
Certified code generation from CPS to C
Olivier Savary Bélanger

Princeton University
olivier@galois.com

Matthew Z. Weaver
Princeton University

mzw@cs.princeton.edu

Andrew W. Appel
Princeton University
appel@princeton.edu

Abstract
CertiCoq is a verified-in-Coq extracter/compiler from Coq’s
Gallina language through CompCert C to assembly language,
written as a functional program in Coq. Here we describe the
implementation and Coq verification of its code generator,
which translates from a continuation-passing style (CPS)
intermediate language into CompCert Clight. We show how
invariants over our CPS IR facilitate the generation of well
behaved, efficient C code. A key point is our proved-correct
interface to an external proved-correct (by other authors)
generational garbage collector written in C. The semantics
of C can be quite intricate, as can the design of a compiler-
to-g.c. interface for finding roots—but the design of our CPS
intermediate language facilitates a (relatively) simple imple-
mentation and correctness proof. Our measurements show
that both the code generator and the generated code have
good performance. Via CompCert, we have proved-correct
back ends for several instruction-set architectures: x86-32,
x86-64, ARM-32, ARM-64, RISC-V, and Power-PC.

CCS Concepts • Software and its engineering → For-
mal software verification; Compilers; Correctness; Func-
tional languages; • Theory of computation → Program
verification.

ACM Reference Format:
Olivier Savary Bélanger, Matthew Z.Weaver, and AndrewW. Appel.
2019. Certified code generation from CPS to C. In Proceedings of
(October 2019). ACM, New York, NY, USA, 13 pages. https://doi.org/
10.1145/nnnnnnn.nnnnnnn

1 Introduction
If you prove your functional program in correct in Coq,
then why entrust it to an unverified extraction/compilation
pipeline? Neither Coq’s extraction-to-Ocaml, nor the Ocaml
compiler, nor Ocaml’s runtime system is proved correct.

October 2019

CertiCoq [1] is a verified-in-Coq extracter/compiler from
Coq’s Gallina functional language to assembly language, via
CompCert C. The source program is extracted from the Coq
kernel (its AST is reified from Ocaml datatype constructors
to Coq datatype constructors) by MetaCoq [2]; this is the
only phase that cannot be proved correct but it does no more
than transliteration. After that (and with proofs!), we erase
proofs, types, and related computationally irrelevant content
[3]; constructors are eta-expanded so each constructor ap-
plication is fully applied to all its arguments; the program is
combined with its environment by let-binding all imported
definitions, resulting in an untyped program in a simple
de Bruijn functional language with inductive constructors.
Then we convert to continuation-passing style (CPS) using
a named representation, and we apply optimizations such
as uncurrying [4], shrink-reduction [5], and lambda lifting;
we closure-convert [6] into CPS terms in which all functions
are closed (except for references to other closed functions in
the global scope).

As we were not interested in verifying register allocation
or supporting multiple back-ends for many target architec-
tures, we translate our CPS into CompCert C light, and use
CompCert as our verified register allocator and back-end
code generator.
CertiCoq has a high-performance generational garbage

collector, written in C and proved correct in Coq [7]. When
one connects any compiler to a garbage collector, one must
make an interface by which the compiler calls the collector,
indicating where to find all the roots of the data graph—that
is, the live local variables; and (when copying collection is
used) one must be prepared for all variables of the program
to be modified to point to their new locations.

Contributions. In this paper we describe the proof of cor-
rectness of our CPS-to-C translation phase: how we relate
the operational semantics of CPS to the operational seman-
tics of CompCert C, and how we reason about the graph
transformation inherent in the call to the collector. These
proofs are connected to proofs of the front-end phases via the
CPS syntax and semantics, and to the CompCert back-end
via the CompCert Clight syntax and semantics.

The artifact accompanying this paper has the code gen-
erator and its correctness proofs (not the rest of CertiCoq)
plus the imported components of CompCert (that is, files
leading up to the AST and operational semantics of Comp-
Cert Clight). We use no axioms, but CompCert Clight uses
some; see the readme.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

October 2019, ,
Olivier Savary Bélanger, Matthew Z. Weaver, and Andrew W. Appel

2 The CPS Intermediate Representation
Continuation-passing style (CPS) is a restriction over a func-
tional language where all calls are tail calls [8]. This is useful
in intermediate languages for functional-language compilers,
as it simplifies optimizations over the intermediate language
and code generation in the presence of a garbage collector.

Continuation-passing style makes the control flow of pro-
grams explicit, making it easier to reason formally about
order of execution and to define transformations working
over different modes of execution.

(Function Def′n) fd ::= f (®x) = e

(Branch) b ::= c ⇒ e

(Expression) e ::= let x = Con c ®y in e
| let x = Prim p ®y in e
| let x = Projn y in e
| App x ®y

| let ®fd in e

| match x with ®b
| halt x

(Value) v ::= (c, ®v) | (ρ, ®fd,x)

(Environment) ρ ::= · | ρ,x 7→ v

Figure 1. Syntax of the CPS Language (L6)

L6 is a continuation-passing-style functional language
with mutually recursive functions and pattern-matching.
Figure 1 shows its syntax. The term “let x = Con c ®y in e”
binds the constructor c applied to arguments ®y to variable
x in expression e . The term “let x = Prim p ®y in e” binds
the result of the primitive operator p on arguments ®y to
variable x in expression e . The term “let x = Projn y in e”
binds the nth projection of y to variable x in in expression
e . The term “App x ®y” applies function x to arguments ®y.
The term “match x with ®b” matches the constructor c of x
with the branch (c ⇒ e) ∈ ®b labeled by c; the constructors
in the branches of ®b must be distinct. “halt x” terminates
computation by returning the value bound to x .

Although our code generator is a pure functional program,
we still want it to be efficient, no worse than O(n logn). We
represent variables using globally unique positive binary
numbers. Therefore a global map from names to (some sort
of) properties can refer to any binding point in the program,
so that we can, for example, tabulate information about the
provenance and, when possible, the name of the variable
in the original program. Using positive binary numbers as
identifiers allows us to implement lookup tables as binary
tries with logarithmic access time. Globally unique variable

ρ(x) = c ®w (c ⇒ e) ∈ ®b ρ ⊢ e ⇓k v

ρ ⊢ match x with ®b ⇓k v
e_match

ρ(y) = c ®w ρ;x 7→ wn ⊢ e ⇓k v

ρ ⊢ let x = Projn y in e ⇓k v
e_proj

ρ(f) = (ρ ′, ®fd, f) (f (®x) = e) ∈ ®fd
ρ ′; fi 7→ (ρ ′, ®fd, fi); ®x 7→ ρ(®y) ⊢ e ⇓k v

ρ ⊢ App f ®y ⇓k+1 v
e_app

∀yi ∈ ®y , ρ(yi) = wi ρ;x 7→ (c, ®w) ⊢ e ⇓k v

ρ ⊢ let x = Con c ®y in e ⇓k v
e_constr

∀yi ∈ ®y , ρ(yi) = wi f ®w = w

ρ;x 7→ w ⊢ e ⇓k v

ρ ⊢ let x = Prim f ®y in e ⇓k v
e_prim

ρ; f1 7→ (ρ, ®fd, f1); ...; fn 7→ (ρ, ®fd, fn) ⊢ e ⇓k v
where names(®fd) = { f1, ..., fn}

ρ ⊢ let ®fd in e ⇓k v
e_fun

ρ(x) = v

ρ ⊢ halt x ⇓k v
e_halt

Figure 2. Evaluation rules of the L6 CPS language

names also allow substitution without fear of variable cap-
ture (although global uniqueness is not preserved under sub-
stitution, as it may duplicate portions of terms containing
binders).

