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Abstract

In this paper, I demonstrate the implementation of several tools for program analysis in a

machine-checked environment. I begin by detailing the implementation of the separation logic

for Concurrent C Minor proposed by Hobor, Appel, and Nardelli in the Coq proof assistant.

Formalizing the syntax and semantics of CCm and extending the set of semi-automated tactics

in the base implementation of C Minor leads to a framework for building proofs of the cor-

rectness and safety of concurrent programs. I then describe a thread-modular shape analysis

algorithm proposed by Gotsman et al. for inferring lock invariants in concurrent programs, and

demonstrate its use as a transformation from a simple C-like language to proved-correct CCm.

By reinterpreting the analysis in terms of the application of the rules of concurrent separation

logic, I prove its soundness without resorting to lattice theory. Finally, I explain a two-part al-

gorithm, based on the analysis and implemented in Coq, for the construction of CCm programs

and proofs of safety from programs in the source language of the analysis.

1 Introduction

With the increasing complexity of modern-day software systems comes an increased demand for

program correctness and reliability. Computer programs are commonly used to manage dangerous

or security-critical systems, where even the slightest possibility of internal error is unacceptable.

Applications such as web services must remain up and running in potentially adversarial envi-

ronments. Multipart systems are sufficiently complex that exhaustive testing of all possible cases

is unfeasible. The field of automated theorem proving offers an answer to these demands in the
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form of machine-checked verification. While demonstrating the correctness of a program is often

more time-consuming than testing, it can provide guarantees of correctness rather than simply

likelihoods. Furthermore, with the development of proof assistants and other tools for program

analysis, the task of proving a program has become (and is continuing to become) significantly less

burdensome.

Over the past decades, various logical frameworks for analyzing programs have been advanced,

starting from Church’s lambda calculus. One such logic, the Calculus of Constructions (CoC),

underlies the commonly used Coq proof assistant. From a user’s perspective, Coq consists of two

parts. The first is an ML-based programming language called Gallina, which is used to specify

logical constructs such as inductive definitions and recursive functions; the second is a system of

tactics used to semi-automate the proof process [10]. Gallina is designed so that it is possible

to reason about entities defined in the language using the Calculus of Constructions; thus, rather

than learn the intricacies of the underlying logic, programmers can build CoC predicates using

familiar programming language structures. Tactics provide an analogous function when creating

proofs; using pattern matching and the basic axioms of the logic, they serve to automatically

complete proof steps or simplify complex terms, forming a layer of abstraction over the details of

the underlying logic. These abstractions provide an interface to the CoC usable by programmers

as well as logicians, as well as speeding up the proof process through automation.

A series of projects, beginning with Leroy’s CompCert [9], have sought to adapt real-world

programs to the Coq framework. The result of the CompCert project was an intermediate language

called C Minor (Cm), along with a compiler front-end from C to Cm and a back-end from Cm to

PowerPC machine code. C Minor has many of the fundamental characteristics of C (e.g. integer

representation), and both the language semantics and most of the compiler are defined and proved

sound in Coq. Various projects have resulted in the creation of further certified compiler front-

ends, for high-level languages including Java and ML. Thus, Cm serves as a fully formalized and

machine-verifiable intermediate step between common high-level languages and machine code – it

can be used to guarantee properties of compiled code in terms of the source program. Essentially,

the CompCert project has become the basis of a framework in which real-world programs can be
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analyzed and verified in Coq.

Once the semantics of a programming language are fully formalized, various methods exist for

proving properties of programs. One of the earliest and simplest methods is Hoare logic [4], which

provides axiomatic semantics for the effects of programming statements on program state in terms

of logical assertions. Separation logic, an extension of Hoare logic to deal with dynamic shared

memory and pointers developed by Reynolds and O’Hearn [8], is sufficiently expressive to create

proofs about correctness of Cm programs. Appel and Blazy have formalized separation logic on

Cm in Coq [2], allowing proof writers to take advantage of the machine checking and automation

provided by the proof assistant. More recently, Hobor, Appel, and Nardelli have extended both

separation logic and Cm to handle concurrency [5], creating a Cm variant called Concurrent C

Minor (CCm) which more closely models the behavior of modern multithreaded programs.

