a aligned (even) pointer into a

two-word record, where the header (at offset -1) contains a length
(in this case, 1) and a tag (in this case 0, for the first boxed constructor).

1    0
n

The Coq heap in separation logic. We must describe Coq values in their C representations, using

VST’s separation logic. Trees in separation logic are typically represented as the separated conjunc-

tion of their subtrees, but that can’t work for the usual implementation of an ML-like functional

4
There is no need to use OCaml representations, since we do not link with an OCaml system, but we maintain compatibility

because it may be useful in the future.
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language. Consider a program with shared subtrees:

Inductive tree := leaf : tree | node: tree -> tree -> tree.

let x := node leaf leaf in
let y := x in
let p := node x y in ...

2    0 2
1
1

   0
p

Because there is sharing between x and y, we cannot describe this in separation logic as

p ↦→ node x y ∗ x ↦→ node leaf leaf ∗ y ↦→ node leaf leaf.

We handle graph structures with sharing using the CertiGraph library [Wang et al. 2019], whose

approach is to describe a graph g in the “propositional” part of Coq, as a mapping from vertex-

numbers to edge-lists (and other information). It is a labeled graph, where each vertex-label includes

the C address of the record representing that vertex (or, for vertices represented unboxed, the

vertex-label has the unboxed value). Then the separation-logic resource (graph_rep g) describing

this graph is the iterated separating conjunction (big-star) of all of its vertices.

CertiCoq uses a generational garbage collector, proved correct using VST [Wang et al. 2019]. That

collector, or any collector, will need a heap-management data structure to keep track of memory

not currently allocated but available for allocation.

In the VST proof of a C program that interacts with the CertiCoq garbage-collected heap, the

separation-logic assertions will usually have these (separated) conjuncts: heap, described by the

graph_rep predicate; (separated from) thread_info predicate comprising the heap-management

data-structure and the stack of frames (a data structure keeping track of local variables pointing

into the heap, following McCreight et al. [2010]) in the function-call stack.
5

3 VeriFFI in a nutshell
Foreign functions are useful when the C code can use better data structures than Coq’s Inductives,

or can use mutable data structures, or can access special machine instructions such as cryptographic

primitives; or when the program needs to do I/O. We illustrate how to write such programs with

VeriFFI using a simple example: 63-bit unsigned integers as a foreign type, with foreign functions

to add (modulo 2
63
) and convert from/to Coq’s natural number type. We use 63-bit integers to leave

space for the 1-bit tag that marks unboxed values for the garbage collector.

3.1 Operational
A typical use of VeriFFI is structured as shown in Figure 1. Coq file model.v specifies an interface

(Coq inductive types, foreign abstract types, and foreign functions with their Coq functional models).

Coq file client.v has a program that uses the foreign functions. Figure 2 shows an example that

uses a C implementation of 63-bit unsigned integers. On the Coq side (Figure 2a, model.v), we define

an API as a Coq module type UInt63, then make the claims in Module C that there are instantiations

of type C.t and functions C.from_nat, C.to_nat, and C.add. The client can use this API in writing

Coq functions (Figure 2b, client.v).

Coq’s execution compiles the files model.v and client.v via the CertiCoq compiler, producing:

glue.c containing glue code for construction and traversal of Inductives used by the API;

client.c the compilation of the client program.

5
There is one more separated conjunct: outliers, data structures outside the garbage-collected heap, to which the heap may

point. These are not essential to the presentation in this paper and we will omit further mention of them.
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24:6 Korkut, Stark, and Appel

Module Type UInt63.
Parameter t : Type.
Parameter from_nat : nat -> t.
Parameter to_nat : t -> nat.
Parameter add : t -> t -> t.

End UInt63.

Module C : UInt63.
Axiom t : Type.
Axiom from_nat : nat -> t.
Axiom to_nat : t -> nat.
Axiom add : t -> t -> t.

End C.

CertiCoq Register [
C.from_nat => "uint63_from_nat",
C.to_nat => "uint63_to_nat",
C.add => "uint63_add"
] Include [ "prims.h" ].

CertiCoq Generate Glue
-file "glue" [ nat ].

(a) Coq side, model.v

Definition prog :=
C.to_nat (C.add (C.from_nat 1)

(C.from_nat 2)).
CertiCoq Compile

-file "client" prog.

(b) Coq side, client.v

value uint63_from_nat(
struct thread_info *tinfo,
value n) {

value temp = n;
uint64 i = 0;
while (get_nat_tag(temp) == S) {

i++; temp = get_args(temp)[0];
}
return (value) ((i << 1) + 1);

}

value uint63_to_nat (
struct thread_info *tinfo,
value t) {

uint64 i = ((uint64)t)>>(uint64)1;
value temp = make_nat_O();
while (i) {
if (tinfo->limit - tinfo->alloc < 2) {
value roots[1]={temp};
struct stack_frame fr =

{roots+1,roots,tinfo->fp};
tinfo->fp= &fr;
tinfo->nalloc = 2;
garbage_collect(tinfo);
temp=roots[0]; tinfo->fp=fr.prev;

}
temp = alloc_make_nat_S(tinfo, temp);
i--;

}
return temp;

}

value uint63_add(
struct thread_info *tinfo,
value x, value y) {

return (value) ((uint64)x+(uint64)y-1);
}

(c) C side, prims.c

Fig. 2. Operational View of the FFI: Code in Coq (left) vs code in C (right).

These components link at C level, with the garbage collector (gc.c) and with user-written prims.c

(Figure 2c) which instantiates the axioms in Module C. The C foreign functions have this API:

/* prims.h */
#include <gc.h>
value uint63_from_nat(struct thread_info *tinfo, value z);
value uint63_to_nat(struct thread_info *tinfo, value t);
value uint63_add(struct thread_info *tinfo, value x, value y);

Each function’s first parameter is a thread-info pointer, needed in case the function allocates on the

heap. The remaining arguments correspond to the Coq arguments of the (uncurried) Coq function

type. Each of these may be a concrete Coq type (such as nat) or an abstract Coq type (such as C.t).

Either way, the C parameter type is just value, which is a typedef for void*.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 24. Publication date: January 2025.
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The thread_info parameter describes (among other things) the location of the next allocable

spot in the heap (tinfo->alloc); the end of the allocation space (tinfo->limit); and other data

structures used only by the garbage collector. If limit minus alloc is less than the size of a new

record (including header), then garbage_collect must be called.

All the operations on C.t are foreign functions—it is an abstract data type—so we are free to

choose an efficient representation. Here, we implement C.t using C’s unsigned 64-bit integers, and

we represent nat as shown in section 2. The functions in prims.c are implemented as follows:

uint63_from_nat: To convert the low-level memory representation of nat to C’s native 64-bit

integer type, we have to count the number of S constructors in the data structure. The

function getting the tag and the one accessing the arguments are glue functions, generated
automatically in glue.c.

uint63_to_nat: uses the (automatically generated) glue function alloc_make_nat_S to allocate a

successor constructor on the heap, as many times as called for by the input argument t (after

its low-order tag bit is stripped off). It is a precondition of alloc_make_nat_S that enough

space is available; to provably satisfy this precondition, we first test limit - alloc. In case a

garbage collection is needed, the local variable temp is a root of the heap, so we need to push

a frame on the stack of frames and copy temp into that frame; then after the collection, copy

back the (possibly forwarded) temp and pop the stack.

add: To add two tagged integers (modulo 2
63
), first shift each right to strip the tag; then add;

then shift left and add 1. Or do it more efficiently, as shown.

3.2 Verification
Previous FFI systems have been able to “glue” at the operational level as described in subsection 3.1;

but VeriFFI can connect specifications and proofs. We start by providing a functional model of (in
this example) the UInt63 module type:

Module FM <: UInt63.
Definition t : Type := {z : nat | z < 2 ^ 63}.
Lemma mod63_ok: forall (n : nat), (n mod (2^63) < 2^63).

Proof. intro. apply Nat.mod_upper_bound, Nat.pow_nonzero. auto. Qed.
Definition from_nat (n : nat) : t := (n mod (2^63); mod63_ok _).
Definition to_nat (z : t) : nat := let '(n; _) := z in n.
Definition add (x y : t) : t :=

let '(xn; x_pf) := x in let '(yn; y_pf) := y in ((xn + yn) mod (2^63); mod63_ok _).
End FM.

We model a 63-bit integer as a natural number 𝑛 accompanied by a proof that 𝑛 < 2
63
. Then our

definition of to_nat is trivial (just project out 𝑛), but in the definitions of of from_nat and add we

must supply a proof that the result is in range, which we do using an auxiliary lemma mod63_ok.

You can see in the functional model that the behavior of from_nat and add forces the results to be

in range by explicitly doing a modulo operation, which models unsigned integer overflow.

VeriFFI guarantees that C.t and FM.t are isomorphic and that the operations (such as add) respect

this isomorphism—provided that the user proves certain things about the C program as specified

below. This is sufficient to prove the correctness of the client program. For example, we can prove

that the prog in Figure 2 computes the number 3, or that add is associative.