3 The Semantics of our CPS IR
The semantics of our object language is given through a big-
step,1 environment-based judgment ρ ⊢ e ⇓k v evaluating
expressions e in environment ρ into value v in at most k
continuation-calls. We will sometimes omit the argument k
and just write ρ ⊢ e ⇓ v when the cost is inconsequential.

The environment ρ maps variables to values (seen in Fig-
ure 1): either constructed values (c, ®v) or function-values
(ρ, ®fd,x) where ®fd is a block of mutually recursive function
definitions and x is the name of a function in the block. In
fact, after closure conversion (that is, in any input to our code
generator), a function value’s ρ is always empty (because
an environment is explicitly represented as a data structure
(c, ®v) passed as an extra argument to each function) and there
is a single top-level block of functions (because there’s no
need for function nesting if all functions are closed).

Of course, inside the execution of a function, as variables
are let-bound or parameter-bound, the current environment
ρ is nontrivial in the evaluation judgment ρ ⊢ e ⇓ v .
Figure 2 shows the evaluation rules. Pattern-matching

is broken into two operations. First, our case constructor
1We can use big-step semantics because all Gallina functions terminate.

Certified code generation from CPS to C
October 2019, ,

“match x with (c1 ⇒ e1, ..., cn ⇒ en)” determines which
pattern ci the construction bound to variable x matches, and
proceeds to evaluate ei , as seen in e_match. Then, projec-
tions “let x1 = Proj1 x in...let xm = Projm x in” are used
to bind variables to the m arguments of ci which will be
replaced by the right values when evaluated as shown in
rule e_proj.

ML’s and Haskell’s syntax and type systems connect case
matching with projection, so that the programmer cannot
mistakenly project a field from the wrong constructor. We
separate projections from cases because it makes the oper-
ational semantics simpler, the optimizer simpler, and the
proof simpler: our language is an untyped intermediate lan-
guage, not a typed source language. Proofs in earlier CertiCoq
phases guarantee the program will not get stuck.

Rule e_app shows how applications are evaluated. When
a function f is applied to arguments ®y, we look up f in the
environment ρ to retrieve the function closure (ρ ′, ®fd, f).
Next, we find function f in ®fd with arguments ®x and func-
tion body e . We then evaluate the function body e in saved
environment ρ ′ extended with bindings for each mutually
recursive function in ®fd and by associating each yi in ®y to
their respective xi in ®x .
We define FV(e) and BV(e) to be respectively the set of

free and bound variables of a term e or of a bundle of function
definitions ®fd. We also define names(®fd) to be all the names
of functions from the bundle:

names(®fd) := { f | f (®x) = e ∈ ®fd}

An important property that is not enforced by the syntax
presented in Fig. 1 is that bound names are globally unique.
This property is easy to achieve and maintain; the translation
from the previous intermediate language uses a state monad
to assign unique variable names. We also make sure that
the free variables of the top-level program are disjoint from
its bound variables. This allow us, for example, to perform
function inlining without worrying about variable capture.
We define the proposition UB(e) to assert that e has the
unique binding property.

4 Data representations, abstract state
From our CPS IR, we generate stackless closure-passing
Clight code. Targeting CompCert Clight rather than ma-
chine code has multiple benefits for CertiCoq. CompCert is
a mature compiler targeting many architectures, including
x86-32, x86-64, ARM-32, ARM-64, RISC-V, and Power-PC.
CompCert is a significant proof effort, and we would have to
repeat much of the same work if we were to translate down
to machine code.
Although L6 is a pure functional language and Clight an

impure imperative language, restrictions over L6 (described
in the previous section) facilitate the generation of equivalent
Clight programs.

Each function in L6 corresponds to a function in Clight—
which is possible because closure-conversion has unnested
everything. All calls are tail calls, and we rely on the C com-
piler to implement tail calls without pushing the stack (Comp-
Cert, gcc, and clang/llvm all do tail-call optimization). An
expression e in L6 (such as a function body) can be viewed as
an extended basic block, that is, a tree of control flow, where
the branches are at match expressions, and the leaves are
tail calls. Calls to function-variables in L6 translate directly
to calls to function-pointer variables in Clight.
This setup is much simpler than the C translation frame-

work used by previous functional-to-C compilers such as
sml2c [9]. In fairness, twenty years ago one could not rely
upon a C compiler to do tail-call optimization, so a direct
function-to-function correspondence was impractical.

4.1 Representing datatypes in C
We represent values on the heap using a representation used
bymanyML compilers includingOCaml [10] and SML/NJ[11],
leaving nullary constructors unboxed and boxing non-nullary
ones. To differentiate unboxed values from pointers to boxed
values, we use the last bit of unboxed values as a flag set
to 1 – meanwhile, the pointers used for boxed values are
word-aligned, always ending in 0.2

For an inductive type T, defined as shown in Figure 3,
we assign (unboxed) ordinal 0 to A and 1 to C, and (boxed)
ordinal 0 to B and 1 to D.

datatype T : Type
| A : T
| B : R -> T
| C : T
| D : R -> S -> T

Figure 3. Example of a Coq datatype

Unboxed values are kept in local memory as the integer
2 × ordinal + 1. Boxed values of arity n are represented as a
pointer to the second of n + 1 contiguous memory location,
each of the size of a value, providing access to the representa-
tion of each of its fields, while the first location holds a header
containing the ordinal and the arity of the constructor.

We use the Ocaml data representation [12, chapter 20] in
which a heap-allocated record is preceded by a header word;
we show here a Cons cell:

arity (size in words) color tag
2 0 0

pointer→ head
tail

2In this paper, we assume a 64-bit architecture, with 8-byte pointers. How-
ever, CertiCoq works in 32 and in 64-bit mode, and its proof is parameterized
over the size of pointers.

October 2019, ,
Olivier Savary Bélanger, Matthew Z. Weaver, and Andrew W. Appel

Arity is 2 because Cons carries 2 arguments; tag is 0 because
Cons is the first value-carrying (boxed) constructor of its
inductive type; color is used only by the garbage collector.

Cons 6

(Cons 8

(Cons 10

Nil)))

(a) A list in Coq

(* Where 5 -> Nil

and 6 -> Cons *)

Vconstr 6 [Vint 6;

Vconstr 6 [Vint 8;

Vconstr 6 [Vint 10;

Vconstr 5 []]]]

(b) A list in L6

(c) A list in Clight

Figure 4. An inductive value through the compilation

Figure 4 shows an inductive value represented in differ-
ent languages during compilation. The list 6::8::10::[]
can be represented in an inductive datatype list with con-
structor Nil: list and Cons:int -> list -> list (see
Figure 4b). In L6, information about the constructors is kept
in a global map – we assume here that 5 refers to Nil and 6
to Cons. Finally, as shown in Figure 4c, in Clight, non-nullary
constructors are represented in the heap as boxed values.
We use the notation n |m to represent concatenating the bit
representation of n with the one ofm. Here, the list is rep-
resented as three blocks of three values each. The head of
the list is pointed to by x at address 8224. The value before
that, 2|0|0, is the header for Cons, as explained above. The
first field contains the unboxed value 6, while the second
contains a pointer to the next element of the list, at memory
location 8200. This value has the same header, also repre-
senting Cons, and holds unboxed value 8 in its first field, and
a pointer to memory location 4192 in its second. 4192 holds
the last link in our list, with a representation of Nil (first
unboxed constructor of list) in its second argument.