By incorporating concurrency, CCm significantly increases the range of real-world programming

constructs that can be formally modeled and proven. Based on the concurrency model of C-threads,

it has the potential to serve as a platform for proving the correctness of real-world concurrent

programs. The first step to realizing this potential is the implementation of CCm in the machine-

checked environment of a theorem prover. Since the base Cm language was created in the Coq proof

assistant, Coq is a natural choice for this extended version. In addition, just as the Calculus of

Constructions is made into a useful real-world tool through the interface of the tactics provided by

Coq, concurrent separation logic can be made usable through the development of automated tools

and tactics. In this paper, I describe the implementation of CCm and concurrent separation logic in

Coq, as well as several tools designed to make the language and the logic accessible to programmers.

Ideally, these tools will form the beginning of an interface to theorem proving accessible to anyone

familiar with basic C-style programming paradigms.

2 Separation Logic

Separation logic has its origins in Hoare’s seminal paper “An axiomatic basis for computer pro-

gramming” [4], which proposed a simple set of rules for expressing the effects of a program on the
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environment of its local variables. A proposition in Hoare logic1 takes the form {P}s{Q}, where s

is one of several basic statements of a programming language, such as an assignment or a control

flow statement, and P and Q are logical predicates on numbers and variables. P is called the

precondition, and Q the postcondition, of the statement; each axiom and statement of Hoare logic

consists of these three elements, known as the Hoare triple. In Hoare logic, P and Q are expressions

in predicate logic; they can be thought of as assertions on the state of the program, where the state

here consists of the assignment of values to variables. The underlying meaning of the statement

{P}s{Q} is that starting from a state in which P is true, the execution of s will produce a state

in which Q is true. More specifically, {P}s{Q} implies a property of partial correctness2: starting

from state P , executing the command s will result in either an infinite loop or termination in state

Q. The logical expression true corresponds to the most general state, in which nothing is known

about the assignments of variables, since in classical logic A ⇒ true for all propositions A.

It is important to note the difference between programs that enter an infinite loop and programs

that “get stuck”. In an infinite loop, the program continues to execute forever according to the

semantics of the language; while the program does not proceed beyond the loop, the statements in

the loop body continue to execute correctly. “Getting stuck”, on the other hand, reflects an error

in the program, such as an unhandled exception – a case in which the semantics of the language

provide no means for the program to proceed. Thus, while partial correctness does not ensure that

a program will terminate, it does ensure that it will not enter an invalid state; such a program is

called safe. Then {true}s{Q} expresses the proposition that starting from no information, s will

either run to completion and reach state Q, or enter an infinite loop during execution, but not

crash or get stuck. {true}s{true} expresses the more general proposition that starting from no

information, s is safe.

The usefulness of basic Hoare logic is limited, however, by its range of statements. In particular,

there is no support for shared memory; while the value of one variable may be assigned to another,

this establishes no further connection between the two variables. A solution to this problem was
1In Hoare’s paper, this was written as P{s}Q, but the placement of brackets has been changed in modern notation.
2Other formulations of Hoare logic provide guarantees of total correctness by ensuring that loops will terminate;

this paper will deal with only logics of partial correctness.
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Figure 1 The rules of separation logic

` {P [w/e]}w := e{P}
assignment

` {P}s1{Q′} ` {Q′}s2{Q}
` {P}s1; s2{Q}

composition

` {B ∧ P}s{P}
` {P}while B s{¬B ∧ P}

iteration
` {B ∧ P}s1{Q} ` {¬B ∧ P}s2{Q}

` {P}if B then s1 else s2{Q}
conditional

` {e 7→ −}[e]:=e′{e 7→ e′}
mutation w is not free in e or e′

` {e 7→ e′}w := [e]{w = e′ ∧ e 7→ e′}
lookup

` {P}s{Q} P ′ ⇒ P

` {P ′}s{Q}
pre

` {P}s{Q} Q ⇒ Q′

` {P}s{Q′}
post

` {P}s{Q} no free variables in R are modified by s

` {P ∗ R}s{Q ∗ R}
frame

first proposed by Owicki and Gries in 1976 [7]. In 2002, Reynolds and O’Hearn discovered a more