In the next five sections, we will show how VeriFFI represents the reified types of foreign

functions and Coq inductive constructors; how (based on these and on user-supplied functional

models) VeriFFI generates VST funspecs that serve as theorem statements that the user must prove

about the C program implementations. Then in section 9 we complete the UInt63 example:

• the funspec computed for uint63_to_nat;

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 24. Publication date: January 2025.



24:8 Korkut, Stark, and Appel

• the proof that uint63_to_nat satisfies this funspec; and

• the functional correctness proof of the client program, relying on the fact that the foreign

functions satisfy their specs.

4 Graph predicates synthesized from descriptions of dependent types
To make a verified FFI that connects proofs across the interface, we need a specification framework

relating Coq data structures to heap-graph vertices. For each Coq inductive type, we must describe

(parametrically) how each data constructor is represented as graph edges emanating from a graph

vertex. To do that, we use the notion of a graph predicate, bundled with its invariants into a Coq

type class:

Class InGraph (A : Type) : Type :=
{ graph_predicate : graph -> outlier_t -> A -> rep_type -> Prop
; has_v : . . . (* CertiGraph-related property of graph_predicate *)
; is_monotone : . . . (* graph_predicate preserved under heap allocation *)
; gc_preserved : . . . (* graph_predicate preserved under g.c.-isomorphism *)
}.

A rep_type is a graph vertex, corresponding to the address of a boxed value (represented as

an aligned pointer, last bit 0) or an unboxed integer (represented as 2𝑛 + 1, last bit 1). That is,

graph_predicate g x p says that value x of type A is represented at vertex p in graph g.

Of course, each different Coq type A has its own different data representations; hence graph_

predicate is not a single fixed predicate, it is a Coq type class indexed by type A. The VeriFFI system

automatically constructs instances of this type class, and proves automatically (for each instance)

that graph_predicate satisfies the properties specified in the InGraph type class.

For example, consider the inductive type vec, polymorphic lists indexed by length:

Inductive vec (A : Type) : nat -> Type :=
| vnil : vec A O
| vcons : forall n, A -> vec A n -> vec A (S n).

The (type-indexed) graph predicate for this type is,

Instance InGraph_vec (A : Type) (InGraph_A : InGraph A) (n : nat) : InGraph (vec A n) :=
let fix graph_predicate_vec (n : nat) (g : graph)

(x : vec A n) (p : rep_type) {struct x} : Prop :=
match x with
| vnil => match p with repZ z => z = 0 | _ => False end
| vcons arg0 arg1 arg2 =>

exists p0 p1 p2 : rep_type,
@graph_predicate nat InGraph_nat g arg0 p0 /\
@graph_predicate A InGraph_A g arg1 p1 /\
graph_predicate_vec arg0 g arg2 p2 /\
match p with
| repNode v => compatible g v 0 (raw_fields v) [p0; p1; p2] /\

raw_mark v = false /\ raw_color v = 0 /\ raw_tag v = 0
| _ => False
end

end in {| graph_predicate := (graph_predicate_vec n); has_v := . . . ; . . . |}.

One can see that vnil is represented by a constant (z=0), and vcons n h t is represented as vertex

p in graph g, such that p has three out-edges to vertices [p0; p1; p2] (ensured by the compatible

predicate), and those also have (type-class-indexed) graph predicates. Importantly, the conjunctions

are ordinary, not separating, which permits overlap between the graph structures of p0, p1, p2.
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Building such instances is cumbersome and technical, whether or not they involve dependent

types. To build such instances automatically, we implemented generators using MetaCoq. These

generators inspect a particular inductive data type, identify the other inductive types used in that

type, infer the InGraph instances for those types, generate them if they are missing, and prove

the required lemmas about it via Ltac. (In the actual implementation, InGraph is split into two

type classes: graph_predicate is in a separate type class from the lemmas to make it easier to

automatically prove the lemmas for each instance.)

5 Reified descriptions with annotations
Graph predicates are the basic building blocks of the function specifications of generated glue

code and foreign functions. We want to generate these function specifications automatically, but

generating VST specifications directly from MetaCoq would be difficult. MetaCoq operates on the

core language of Coq, and focuses on metatheory rather than easy code generation. The notation-

heavy style of VST specifications also make it challenging to generate them from a fully deeply

embedded description.

To get around these problems, we introduce an intermediate representation between MetaCoq

and function specifications, tailored to the information we require to state a function specifica-

tion – a reified description. We will use metaprogramming to obtain MetaCoq’s representation of

inductive types and constructors to convert them into our representation; then we can generate

the specifications we need from our intermediate representation, in pure Gallina. This isolates

metaprogramming to the first half of this conversion and simplifies the specification generation

later.

This reified description is defined as:

Inductive reified (ann : Type -> Type) : Type :=
| TYPEPARAM : (forall (A : Type) `(ann A), reified ann) -> reified ann
| ARG : forall (A : Type) `(ann A), (A -> reified ann) -> reified ann
| RES : forall (A : Type) `(ann A), reified ann.

Our description type is parametrized by ann, an annotation type class, whose important instances

will be constructor annotation and foreign function annotation (see section 6 and subsection 8.1).

Thanks to ann, reified descriptions can carry extra information related to every component of the

described type. The reified description type consists of 3 constructors:

• The TYPEPARAM constructor represents type parameters of a function or a constructor. It takes a

higher-order function as an argument, where the function takes a Coq type A as an argument,

along with a guarantee that there is an instance of the ann type class, and returns another

reified description. This way the rest of the description has access to the type parameter

and its annotation instance in the context.

• The ARG constructor represents dependent arguments of a function or a constructor. ARG takes

the type of the argument, a witness that there is a type class instance for that type, and

finally a higher-order function that takes an argument and returns a reified description.

This argument allows us to express dependently typed arguments since the argument of the

higher-order function can occur in the rest of the description.

• Finally, the RES constructor represents the result type of a function. RES takes the result type

and a witness that there is an annotation instance for that type.

Our representation combines both deep embedding and shallow embedding techniques. The

description that would solve our problems had to be traversable, therefore we defined it as an

inductive type, like a deep embedding. In the arguments of each constructor, however, we see the

Coq semantics of the respective concept: for a type parameter, we have a function that takes a
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type parameter, for an argument we have a function that takes an argument, resembling a shallow

embedding.

This approach can be considered a special case of McBride [2010] or Prinz et al. [2022], except

both object and host languages are Coq in our approach. This coincidence enables us to reuse more

features of the host language than solely name binding; we can also annotate the components

of a Coq type with Coq type class instances, we can interpret a Coq type description back to its

corresponding Coq type without extra use of metaprogramming. This allows us to carry values

satisfying a type description in a type-safe way, which we use in section 6 and subsection 8.1 to

achieve reflection of constructors and foreign functions from their descriptions.

Using the reified type, we can now describe types of functions or constructors. For example,

recall the vec type of section 4; its constructors vnil and vcons are described as:

(* vnil : forall (A: Type), vec A O *)
Definition vnil_reified : reified InGraph :=

TYPEPARAM (fun (A : Type) (InGraph_A : InGraph A) =>
RES (vec A O) (InGraph_vec A InGraph_A O).

(* vcons : forall (A : Type) (n : nat) (x: A) (xs: vec A n), vec A (S n) *)
Definition vcons_reified : reified InGraph :=
TYPEPARAM (fun (A : Type) (InGraph_A : InGraph A) =>

ARG nat InGraph_nat (fun (n : nat) =>
ARG A InGraph_A (fun (x : A) =>

ARG (vec A n) (InGraph_vec A InGraph_A n) (fun (xs : vec A n) =>
RES (vec A (S n)) (InGraph_vec A InGraph_A (S n)))))).

Not only inductive constructor types, but dependently typed foreign function types are described

by reified. For example, the (non-foreign) function length : forall {A : Type}, list A -> nat

can be described as:

Definition length_desc : reified InGraph :=
TYPEPARAM (fun (A : Type) {InGraph_A : InGraph A} =>

ARG (list A) (InGraph_list A InGraph_A) (fun (_ : list A) =>
RES nat InGraph_nat)).

Consuming reified descriptions. We have many useful functions on reified descriptions, such

as the one that calculates a graph_predicate. Here we show a simpler one, that calculates the

(uncurried) argument type of a function, as a nested dependent tuple of the types of all type

parameters and arguments in the description:

Fixpoint args {cls : Type -> Type} (r : reified cls) : Type :=
match r with
| TYPEPARAM k => {A : Type & {H : cls A & args (k A H)}}
| ARG A H k => {a : A & args (k a)}
| RES _ _ => unit
end.

When we need to write a function that needs to quantify over all the arguments that a function

or a constructor takes, we can use args of a reified description to achieve that. For the description

of the length function, this would calculate:

args length_desc = {A : Type & {_ : InGraph A & {_ : list A & unit}}}

We can also write a function that calculates the result type of a function, whose implementation

is similar to args:

Fixpoint result{cls: Type->Type}(r: reified cls)(xs: args r): {A: Type & cls A} := ...
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Now, using args and result, we can write a function that gives us a type that is as close as

possible to the original function or constructor type. In other words, we want to reflect the type

description to an actual Coq type:

Definition reflect {cls : Type -> Type} (r : reified cls) : Type :=
forall (P : args r), projT1 (result r P).