4.2 Garbage Collection
C does not have automatic garbage collection, so we need
to provide it ourselves. Wang et al. [7] have proved the cor-
rectness of a high-performance generational collector im-
plemented in C, using the Verifiable C program logic [13]
embedded in Coq. We need to prove the correctness of our
interface to that collector—or rather, to any collector that
uses the same general-purpose interface.
The compiled program must call the garbage collector

whenever it determines that the free space is insufficient to

allocate the next record on the heap. At that time, the collec-
tor must be able to find all the roots of the graph of reachable
objects; typically these are spread over the stack frames of
currently executing threads (CertiCoq generates thread-safe
code). Finding the roots is (usually) a hard problem, and high-
performance solutions [14] are quite complex. Furthermore,
stack scanning usually requires substantial cooperation from
back-end phases of the compiler—but C compilers have no
support for such cooperation.

McCreight et al. [15] and Dargaye [16] show a way to han-
dle those challenges, making use of a “shadow stack” [17]
to store values across calls. Their intermediate languages in-
clude primitives to explicitly keep track of roots, guiding the
translation to a Clight program interfacing with a garbage
collector. However, in both cases, measured overhead for the
generated code was high due to the expensive operations
that had to be performed over any local variables that could
contain a live pointer.

We largely avoid this problem by having no stack (all calls
are tail calls) and by testing for out-of-heap only at function-
entry. Since L6 is in CPS and closure-converted, at function
entry the live roots are exactly the arguments to the function.
We explain the mechanism below.

4.3 Abstract state for the generated code
We define an abstract state that we target when translating
from L6, and later instantiate it as concrete Clight memory
and local environment.

Figure 5. Abstract state for the generated code

The abstract state has three components:
tinfo (thread info), a structure containing three pointers

representing the state of GC heap and a fourth pointer
to an array containing function-arguments (roots).

GC heap, an abstract representation of a heap containing
boxed values at nonoverlapping addresses.

local, a table containing mappings from variables to either
a pointer to the GC heap or an unboxed value.

Assuming a source program using inductive type natwith
constructors S andO , the example in Figure 5 shows a local
environment containing the mapping (w,O), with O repre-
sented as the first unboxed constructor of nat, and (x , S(SO)),

Certified code generation from CPS to C
October 2019, ,

with S(SO) represented as a pointer to a pair of words con-
taining the header (S has arity 1 and is the first boxed con-
structor), and a pointer to a second pair of words containing
the same header, and the representation of O , as discussed
in Section 4.1.
The tinfo describes the state of the GC heap as we will

explain below. Throughout the next section, we show the
effect of each L6 operation on the abstract state, before in-
stantiating the state in Clight and generating corresponding
Clight statements.

4.4 Simulating L6 in the Abstract State
Our proof of code-generator correctness uses a simulation
relation between L6 states (as shown in Figure 2) and Clight
states, each of which has a data part (as in Figure 5) and a
control part (a Clight statement). Here we sketch how each
of the L6 transitions affects the data part of the abstract state.

Eproj “let y = Proj0 x in e” executes, according to rule
e_proj, by setting y to the first projection of x (which has
been constructed using S) before executing e . Figure 6 shows
the effect of executing this expression starting from the ab-
stract state from Figure 5. In this case, where x represents
S(SO), y ends up pointing to the representation of SO .

(a) Before

(b) After

Figure 6. The effect of “let y = Proj0 x in e” on the abstract
state

Econstr “let y = Con S x in e”, according to Rule e_constr,
has y set to be a value constructed by applying S to the value
of x . Figure 7 shows the effect of this on the abstract state.
In Figure 7b, y points to a representation of S(S(SO)).

(a) Before

(b) After

Figure 7. The effect of “let y = Con S x in e”

Ecase “match x with ®b” has no effect on the data part of
the abstract state.

Ehalt “halt x”, according to e_halt, evaluates to the value
of x . By convention, we take the second field of the argu-
ments array to hold the return value. As shown in Figure 8,
this results in targs1 representing S(SO).

Eapp “App f w x” calls function f y z = e on arguments
w and x using the calling convention shared by all functions
with tag t (see e_app). Figure 9 shows the effect of evalu-
ating this expression on the abstract state, assuming that t
corresponds to a calling convention where the first argument
is kept in cell 0 and the second in cell 1 of the arguments
array.3As shown in Figure 9, this is done in two steps: First,
the arguments w and x are copied to targs according to t ,
which results in targs0 representing O and targs1 represent-
ing S(SO) (see Figure 9b). Then, as shown in Figure 9c, we
restore targs0 and targs1 to the function parameters y and z
before proceeding with the execution of e .

4.5 From abstract state to Clight memory
We realize the data part of the abstract state using a Clight
memory and a Clight local-variable environment. Figure 10
shows how we map different portions of the abstract state
and of the program to disjoint portions of memory.

3As we will later show, a portion of the arguments array is passed directly
as C arguments, and further compiled to be passed in registers

October 2019, ,
Olivier Savary Bélanger, Matthew Z. Weaver, and Andrew W. Appel

(a) Before

(b) After

Figure 8. The effect of “halt x”

One area of the heap holds, for every function f in the
source program, function information finfof and function
code fcodef . A disjoint area holds tinfo and the targs ar-
ray. Finally, a third area holds the boxed values which were
contained in the GC heap from Figure 5.

4.6 Interface with garbage collector
Rather than integrating a specific garbage collector with
our generated code, and proving our code generation phase
correct with respect to that particular garbage collector, we
provide a general interface for garbage collection, and prove
our code generation phase correct with respect to a more
general notion of garbage collection.
As shown in Figure 10, tinfo is a C structure containing,

three pointers describing the state of the garbage-collected
portion of memory, and then a pointer to argument (live
roots) array:

talloc, a pointer to the next allocatable word of memory in
the “nursery” generation;

tlimit, a pointer to the end of the allocatable portion of
nursery;

theap, a pointer to the garbage collector’s own description
of its memory regions; the format of this data is left
abstract to the CertiCoq compiler

targs, a pointer to an array where function-arguments are
passed in every call that this thread makes (CertiCoq-
compiled code is thread-safe).

(a) Before

(b) During

(c) After

Figure 9. The effect of “‘App f w x” on the abstract state

The firstk arguments are passed in registers, i.e., as function-
parameters in the C source code; beyond that, we use slots
in targs. Just before any call to the g.c., those (up to) k argu-
ments are stored into targs.

Then the specification of the garbage collector can assume:
1. Any live portions of GC heap are reachable from the live

roots in targs– which is to say, since the live roots corre-
spond to the environment computed by closure conver-
sion, functions are fully closed after closure conversion.

