Allocation without Locking

Andrew W. Appel*
Department of Computer Science

Princeton University

Princeton, NJ 08544

November 1988

Keywords: garbage collection, dynamic memory allocation, concurrency

Abstract

In a programming environment with both concurrency and automatic
garbage collection, the allocation and initialization of a new record is

a sensitive matter: if it is interrupted halfway through, the allocating

*Supported in part by NSF Grants DCR-8603453 and CCR-8806121 and by a Digital

Equipment Corp. Faculty Incentive Grant

process may be in a state that the garbage collector can’t understand. In
particular, the collector won’t know which words of the new record have
been initialized and which are meaningless (and unsafe to traverse).

For this reason, parallel implementations usually use a locking or
semaphore mechanism to ensure that allocation is an atomic operation.
The locking significantly adds to the cost of allocation. This paper shows
how allocation can run extremely quickly even in a multi-thread environ-

ment: open-coded, without locking.

Copying garbage collection[6][5] can be extremely efficient in large memories.
The amortized cost of reclaiming a cell can approach zero[l]. Generational
garbage collection[7][8] is even more efficient: the cost per cell approaches zero
even in more reasonably-sized memories. In particular, it is not atypical to see
an amortized cost per reclaimed cell of less than one instruction.

Since the number of cells reclaimed is similar to the number allocated, we
can say that there 1s an implicit garbage-collection cost of approximately one in-
struction attributable to each allocation. When the cost of garbage collection is
that low, it makes sense to try to minimize the number of instructions necessary
to perform an allocation. This is particularly important in languages that per-
form very frequent allocations; the author’s ML compiler[3] typically performs
one allocation for every 80 instructions executed. If the cost of the allocation
can be reduced from 20 instructions to 5, that’s about a 15% improvement in
overall system performance.

In LISP, an allocation is typically expressed as (cons A B) meaning “allo-
cate a two-word record containing the values A and B and return a pointer to
1t.” With a compacting garbage collector, the unallocated memory is always a
contiguous region. That is, there 1s no “free list;” instead, there is a free area of
memory. The function (cons A B) could be implemented with these machine

instructions:
1. Test free-space pointer against free-space limit.

2. If the limit has been reached, call the garbage collector.

3. Store A into new record.

4. Store B into new record.

5. Add 2 (the size of a cons cell) to the free-space pointer.

6. Return the previous value of free-space pointer.

We can use the virtual memory hardware of the computer to accomplish the
test in line 1. If an inaccessible page is mapped to the region just after the free
space, then any attempt to store there (in line 4) will cause a page fault. The
operating system maintains data structures telling it which pages are valid, and
therefore which page faults are to be handled by fetching from disk and which
are to be handled by sending a “segmentation violation” signal (as it’s called
in Unix) to the user process. This signal can be handled by the user’s run-time
system, which will initiate a garbage-collection.

On systems that do a lot of allocation, it is worth dedicating a register to
hold the free-space pointer to simplify access to it. Therefore, the instruction
sequence for (cons A B), moving a pointer for the new cons cell into “dest,”

might look something like this (expressed in Vax assembly language):

movl B,4(fsp)
movl A,0(fsp)
movl fsp,dest

addl2 $8,fsp

This sequence of four quick instructions implements the creation of a new cell
in only twice the time it would take to fetch all the contents!

We rely on the virtual memory to give a page fault trap when fsp reaches
the end of the free space. A record may cross a page boundary, however; and it
would get very messy if the trap occurred halfway through allocation. Therefore,
we ensure that the first store causes the trap by storing the last word of the
record first. If that store succeeds, then all the rest are guaranteed to succeed
(as long as the record is not larger than a page). If a record larger than a page
is created, then there should be enough inaccessible pages in a row so their total
size is larger than the size of the record; or, locking can be used for large records
on the assumption that they are rare.

What happens if this allocation procedure is used in a system where a thread
of control may be suspended between any pair of instructions? An allocation
may be halfway completed when the interruption occurs, which would cause
problems both for other threads of control and for the garbage collector.

For this reason, many implementations use a lock or semaphore in the allo-
cation procedure to prevent two threads from allocating at the same time, and
to prevent the garbage collector from running while one thread is allocating.
The use of a locking mechanism is very costly, compared to the four- or five-
instruction cost (including amortized garbage collection overhead!) of allocating
a cell. This paper shows how locking mechanisms can be avoided.

We can easily solve the contention problems between different allocating

threads: each thread will be given its own free space. Allocations by thread
A in space a won’t affect allocations by thread B in space b. When thread A
is pre-empted by thread B, the half-finished allocation in space a won’t cause
problems for any allocations performed in space b.