The type we obtain from this function is an uncurried version of the type of length. A function

of type reflect length_desc would take a nested dependent tuple of all the arguments (and the

annotations for type parameters) and return the same result type. Here is how that function would

be implemented, where the nested tuple is pattern-matched in the parameter to fun:

Definition length_uncurried : reflect length_desc :=
fun '(A; (_; (l; tt))) => @length A l.

The reflect function provides a type-safe way for us to go from the description into the original

function. This will allow proofs by reflection, ensuring that the function we have fits the description

we were provided.

Curried vs. uncurried. We have chosen to calculate the uncurried type of a multi-argument

Coq function because the interface to C (and similar low-level languages) is more efficient and

natural with all arguments at once in the uncurried style. Another reason for this choice is that

the uncurried function type includes the annotation arguments, which are useful (for example) in

calculating the graph_predicate instance from the reified description of a type. In this section we

have instantiated the ann parameters with InGraph, but in the next sections we explain annotations

useful for constructor types and for function types.

6 Constructor specifications
To compose proofs of Coq programs that build and traverse data structures with proofs of C

programs that build and traverse those same data structures, the VST separation logic function-

specifications for construction and projection must be coherent with the Coq constructors. To

accomplish that, we introduce a novel deep and shallow constructor description, derivable automati-

cally from MetaCoq descriptions of inductive data types; and an interpretation of those constructor

descriptions into VST function specifications.

Constructor descriptions. The glue code generator (section 7) builds C functions that construct

Coq values, such as alloc_make_vec_vcons.

We calculate formal specifications of these functions in VST’s specification language, from the

reified description of the constructors. As usual, reified must be supplied with an appropriate

annotation type. For data constructors, class ctor_ann contains the information we need:

Variant erasure := no_placeholder | has_placeholder | present.
Class ctor_ann (A : Type) : Type := {field_in_graph : InGraph A; is_erased : erasure}.

In section 4, we defined the InGraph type class, which consists of a graph predicate and lemmas

about it for a given Coq type. The first field of the ctor_ann type class is an instance of InGraph for

each field of the constructor we want to annotate. This allows us to specify how the values of the

arguments are represented in the heap graph.

The second field, is_erased, tells us whether a constructor field is erased during compilation: In

CertiCoq, computationally irrelevant values, such as values of type Type or values of kind Prop, are

erased. When they are arguments to constructors or functions, their places are occupied by (unit)

placeholders. Some values are entirely erased in the memory representation, such as parameters of

inductive types.
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Now that we have a ctor_ann type to annotate our reified descriptions with, VeriFFI defines a

record that contains all the information we need about a constructor:

Record ctor_desc :=
{ ctor_name : string ; ctor_reified : reified ctor_ann
; ctor_reflected : reflect ctor_reified ; ctor_tag : nat ; ctor_arity : nat }.

Along with the name, tag, and arity of a constructor, we include the reified description of a

constructor, in the ctor_reified field. Using dependently typed records, we include the field ctor_

reflected, the reflected version of the reified description we just included in the record.

Here we can see some example ctor_desc values for the vnil and vcons constructors of the vec

inductive type:

Definition vnil_desc : ctor_desc :=
{| ctor_name := "vnil"
; ctor_reified := . . . (* like vnil_reified but with ctor_ann annotations *)
; ctor_reflected := fun '(A; (_; tt)) => @vnil A
; ctor_tag := 0; ctor_arity := 0 |}.

Definition vcons_desc : ctor_desc :=
{| ctor_name := "vcons"
; ctor_reified := . . . (* like vcons_reified but with ctor_ann annotations *)
; ctor_reflected := fun '(A; (_; (n; (x; (xs; tt))))) => @vcons A n x xs
; ctor_tag := 1; ctor_arity := 3 |}.

VeriFFI’s glue code generator defines a type class that allows easy transition from the real

Coq constructor for an inductive type, into the ctor_desc for that constructor; and we can define

instances for every constructor we generate descriptions for:

Class Desc {T : Type} (ctor_val : T) := { desc : ctor_desc }.
Instance Desc_vnil : Desc @nil := {| desc := vnil_desc |}.
Instance Desc_vcons : Desc @cons := {| desc := vcons_desc |}.

Desc does not come with a guarantee that the reified description matches the real Coq value.

However, describing the wrong constructor in the Desc instance means the verification of the

function specifications will fail later, so it can’t lead to unsoundness.

Constructor descriptions are generated automatically; their generation is implemented mostly in

MetaCoq and Ltac.

7 Operational glue code generation
CertiCoq Generate Glue generates C-language data-structure traversal and constructor functions

for a user-specified set of Coq Inductive types:

CertiCoq Generate Glue [ vec , nat ].

For instance, for the vec type, VeriFFI generates these functions:

value make_vec_vnil(void) { return (value) 1; }

value alloc_make_vec_vcons
(struct thread_info *tinfo, value arg0, value arg1, value arg2) {

value *argv = tinfo->alloc;
argv[0] = (value) 3072; argv[1] = arg0; argv[2] = arg1; argv[3] = arg2;
tinfo->alloc = tinfo->alloc + 4; return argv + 1;

}

Unboxed constructors, such as vnil, are represented as (odd) integers. Boxed constructors, such

as the vcons, are represented as pointers to memory locations that store the constructor arguments.

This memory can exist either within the CertiCoq runtime’s garbage-collected memory region (the
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CertiCoq heap) or as “outliers” in the C heap. The alloc_make_vec_vcons function uses the thread-

info to find the next unused word of the g.c. allocation space tinfo->alloc. It is a precondition of

this function that at least 4 words of space are available (for the header, the length index, the head,

and the tail); prior to calling the function, this precondition may be tested by a quick comparison,

or established (if that fails) by calling the garbage collector.

VeriFFI formally specifies and verifies the C code of these glue functions. For each glue code

function, VeriFFI generates a VST funspec from the constructor description (ctor_desc), and then

automatically produces a VST correctness proof. We will not show the details of glue-code funspecs,

but we explain VST funspecs for foreign functions in subsection 9.1.

Discriminating Coq constructors. For each Coq inductive type, VeriFFI generates a C function

that allows the user to determine which Coq constructor had been used to create a given value. For

example, for the vec type, the function would be:

size_t get_vec_tag(value v) {
if (is_ptr(v)) /* that is, if v is an even number */

switch (((size_t*)v)[-1]&255) { /* fetch header, mask out all but constructor tag */
case 0: return 1; default: /* unreachable */;
/* there would be more cases if more boxed constructors than vcons */ }

else switch (v >> 1) { /* strip off the tag bit */
case 0: return 0; default: /* unreachable */;
/* there would be more cases if more unboxed constructors than vnil */ }

}

This function returns the tag of the constructor used to create this value, an index based on the

order in which the Coq Inductive listed the constructor names.

Extracting arguments of a Coq constructor. Given a Coq value of an inductive type, to access

its constructor arguments, we have a C function that works on values of any inductive boxed

constructor:

value *get_args(value v) { /* this function can always be inlined */
return (value *) v;

}

Effectively this casts a pointer into an array of values, so the arguments of an arity-n constructor

can be accessed with get_args(v)[0], ..., get_args(v)[n-1].

Calling Coq closures. The CertiCoq compiler represents Coq functions as closures at runtime,

which consist of a function-pointer and an environment-pointer. To call these from C, one must

fetch the code-pointer, fetch the environment pointer, and pass the environment as one of the

arguments to the code-pointer function. We have a C function that implements this protocol:

value call(struct thread_info *tinfo, value clo, value arg) {
value f = ((struct closure *) clo)->func;
value envi = ((struct closure *) clo)->env;
return ((value (*)(struct thread_info *, value, value)) f) (tinfo, envi, arg);

}

8 Foreign function specifications
When proving correctness of a Coq program that calls functions implemented in C and proved

correct in VST, the VST function specification must be coherent with an appropriate Coq functional

model. In this chapter we show how to generate a coherent VST function specification from a

reified function description. Coherence on the Coq side is assured by reflection. Coherence on the

C side is assured by a Coq proof using VST’s program logic.
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8.1 Foreign function descriptions
Foreign functions may use Coq inductive types and also user-defined foreign types such as 63-bit

integers or packed strings that are not (efficiently) expressible in Coq inductive types. Since reified

descriptions allow us to annotate every component of a function type, we can define an annotation

type that contains additional information about the foreign types we may need to use.

A user of our system will define their foreign types and foreign functions as axioms in Coq. In

section 3 we showed axioms stating the existence of a C representation and operations on 63-bit

unsigned integers; and the corresponding functional model FM:

Module C : UInt63.
Axiom t : Type.
Axiom from_nat : nat -> t.
Axiom to_nat : t -> nat.
Axiom add : t -> t -> t.
End C.

Module FM <: UInt63.
Definition t : Type := {n : nat | n < 2^63}.
Definition from_nat (n : nat) : t := ...
Definition to_nat (x : t) : nat := ...
Definition add (x y : t) : t := ...
End FM.

The C module contains Coq axioms for the foreign types and Coq axioms for foreign functions

that may use these foreign types. These functions will be realized by C functions through the FFI.

The user must justify all these axioms by defining a type C.t and Coq functions C.from_nat (etc.)

such that an isomorphism between modules C and FM can be proved.

