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Abstract
We	demonstrate	how	to	use	the	Verified	Software	Toolchain
to	prove	correctness	of	a	parallel	program	that	uses	barrier
synchronization	implemented	with	binary	semaphores.

That	is:	master	thread	breaks	the	job	into	T	separate	tasks,	hands	off	T-1	tasks
to	other	threads	(that	are	already	waiting	for	them)	by	releasing	per-thread	
semaphores.		Then	the	master	works	on	one	task,	then	waits	on	T-1	semaphores
for	all	the	other	threads	to	finish	their	task.

As	an	example,	we	demonstrate	parallel	dot	product.		But	the	work-splitting
API	is	quite	general.		It	would	easily	apply	to	more	useful	parallel	“clients”	such	as	
blocked	matrix	multiply	or	other	algorithms	that	can	use	barrier	synchronization.
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Part	1:		The	client	program	and	API
In	part	1	we	don’t	use	formal	methods	at	all.		
We	just	present	the	C	program	that	we	intend	
to	prove	correct.			The	program	is	divided	into
• a	parallelism	API	(for	handling	work	that’s	
split	into	T	tasks)	and

• an	application	“client”	program	that	uses	
the	API	(in	this	case,	parallel	dot-product).
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Simple	Task	Parallelism
• Have	a	function	to	
compute	on	big	data

• Have	T	processors

• Divide	computation	into	
T	subfunctions	(compute	in	
parallel)

• Combine	subresults	
together
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API	for	work-splitting

5

struct task *make_tasks (unsigned T);

void initialize_task (struct task *tasks,
        unsigned t,
        void (*f)(void *),
        void *closure);

void do_tasks (struct task *tasks, unsigned T);

Start	T-1		threads
(plus	parent	makes	T)

Tell	the	𝑡th	thread	
where	to	find	its	work

Run	all	the	threads	on	
their	work

(can	do	this	again	and	again)

parsplit.h

What’s	in	a		struct task is	the	private	information	of	the	task-scheduling
system	(parsplit.c)	but	you	can	imagine	it	contains	a	couple	of	semaphores,	
among	other	things.

The	client	decides	what	operation	is	to	be	performed	in	a	task,	and	passes	that	
into	initialize_task as	the	function-parameter	f	accompanied	by	
supplementary	client-side	information	called	closure.		The	client	will	call	
initialize_task T	times,	with	t ranging	from	0	to	T-1,	presumably	with	
different	closure values	for	each	one.



Scenario
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Suppose	you	have	𝑇	processors,	and	your	program	is	going	to	compute	many	
dot	products	on	vectors	of	length	𝑛.

First,	use	make_tasks to	create	𝑇	threads,	and	then	use	
initialize_task	to	tell	each	thread	what	work	it’s	going	to	have	to	do.

void make_dotprod_tasks(unsigned T) {
  unsigned t;
  tasks = make_tasks(T);

   . . .  /*	more	to	come	*/	. . .

  for (t=0; t<T; t++)  
           initialize_task(tasks, t, ... /* more	to	come */ ... );
} 

Later,	when	the	program	wants	to	compute	a	dot-product,	it	will
update	the	per-task	data	(i.e.,	the	vectors	to	be	multiplied)	and	call	
do_tasks to	start	all	𝑇	threads	working.



one	slice
of	work

Example:	n=10,	T=4
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struct task *make_tasks (unsigned T);
void initialize_task (struct task *tasks, unsigned t,  void (*f)(void *), void *closure);
void do_tasks (struct task *tasks, unsigned T);

𝑥 𝑦
0
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Task	description		(struct dotprod_task)

For	the	dot-product	client,	a		closure	(i.e.,	task-description)	has	pointers	to	
vector-slice	𝑥+𝛿!,		vector-slice	𝑦 +𝛿!,	length	of	the	vector	slices	n! ,	and	a	space	into	
which	the	slice	result	can	be	written.		If	the	original	vector	length	is	not	exactly	a	
multiple	of	the	number	of	threads,	then	some	slices	will	be	a	bit	longer	than	others.



void dotprod_worker(void *closure) {
  struct dotprod_task *w = closure;
  double result=0.0;
  unsigned n = w->n;
  double *vec1= w->vec1, *vec2= w->vec2;
  unsigned i;
  for (i=0; i<n; i++)
       result += vec1[i]*vec2[i];
  w->result=result;
}