2. Between calls to the collector, the generated code may
allocate (by increasing the value of talloc) but it will never
increase talloc beyond tlimit. A call to the collector re-
quests n bytes, where n is any value up to the nursery
size 216 bytes by default. We parameterize CertiCoq by
the nursery size, and refuse to compile functions which
would request more than this amount.
On return, the collector guarantees that

Certified code generation from CPS to C
October 2019, ,

Figure 10.Mapping of the abstract state in a Clight memory

1. the arguments array contains Clight values representing
the same L6 values as before;

2. tlimit − talloc/дen.

Figure 11. The heap before and after garbage collection

Figure 11 shows a heap before and after garbage collection.
At left, the heap contains an area with function declarations

and finfo, followed by tinfo and the arguments array targs
and finally the GC heap, whose area is represented in green.
In the blown up view of tinfo, talloc points to the start of
the free area in the GC heap, tlimit to the end. We do not
represent the value of theap in the picture – it is used by the
garbage collector to keep track of its memory regions, and
left abstract to our compiler. Finally, targs points to the start
of the arguments array. In the arguments array, the first slot
is taken by a pointer to the representation of S(SO) in the
GC heap. The second slot is taken by a representation of O .
On the right, representing the state of the heap after

garbage collection (assuming the roots were slots 0 and 1),
the areas are unchanged, except for the GC heap – the new
GC heap may only contain part of the old GC heap or newly
allocated portions of memory. The pointers in talloc and
targs have been updated to reflect the new GC heap.

5 Code generation
Our code generator is a Gallina function that translates L6
ASTs into CompCert Clight ASTs. After closure conversion
and hoisting, all functions are part of the same mutually
recursive bundle ®fd, and we know that the body of the pro-
gram e does not contain function declarations. Moreover,
we know that for any function (f,®y,e') in ®fd, e' does not
contain function declarations.

The translator processes let ®fd in e by
1. computing the arity (number of function-parameters) and

themaximum number of words allocated by each function,
producing a map θ : var → N × N with this information.

2. generating forward declarations for all functions in ®fd, as
they may represent mutually recursive functions in Coq
(and in C).

3. For each function in ®fd, of the form (f,®y,e'), creating
a Clight function f with tinfo as argument and code-
gen(e') as function body

4. generating a Clight function body, converting e using
codegen.

5.1 Code generation for L6 functions
We represent each L6 function as a Clight function, taking
as first parameter a tinfo pointer holding the information
needed to execute the function. Up to k parameters of the L6
function are passed as additional C function parameters; the
rest are stored in slots of the targs array. (This is designed
to match llvm’s “ghc” calling convention; see below.)

Every function f is associated with a structure finfof con-
taining the maximum number of words the function could
allocate, followed by its arity, and, for each of its arguments,
the slot-numbers used in the arguments array when garbage
collection is called. For example, a function myfunc with
three arguments held in slots 0,1,2 and allocating at most ten
words:

value const f_info_myfunc[5] = {10, 3, 0, 1, 2, };

October 2019, ,
Olivier Savary Bélanger, Matthew Z. Weaver, and Andrew W. Appel

If the function’s arity is larger than k , the additional argu-
ments are stored in their appropriate slots of the targs array
during function calls.
On function entry, we generate code to test whether the

maximum number of memory words that could be allocated
by the function4 is more than the difference between tlimit
and talloc. If so, we need to call the garbage collector (de-
scribed in 4.2) before restoring the arguments to local mem-
ory, and proceeding with the body of the function.

void f(struct thread_info *tinfo,x,y){

// local variable declarations ...

args = tinfo->args;

if (!(*f_code_info <= tinfo->limit - tinfo->alloc)) {

// store (up to k) parameters into args ...

args[0] = x;

args[1] = y;

garbage_collect(f_info, tinfo);

// load (up to k) parameters from args ...

x = args[0];

y = args[1];

}

alloc = tinfo->alloc;

limit = tinfo->limit;

// load parameters beyond k from args into local vars

z = args[2];

// function body ...

}

Figure 12. Start of a function generated by our back end
(with k = 2)

5.2 The code generation algorithm
The function codegen∆ θ e translates L6 expression e into
a Clight statement. L6 is designed to make this translation
fairly direct: for example, projections map directly to field
access. Others, such as function application, are a bit more
involved, as we will describe.

The other arguments of codegen are,
∆ maps constructor tags to the name, arity and ordinal of

the constructor and to the name and tag of its datatype.
θ maps the name of each function to its arity, calling-convention,
and the maximum number of values its body could allo-
cate. Knowing which variable represents a function is also
important to determine if a variable represents a value in
local memory, or if it represents the address of a function
in the heap.

Maximum number of arguments per function. Source-
level Gallina functions take exactly one argument; after CPS
conversion there may be up to two; uncurrying and lambda
lifting may add more; and closure conversion can add one

4Because an L6 "function" is a tree of control flow, there is a bounded,
statically determinable number of allocations of fixed, statically known size.

more. We can limit uncurrying and lambda lifting to en-
sure that no L6 function has more than, for example, 210
arguments. Therefore the targs array can be of fixed size 210.

Maximum number of arguments per constructor. Our
header representation (see Section 4.1) allows for 54 bits for
the arity of constructors. CertiCoq will refuse to compile
a program if it uses a data constructor with more than 254
arguments.

Maximum number of constructors per datatype. Our
header representation (see Section 4.1) allows for 8 bits for
the ordinal of a boxed constructor, and 63 for unboxed con-
structors. CertiCoq will refuse to compile a program if it
refers to an inductive datatype with more than 28 − 1 non-
nullary constructors or more than 263−1 nullary constructors
(or 231 − 1 on 32-bit machines).

Full program compilation. Our proof of correctness as-
sumes we are compiling a closed program of nonfunctional
type.We could do separate compilation and linking by “lambda
binding imported modules” [18], in which each module is
a closed higher-order function, and linking is just function
application.

Axiomatized (external) function. As detailed previously,
we make use of the last bits of Clight values to differentiate
between integers (arity-0 constructors) and aligned pointers.
Unfortunately, the Clight semantics does not allow for this
distinction. We thus axiomatize an “inlineable external func-
tion” isptr to return true on aligned (divisible by word size)
addresses. To realize this axiom as a theorem would require
an extension to the CompCert correctness proof (but not a
change to the behavior of the CompCert compiler).

Correctness of the conversion environments. When start-
ing code generation, we receive global environments describ-
ing the name and components of inductive datatypes found
in the program. By this point of the compiler, we can assume
• every constructor found in the program is represented in
∆, and

• every constructor is applied to the number of arguments
corresponding to its arity as recorded in ∆.

5.3 Invariants in the proof of correctness
To generalize the statement of correctness (see Theorem 5.5),
we need invariants asserting the correspondence between
the L6 structures, the conversion environments, and the
Clight state. We now detail the invariant used in the proof.

Allocatable space. In the expression simulation relation,
we assert that there is enough writable space between the
allocation pointer and the limit pointer to allocate all the
values assigned in the expression:

Theorem 5.1 (Sufficient allocatable space).
(8 ×m ≤ tlimit − talloc)

Certified code generation from CPS to C
October 2019, ,

This fact is reasserted at each function entry using, when
needed, the proof that running the garbage collector results
in enough space. This stays true throughout evaluation –
since we provision memory for the heaviest path of the
function, any step preserves or reduces the sum of the space
used currently and the space needed until the end of the
function.