To connect the functional model to the C type in a reified description of a foreign function such

as add, we provide an annotation to reified. For constructor descriptions we instantiate the ann

parameter with ctor_ann, and for functions, with foreign_ann:

Class foreign_ann (model : Type) : Type :=
{ foreign : Type
; foreign_in_graph : ForeignInGraph model foreign
; foreign_iso : Isomorphism model foreign
}.

This provides a link between the model type and the foreign type, as well as the graph_predicate

representation of the foreign type and an isomorphism between the two types. This isomorphism is

needed for user-level proofs about the behavior of the foreign function, which acts on the foreign

type as if it were acting on the model type.

The foreign type (such as C.t) has a graph_predicate that’s (typically) a single vertex, in contrast

to the graph predicate for the functional model FM.t which is (in our example) a Peano chain of

unary constructor graph vertices. To connect these, in a way that the Coq type class system can

properly instantiate the foreign_in_graph component of a foreign_ann, we use the following type

class:

Class ForeignInGraph (model foreign : Type) : Type := model_in_graph : InGraph model.

Here, the model_in_graph field is the (single-vertex) graph_predicate of the foreign (representation)

type, masquerading as a graph_predicate of the model type; this helps us guide typeclass resolution

in the presence of isomorphisms.

The isomorphism class is standard:

Class Isomorphism (A B : Type) : Type :=
{ from : A -> B
; to : B -> A
; from_to : forall (x : A), to (from x) = x
; to_from : forall (x : B), from (to x) = x
}.
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For nonforeign (transparent) types, we define the isomorphism transparently as the identity, so

the user can use this fact in Coq correctness proofs. For abstract (opaque) types, we cannot let the

user assume that the type is interchangeable with its functional model, only isomorphic:

Definition transparent {A : Type} `{IG_A : InGraph A} : foreign_ann A :=
{| foreign := A; foreign_in_graph := IG_A; foreign_iso := Isomorphism_refl |}.

Definition opaque {A B : Type} `{IG_A : ForeignInGraph A B} `{Iso : Isomorphism A B}
: foreign_ann A :=

{| foreign := B; foreign_in_graph := IG_A; foreign_iso := Iso |}.

In practice, we typically instantiate foreign_isowith the identity isomorphism, Isomorphism_refl.

That’s because the isomorphism is there more to enforce opaqueness than to relate two different

representations. Relating different representations is done in VST funspecs by graph_predicate

instances, as section 9 will explain.

As we will show, from a reified description, we can produce a VST funspec that specifies the

correctness of the C function with respect to the functional model (e.g., FM.add) operating on

the InGraph representations. Therefore, every type Axiom is justified by an InGraph representation

predicate, and every foreign function Axiom is justified by a VST funspec and proof.

9 A verified foreign function interface
Using these reified descriptions of constructor types and of foreign-function types with functional

models, VeriFFI sets up the framework for combining C code and Coq code. To relieve the user from

boilerplate, it automatically generates the header file prims.h (containing C function prototypes)

that informs prims.c (written by the user, containing C functions).

For each Coq inductive type, VeriFFI generates "glue" operations that allow C code to construct

and traverse it. On the verification level, VeriFFI defines predicates for the representation of Coq

data types, as well as proofs of general operations on these datatypes. It hence helps the user to

preserve an abstraction barrier allowing mostly language-local reasoning.

Primitive functions that do not use the CertiCoq heap—such as uint63_add—are straightforward

to specify and prove in VST. It is standard in VST (independent of VeriFFI) that the user may

supply (for each abstract type) a representation relation that relates the functional model of a type

(such as Coq nat) to its layout in the C program’s data-structure memory. In VeriFFI’s use of VST,

this representation relation takes the form of a custom graph_predicate show how, for example,

63-bit integers or packed bytestrings are represented as single vertices in the graph; the purpose

of foreign_in_graph (subsection 3 is to correctly index Coq’s type-class resolution to select that

graph_predicate.

But VST function-specifications and proofs get more complicated once we have to refer to the

CertiCoq heap: we have to ensure that certain invariants are kept. A key contribution of this paper

is in both stating these invariants in an abstract way and ensuring that reasoning is independent of

the implementation of these invariants.

The conditions of the garbage-collected heapwill typically appear as the separation logic predicate

full_gc g t_info roots ti gv, describing the current state of the data graph g, a thread info t_info,

the roots, the address of the thread info ti, and the global variables gv. It further comes with a

whole list of consistency conditions.

To reason about the graph, we will use propositional
6
statements on the existence of certain

Coq values in the graph; for example, graph_predicate g n p states that the natural number n is

represented in the graph g at position p : rep_type. This graph_predicate statement is different

6
Recall that vertex-in-graph is a “pure propositional" predicate, while graph-in-heap is a separation-logic predicate.
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Definition uint63_to_nat_spec : ident * funspec :=
DECLARE _uint63_to_nat
WITH gv : gvars, g : graph, roots : roots_t, x : {_: FM.t & unit},

p : rep_type, ti : val, t_info : thread_info
PRE [ thread_info; int_or_ptr_type ]

PROP (@graph_predicate FM.t g (projT1 x) p)
PARAMS (ti, rep_type_val g p)
GLOBALS (gv)
SEP (full_gc g t_info roots ti gv; mem_mgr gv)

POST [ int_or_ptr_type ]
EX (p' : rep_type) (g' : graph) (roots': roots_t) (t_info': thread_info),

PROP (@graph_predicate nat g' ( FM.to_nat (projT1 x) ) p';

gc_graph_iso g roots g' roots';
frame_shells_eq (ti_frames t_info) (ti_frames t_info'))

RETURN (rep_type_val g' p')
SEP (full_gc g' t_info' roots' ti gv; mem_mgr gv).

Lemma body_uint63_to_nat : semax_body Vprog Gprog f_uint63_to_nat uint63_to_nat_spec.
Proof. ... Qed. (* this theorem states that the function body satisfies its spec *)

Fig. 3. Specification and proof of uint63_to_nat: Most parts will be identical in any specification interacting
with Coq data structures; only the highlighted parts are specific to uint63_to_nat. The type of x in the
WITH clause (which is isomorphic to FM.t) comes from the args function’s trivial uncurrying of a 1-argument
function. FM.t is the dependent product {n: nat | n<2^63}, so the PROP part of the precondition ensures
the upper bound on n. The graph_predicate (at the typeclass instance for FM.t) ensures p is actually an
unboxed integer, i.e., it chooses that constructor of the rep_type inductive datatype. Therefore rep_type_val
g p is a 64-bit integer value. In the postcondition, the graph_predicate instance for nat ensures that p' is a
pointer to a Peano natural number in the graph g'. (Not shown are two arguments of full_gc that are not
essential to the explanations in this paper: permission-share for the graph, and an outlier set.)

for each Coq datatype, using type classes that VeriFFI generates automatically as explained in

section 4. To be able to use this statement in the presence of garbage collection, it must be invariant

under graph isomorphism, so we use the gc_preserved component of InGraph.

As long as we stay at this abstraction level, the proofs work straightforwardly in VST. For

example, the proof of uint63_to_nat_spec proceeds by stepping through the propositions while

keeping certain invariants about the graph g (see subsection 9.2). During each step of the loop, the

garbage collector might run, producing new graph g', proved isomorphic to g by the specification

of the garbage_collect function.

9.1 VST function specification
Based on the reified description of the type and functional model of uint63_to_nat, VeriFFI

computes a VST function specification:

Definition uint63_to_nat_spec : ident * funspec := fn_desc_to_funspec uint63_to_nat_desc.

That is, this aspect of glue code generation is not simply a “script” in Python or Ltac, it can be

calculated and reasoned about within the logic. With a bit of automatic simplification, this particular

funspec comes out as shown in Figure 3. As in any VST funspec, the WITH clause quantifies over all

the logical (Coq) variables to be shared between precondition and postcondition. If the caller of

this function can find any instantiation of the WITH variables for which the precondition is satisfied,

then the function will guarantee to satisfy the postcondition with the same instantiation.
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In this case, the WITH variables are (gv) the C program’s static global data addresses; (g) the

graph; (roots) all the pointers in the stack-of-frames, i.e., live local heap-pointer variables of

currently stacked function calls; (x) the functional model of the input to the function; (ti) the

pointer to the heap-management data-structure; and (t_info) a description of the contents of the
heap-management data structure.

We choose C.t to be equal to FM.t; that is, we instantiate foreign_iso with the identity isomor-

phism. The purpose of having an opaque isomorphism was just to prevent clients from performing

uint63 operations on nat values, or vice versa.

The C function uint63_to_nat converts between two very different number representations in

the C memory. This difference in representations is manifest in the function-spec by the choice of

two different instances of the InGraph typeclass, that is, graph_predicate instantiations for FM.t

and nat respectively in precondition and postcondition. When these definitions are unfolded, it

gives the VST specification of a function that must convert a 63-bit integer (with tag bit) to a chain

of Peano S constructors.

In detail, this function’s precondition says,

PRE [ thread_info; int_or_ptr_type ] the C function takes two arguments: a pointer

to a thread-info data structure, and a heap-value (a word that may be either an odd integer

or a word-aligned pointer).