Application-specific	subtask	function
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struct task *make_tasks (unsigned T);
void initialize_task (struct task *tasks, unsigned t,  void (*f)(void *), void *closure);
void do_tasks (struct task *tasks, unsigned T);

𝑥 𝑦

𝑥+𝛿! 𝑦+𝛿!

n) result
]𝑥( ^ 𝑦(

The	dotprod_worker	is	given	a	pointer	to	a	closure	and	computes	the	slice	dot	
product	for	that	task-description.		The	formal	parameter	has	type	void*	instead	of	
struct dotprod_task * because	the	task-scheduler	(parsplit.c,	parsplit.h)	
must	be	general	enough	that	it	doesn’t	even	know	the	type	of	the	task-description.		
Hence	the	assignment	from	closure	to	w	in	the	first	line	of	the	function	body.



How	the	client	uses	the	API
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struct task *make_tasks (unsigned T);
void initialize_task (struct task *tasks, unsigned t,  void (*f)(void *), void *closure);
void do_tasks (struct task *tasks, unsigned T);

𝑥 𝑦

Suppose	you	want	to	compute	the	dot-product	of
vectors	𝑥	and	𝑦,	in	parallel.		Each	vector	has	length	𝑛.

double dotprod(double *vec1, double *vec2, unsigned n) {
 

}



Creating	the	task-descriptions
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struct task *make_tasks (unsigned T);
void initialize_task (struct task *tasks, unsigned t,  void (*f)(void *), void *closure);
void do_tasks (struct task *tasks, unsigned T);
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First,	compute	how	you’re	going	to	break
it	into	𝑇	tasks.		If	𝑛	is	not	an	exact	multiple	of	𝑇,	
then	the	sizes	𝑛$, 𝑛#,	𝑛%, …	won’t	be	exactly
the	same.

(For	how	&	when	the	dtasks	
array	was	created,	wait	a	
couple	of	slides.		Here	we’re	
just	filling	it	in.	)

double dotprod(double *vec1, double *vec2, unsigned n) {
for (delta=0, t=0;  t<T;  t++) {
    dtasks[t].vec1=vec1+delta;
    dtasks[t].vec2=vec2+delta;
    delta_next = (t+1)*n/T;
    dtasks[t].n= delta_next-delta;
    delta=delta_next;
  }
  . . .
}

dtasks



dotprod_worker
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struct task *make_tasks (unsigned T);
void initialize_task (struct task *tasks, unsigned t,  void (*f)(void *), void *closure);
void do_tasks (struct task *tasks, unsigned T);
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Each	of	these	pointers	is
a	“closure”	that	can	be	passed
to	the	dotprod_worker
function.		The	next	step	is	to
register	each	of	these	𝑛 = 4	
closures	with	the	task	manager

dtasks



do_tasks(	)
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struct task *make_tasks (unsigned T);
void initialize_task (struct task *tasks, unsigned t,  void (*f)(void *), void *closure);
void do_tasks (struct task *tasks, unsigned T);

𝑥 𝑦
]𝑥( ^ 𝑦(
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tasks

result

result

result

result

dtasks

The	tasks	array	has	the
scheduler-side	information
about	each	task;	
that	includes,
as	shown	here,	pointer	to	what	function	f	to	execute	and	the	
specific	closure	information	for	each	task.	



make_tasks(	),	initialize_task(	)
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struct task *make_tasks (unsigned T);
void initialize_task (struct task *tasks, unsigned t,  void (*f)(void *), void *closure);
void do_tasks (struct task *tasks, unsigned T);

𝑥 𝑦
]𝑥( ^ 𝑦(

𝑥+𝛿" 𝑦+𝛿"

n. result

𝑥+𝛿# 𝑦+𝛿#

n/ result

𝑥+𝛿$ 𝑦+𝛿$

n0 result

𝑥+𝛿% 𝑦+𝛿%

n1 result

void make_dotprod_tasks(unsigned T) {
  unsigned t;
  tasks = make_tasks(T);
  num_threads=T;
  dtasks=(struct dotprod_task *)malloc(T*sizeof(…));
  for (t=0; t<T; t++)  
           initialize_task(tasks, t, dotprod_worker, dtasks+t);
} 

tasks
dtasks

And	here	is	the	client’s	
function	that	creates	both	the
tasks	array	and	the	dtasks	
array,	and	fills	in	the	tasks.

num_threads is	a	client-side
global	variable.



