
Loop Headers in -calculus or CPS

Andrew W. Appel
Princeton University

appel@princeton.edu

CS-TR-460-94
Princeton University

June 15, 1994

Abstract

As is well known, the introduction of a \loop header" block facilitates the
hoisting of loop-invariant code from a loop. But in a �-calculus interme-
diate representation, which has a notion of scope, this transformation is
particularly useful.

Loop headers with scope also solve an old problem with in-line expansion
of recursive functions or loops: if done naively, only the �rst iteration is
inlined. A loop header can encapsulate the loop or recursion for better
in-line expansion.

This optimization improves performance by about 5% in Standard ML of
New Jersey.

I have previously described [2, pp. 83{92] the in-line expander of the Stan-
dard ML of New Jersey compiler. Its purpose is not merely to avoid function-
call overhead by inserting the bodies of functions in place of their calls. What
is more important is that further optimizations (�-reductions, constant fold-
ing, dead variable elimination) are enabled|in �-calculus, one �-reduction may
produce more redexes.

But the 1992-vintage CPS optimizer (which I will call \naive") had trouble
with loops. Consider this example (already CPS-converted):

1 fun f(x,r,s,k) = if x=0 then k(s)

2 else f(x-1, r, s + #1(r), k)

3 fun outer(v,c) =

4 let fun j(i) = c(i*2)

5 val t = (v, v>2)

6 in f(v,t,0,j)

7 end

8 fun elsewhere = . . . f(. . .) . . .

1



What in-line expansions are useful here? The function calls in lines 1 and
4 are to \unknown" functions k and c (their function bodies are not trivially
identi�able), so they cannot be expanded. Only the calls to f in lines 2 and
6 can be expanded. Expanding the former is equivalent to unrolling the loop
a little bit; expanding the latter means putting the �rst iteration of the loop
inside outer:

1 fun f(x,r,s,k) = if x=0 then k(s)

2 else f(x-1, r, s + #1(r), k)

3 fun outer(v,c) =

4 let fun j(i) = c(i*2)

5 val t = (v, v>2)

6.1 in if v=0 then j(0)

6.2 else f(v-1,t,0+#1(t),j)

7 end

8 fun elsewhere = . . . f(. . .) . . .

Now the call in line 6.1 can be expanded, but on the whole this step was not
very useful.

Loop headers

The new idea is to wrap a kind of \loop header" function around every recursive
function. The header contains the loop function and calls it. Recursive calls go
to the loop function; non-recursive calls (calls from outside) go to the header.

Loop header basic blocks have long been used [1], but in CPS or �-calculus
the notion of nested scope makes this transformation more powerful and useful
where in-line expansion is concerned.

In the example,

1.1 fun fh(x',r',s',k') =

1.2 let fun fl(x,r,s,k) = if x=0 then k(s)

2.1 else fl(x-1, r, s + #1(r), k)

2.2 in fl(x',r',s',k')

2.3 end

3 fun outer(v,c) =

4 let fun j(i) = c(i*2)

5 val t = (v, v>2)

6 in fh(v,t,0,j)

7 end

8 fun elsewhere = . . . fh(. . .) . . .

2



At the same time the loop header is installed, induction variable elimination
can eliminate arguments that are just passed around the loop without change
[4]. These variables become free variables of the loop, bound in the header. In
this case, k and r are such variables:

1.1 fun fh(x',r',s',k') =

1.2 let fun fl(x,s) = if x=0 then k'(s)

2.1 else fl(x-1, s + #1(r'))

2.2 in fl(x',s')

2.3 end

3 fun outer(v,c) =

4 let fun j(i) = c(i*2)

5 val t = (v, v>2)

6 in fh(v,t,0,j)

7 end

8 fun elsewhere = . . . fh(. . .) . . .

In-line expansion of loops

Now, the function call in line 6 can be in-line expanded. This is a \speculative"
step, since the body of fh will be copied, possibly making the program bigger.
It is to be hoped that further contractions will make up for this; the criteria for
the expansion heuristic have been previously described [2, pp. 87-92].

After this expansion, we have:

1.1 fun fh(x',r',s',k') =

1.2 let fun fl(x,s) = if x=0 then k'(s)

2.1 else fl(x-1, s + #1(r'))

2.2 in fl(x',s')

2.3 end

3 fun outer(v,c) =

4 let fun j(i) = c(i*2)

5 val t = (v, v>2)

6.1.1 in let fun fl(x,s) = if x=0 then j(s)

6.2.1 else fl(x-1,s+#1(t))

6.2.2 in fl(v,0)

6.2.3 end

7 end

8 fun elsewhere = . . . fh(. . .) . . .

3



Now, j(s) in line 6.1.1 is calling a function with no other calls, so it may
be �-reduced; #1(t) in line 6.2.1 may be contracted to v, and then t is dead so
line 5 may be removed:

1.1 fun fh(x',r',s',k') =

1.2 let fun fl(x,s) = if x=0 then k'(s)

2.1 else fl(x-1, s + #1(r'))

2.2 in fl(x',s')

2.3 end

3 fun outer(v,c) =

6.1.1 let fun fl(x,s) = if x=0 then c(i*2)

6.2.1 else fl(x-1,s+v)

6.2.2 in fl(v,0)

6.2.3 end

8 fun elsewhere = . . . fh(. . .) . . .