PROP(. . . ) the input-argument graph-vertex p corresponds to the input functional-model

value x as described above.

PARAMS(ti, rep_type_val g p) The values of the C function parameters are the address

of the thread-info struct and the C representation of the graph-vertex p. A rep_type such as p

can be one of three things: a boxed vertex in the graph (repNode v), an outlier, or an unboxed

vertex in the graph (repZ z). The function rep_type_val translates this representation to a C

value; in this case the graph_predicate instance in the PROP part of the precondition has

forced p to be a repZ, a C integer value.

SEP(full_gc g . . . , mem_mgr . . . ) The graph is indeed represented in memory as

a separation-logic “resource,” with the garbage-collector’s heap-management data structure.

Separately, the malloc/free memory manager (mem_mgr) is also in the heap, in case the C

program needs to use it for non-Coq data.

The postcondition says,

POST [ int_or_ptr_type ] the C function returns a heap-value.

EX p' g' roots' t_info' there will exist some graph vertex p' representing the newly

created nat, a new graph g' (resulting from possibly garbage-collecting the graph g as well

as adding the new vertex p'), and new roots and thread-info (since garbage collection may

have forwarded the old roots).

PROP(. . . ) the new vertex p' is the root of a data structure in graph g' representing the

new nat; the new graph g' contains an isomorphism of the old graph g; and the stack of

frames is the same (modulo forwarding of root-pointers by the g.c.).

RETURN(rep_type_val g' p') the C function’s return value is the address in memory for

graph vertex p'.

SEP(. . . ) the new graph g' is represented in memory, along with the representation of the

updated g.c. management data t_info' and the malloc-free memory manager.

The VST funspec that VeriFFI generates says, “the C function implements its functional model.”

You can see the functional model in the PROP clause of the postcondition; in this case, it is

FM.to_nat. That is, the new graph vertex p' is supposed to be a representation (in the g.c. graph) of
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the functional model applied to the input argument x. (The projT1 applied to x is an artifact of the

degenerate uncurrying of a 1-argument function.)

Most of the predicates used here may be found in any function specification that interacts with

CertiCoq/VeriFFI data structures: C globals, a graph, roots of the graph in the C “stack of frames”,

permission-share for the heap, the address and contents of the thread-info structure. Whenever we

interact with (CertiCoq-compiled) Coq code we require full_gc, ensuring wellformedness of the

current state. In more detail, full_gc g t_info roots ti gv contains

• the spatial representation of the thread-info and the graph;

• C global variables used by the collector;

• several wellformedness and compability conditions on the graph, e.g. that there are no

backwards pointers and the graph is coherent with the roots and outliers.

9.2 An example proof
We repeat here from Figure 2 the C implementation of uint63_to_nat that constructs a Peano

natural number by wrapping 𝑛 heap-allocated S constructors around an O constructor:

value uint63_to_nat (struct thread_info *tinfo, value t) {
uint64 i = ((uint64)t)>>(uint64)1; /* strip off the tag */
value temp = make_nat_O(); /* create the base case */
while (i) {

if (tinfo->limit - tinfo->alloc < 2) { /* test whether we need to garbage-collect */
value roots[1]={temp}; /* register the root-pointer temp */
struct stack_frame fr = {roots+1,roots,tinfo->fp};
tinfo->fp= &fr;
tinfo->nalloc = 2; /* state the need for 2 words */
garbage_collect(tinfo);
temp=roots[0]; tinfo->fp=fr.prev; /* fetch temp back and pop the frame stack */

}
temp = alloc_make_nat_S(tinfo, temp); /* wrap an S constructor around temp */
i--;

}
return temp;

}

The user must then use VST to prove that this C function (whose abstract syntax in Coq we call

f_uint63_to_nat) satisfies the uint63_to_nat_spec—a lemma of the form,

Lemma body_uint63_to_nat : semax_body Vprog Gprog f_uint63_to_nat uint63_to_nat_spec.
Proof. ... Qed.

Proof. We start by proving that the initial value of temp contains a representation in graph g of

the natural number 0, that is, graph_predicate g 0 p. Calling make_nat_O provides us with a vertex

p satisfying this condition. Behind the scenes, p will simply be a leaf in the graph, represented by

repZ; this information is abstracted from the user.

For the while loop, we require a loop invariant. This one states that there exists v : rep_type,

m : nat, g' : graph, thread info t_info', and a set of roots' such that m≤n, v is the nat representa-
tion of n in graph g' (graph_predicate g' m v), the new graph and forwarded roots are isomorphic

to the old graph and original roots (gc_graph_iso g roots g' roots'), and all the g.c. invariants

hold on the new state (full_gc g' t_info' roots' ti gv).

Before the while loop, the loop invariant is easily satisfied by using the postcondition of the first

two commands (assigning i and temp) and reflexivity of graph isomorphism. Similarly, it is very

straightforward in VST to prove that the loop postcondition implies the function postcondition.
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In the loop body, we first check whether we still have enough space on the heap and call the

garbage collector if we do not. The correctness proof for CertiGC’s garbage_collect handles, among

other things, the stack of root-frames starting at tinfo->fp and the establishment of an isomorphic

graph g' with enough headroom, which still satisfies full_gc g' t_info' roots' ti gv and in

which constructions that were saved in the roots are preserved. In this case, those constructions

include temp, which was saved in the topmost frame.

In the loop body after the g.c. test, a new S constructor is allocated by calling alloc_make_nat_S,

whose precondition is that tinfo->limit - tinfo->alloc ≥ 2, which has been established by the

if-statement. Afterwards, i is decreased by 1. The loop invariant is then reestablished, using the

postcondition of the funspec for alloc_make_nat_S and transitivity of the isomorphism predicate.

VeriFFI Support. To assist with proofs such as the one shown here, VeriFFI provides a library of

g.c.-graph isomorphism properties for use in proofs of foreign functions and provides VST-Floyd

[Cao et al. 2018] tactical provers for common patterns such as those used here.

Automatically generated glue functions (that construct and traverse Inductive types) are proved

fully automatically by a tactic that uses some of the same techniques as shown here. Note that,

different to this section, these glue functions go below the abstraction barriers – and hence the

proofs have to go below these abstraction barriers and to technical graph manipulations as well:

For example, to prove alloc_make_nat_S correct, it has to be proven that the newly generated graph

still satisfies all the wellformedness conditions in full_gc g' t_info' roots' bnti gv.

10 Proving client programs correct using functional models
VeriFFI uses functional models in Coq as specifications of (foreign) functions (operating on foreign

abstract types). Recall that the functional model and the actual C representation are connected by

isomorphism (section 8). In our example, the functional model of 63-bit int is a range-bounded

Peano natural number (a dependent product type), and the functional models of the operations

are Coq functions on that type. Proofs of correctness properties of client programs can make use

of these functional models. For example, one can easily prove that the prog of Figure 2, which

converts 1 and 2 to C.t, then adds them, then converts back, results in 3.

Here we show how, using functional models in a client-side proof, one can show that C.add is

associative:

Lemma add_assoc : forall (x y z : nat),
C.to_nat (C.add (C.from_nat x) (C.add (C.from_nat y) (C.from_nat z))) =
C.to_nat (C.add (C.add (C.from_nat x) (C.from_nat y)) (C.from_nat z)).

Proof.
intros x y z.
(* Step 1: VeriFFI tactic to unpack isomorphisms between C representation and FM *)
props to_nat_spec. props add_spec. props from_nat_spec. foreign_rewrites.
(* Proof goal is now,
FM.to_nat (FM.add (FM.from_nat x) (FM.add (FM.from_nat y) (FM.from_nat z))) =
FM.to_nat (FM.add (FM.add (FM.from_nat x) (FM.from_nat y)) (FM.from_nat z)) *)

(* Step 2: an ordinary Coq proof about the functional model *)
unfold FM.add, FM.from_nat, FM.to_nat.
unfold proj1_sig.
rewrite <- !(Nat.Div0.add_mod y z), <- !(Nat.Div0.add_mod x y), <- !(Nat.Div0.add_mod).
f_equal; apply Nat.add_assoc.
all: apply Nat.pow_nonzero; auto.

Qed.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 24. Publication date: January 2025.



24:20 Korkut, Stark, and Appel

11 A second example: packed bytestrings
In this section, we give another example of a foreign function that manipulates an abstract type.

The Coq string type is defined as a list of ascii, each of which is record of 8 booleans:

Inductive ascii := Ascii : bool->bool->bool->bool->bool->bool->bool->bool->ascii.
Inductive string := EmptyString : string | String : ascii -> string -> string.

Each String constructor is represented as three 64-bit words (a header and two pointers); each Ascii

constructor is nine words, in which each boolean is an unboxed constructor, with 1 representing

true and 3 representing false. In all, 96 bytes per ascii character.

As a foreign type with foreign functions, we can provide a packed bytestring representation, in

which each character occupies one byte, as in OCaml [Minsky and Madhavapeddy 2022, Chapter

23, “string values”]. The header tells the number of 8-byte words, and the last byte of the last word

tells how many bytes in that word are meaningful. The special tag 252 indicates that none of the

words in the record are pointers—none should be traversed by the garbage collector—so they don’t

need to use the last bit of each word to distinguish pointers from integers.