do_tasks(	)
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struct task *make_tasks (unsigned T);
void initialize_task (struct task *tasks, unsigned t,  void (*f)(void *), void *closure);
void do_tasks (struct task *tasks, unsigned T);

𝑥 𝑦
]𝑥( ^ 𝑦(
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dtasks

result

result

result

result

double dotprod(double *vec1, double *vec2, unsigned n) {
for (delta=0, t=0;  t<T;  t++) {
    dtasks[t].vec1=vec1+delta;
    dtasks[t].vec2=vec2+delta;
    delta_next = (t+1)*n/T;
    dtasks[t].n= delta_next-delta;
    delta=delta_next;
  }
  do_tasks(tasks, T);
  for (result=0.0, t=0; t<T; t++)    result += dtasks[t].result;
  return result;
}

To	compute	a	dot-product,
• update	the	per-task	info	

(shown	previously);
• call	do_tasks	to	run	the	

parallel	jobs;
• collect	all	the	results



void dotprod_worker(void *closure) {
  struct dotprod_task *w = closure;
  double result=0.0;
  unsigned n = w->n;
  double *vec1= w->vec1, *vec2= w-
>vec2;
  unsigned i;
  for (i=0; i<n; i++)
       result += vec1[i]*vec2[i];
  w->result=result;
}

That’s	the	entire	dotprod.c	client
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struct task *make_tasks (unsigned T);
void initialize_task (struct task *tasks, unsigned t,  void (*f)(void *), void *closure);
void do_tasks (struct task *tasks, unsigned T);

double dotprod(double *vec1, double *vec2, unsigned n) {
for (delta=0, t=0;  t<T;  t++) {
    dtasks[t].vec1=vec1+delta;
    dtasks[t].vec2=vec2+delta;
    delta_next = (t+1)*n/T;
    dtasks[t].n= delta_next-delta;
    delta=delta_next;
  }
  do_tasks(tasks, T);
  for (result=0.0, t=0; t<T; t++)    result += dtasks[t].result;
  return result;
}

void make_dotprod_tasks(unsigned T) {
  unsigned t;
  tasks = make_tasks(T);
  num_threads=T;
  dtasks=(struct dotprod_task *)malloc(T*sizeof(…));
  for (t=0; t<T; t++)  
           initialize_task(tasks, t, dotprod_worker, dtasks+t);
} 



Part	2:		How	the	parallelism	is	implemented

This	is	the	API;	how	do	these	functions	work?	
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struct task *make_tasks (unsigned T);
void initialize_task (struct task *tasks, unsigned t,  void (*f)(void *), void *closure);
void do_tasks (struct task *tasks, unsigned T);



thread_worker(	),	make_tasks(	)

17

struct task *make_tasks (unsigned T);
void initialize_task (struct task *tasks, unsigned t,  void (*f)(void *), void *closure);
void do_tasks (struct task *tasks, unsigned T);

tasks

go f

done closure
int thread_worker(void *arg) {
  struct task *t = (struct task *)arg;
  while (1)   {
      acquire(t->go);
      t->f(t->closure);
      release(t->done);
     }
}

struct task 

What	runs	in	each	thread	is	simple:
• wait	for	the	go	signal,	
• run	the	function	f	on	the	closure,
• send	the	done	signal.
Repeat	forever.



struct task *make_tasks(unsigned T) {
   tasks = malloc(T * sizeof (…));
   for (i=1; i<T; i++) {
      struct task *t = tasks+i; 
      t->go = makelock();
      t->done = makelock();
      spawn(thread_worker, t);
  }
  return tasks;
}

thread_worker(	),	make_tasks(	)
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struct task *make_tasks (unsigned T);
void initialize_task (struct task *tasks, unsigned t,  void (*f)(void *), void *closure);
void do_tasks (struct task *tasks, unsigned T);

tasks

go f

done closure
int thread_worker(void *arg) {
  struct task *t = (struct task *)arg;
  while (1)   {
      acquire(t->go);
      t->f(t->closure);
      release(t->done);
     }
}

struct task 

All		make_tasks does	is,
• create	all	the	go	and	done	semaphores
• spawn	all	the	threads	to	run	thread_worker

(semaphores	are	created	in	the	locked	state,	so	the	first	thing	all	
those	threads	do	is	block	on	the	acquire).