Separation of spaces in memory. In a disjoint area of the
heap, we keep the structure describing the current state of
the allocatable space and information about the running
program (as described in Section 4.6). It is important that
this space is separated from the allocatable space, and that
both of these are separated from the portion of memory
holding the code portion of functions.

5.4 Specification of the interface with garbage
collection

At the proof level, we axiomatize the effect of garbage col-
lection on the provided interface (described in Section 4.6).
We separate the logical portion of the proof from the spatial
component:
Before garbage collection, we have a list of roots ®v7 held

in the arguments array of tinfo at position described in finfo
pointing to the garbage-collected area L (which we referred
to as “GC heap” previously in this section) of a memorym
and representing a list of L6 values ®v6.
After garbage collection, in the same arguments array of

tinfo, and at the same position described in finfo, we have a
list of roots ®v7

′ pointing to a modified garbage-collected area
L′ of a memorym′ representing the same list of L6 values
®v6. We also know that the space between the new talloc and
tlimit pointer of the updated tinfo is writable, and at least
the required size as described in finfo.
Theorem 5.2 (program_gc_inv, correctness of g. c.).
GCfinfof tinfom = (m′, tinfo′) ⇒

(∀i ∈ finfof ,v6 ≃
val
θ,m targs[i] ⇒ v6 ≃val

θ,m′ targs[i]) ∧
tlimit′ − talloc′ ≥ finfof [0] ∧
(∀talloc′o ≤ o < tlimit′o ,Writable(m talloc′b o))

On the spatial side, before garbage collection, L contains
all the pointers reachable from ®v7, and is disjoint from tinfo
and the area in which functions are allocated. After garbage
collection, any location inm not in L and tinfo is unchanged.
tinfo is still allocated at the same location inm′, but the val-
ues it holds may have changed. Finally, all pointers reachable
from ®v7

′ are contained in L′, which is disjoint from tinfo and
the area in which functions are allocated.
Theorem 5.3 (program_gc_inv, spatial assumptions w.r.t.
g.c. correctness).
GCfinfof tinfom = (m′, tinfo′) ∧

(∀talloco ≤ o < tlimito ,¬L tallocb o) ⇒
∃L′, (∀talloc′o ≤ o < tlimit′o ,¬L

′ talloc′b o) ∧

(∀i ∈ finfof ,∀b o, reachablem′ targs[i] b o ⇒ L′ b o)

5.5 A correct generational garbage collector
The generational garbage collector developed for CertiCoq
has been proved correct by Wang et al. [7]. We showed that
their representation of garbage collection is compatible with
our interface. However, we have not yet proven the spatial
portion of the interface. This is because the garbage collec-
tor has been proved correct using the VST program logic
[19], while the code generator is proved correct directly over
the semantics of Cliдht . The proof could be completed by
unfolding the definition of VST’s Hoare triple (semax), as de-
scribed in Program Logics for Certified Compilers [13]. Doing
so would allow us to show that only the portions concerned
with garbage compilation (which is to say, tinfo, targs and
the GC heap) have been affected by garbage collection.

5.6 Forward simulation between L6 and Clight
We prove correctness of the code generator by a simulation
between L6 and Clight. The proof goes by induction on the
L6 big-step evaluation derivation, in well-formed L6 and
Clight environments.
The top-level statement of correctness states that if pro-

gram P evaluates to value v , and that sP is generated from
code generation over P , then in an appropriate initial mem-
ory m, sP steps to a memory m′ containing (in targs1) a
representation of v :

Theorem 5.4 (correctness of code generation).

©«
· ⊢ P ⇓ v ∧

codegen∆,θ P = sP ∧

init(m)

ª®¬ =⇒
©«

∃m′.

·, · ⊢ sP ,m ⇒ϵ ·,m′∧

(·,v) ≃val
θ,m′ targs1.

ª®®¬
We generalize this statement to an open term e by re-

lating its evaluation context ρ with a Clight triple (G,m, l)
containing a global environment, a memory and a local en-
vironment:

Theorem5.5 (repr_bs_L6_L7_related, generalized statement
of correctness for code generation).

©«

UB(ρ, e) ∧
INVm,l (tinfo) ∧
INVe (∆,θ) ∧
ρ ⊢ e ⇓ v ∧

codegen∆,θ e = se ∧

ρ ≃env
θ,e (G,m, l)

ª®®®®®®®¬
=⇒

©«
∃m′,

G, l ⊢ se ,m ⇒ϵ ·,m′∧

(ρ,v) ≃val
θ,m′ targs1.

ª®®¬
UB(ρ, e) asserts that the unique binding property holds

globally over e and every value in ρ.
INVe (∆,θ) records the assumptions in the proof of correct-

ness described in Section 5.2, while INVm,l (tinfo) ensures
the preservation of the invariants described in Section 5.3.

The memory relation ρ ≃env
θ,e (G,m, l) states that any func-

tion f in ρ has a corresponding Clight function held at
Vptr G(f) 0 in m, and any other free variable x of e has
a correspoding Clight value in the local environment l and

October 2019, ,
Olivier Savary Bélanger, Matthew Z. Weaver, and Andrew W. Appel

memory m according to ρ(x) ≃val
θ,m l(x) (which captures

the data representation described in Section 4). We write
ρ(x) ≃val−id

G,m,l x as the value-identifier relation over both func-
tions (held in G) and other values (in l).
We provide here the details of each case of the proof,

corresponding to the evaluation rule of the semantics of L6
included in Figure 2:

ρ ⊢ halt x ⇓ v By the evaluation derivation (e_halt),
we know that ρ(x) = v . Since x is free in halt x , by the
memory relation, we know that v ≃val−id

G,m,l x . By⇝, the value
corresponding to v will be placed in the first slot of the
arguments array, as required.

ρ ⊢ let x = Projn y in e ⇓ v By the evaluation derivation
(e_proj), we know that ρ(y) = c ®w , and that ρ;x 7→ wn ⊢

e ⇓ v . Since y is free in let x = Projn y in e , by the memory
relation, we know that v ≃val−id

G,m,l x . Since v is a boxed con-
structor, we have l y = Vptr b o and (c, ®w) ≃val

θ,m Vptr b o.
By inversion on the value relation, we could only be in the
boxed constructor case VR_bcon, and m[b,o + (n × 8)] =
v7
n ∧ wn ≃val

θ,m v7
n). Extending l with x 7→ v7

n by stepping
through the assignment statements provides a local envi-
ronment and memory related to ρ;x 7→ wn , and we can
apply the induction hypothesis on ρ;x 7→ wn ⊢ e ⇓ v and
codegen(e) = s .