“interface”

2 252
i  n  t  e  r  f  a  c
e              (1)

The CertiCoq code generator cannot manipulate the contents of a packed string, because it is

not built using ordinary inductive data types. Instead, we can implement it as an abstract datatype,

with operations implemented in C and specified using VeriFFI.

11.1 Description of the pack function
With the type bytestring, the user has chosen a functional model for that type, as a vehicle for

describing the functional models of its operations: FM.bytestring := string. Now the user provides

a Coq type for pack : string -> C.bytestring, as well as a functional model FM.pack. The type of

FM.pack is completely determined by the type of pack, as string -> FM.bytestring, which is to say

string -> string; but what function of that type should it be? Since bytestrings are intended to be

an isomorphic (but more efficient) representation of strings, the most straightforward specification

choice is the identity function: FM.pack (x : string) : FM.bytestring := x. Unlike C.bytestring

and C.pack, which are opaque to the Coq-side client, FM.bytestring and FM.pack are transparent

definitions so the client-side proofs can reason about behavior.

With all these components user-specified, VeriFFI automatically generates the reified description:

Definition pack_desc : fn_desc :=
{| type_desc := ARG string _ (fun _ : string => RES FM.bytestring _)
; foreign_fn := C.pack
; model_fn := fun '(s; _) => FM.pack s
; f_arity := 1
; c_name := "pack"
|}.

Using VeriFFI’s args function (presented in section 5), we can compute the argument type of

pack. That is, args pack_desc = {_ : string & unit}. This is isomorphic to string, as we would

expect. And therefore, model_fn pack_desc (shown as a field of pack_desc) simply applies FM.pack

to its argument, modulo the type isomorphism.

So, the functional model FM.bytestring is simply string, and the functional model FM.pack is sim-

ply the identity function. In proofs of the Coq client functions that call pack returning results of type
C.bytestring, one can use the functional model as a reasoning principle by isomorphism between

C.bytestring and FM.bytestring, but the Coq-side client does not knowwhether type C.bytestring
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is equal to FM.bytestring (and hence it cannot possibly know whether C.pack=FM.pack). As we will

explain, in the VST proofs, we do choose C.bytestring := FM.bytestring and C.pack := FM.pack.

11.2 Implementation of the pack function
We have a hand-written C implementation of the pack function that works as follows:

(1) Traverse the string to calculate its length len.
(2) Test that at least 𝑛 = 1 + ⌈(len + 1)/8⌉ words are available in the g.c. “nursery”.

(3) (If not, save live pointers into the stack-of-frames, call the garbage collector, fetch live

pointers from the stack-of-frames.)

(4) Reserve 𝑛 words of space in the nursery (by adjusting the heap management data structure).
(5) Traverse the string again, translating records-of-8-booleans into bytes, and storing those

bytes into the new space.

(6) Store the header word and trailer bytes (as in the “interface” example).

This function is a bit tricky, because during the traversal at step 5, the heap-management data

structure is not coherent with the graph (because one record has been removed from the former

but not yet added to the latter). No native Coq function would ever read from the graph during

such an incoherence. The proof takes care to accommodate this slightly relaxed invariant.

11.3 Specification of the pack function
As usual, VeriFFI computes the VST funspec for pack from the reified description and functional

model, producing something equivalent to the following:

Definition pack_spec : ident * funspec :=
DECLARE _pack

WITH gv : gvars, g : graph, roots : roots_t, x : {_: string & unit},

p : rep_type, ti : val, t_info : thread_info
PRE [ thread_info; int_or_ptr_type ]

PROP (@graph_predicate string g (projT1 x) p)

PARAMS (ti, rep_type_val g p)
GLOBALS (gv)
SEP (full_gc g t_info roots ti gv; mem_mgr gv)

POST [ int_or_ptr_type ]
EX (p' : rep_type) (g' : graph) (roots': roots_t) (t_info': thread_info),

PROP (@graph_predicate bytestring g' (FM.pack (projT1 x)) p';

gc_graph_iso g roots g' roots';
frame_shells_eq (ti_frames t_info) (ti_frames t_info'))

RETURN (rep_type_val g' p')
SEP (full_gc g' t_info' roots' ti gv; mem_mgr gv).

This funspec is much like the one described in subsection 9.1, and only the highlighted parts

differ: the abstract type is bytestring rather than C.t, and the functional model is string rather

than nat. And as in that example, although bytestring has a very different representation than

string, this difference is not reflected in the foreign_iso component of the InGraph class, which is

just an identity isomorphism. The difference in representations is accomplished by using different

type-class instances for graph_predicate in the precondition (where it is for string) and in the

postcondition (where it is for bytestring). Recall that graph_predicate describes how a Coq type

is laid out in the graph; the bytestring instance uses just a single graph-vertex containing all the

bytes of data, whereas the string instance uses a chain of Ascii constructors. And even though

bytestring is convertible with string, typeclass resolution is by name, not by value.
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The user must then use VST to prove that the hand-written C function satisfies pack_spec. The

proof is hundreds of lines long. The remark above that "this function is a bit tricky" translates to

extra work proving that this trickiness is done correctly.

12 Programs with mutation or effects
12.1 Mutable arrays
Purely functional data structures are easier to reason about than imperative data structures. However,

they are inherently inefficient for some use cases [Ben-Amram and Galil 1992; Okasaki 1999;

Pippenger 1996; Ponder et al. 1988], therefore we inevitably need mutable data structures.

Mutable data structures à la OCaml break purity, which is why we only want to allow them in

a controlled way. One way to implement them without breaking purity is to implement them as

monadic effects, following the Haskell tradition [Peyton Jones and Wadler 1993; Wadler 1992]. This

way, effectful programs are expressed as monadic actions but their effects are not executed until

the execution is invoked, which keeps values pure.

A simple monadic interface for a single monomorphic (on element type elt) mutable array can

be defined as such in Coq:

Module Type Array.
Parameter M : Type -> Type.
Parameter pure : forall {A : Type}, A -> M A.
Parameter bind : forall {A B : Type}, M A -> (A -> M B) -> M B.
Parameter set : nat -> elt -> M unit.
Parameter get : nat -> M elt.
Parameter runM : forall {A : Type} (len : nat) (init : elt), M A -> A.

End Array.

Here we have a monad type, followed by return and bind functions for monadic values. We also

have operations for assigning a value to an index in the array, and getting the value at an index in

the array. Finally, we have a runM function, which takes the length of the array and a default value

for undefined indices, executes a monadic action, and returns the final result. The runM function

has local mutation but is externally pure; a client of runM cannot tell if it has local mutation inside.
7

C implementation. We define a Coq module for the foreign types and functions for mutable arrays:

Module C <: Array.
Inductive M : Type -> Type :=
| pure : forall {A : Type}, A -> M A
| bind : forall {A B : Type}, M A -> (A -> M B) -> M B
| set : nat -> elt -> M unit
| get : nat -> M elt.

Axiom runM : forall A (len : nat) (init : elt), M A -> A.
End C.

7
Launchbury and Peyton Jones [1994], in their presentations of the ST monad in Haskell, also achieve the local mutation

and external purity but for a more versatile interface that allows creating multiple mutable references in the same monad.

In their approach, a clever trick based on rank-2 types forbids mutable references to escape the monad. In our approach, we

never expose the mutable reference as our monad only operates on one monad. Our approach is more similar to that of

Sakaguchi [2020], but we forgo the intrinsic guarantees about indices for the sake of simplicity and use a default element

instead.
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We implement operations in the mutable array monad as a free monad with extra constructors for

the operations.
8
The only foreign function in this module that will be backed by a C implementation

is runM.

We will elide the full C implementation of runM here, although we will provide an explanation in

prose. In the C implementation of runM, we create a block in the CertiCoq heap with the length len,

traverse the monadic action of the inductive type C.M, and return the result. When we see a set

action, we want to find the right slot in the array and assign the new value in that slot. However, we

have to notify the garbage collector when we update a mutable reference, because the generational

garbage collector operates on the assumption that older records never point to newer records,

unless the addresses of those references are recorded in a remembered set [Lieberman and Hewitt

1983].

A functional model and correctness. As in subsection 3.2, we will define a functional model for

mutable arrays and discuss how its C implementation and its client programs can be verified.

Following the Haskell tradition [Peyton Jones and Wadler 1993], we define the functional model

of the monad M as a function from the state to a pair of a result and the new state. In the state, we

model the array with a linked list, and get/set the element at a particular index functionally.

Given that the only foreign function in the C module is C.runM, we only have to generate and

prove a VST spec about C.runM. There is nothing particularly special about C.runM, we can generate

a fn_desc for it, compute a VST spec using fn_desc_to_funspec, and attempt to prove it correct.

However, we have not yet done the VST proof that the C function satisfies this funspec.

In section 10 we proved properties about client Coq programs of integers, now we want to do the

same for client Coq programs of mutable arrays. In the example below, we prove that first setting

an index of an array to a value and then getting the value at that index, gives the same final result

(but not the same state). Our proof once again resembles that of Swierstra and Altenkirch [2007],

since we use the functional semantics in our functional model to reason about mutable state:

Lemma set_get :
forall (n len : nat) (bound : n < len) (init : elt) (to_set : elt),

(C.runM len init (C.bind (C.set n to_set) (fun _ => C.get n)))
= (C.runM len init (C.pure to_set)).