initialize_task	(	)
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struct task *make_tasks (unsigned T);
void initialize_task (struct task *tasks, unsigned t,  void (*f)(void *), void *closure);
void do_tasks (struct task *tasks, unsigned T);

tasks

go f

done closure
void initialize_task (struct task *tasks,
  unsigned i,
  void (*f)(void *),
  void *closure) {
  tasks[i].f=f;
  tasks[i].closure=closure;
}

After	the	client	calls	make_tasks 
to	spawn	all	the	threads,	then	the	
client	calls	initialize_task 
to	fill	in	the	info	about	the	
function	and	closure.



do_tasks	(	)
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struct task *make_tasks (unsigned T);
void initialize_task (struct task *tasks, unsigned t,  void (*f)(void *), void *closure);
void do_tasks (struct task *tasks, unsigned T);

tasks

go f

done closure
void do_tasks(struct task *tasks, unsigned T) {
for (i=1; i<T; i++)
      release (tasks[i].go);
  tasks[0].f(tasks[0].closure);
  for (i=1; i<T; i++)
      acquire (tasks[i].done);
}

To	compute	a	parallel	dot	product,	the	
client	calls	do_tasks which	is	very	
simple:	send	each	thread	the	go	signal,
compute	task	0	locally,	wait	for	each	
thread	to	send	the	done	signal.



That’s	the	entire	parsplit.c
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struct task *make_tasks (unsigned T);
void initialize_task (struct task *tasks, unsigned t,  void (*f)(void *), void *closure);
void do_tasks (struct task *tasks, unsigned T);

struct task *make_tasks(unsigned T) {
   tasks = malloc(T * sizeof (…));
   for (i=1; i<T; i++) {
      struct task *t = tasks+i; 
      t->go = makelock();
      t->done = makelock();
      spawn(thread_worker, t);
  }
  return tasks;
}

int thread_worker(void *arg) {
  struct task *t = (struct task *)arg;
  while (1)   {
      acquire(t->go);
      t->f(t->closure);
      release(t->done);
     }
}

void initialize_task (struct task *tasks,
       unsigned i, void (*f)(void *), void *closure) {
  tasks[i].f=f;
  tasks[i].closure=closure;
}

void do_tasks(struct task *tasks, unsigned T) {
for (i=1; i<T; i++)
      release (tasks[i].go);
  tasks[0].f(tasks[0].closure);
  for (i=1; i<T; i++)
      acquire (tasks[i].done);
}



HOW	TO	PROVE	IT
Part	3
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Separation	Logic

{Pre}		command		{Post}

23

If	state
satisfies	the
precondition

then	it’s	safe
to	run	the	
command

and	the	state
after	will	satisfy
the	postcondition

P∗Qseparating
conjunction P′∗Q



Separation	Logic

{Pre}		command		{Post}
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If	state
satisfies	the
precondition

then	it’s	safe
to	run	the	
command

and	the	state
after	will	satisfy
the	postcondition

P∗Qseparating
conjunction P′∗Q

1

{	x↦(1,y)	∗	y↦(2,z)	}	

x 2 z

y

3

{	x↦(3,y)	∗	y↦(2,z)	}

x 2 z

y

x.data=3;



Heaplets	in	Separation	Logic
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1

x↦(1,y)	∗	y↦(2,z)	

x

2 z

y

1

x↦(1,y)												∗											y↦(2,z)	

x

2 z

y

A	“heaplet”	is	a	model	of	a	
separating	conjunct;	it’s	a	
(not	necessarily	contiguous)
part	of	memory	with	a
given	footprint	(domain)

The	separating	
conjunction	∗		is
about	the	union
of	two	disjoint
footprints



Heaplets	in	Separation	Logic

1

x

2 z

y

{	x↦(1,y)	∗	y↦(2,z)	}	 {	x↦(3,y)	∗	y↦(2,z)	}x.data=3;

3

x

2 z

y

We	can	safely	say
that	x.data	is	updated
and	y.data	is	still	2,
because	x	cannot
be	aliased	with	y
if	the	precondition
is	satisfied 26



Concurrent	Separation	Logics

27diagram:	Ilya	Sergey

CSL	uses	separating	conjunction	to	do	thread-local	reasoning

But	there	are	many	flavors	of	CSL	since	O’Hearn’s	2004	original



How	to	prove	it
Some	of	those	CSLs	are	quite	complicated	(but	very	
expressive).		But	our	needs	here	are	simple:

• Don’t	need	ghost	state
• Don’t	need	partial	commutative	monoid
• Semaphores	with	“old-fashioned”	lock	invariants
• Permission-splitting

∴	all	the	theory	was	in	place	by	2008!
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Concurrent	Separation	Logics

29
Oracle Semantics for Concurrent Separation Logic, by Aquinas Hobor, Andrew W. Appel, and 
Francesco Zappa Nardelli. European Symposium on Programming (ESOP), 2008.