ρ ⊢ let x = Con c ®y in e ⇓ v The constructor case of
code generation relies on assumptions we are holding about
allocatable space in the Clight memory. By the evaluation
derivation (e_constr), we know that ∀yi ∈ ®y , ρ(yi) = wi and
ρ;x 7→ (c, ®w) ⊢ e ⇓ v . Here, we need to consider two dif-
ferent cases, corresponding to our value representation de-
scribed in Section 4.1:

If ord∆ c = 0, then we are generating Clight code
“Sset x ((ord∆ c ≪ 1) + 1); s” where codegen(e) = s . Step-
ping through the assignment statement updated the local
environment to l ,x 7→ hdr∆ (c), with ρ;x 7→ (c, ®w) ≃env

θ,e
(G,m, l ;x 7→ hdr∆ (c)). Correctness follows by induction
hypothesis on codegen(e) = s and ρ;x 7→ (c, ®w) ⊢ e ⇓ v .
If ord∆ c , 0, we are generating code to allocate a boxed

value: “codegen(let x = Con c ®y in e) = Sset x−1 ((arr∆ c ≪

8) + ord∆ c); Sset yi vi+1; s”. In this case, because of our as-
sumption about the memory, we know that there is enough
allocatable space in m after the allocation pointer for | ®y | + 1
value-sized blocks. First, we place the header of c inm[alloc].
Then, for each yi ∈ ®y, we havewi ≃

val−id
G,m,l yi by the memory

relation, and we store that value at m[alloc + (i × | |val)].
Finally, we set x to point after the header, atm[alloc + 8)],
establishing all the necessary pieces for VR_bcon to hold
for c ®y, and extending the memory relation to have ρ;x 7→

(c, ®w) ≃env
θ,e (G,m, l ;x 7→ Vptr balloc oalloc + 8). Before us-

ing the induction hypothesis on codegen(e) = s and ρ;x 7→

(c, ®w) ⊢ e ⇓ v , we update the allocation pointer’s offset to to

oalloc + (| ®y | + 1) × 8, and reestablish the assumption that is
enough allocatable space for the allocation in the heaviest
path in e after the new allocation pointer.

ρ ⊢ match x with ®b ⇓ v Code generation for case-statement
relies on the correctness of our constructor environment, en-
suring that each constructor c of an inductive type has a
distinct hdr∆ c . It also relies on the axiomatized semantics
of isptr properly distinguishing between our representation
of boxed and unboxed values (see Section 4.1). By the evalu-
ation derivation (case e_match), we know that ρ(x) = c ®w ,
(c ⇒ e) ∈ ®b and ρ ⊢ e ⇓ v . Well-formedness of ®b ensures
that only one case matches c . By the environment relation,
we havev ≃val

θ,m l x (as x is matched on, and thus cannot be a
function). If c is a nullary constructor, we are in the unboxed
case (VR_ucon) and we switch on the header held unboxed
in l . Otherwise, l x is a pointer, and we can recover the
header and switch on it. In both cases, the recursion is done
on ρ ⊢ e ⇓ v and codegen(e) = s with a Clight continuation
skipping through the remaining case of the switch.

ρ ⊢ App f ®y ⇓ v Application is by far the most compli-
cated case of this proof, as it relies on multiple assumptions
of correctness for environments in order to properly save
and restore arguments from the arguments array, to perform
a call to the right location in memory, and to reestablish en-
vironment assumptions about the new code block by calling,
if needed, garbage collection.
As mentioned previously, the first k arguments to f are

passed as function-parameters, while any further arguments
are passed through the arguments array.⇝ generates state-
ments to place the values corresponding to skipk ®y in appro-
priate slots of the arguments array.By the memory relation,
we have corresponding Clight values in д (in the case of
functions) or l (for constructors) for any yi ∈ ®y.
Then, we step through the call to f , held in the global

memory of the Clight program p. The expression relation
ensures that a corresponding function info finfois available
in the global environment, and that f maps to a sequence of
statements consisting of a conditional statement for garbage
collection, assignment statements restoring any extra argu-
ments (if more than k) of f into local memory, followed by
the translation of the body of the function.
At this point, we step through the conditional statement

inserted by the code generator to ensure enough allocat-
able memory is available in the garbage-collected area for
the heaviest path of e , the body of function f . If there is
enough space, we proceed with the proof using m′ = m.
Otherwise, we store in the arguments array the arguments
which were passed as function-parameters, before garbage
collection is called, and we use its axiomatized semantics to
prove that the memory after collection,m′, is suitable and
related to ρ, ®x 7→ ®y under the memory relation. We provide
in section 4.2 details about the interface and axiomatized

Certified code generation from CPS to C
October 2019, ,

semantics for garbage collection. For the code generation
proof, we concentrate on three properties ofm′:

1. m is related tom′ over ®y.
2. tinfo has been properly updated, and there is enough space

inm′ between talloc and tlimit.
3. nothing outside in tinfo, targs or the garbage-collected

area has changed betweenm andm′.

This ensures all of the assumptions about m are still true
aboutm′, in addition to enough space inm′ being available.
We then restore the arguments of f from the arguments

array to the new local environment l ′. Since f is closure-
converted, we know that all of the free-variables of its body
are bound as arguments (potentially in the environment
argument). Meanwhile, because f is hoisted, any function in
ρ is also present in ρ ′, so that portion of the memory relation
is preserved. Taken together, these two steps ensure that the
memory relation ρ ′ ≃env

θ,e (G,m′, l ′) holds.

6 Performance and Evaluation
We measure performance on the VeriStar benchmark, a Gal-
lina program for paramodulation-based resolution theorem
proving for entailments in separation logic [22], 825 non-
blank noncomment lines of code (not including embedded
proofs). L6-to-Clight code generation takes 148 milliseconds
(plus time for front-end phases of Certicoq and for CompCert,
see [23]). In comparison, Coq’s standard extraction to ocaml
takes 124 ms followed by either 132 ms for ocaml byte-code
compilation or 487 ms for ocaml native-code compilation.
Execution time of VeriStar (running on three difficult de-

cision problems) on x86-64 is shown in Figure 13.
Performance is substantially affected by howmany function-

parameters we pass in registers, so we measure several C-
compiler configurations.
Kranz [20] observed that a CPS-based compiler should

pass arguments in registers—passmany arguments of lambda-
lifted functions in registers. When compiling through C, we
can pass only as many arguments in registers as the C calling
convention permits. All-tail-call programs (or mostly-tail-
call programs such as Haskell compiled via GHC through
LLVM) do not perform well in a standard C calling conven-
tion: few parameters are passed in registers (6, on x86-64,
the rest pushed on the stack), and there is substantial useless
memory traffic restoring callee-save registers that will never
be needed. For this reason, when GHC adopted LLVM as
its back end [21], its designers implemented a special “ghc”
calling convention in LLVM with 12 parameters passed in
registers (the rest on the stack) and no callee-save registers.
Furthermore, most C compilers support a “no frame pointer”
compilation option; most C programs (and certainly ours)
have no need for frame-pointer pushing and popping.
We use one C parameter for tinfo, and up to 5 more (or

11 more in ghc-cc) can be used for parameters; the rest use

Frame Calling
Compiler Params Pointer Convention Time

1 CompCert 1 yes standard 16.77 sec.
2 CompCert 6 yes standard 15.11 sec.
3 LLVM 1 yes standard 13.55
4 LLVM 1 no standard 12.57
5 LLVM 6 yes standard 10.99
6 LLVM 6 no standard 9.96
7 LLVM 1 yes ghc 11.95
8 LLVM 1 no ghc 11.37
9 LLVM 6 yes ghc 9.23
10 LLVM 6 no ghc 8.76
11 LLVM 12 yes ghc 9.11
12 LLVM 12 no ghc 8.79
13 Ocaml bytecode 17.84
14 Ocaml native 2.36

Figure 13. VeriStar runtime evaluation

slots in the targs array. Since CompCert does not support
ghc-cc, we also experiment with LLVM as a back end.
As one can see comparing rows 5 and 12, configuration

settings no-frame-pointer and ghc-cc make a big difference:
a factor of 1.25 in performance. Unfortunately, CompCert
does not support either option. Comparing rows 2 and 5,
informal examinations of the assembly-language outputs of
CompCert and LLVM show that much of CompCert’s slower
performance may also be connected to tail-call overhead.
Put together, this demonstrates strong motivation for adding
per-function custom calling conventions to CompCert.