Proof.
intros n len bound init to_set.
(* Step 1: VeriFFI tactic to unpack isomorphisms between C representation and FM *)
props runM_spec. foreign_rewrites.
props bind_spec. props pure_spec. foreign_rewrites.
props set_spec. props get_spec. foreign_rewrites.
(* Proof goal is now,

(FM.runM len init (FM.bind (FM.set n to_set) (fun _ => FM.get n)))
= (FM.runM len init (FM.pure to_set)) *)

(* Step 2: an ordinary Coq proof about the functional model *)
...

Qed.

12.2 Programs with input/output
We can use the same free monad idea for expressing effectful programs. For instance, we can

extend the bytestring example with an effectful interface to print bytestrings from stdout and

8
Technically, Coq’s module system does not allow inductive types and their constructors to act as fields outlined by a

Module Type. In the actual implementation, we declare the inductive type and its constructors with different names and

later create aliases.
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read bytestrings from stdin. We will follow the same recipe: first define a Module Type that has a

monadic type and monadic actions, then define a C module that has an inductive type to represent

the free monad.

We diverge from that recipe here, as we cannot have an equivalent of runM for this monad—as

our monadic actions here depend on the real world and therefore are not pure. Each call to runM

would have to create a different “outside world” to interact with. Therefore, we will not expose

runM to the Coq side. We will implement it in C, and we will call it only once from the C side. Since

there is no Coq reference to runM, we will have to write the VST specification of it by hand. Writing

this specification and proving it requires dealing with side effects using VST, which is quite capable

of accommodating proofs about effectful C programs. We leave the VST specification and proof of

runM as future work.

This choice also affects how we prove properties about client programs. When we stated the

set_get lemma about mutable arrays, we claimed the equivalence of two monadic actions, by calling

C.runM on both of those programs, then asserting that they were equal using Coq’s standard equality

=. However, there is no runM function for the effectful monadic actions. To state the equivalence of

monadic actions in the absence of runM, we define our own relation that states the equivalence of

two monadic programs. We need the new relation to exist both in the C module and FM module in

Coq, therefore it makes sense to add it to the interface. We add

Parameter same_behavior : forall {A : Type}, M A -> M A -> Prop.

to the Module Type we define for bytestrings. While we do not need to provide a C implementation

for this function, we will have an Axiom for it in the C module and a functional model definition

for it in the FM module. We can then state the equivalence of two monadic programs using this

relation. Here we state that a program that prints two bytestrings sequentially behaves the same as

a program that appends those two bytestrings and prints it once:

Lemma print_steps :
forall (a b : C.bytestring),

C.same_behavior (C.bind (C.print a) (fun _ => C.print b))
(C.print (C.append a b)).

In the proof of this lemma, we can rewrite the calls to the components from the C module to their

counterparts in the FM module. Once we get to a proof goal entirely about the functional model, we

can proceed with the proof as if it is about a purely functional program.

Although we present a simple, inductive interface in this section for presentation purposes,

we believe our system can express other styles of monadic interfaces described in the literature.

FreeSpec [Letan et al. 2021] allows effects to be represented modularly, while interaction trees [Xia

et al. 2019] allow reasoning about possibly nonterminating effectful programs through a coinductive

interface. Nigron and Dagand [2021] and Carnier et al. [2024] pave an alternative path for reasoning

about effects, in which custom monads get domain-specific reasoning with custom program logics.

13 Soundness
Assuming that the CertiCoq compiler is correct, then the VeriFFI system is sound. In this section

we explain the basis for that claim, and how (in future work) it could be proved.

We rely primarily on the verified-in-Coq soundness of the Verified Software Toolchain [Appel

et al. 2014]. Here we explain the VST soundness theorem informally. Suppose one has a set of

functions named 𝑖0, 𝑖1, . . . , 𝑖𝑛−1 with function-bodies (including headers) 𝑓0, . . . , 𝑓𝑛−1 and funspecs

𝑠0, . . . , 𝑠𝑛−1. We collect the funspecs into a context Γ = [(𝑖0, 𝑠0); . . . ; (𝑖𝑛−1, 𝑠𝑛−1)] . Suppose we prove
the correctness of each function individually:

semax_body Γ 𝑓𝑗 (𝑖 𝑗 , 𝑠 𝑗 ) that is, Γ ⊢ {pre(𝑠 𝑗 )}𝑓𝑗 {post(𝑠 𝑗 )}
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such as the lemma body_pack mentioned in subsection 9.2. Whenever a function-body 𝑓𝑗 calls some

function named 𝑖𝑘 , the correctness proof can assume the specification (𝑖𝑘 , 𝑠𝑘 ) for that function
found in assumption Γ (even if 𝑗 = 𝑘 , i.e., recursion is supported by VST’s step-indexed semantic

model). Suppose the initial state when calling function 𝑓0 satisfies the precondition pre(𝑠0). Then
executing function 𝑓0 in the operational semantics of CompCert C will not crash, and if it terminates,

the resulting state will satisfy the postcondition post(𝑠0). VST is a logic of partial correctness, and

does not prove termination—this is a limitation of higher-order impredicate program logics based

on step-indexed models (such as VST and Iris [Jung et al. 2018]), but in return one gets powerful

reasoning about pointers, function-pointers, and recursion.

When using VeriFFI, we have:

• The top-level Coq function𝑔0 that has internal functions𝑔𝑛+1, . . . , 𝑔𝑛+𝑚 , all of which are clients

of foreign functions named 𝑖1, . . . , 𝑖𝑛 ; that is, the 𝑖1, . . . , 𝑖𝑛 are free variables of 𝑔0. Function 𝑔0
is compiled by CertiCoq into a C function 𝑓0 with auxiliary functions 𝑓𝑛+1, . . . , 𝑓𝑛+𝑚′ , which

are not internal to 𝑓0 because they have been hoisted to top level after closure conversion;

and𝑚′
may differ from𝑚 because of optimizations and transformations by the CertiCoq

compiler.

• C functions 𝑓1, . . . , 𝑓𝑛 with names 𝑖1, . . . , 𝑖𝑛 . These functions have functional models 𝑔1, . . . , 𝑔𝑛
from which VeriFFI automatically generates funspecs 𝑠1, . . . , 𝑠𝑛 as described in subsection 9.1.

• One garbage_collect function written in C, and the auxiliary functions it calls.

We generate the funspecs of the 𝑓1, . . . , 𝑓𝑛 from their functional models 𝑔1, . . . , 𝑔𝑛 , using

fn_desc_to_funspec (for user-written C functions) or in a related way for glue-code-generated

C functions that allocate data constructors. We generate a funspec 𝑠0 from function 𝑔0 using

fn_desc_to_funspec. We do not need funspecs for 𝑓𝑛+1, . . . , 𝑓𝑛+𝑚 because the proof of correctness

of CertiCoq relates those functions to 𝑓0 using direct operational-semantic methods.

From the CertiCoq compiler-correctness claim, we hypothesize, semax_body Γ 𝑓0 (𝑖0, 𝑠0). The

CertiCoq team has not yet completed this correctness proof: the entire front-end is proved correct in

Coq [Sozeau et al. 2019], the entire 𝜆ANF back-end is proved correct in Coq [Paraskevopoulou 2020;

Paraskevopoulou et al. 2021], the code generator is proved correct, but the composed end-to-end

theorem is still under construction.

In fact, CertiCoq’s end-to-end compiler correctness theorem for open programs (i.e., with foreign
functions as free variables), has not yet even been stated. Our work here provides the framework for

doing so, and suggests that the proof should follow VST’s semantic method for stapling together a

collection of semax_body proofs of mutually recursive higher-order functions. That is, the CertiCoq

theorem should relate the Coq function 𝑔0 to the operational behavior of the generated code

𝑓0, subject to assumptions about the operational behavior of the 𝑁 primops. We can talk about

operational behavior in this way because VST’s semax_body predicate is a shallow-embedded

definition stating properties of a CompCert Clight operational-semantic execution—not, for example,

an inductive definition which could only be proved by a certain set of Hoare-logic proof rules.

Now, for every one of these functions we need a semax_body proof of its correctness w.r.t. its

funspec.

• The garbage_collect function was proved correct by Wang et al. [2019] using VST.

• The proof of semax_body Γ 𝑓0 (𝑖0, 𝑠0), relying on related proofs for 𝑓𝑛+1, . . . , 𝑓𝑛+𝑚′ , will be a

consequence of CertiCoq compiler correctness, as described above.

• The semax_body proofs of 𝑓1, . . . , 𝑓𝑛 are done using the Verified Software Toolchain’s VST-Floyd

proof automation system. For those of the 𝑓𝑗 that allocate or discriminate data constructors,

whose C functions were generated fully automatically by VeriFFI glue code, VeriFFI generates

these VST-Floyd proofs automatically using an Ltac script. For the 𝑓𝑗 functions whose C
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functions are written by hand by the user, the VST-Floyd proofs are done interactively by the

user, with assistance from VST-Floyd.