Concurrent	Separation	Logics

30

What	varieties	does	VST	support,	by	the	way?

Either	Hobor-style	or	Iris-style,	your	choice
An	Iris	Instance	for	Verifying	CompCert	C	Programs,	by	William	Mansky	and	Ke	Du,	POPL’24



Resource	invariants
• O’Hearn	2004
• Gotsman	et	al.		2007
• Hobor,	Zappa	Nardelli,	Appel	2008

	𝑙 ↬ 𝑅 	 acquire(𝑙)	 𝑅	 ∗ 	𝑙 ↬ 𝑅

𝑅 ∗ 	𝑙 ↬ 𝑅 	 release(𝑙)	 𝑙 ↬ 𝑅

31

acquire	the	lock,	
gain	the	
resource

release	the	lock,
give	up	the
resource



Heaplets	in	Separation	Logic

32

1

x

2 z

y

{	x↦(1,y)	∗	y↦(2,z)	∗	𝑙↬(∃y.		x↦(1,y))}
release(𝑙)

1

x

2 z

y

{	y↦(2,z)	∗	𝑙↬(∃y.		x↦(1,y))}



Heaplets	in	Separation	Logic
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{𝑙↬(∃y.		x↦(1,y))}
acquire(𝑙)

1

x

y

{	x↦(1,y)	∗	𝑙↬(∃y.		x↦(1,y))}

this	is	the	resource	
invariant	of	the	lock

acquire	the	lock,
gain	the	resource



Permission	shares
• O’Hearn	2004
• Gotsman	et	al.		2007
• Hobor,	Zappa	Nardelli,	Appel	2008

emp 	 𝑙 = makelock(	)	 𝑙 ↬ 𝑅
	𝑙 ↬ 𝑅 	 acquire(𝑙)	 𝑅	 ∗ 	𝑙 ↬ 𝑅
𝑅 ∗ 	𝑙 ↬ 𝑅 	 release(𝑙)	 𝑙 ↬ 𝑅

𝜋 = 𝜋!⨁𝜋"
𝑝 ↦# 𝑣	 ↔ 	 𝑝 ↦#l 𝑣	 ∗ 	𝑝 ↦#m 𝑣

34

split	the	permission	share
into	two	parts

split	the	“maps-to”	resource	
into	two	resources



Resource	invariants	for	parsplit
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int thread_worker(void *arg) {
  struct task *t = (struct task *)arg;
  while (1)   {
      acquire(t->go);
      t->f(t->closure);
      release(t->done);
     }
}

void do_tasks(struct task *tasks, unsigned T) {
for (i=1; i<T; i++)
      release (tasks[i].go);
  tasks[0].f(tasks[0].closure);
  for (i=1; i<T; i++)
      acquire (tasks[i].done);
}

Release	the	go-lock,			thread_worker	acquires		it	and	starts	working

Release	the	done-lock,		task	manager	resumes	collecting	“done”	statuses



Resource	invariants	for	parsplit
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int thread_worker(void *arg) {
  struct task *t = (struct task *)arg;
  while (1)   {
      acquire(t->go);
      t->f(t->closure);
      release(t->done);
     }
}

void do_tasks(struct task *tasks, unsigned T) {
for (i=1; i<T; i++)
      release (tasks[i].go);
  tasks[0].f(tasks[0].closure);
  for (i=1; i<T; i++)
      acquire (tasks[i].done);
}

x y
n result

Definition	task_inv		𝑇	𝑞	𝑝	≔	∃𝑓∃𝑐𝑙𝑜, (𝑝. f	 ↦r 𝑓) ∗ (𝑝. closure ↦r 𝑐𝑙𝑜) ∗ ∃𝑐, 𝑃(𝑇, 𝑐, 𝑞, 𝑐𝑙𝑜).

We	will	use	this	definition	in	constructing	resource	invariants	for	go	and	done	locks.	