This leaves the problem of interference between an allocating thread and
the garbage collector. If thread A is halfway through an allocation when it
is pre-empted, and the garbage collector is invoked before A resumes, then a
dangerous situation arises. The garbage collector won’t know which fields of
the new cell have already been initialized and which haven’t. The initialized
fields must be traversed (and updated, if the cells that they point to have been
moved); but the uninitialized fields are garbage, and should not be traversed.

The solution is to have the garbage collector finish the allocation and ini-
tialization of the new cell. The instruction sequence for an allocation (as shown
in the previous section) is simple and stereotyped; therefore, it is easy for the
allocator to recognize when a thread has been suspended during an allocation.
There are only three kinds of instructions allowed during an allocation, and

these instructions never occur in any other context:

e Storing to an offset from the free-space pointer (fsp).

e Moving the fsp to a destination register.

e Adding to the fsp.

It is a simple matter to recognize these instructions when they occur after

the suspended thread’s program counter. In fact, since “adding to the fsp”
always occurs at the very end of an allocation, it is possible for the garbage

collector to finish the allocation by interpreting the machine-instructions until

the add is found:

/* an allocation-interpreter for the Vax */
interp()
{ while (1)
if (pc points to "movl rn, k(fsp)")
fsplk] = reglnl]; advance pc;
else if (pc points to "movl fsp, rn"
reg[n] = fsp; advance pc;
else if (pc points to "addl2 $k, fsp")
fsp = fsptk; advance pc; return;

else return;

In some compilers, the number of fields in a record can be larger than the
number of registers, so it is necessary to execute fetch instructions during an
allocation, but these too can be stereotyped and recognized.

Interpreting machine instructions is slower by a factor of approximately 20
than executing them directly. An allocation takes approximately b instructions

(for small records, which are most common), so the overhead of interpreting an

allocation is about 100 instructions. However, since a typical process spends
only a tenth of its time in the middle of an allocation, then i1t will usually
be suspended outside of any allocation; it takes just the interpretation of one
instruction for the interpreter to realize that the program counter is not at one of
the stereotyped allocation instructions, and that no more interpretation need be
done. And when the process is found inside an allocation, then on the average
half of the allocation will already be completed. If a process is allocating only
10% of the time, then the average overhead per suspended process is only about
20-(5- 15 . % +1- %) = 23 instructions.

It is important to understand that this interpretation does not take place
on every pre-emption. Most pre-emptions are between allocating threads; only
rarely does a garbage collection begin. When there is a concurrent garbage
collector [4][2], the interpretation need be done only at a “flip” (the beginning
of a new cycle). Most of a concurrent collector’s time-slices do not involve a
“flip,” and do not need to touch any newly-allocated or partially-allocated cells.

Suppose that a thread allocates 10,000 cells between garbage-collections; and
then incurs an (average) 23 instruction overhead for “cleaning up” a partially
allocated cell. This is much cheaper than locking, which would require several
instructions for each of those 10,000 cells, especially if there was much contention
between different allocating threads.

Thus, dynamic allocation with garbage collection can be very cheap even

when there are several threads sharing memory. Instead of using a locking

mechanism on allocations, each thread can allocate in its own area of memory

without regard to interruption. Occasionally the garbage collector will have to

clean up an incomplete allocation, but this is not too expensive.

References

[1]

Andrew W. Appel. Garbage collection can be faster than stack allocation.

Information Processing Letters, 25(4):275-279, 1987.

Andrew W. Appel, John R. Ellis, and Kai Li. Real-time concurrent collec-
tion on stock multiprocessors. In SIGPLAN Notices (Proc. SIGPLAN 88

Conf. on Prog. Lang. Design and Implementation), pages 11-20, 1988.

Andrew W. Appel and David B. MacQueen. A Standard ML compiler.
In Gilles Kahn, editor, Functional Programming Languages and Computer

Architecture (LNCS 274), pages 301-324, Springer—Verlag, 1987.

H. G. Baker. List processing in real time on a serial computer. Communi-

cations of the ACM, 21(4):280-294, 1978.

C. J. Cheney. A nonrecursive list compacting algorithm. Communications

of the ACM, 13(11):677-678, 1970.

Robert R. Fenichel and Jerome C. Yochelson. A LISP garbage-collector
for virtual-memory computer systems. Communications of the ACM,

12(11):611-612, 1969.

[7] Henry Lieberman and Carl Hewitt. A real-time garbage collector based on

the lifetimes of objects. Communications of the ACM, 23(6):419-429, 1983.

[8] David Ungar. Generation scavenging: a non-disruptive high performance
storage reclamation algorithm. In SIGPLAN Notices (Proc. ACM SIG-
SOFT/SIGPLAN Software Eng. Symp. on Practical Software Development

Environments), pages 157-167, 1984.