Even so, we do not match the performance of Ocaml native
code: Our compiler is missing several important optimiza-
tions in phases earlier than the code generator.

7 Related Work
CakeML [27] is the most closely related work to our own:
It is a proved-correct-in-hol4 extracter/compiler/collector
for ML (where pure ML also serves as the logical language
of hol4). Like CertiCoq, CakeML is a multiphase optimizing
compiler with a garbage-collection interface, and they report
good performance results.5 Like CertiCoq, CakeML proves
correct linkage to a proved-correct generational collector,
but their collector must be written directly in a low-level
StackLang intermediate language—it cannot be written in C.
CakeML is direct-style and uses a stack; to find live roots, at
every nontail call they push an index into a table describing
which slots in the current stack frame are live. CakeML’s
intermediate DataLang is similar in some ways to our L6

5On “Large, Pure” benchmarks [27, Fig. 12] such as Knuth-Bendix that
are rather smaller than our own VeriStar benchmark, their performance is
worse than the optimizing MLton compiler by about a factor of 2—although
this report was before they measured (presumably) improved performance
from a generational collector.

October 2019, ,
Olivier Savary Bélanger, Matthew Z. Weaver, and Andrew W. Appel

CPS, in each case “the last language with functional-style
abstract data,” [27, §5], but DataLang does not have scoped
variables (as do λ-calculus and CPS); and the semantics of
DataLang has explicit reasoning about garbage-collector
permutation of the data, whereas our L6 avoids any mention
of g.c., postponing that to Clight code generation.
Oeuf [24] is a verified extraction pipeline for a restricted

subset of Gallina to Cminor, an intermediate representation
of CompCert. This project has been developed concurrently
to CertiCoq. It does not support user-defined datatypes, lim-
iting the users to a predefined set of base types. It avoids
dealing with extraction concerns by requiring its source
terms to be written using eliminators for the provided base
types. It also assumes unbounded memories, which we don’t
–we formalized the interfacewith garbage collection, and our
proof links with the proof of a verified garbage collector. On
the other hand, Oeuf’s correctness statement allows reason-
ing about code that calls Oeuf-compiled code, which is not
supported currently by CertiCoq’s correctness statement.

GCminor [15] is an intermediate language extending Comp-
Cert Cminor with primitives to interact with a garbage-
collected heap, together with a library to define and prove
the correctness of garbage collectors. A similar setup is pre-
sented in the thesis of Dargaye [16]. They do not use CPS, so
source function calls are also C function calls. This approach
suffers from high runtime overhead (factor of 2 compared
with GHC), but it was not clear how much was from the
shadow stack (to make pointers findable by g.c.), how much
from doing a function call to allocate each block, how much
simply from targeting C.
PVS2C [25] presents a code generator from PVS, an in-

teractive proof assistant based on higher-order logic, to the
C programming language. Unlike Gallina, PVS is impure,
supporting references and array updates. To support this,
and to avoid memory leaks, they implement a reference
counting runtime system keeping track of the number of
live references to each object, and collecting objects when
their reference count drops to zero. A formal model for ref-
erence counting is presented by the same author in an ear-
lier paper [26], and shown to not impact the execution of
well-typed PVS programs. It instruments the operational
semantics with explicit operations to add and subtract from
reference counts kept in a new portion of the state. Our so-
lution is more general; while we implement a generational
copying garbage collector, which is significantly faster than
reference counting, our garbage collection interface could
be used by a reference counting collector.
Cogent [28] is a project that aims to generate correct C

code from a specification language embedded in HOL4. Com-
piling a Cogent program generates a C program and a proof,
in HOL4, that the semantics of the C program correspond
to the original program. In addition to using different proof
techniques, with proof-carrying code in place of simulation

proofs in CertiCoq, the Cogent language is much more re-
strictive than Gallina, being limited tomalloc-free functional
programs, and aimed at the development of system software,
for which a garbage collector would not be appropriate.

Other optimizing compilers have been developed, but not
proved correct, from functional languages to C. We explore
in the rest of this section the similarities and differences in
compilation techniques used with CertiCoq.

Directly relevant is the sml2c project [9], which generated
code from the SML intermediate representation, a direct
inspiration for L6, into the C programming language. Fewer
C compilers supported tail-call elimination at the time sml2c
was developed, they instead relied on a dispatch loop.

Zinc→K2 is an optimizing compiler from CaML-light to
C[29]. The research effort of this project is centered on op-
timizing function calls through explicit specialization. The
compiler also uses a one-bit tag to differentiate between
pointers and values, together with a copying garbage collec-
tor. Amajor different with CertiCoq is that their intermediate
representation is not in continuation-passing style, so that
they do not benefit from function entry having a defined sets
of roots. Instead, their collector must deal with ambiguous
roots spanning the whole accessible heap, a costly process.

8 Conclusion
In this paper, we presented a code generation phase from a
functional intermediate language to a subset of the C pro-
gramming language.
While code generators have been developed before be-

tween a functional language and an imperative one, the
design of our intermediate language allows for a straightfor-
ward translation to C, which impacts both the performance
of the generated code and the size of the proof.
Our garbage collection interface separates the challenge

of finding roots from the correctness of garbage compilation,
resulting in a more modular proof of correctness.

References
[1] Abhishek Anand, Andrew Appel, Greg Morrisett, Zoe

Paraskevopoulou, Randy Pollack, Olivier Savary Belanger, Matthieu
Sozeau, and Matthew Weaver. CertiCoq: A verified compiler for Coq.
CoqPL, 2017.

[2] Matthieu Sozeau, Abhishek Anand, Simon Boulier, Cyril Cohen, Yan-
nick Forster, Fabian Kunze, Gregory Malecha, Nicolas Tabareau, and
Théo Winterhalter. The MetaCoq project. In ITP 2018: the 9th Interna-
tional Conference on Interactive Theorem Proving, July 2018.

[3] Matthieu Sozeau, Simon Boulier, Yannick Forster, Nicolas Tabareau,
and TheoWinterhalter. Coq Coq correct! Verification of type checking
and erasure for Coq, in Coq. In POPL’20 (conditionally accepted),
January 2020.

[4] John Li. Verifying the uncurry phase of the CertiCoq compiler. Inde-
pendent Work Report, 2018.

[5] Olivier Savary Bélanger and Andrew W. Appel. Shrink fast correctly!
In Proceedings of the 19th International Symposium on Principles and
Practice of Declarative Programming, PPDP ’17, pages 49–60, New York,
NY, USA, 2017. ACM.