Resource	invariants	for	parsplit
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int thread_worker(void *arg) {
  struct task *t = (struct task *)arg;
  while (1)   {
      acquire(t->go);
      t->f(t->closure);
      release(t->done);
     }
}

void do_tasks(struct task *tasks, unsigned T) {
for (i=1; i<T; i++)
      release (tasks[i].go);
  tasks[0].f(tasks[0].closure);
  for (i=1; i<T; i++)
      acquire (tasks[i].done);
}

x y
n result

Definition	task_inv		𝑇	𝑞	𝑝	≔	∃𝑓∃𝑐𝑙𝑜, (𝑝. f	 ↦r 𝑓) ∗ (𝑝. closure ↦r 𝑐𝑙𝑜) ∗ ∃𝑐, 𝑃(𝑇, 𝑐, 𝑞, 𝑐𝑙𝑜).

Argument	𝑝	is	the	pointer	to	the	task	block								(go,done,f,closure)



Resource	invariants	for	parsplit
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int thread_worker(void *arg) {
  struct task *t = (struct task *)arg;
  while (1)   {
      acquire(t->go);
      t->f(t->closure);
      release(t->done);
     }
}

void do_tasks(struct task *tasks, unsigned T) {
for (i=1; i<T; i++)
      release (tasks[i].go);
  tasks[0].f(tasks[0].closure);
  for (i=1; i<T; i++)
      acquire (tasks[i].done);
}

x y
n result

Definition	task_inv		𝑇	𝑞	𝑝	≔	∃𝑓∃𝑐𝑙𝑜, (𝑝. f	 ↦r 𝑓) ∗ (𝑝. closure ↦r 𝑐𝑙𝑜) ∗ ∃𝑐, 𝑃(𝑇, 𝑐, 𝑞, 𝑐𝑙𝑜).

(existentially	quantified)	clo	is	the	pointer	to	the	dtask	descriptor	
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int thread_worker(void *arg) {
  struct task *t = (struct task *)arg;
  while (1)   {
      acquire(t->go);
      t->f(t->closure);
      release(t->done);
     }
}

void do_tasks(struct task *tasks, unsigned T) {
for (i=1; i<T; i++)
      release (tasks[i].go);
  tasks[0].f(tasks[0].closure);
  for (i=1; i<T; i++)
      acquire (tasks[i].done);
}

x y
n result

Definition	task_inv		𝑇	𝑞	𝑝	≔	∃𝑓∃𝑐𝑙𝑜, (𝑝. f	 ↦r 𝑓) ∗ (𝑝. closure ↦r 𝑐𝑙𝑜) ∗ ∃𝑐, 𝑃(𝑇, 𝑐, 𝑞, 𝑐𝑙𝑜).

P	 is	the	(client-specific)	task	predicate	(describing	this	slice	of	the	𝑥, 𝑦	vectors)



Client-specific	task	predicate
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x y
n x⋅y

x y
n

𝑃(𝑇, 𝑐, 𝑞, 𝑐𝑙𝑜).

Definition	task_inv	𝑇	𝑞	𝑝	≔	∃𝑓∃𝑐𝑙𝑜, (𝑝. f	 ↦r 𝑓) ∗ (𝑝. closure ↦r 𝑐𝑙𝑜) ∗ ∃𝑐, 𝑃(𝑇, 𝑐, 𝑞, 𝑐𝑙𝑜).

P		is	the	client-specific	(in	this	case,	dot-product)	predicate	describing
the	state	of	the	client	task	description	

This	is	the	state	when	the	go	lock	is	released

This	is	the	state	when	the	done	lock	is	released

the	𝑖th	dtask				+				the	𝑖th		vector	slices
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x y
n x⋅y

x y
n

𝑞=ASK

𝑞=ANSWER

𝑃(𝑇, 𝑐, 𝑞, 𝑐𝑙𝑜).

Definition	task_inv	𝑇	𝑞	𝑝	≔	∃𝑓∃𝑐𝑙𝑜, (𝑝. f	 ↦r 𝑓) ∗ (𝑝. closure ↦r 𝑐𝑙𝑜) ∗ ∃𝑐, 𝑃(𝑇, 𝑐, 𝑞, 𝑐𝑙𝑜).