All these semax_body proofs can be tied together using VST’s semax_func constructor lemmas

[Appel et al. 2014, page 207] into a single program-correctness proof.

Total correctness vs. partial correctness. The source function 𝑔0 provably terminates (because it

type-checks in Coq); and the functional models 𝑔1, . . . , 𝑔𝑛 are total functions (because they are

expressed as functions in Coq). However, the VeriFFI+CertiCoq proof of the whole program will

not guarantee termination, because VST’s program logic is a Separation Hoare logic of partial

correctness. This is not a defect of VeriFFI; it is inherent in compiling Coq to any computer

architecture with a fixed number of address bits (e.g., 64-bit addresses). The Coq function that

computes Ackermann’s function on Peano natural numbers is a total function, but compiled to

RISC-V it will inevitably run out of memory even on smallish inputs.

14 Related work
14.1 Verified FFI systems

Melocoton [Guéneau et al. 2023] allows users to write programs in a toy subset of OCaml and a

toy subset of C and reason about both sides and their interactions. Users can verify their OCaml

code in an OCaml program logic, and their C code in a C program logic, where both program

logics are defined on top of Iris, a separation logic framework embedded in Coq. Following the

conventional way of verifying interoperability through a combination of languages [Matthews and

Findler 2007; Perconti and Ahmed 2014], Melocoton defines operational semantics and program

logics for C, OCaml, and their combination, a “multi-language semantics”. The user does not have

to interact with the combined language and its program logic, but the combined program logic is

essential to tie the separate parts together. Melocoton does not include a verified garbage collector,

but it has reasoning based on a nondeterministic model of a garbage collector.

In contrast to Melocoton, VeriFFI allows users to write programs in all of Gallina and almost

all of C. The user can reason about their Coq programs directly in Coq, which is already a logic

and proof assistant and therefore easier to reason in, and about their C programs in Coq via the

Verified Software Toolchain [Cao et al. 2018], a separation logic framework embedded in Coq.

For VeriFFI we did not have to develop a combined language and a combined program logic for

two languages; it has a simpler architecture than Melocoton because of the languages it is based on:

Coq is both our language of reasoning, and the source and implementation language of our compiler.

On the other end of the spectrum, C is both the target language of our compiler and the language of

our foreign functions. This coincidence means our multi-language programs can just be “plugged

together," as both the compiler output of our Coq code and our foreign functions are in C. Hence,

all of our reasoning about foreign functions can be achieved within the Verifiable C program logic.

VeriFFI is also based on a verified garbage collector, CertiGC, whose heap graph representation is

essential in how VeriFFI reasons about the representation of Coq values in memory, and whose

implementation can be linked to compiled to Coq programs.

Cogent [Cheung et al. 2022] allows one to write functional programs in the HOL logic, that

type-check in HOL and can be proved correct in HOL; but that also type-check in a much more

restrictive first-order linear type system—that is, no nested higher-order functions, no sharing of

data structures. These first-order linear programs are compiled to C code that (because linear) can

use malloc/free, and do not require a garbage collector. Although that is a reasonable trade-off to

make, it severely restricts the expressiveness of the functional language.

CakeML [Kumar et al. 2014] is a compiler for a subset of Standard ML, verified in the HOL4 proof

assistant. Guéneau et al. [2017] integrate Characteristic Formulae, a separation logic for stateful
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ML programs, into CakeML. This system supports foreign functions as well, but ultimately this

system reasons about ML, the higher-level side of the two languages interacting via the FFI. Hence,

it is possible to write specifications on how the foreign function is used in ML, but there is no

mechanism to verify that the foreign function is implemented correctly. In comparison, VeriFFI

allows both reasoning about the higher-level side, since it is just Coq code, and the lower-level side,

since VST’s separation logic and C program logic is available.

Œuf [Mullen et al. 2018] is another verified compiler project from Coq to C. Œuf can compile

a subset of Gallina, with no user-defined types, dependent types, fixpoints, or pattern matching.

In comparison, CertiCoq can compile all of Gallina. Œuf’s compiler correctness theorem allows

the shim (wrapper code in C that executes the compiled Coq program) to be verified using VST,

but it does not have a story about how Coq programs can call C programs, or regarding the

specified/verified attachment of a garbage collector.

14.2 Other compilers and FFI systems
Foreign function interfaces achieve interoperability by having one language mimic the calling

conventions of the other language [Matthews 2008]. For FFI systems where the lower-level language

is C, having C types exposed to the higher-level language is common. While exposing base C types

like int, void, and pointers suffices for most cases, it is possible to encode more complicated C

types such as structs and unions into the higher-level language. Blume [2001] presents an example

of this for Standard ML and Yallop et al. [2018] demonstrate a different design for OCaml. In these

approaches, the glue code generators catch discrepancies between the types of foreign functions

and their higher-level representations. VeriFFI does not expose the C types to Coq, but it would be

possible to implement a library that does so, and prove properties about it.

Some FFI systems expose the value representation of the higher-level language to the lower-level

language. OCaml’s values are represented in C with the value type [Leroy 1999], which CertiCoq

and VeriFFI reuse. Similarly, Java’s JNI [Liang 1999] achieves interoperability by exposing the

higher-level language’s values to the lower-level language, where the user has access to C types

such as jstring and jobject for Java strings and objects.

Furr and Foster [2005] explore static checks to ensure that foreign functions do not violate type

safety in OCaml, and in later work, Java’s JNI [Furr and Foster 2006, 2008]. Their work involves

automatic inference of higher-level language types from foreign function implementations in C,

and therefore is easier than VeriFFI to apply in larger codebases. In comparison, VeriFFI guarantees

type safety as a corollary of correctness. In a similar line of work, Tan et al. [2006] add static and

dynamic checks to ensure that foreign code does not violate memory safety or Java’s type safety.

Lööw et al. [2019] describe verified system calls for CakeML, but they make no claim regarding

support for data structures, inductive data types, glue code generation, representation predicates,

or a program logic for proving correctness of their foreign functions.

VeriFFI can be used to implement particular data types more efficiently and bring compiler

optimizations on a case-by-case basis to CertiCoq compiled code. For example, Baudon et al. [2023]

and Elsman [2024] present a technique called “bit-stealing" to represent algebraic data types using

less space, and implement a compiler that uses this technique in all data types. While CertiCoq

does not use this technique in its representation of Coq values, it is possible to implement a foreign

type that makes this optimization for a particular type, and prove it correct using VeriFFI. One

useful example would be an integer type that has one constructor that carries a 63-bit integer and

another constructor that carries a big integer. Since constructor payloads differ in their boxities,

we do not need boxed constructors and constructor headers to distinguish between the machine

and big integers.
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15 Future work
Proofs about programs with mutation and input/output. Our mutable array monad is implemented

as described in subsection 12.1, our glue code generator supports working interoperation of the

Coq and C sides, and VeriFFI generates appropriate VST funspecs. In future work we will complete

the VST proof of this monad’s runM function. Our input/output monad is implemented as described

in subsection 12.2, but the VST specification for its runM function (unexposed to Coq to keep purity)

cannot be generated. In future work we will state the VST specification for this C function, and

complete the VST proof.

Persistent, internally mutable data structures. In a functional language one can have “persistent”

data structures that present a purely functional interface but mutate themselves internally for

efficiency [Conchon and Filliâtre 2007, §2.3]. It may be possible to support this by writing a graph_

predicate that permits multiple graph representations of the same Coq value.

End-to-end soundness. We plan to work with the CertiCoq team to specify and verify the correctness

of open Coq expressions, that is, programs that call external functions—following the methodology

explained in section 13. Based on that—using the VST semantic model of the function specification in

terms of the Clight operational semantics—it should be straightforward to build a machine-checked

proof of soundness for VeriFFI.

Retargeting. The Coq formalizations described in sections 4, 5, 6, and 8 are entirely independent of

the target language, so this work could be retargeted to CertiCoq’s WebAssembly back end [Meier

et al. 2024].

16 Conclusion
For a (dependently) typed functional language to interact with a low-level language, at least one

language must be taught how to traverse the data structures of the other, and master the calling

conventions of the other; and, for verification, to reason over the gap. Our glue code generator

allows C to traverse (and build) Coq data structures; allows C functions to support Coq calling

conventions; and allows C functions to be proved correct with respect to Coq functional models.

Our program logics on both sides are very rich and expressive: Coq (the CiC logic) is a widely

used and well-established logic for reasoning about functional programs written in that logic;

our system for specifying and verifying across interfaces permits both concrete data types (C

traversal/construction of Coq inductive constructors) and abstract data types (C representations

unachievable in pure Coq).

Proofs in VST that foreign functions satisfy their funspecs are often long and tedious. If only there

were a way to automatically synthesize proofs of C functions from their Coq functional models!

But there is such a way: it’s called CertiCoq, which compiles Coq functions into certified-correct C

code. This is the right way to do it for most functions. But for functions (such as pack) operating

on data types whose representations cannot be described efficiently by Coq constructors, or whose

algorithms cannot be efficient enough as functional programs on such constructors, we need a way

to write highly tuned C programs by hand and prove them correct using VST’s powerful program

logic. And that way is VeriFFI, the Verified Foreign Function Interface.
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