Certified code generation from CPS to C
October 2019, ,

[6] Zoe Paraskevopoulou and Andrew W. Appel. Closure conversion is
safe for space. In ICFP 2019: International Conference on Functional
Programming, 2019.

[7] Shengyi Wang, Qinxiang Cao, Anshuman Mohan, and Aquinas Hobor.
Certifying graph-manipulating C programs via localizations within
data structures. In Proceedings of the ACM on Programming Languages,
OOPSLA, 2019.

[8] Guy L. Steele, Jr. Rabbit: A compiler for Scheme. Technical report,
MIT, Cambridge, MA, USA, 1978.

[9] David Tarditi, Peter Lee, and Anurag Acharya. No assembly required :
Compiling Standard ML to C. ACM Letters on Programming Languages
and Systems, 1(2), June 1992.

[10] Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier
Rémy, and Jérôme Vouillon. The OCaml system release, 2019. URL
http://caml.inria.fr/pub/docs/manual-ocaml/. Version 4.08.

[11] Andrew W. Appel. Compiling with Continuations. Cambridge Univer-
sity Press, Cambridge, England, 1992.

[12] Yaron Minsky, Anil Madhavapeddy, and Jason Hickey. Real World
OCaml. O’Reilly Media Inc., 2014.

[13] Andrew W. Appel, Robert Dockins, Aquinas Hobor, Lennart Beringer,
Josiah Dodds, Gordon Stewart, Sandrine Blazy, and Xavier Leroy. Pro-
gram Logics for Certified Compilers. Cambridge University Press, New
York, NY, USA, 2014. ISBN 110704801X, 9781107048010.

[14] Amer Diwan, Eliot Moss, and Richard Hudson. Compiler support for
garbage collection in a statically typed language. SIGPLAN Not., 27(7):
273–282, July 1992.

[15] Andrew McCreight, Tim Chevalier, and Andrew Tolmach. A certified
framework for compiling and executing garbage-collected languages.
In Proceedings of the 15th ACM SIGPLAN International Conference on
Functional Programming, ICFP ’10, pages 273–284, 2010.

[16] Zaynah Dargaye. Vérification formelle d’un compilateur optimisant
pour langages fonctionnels. PhD thesis, Paris 7 – Denis Diderot, 2009.

[17] Fergus Henderson. Accurate garbage collection in an uncooperative
environment. In Proceedings of the 3rd International Symposium on
Memory Management, ISMM ’02, pages 150–156, New York, NY, USA,
2002. ACM. ISBN 1-58113-539-4. doi: 10.1145/512429.512449. URL
http://doi.acm.org/10.1145/512429.512449.

[18] Matthias Blume and Andrew W. Appel. Lambda-splitting: A higher-
order approach to cross-module optimizations. In Proc. ACM SIGPLAN
International Conference on Functional Programming (ICFP ’97), pages
112–124, New York, June 1997. ACM Press.

[19] Andrew W. Appel. Verified software toolchain. In Proceedings of the
20th European Conference on Programming Languages and Systems: Part
of the Joint European Conferences on Theory and Practice of Software,
ESOP’11/ETAPS’11, pages 1–17, Berlin, Heidelberg, 2011. Springer-
Verlag. ISBN 978-3-642-19717-8. URL http://dl.acm.org/citation.cfm?
id=1987211.1987212.

[20] D. Kranz, R. Kelsey, J. Rees, P. Hudak, J. Philbin, and N. Adams. ORBIT:
An optimizing compiler for Scheme. SIGPLAN Notices (Proc. Sigplan
’86 Symp. on Compiler Construction), 21(7):219–33, July 1986.

[21] David A Terei and Manuel MT Chakravarty. An llvm backend for ghc.
ACM Sigplan Notices (Haskell Symposium 2010), 45(11):109–120, 2010.

[22] Gordon Stewart, Lennart Beringer, and Andrew W. Appel. Verified
heap theorem prover by paramodulation. ICFP’12: SIGPLAN Notices,
47(9):3–14, 2012.

[23] Anonymized. PhD thesis, 2019.
[24] Eric Mullen, Stuart Pernsteiner, James R. Wilcox, Zachary Tatlock,

and Dan Grossman. Oeuf: Minimizing the Coq extraction TCB. In
Proceedings of the 7th ACM SIGPLAN International Conference on Cer-
tified Programs and Proofs, CPP 2018, pages 172–185, New York, NY,
USA, 2018. ACM. ISBN 978-1-4503-5586-5. doi: 10.1145/3167089. URL
http://doi.acm.org/10.1145/3167089.

[25] Natarajan Shankar. A brief introduction to the PVS2C code generator.
In Natarajan Shankar and Bruno Dutertre, editors, Automated Formal

Methods, volume 5 of Kalpa Publications in Computing, pages 109–116,
2018.

[26] Gaspard Férey and Natarajan Shankar. Code generation using a formal
model of reference counting. In NASA Formal Methods - 8th Interna-
tional Symposium, NFM 2016, Minneapolis, MN, USA, June 7-9, 2016,
Proceedings, pages 150–165, 2016.

[27] Adam Sandberg Ericsson, Magnus O. Myreen, and Johannes Åman
Pohjola. A verified generational garbage collector for CakeML. Jour-
nal Automated Reasoning (JAR), 2018. doi: 10.1007/s10817-018-9487-
z. URL https://link.springer.com/content/pdf/10.1007%2Fs10817-018-
9487-z.pdf.

[28] Liam O’Connor, Christine Rizkallah, Zilin Chen, Sidney Amani,
Japheth Lim, Yutaka Nagashima, Thomas Sewell, Alex Hixon, Gabriele
Keller, Toby C. Murray, and Gerwin Klein. COGENT: certified compi-
lation for a functional systems language. CoRR, 2016.

[29] Regis Cridlig. An optimizingML to CCompiler. In SIGPLANWorkshop
on ML and its Applications, 1992.

http://caml.inria.fr/pub/docs/manual-ocaml/
http://doi.acm.org/10.1145/512429.512449
http://dl.acm.org/citation.cfm?id=1987211.1987212
http://dl.acm.org/citation.cfm?id=1987211.1987212
http://doi.acm.org/10.1145/3167089
https://link.springer.com/content/pdf/10.1007%2Fs10817-018-9487-z.pdf
https://link.springer.com/content/pdf/10.1007%2Fs10817-018-9487-z.pdf

	Abstract
	1 Introduction
	2 The CPS Intermediate Representation
	3 The Semantics of our CPS IR
	4 Data representations, abstract state
	4.1 Representing datatypes in C
	4.2 Garbage Collection
	4.3 Abstract state for the generated code
	4.4 Simulating L6 in the Abstract State
	4.5 From abstract state to Clight memory
	4.6 Interface with garbage collector

	5 Code generation
	5.1 Code generation for L6 functions
	5.2 The code generation algorithm
	5.3 Invariants in the proof of correctness
	5.4 Specification of the interface with garbage collection
	5.5 A correct generational garbage collector
	5.6 Forward simulation between L6 and Clight

	6 Performance and Evaluation
	7 Related Work
	8 Conclusion
	References