By	releasing	the	go	lock,	we	ask	a	question:	what’s	the	dot-product	of	this	slice?
By	releasing	the	done	lock,	worker	thread	answers	the	question.
The	𝑞	parameter	specifies	whether	we’re	asking	or	answering	(go	lock	or	done	lock)



Resource	invariants
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thread_worker
  while (1)   {
      acquire(t->go);
      t->f(t->closure);
      release(t->done);
     }

do_tasks
for (i=1; i<T; i++)
      release (tasks[i].go);
for (i=1; i<T; i++)
      acquire (tasks[i].done);
}

x y
n

ASK
release(go) acquire(go)

ANSWER x y
n x⋅y

acquire(done) release(done)



What	question	did	I	ask?
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x y
n x⋅y

x y
n

ASK

ANSWER

Client Server

x7 y7
n x7y7

x y
n

ASK

ANSWER

Client Server

We	must	prevent	the	worker	thread	from	changing	the	question,
while	permitting	it	to	fill	in	the	answer!
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Client Server

𝜋 = 𝜋y⨁𝜋z
𝑝 ↦{ 𝑣	 ↔ 	 𝑝 ↦{= 𝑣	 ∗ 	𝑝 ↦{> 𝑣

x y
n ⊤

x y
n 𝜋#

= x y
n 𝜋%

∗

read/
write

read/
write
read-
only

A	“writable”	share	may	be	split	into	two	“readable”	shares.



Splitting	shares

45

x y
n x⋅yANSWER

Client Server

𝜋 = 𝜋y⨁𝜋z
𝑝 ↦{ 𝑣	 ↔ 	 𝑝 ↦{= 𝑣	 ∗ 	𝑝 ↦{> 𝑣

x y
n ⊤

x y
n
REMEMBER

= x y
n∗

𝜋%

𝜋%

ASK

x y
nASK

Split	a	“Top”	share	into	a	“Remember”	share	(readable	x,y,n;	no-access	result)
and	an	“Ask/Answer”	share	(readable	x,y,n;	writable	result)



Splitting	shares
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x y
n x⋅yANSWER

Client Server

𝜋 = 𝜋y⨁𝜋z
𝑝 ↦{ 𝑣	 ↔ 	 𝑝 ↦{= 𝑣	 ∗ 	𝑝 ↦{> 𝑣

x y
n ⊤

x y
n
REMEMBER

= x y
n∗

𝜋%

𝜋%

x y
n 𝜋#

x’ y’
n x’⋅y’ 𝜋%

∗ ⊢		x=x’	∧	y=y’		

ASK

x y
nASK

Fact:	If	you	join	two	readable
	shares,	the	values
must	be	the	same!

So	we	make	sure	the	answer	corresponds	to	the	original	question.



Must	also	split	shares	of	.	.	.
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𝜋%
x y
nASK

x y
n
REMEMBER

Not	just	the	pointers	𝑥, 𝑦	but	also	the	pointed-to	data	
must	be	split	into	“Remember”	share	and	“Ask/Answer”	share



The	functional	model
Floating-point	add	is	not	associative,	so	
cannot	prove	
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N
!"#

$

𝑥! P 𝑦!

N
%"#

&

N
!"'0

'012

𝑥! P 𝑦!

Instead	we	prove

and	let	the	upper-layer	
proofs	worry	about	accuracy	of	associativity



Q.E.D.
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That’s	my	proof!

In	Coq	it’s	a	bit	more	verbose.



But	does	the	program	work?
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$ time ./dotprod 1000000 4 10000
N=1000000  T=4  R=10000

real    10.415s
user    40.703s
sys      0.140s

speedup	3.9	with	4	processors



Lines	of	program	and	proof
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C	lines Coq	lines Ratio

dotprod	client 58 799 14:1
API 10 148 15:1
parallelizer 51 493 10:1

Ugh!
Too	much.



Where	to	find	it
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https://github.com/VeriNum/pardotprod

C	program:			parsplit.h,	parsplit.c,	dotprod.h,	dotprod.c

Specifications:	spec_parsplit.v,	and		dotprod_spec	within	verif_dotprod.v

Proofs:		verif_parsplit.v,	verif_dotprod.v	

https://github.com/VeriNum/pardotprod


Conclusion
• Barrier	synchronization	is	a	simple	parallel	
programming	model,	easy	to	implement	with	
ordinary	semaphores,	quite	useful	in	many	parallel	
applications

• It’s	straightforward	to	specify	and	verify	barrier-
synch.	parallelism	in	VST

• We	have	verified	correctness	of	a	simple	task	
manager,	useful	for	T-way	fork-join	parallelism.

53