The important things accomplished by this series of transformations are the
reduction of #1(t) and j(s). In general, suppose t had been a function and line
2 had contained something like t(s), then this function call can now be in-lined
when the \naive" in-line expander could not do so.

The question of whether to unroll the loop 1.2 or the loop 6.1.1 may be
taken up separately by the expander. This is a nontrivial question, since the
premature unrolling of line 1.2 will make the expansion of fh less attractive.
In general this problem is not computable, but a useful heuristic suggested by
Trevor Jim is to delay unrollings (expansion of recursive calls) until after other
in-line expansions have quiesced.

Loop invariant arguments

Even without in-line expansion, hoisting invariant arguments out of loops is
important|and it is only possible with a loop-header that can provide a binding
site for these variables. The e�cient callee-save closure representation of Shao
and Appel [3] takes particular advantage of this. In this example,

1 fun exists(L,f,c) =

2 if L = nil then c(false)

3 else let fun k(x) = if x then c(true)

4 else exists(cdr L, f, c)

5 in f (car L, k)

6 end

the naive compiler would allocate a closure in memory for each instance of
k, even though the free variables f and c are invariant and only L di�ers in

4



Execution Time Heap Compile Run
Bench- Compiler Alloc- Time Time
mark usr gc sys real ation Ratio Ratio

Barnes- Naive 25.49 2.25 0.51 28.32 353.2Mb
Hut Headers 24.54 2.26 0.49 27.36 341.0Mb 1.003 0.966

Boyer Naive 1.21 1.45 0.23 2.93 23.8Mb
Headers 1.13 1.38 0.25 2.77 23.1Mb 0.983 0.955

CML- Naive 16.11 18.63 0.76 35.56 177.0Mb
sieve Headers 16.25 16.15 0.58 33.04 164.9Mb 0.914 0.929

Knuth- Naive 6.82 1.20 0.27 8.32 141.1Mb
Bendix Headers 6.00 1.06 0.22 7.30 122.0Mb 0.802 0.878

Lex Naive 9.85 0.80 0.25 11.12 81.9Mb
Headers 9.59 0.75 0.25 10.83 62.0Mb 0.997 0.972

Life Naive 1.31 0.17 0.02 1.51 8.6Mb
Headers 1.29 0.15 0.03 1.49 7.0Mb 0.904 0.980

Yacc Naive 2.92 1.06 0.31 4.67 43.9Mb
Headers 2.95 1.08 0.26 4.60 44.3Mb 0.988 1.000

Ray Naive 24.68 0.38 1.02 26.80 408.7Mb
Headers 21.83 0.36 1.06 23.88 397.7Mb 0.933 0.891

Simple Naive 15.71 0.65 0.35 16.75 225.8Mb
Headers 15.16 0.76 0.31 16.25 202.4Mb 1.100 0.971

VLIW Naive 13.84 0.62 0.17 14.82 116.0Mb
Headers 12.63 0.79 0.22 13.81 113.2Mb 0.481 0.932

Average 0.911 0.947

Table 1: Benchmark performance

each iteration. (A stack-based compiler could stack-allocate these closures, but
this still requires memory tra�c in each iteration.) The \callee-save closure"
algorithm can make the closure (containing f and the several callee-save registers
c) in the loop header, and hold L in callee-save registers, so that each iteration
can call f and return to k without any memory tra�c.

Results

Table 1 shows the e�ect on execution time of this optimization on several bench-
mark programs, which are brie
y described by Shao and Appel[3]. The loop-
header transformation improves execution time by about 5% on the average,
partly by reducing the amount of heap allocation.

Compilation time improves by 8% on the average, because the loop-header
optimization reduces the amount of work for the back-end phases (closure con-
version, instruction selection, register allocation, scheduling).

This optimization is implemented in SML/NJ versions 0.96 and after.

5



Conclusion

This technique relies critically on the nested scope of the lambda-calculus in-
termediate representation. It does not rely so much on continuation-passing; a
direct-style version of this algorithm would also be e�ective.

With an intermediate representation su�ciently powerful to express func-
tions with nested scope, the introduction of \loop header" functions makes
in-line expansion of recursive functions much more useful.

References

[1] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers: Principles, Tech-
niques, and Tools. Addison-Wesley, Reading, MA, 1986.

[2] Andrew W. Appel. Compiling with Continuations. Cambridge University Press,
1992.

[3] Zhong Shao and Andrew W. Appel. Space-e�cient closure representations. In
Proc. 1994 ACM Conf. on Lisp and Functional Programming, page (to appear).
ACM Press, 1994.

[4] Olin Shivers. Control-Flow Analysis of Higher-Order Languages. PhD thesis,
Carnegie-Mellon University, Pittsburgh, PA, May 1991. CMU-CS-91-145.

6