modular solution with the invention of separation logic, an extension of Hoare logic that allows

reasoning about pointers and shared memory, using the abstraction of a heap [8]. The key innovation

of separation logic is separating conjunction, expressed with the ∗ operator. The construction P ∗Q

expresses the assertion that both P and Q are true, but of different, nonoverlapping sections of

the heap. Thus, x 7→ 3 ∗ y 7→ 3 means that x is a pointer to a heap cell containing the value 3,

and y is a pointer to a heap cell containing the value 3, and x and y do not point to the same

cell. In Hoare logic, it is true that for any assertion R whose free variables are not changed by

the statement s, {P}s{Q} implies {P ∧ R}s{Q ∧ R} – that is, the only parts of the precondition

that are affected by a statement are those involving the free variables of the statement. However,

this is clearly not true when pointers come into play: {x 7→ 4}[x]:=3{x 7→ 3} does not imply

{x 7→ 4 ∧ y 7→ 4}[x]:=3{x 7→ 3 ∧ y 7→ 4} when x and y point to the same heap cell. However, it is

true in separation logic that {P}s{Q} implies {P ∗ S}s{Q ∗ S}; in the above example, x 7→ 4 ∗

y 7→ 4 guarantees that modifying the value at x will have no effect on the value at y. This result,

known as the frame rule, allows the logic to be applied to large-scale programs by separating out

the information irrelevant to a particular statement. The full set of rules of separation logic3 is
3Here and throughout this paper, the letter s is used for statements, e for expressions, w for variables, v for values,
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shown in figure 1. With the proper extensions of the set of assertions, separation logic can express

operations on complex data structures.

With its more extensive set of assertions, separation logic can provide a wide range of guarantees

about programs with shared memory. As an extension of Hoare logic, separation logic also proves

properties of partial correctness, and proving {true}s{true} is sufficient to guarantee that s is

safe. As a consequence of the semantics of the rule for lookup, in separation logic, {true}s{true}

implies that s is memory-safe, that is, it never dereferences a pointer to an unallocated heap cell.

In real-world programs, this property is often both desirable and difficult to attain; however, the

semantics of the rule for load ensure that it holds for all programs that have been proved correct

with respect to separation logic. It is important to note the difference between the separation

logic assertions true and emp. As in Hoare logic, true provides no information about the current

state; for any separation logic assertion A, A ⇒ true. emp, on the other hand, guarantees that

the heap is empty, but, like true, imposes no conditions on variables. Then in separation logic,

{emp}s{emp} implies that s contains no memory leaks; starting with an empty heap, it ends

with an empty heap. Both memory safety and the absence of memory leaks are useful real-world

properties that can be guaranteed through separation logic, though as will be shown later, not all

formulations of separation logic can provide such strong guarantees against memory leaks.

Concurrency adds a new set of challenges in proving a program’s correctness; when multiple

threads access and modify the same memory, it is even more difficult to ensure memory safety.

O’Hearn [6] proposes an extension of separation logic to support the notion of resources, each of

which protects a set of variables and memory locations. O’Hearn then demonstrates the application

of this extended separation logic to common idioms of concurrency, including locks and semaphores.

This not only extends separation logic’s guarantees of memory safety to concurrent programs, but

also allows guarantees against race conditions: if a program can be proved correct with respect

to concurrent separation logic, then no two threads access the same resource at the same time.

However, the model of concurrency used in this formulation of concurrent separation logic differs

from the common multithreading paradigm used in packages such as C-threads, making it difficult to

and capital letters for assertions.
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extend to real-world programming languages. There are three main features of real-world languages

that are absent in O’Hearn’s model. First, the structure of parallelism is determined statically;

these rules for concurrent separation logic cannot be applied unless the user indicates in advance

the number of threads active at each point in the program. C Minor requires a more dynamic

concurrency model, in which threads are created and destroyed at runtime. Second, O’Hearn’s

model expresses shared memory through the sharing of local variables across threads (with the

appropriate resource restrictions), while threads in most languages share memory but not local

variables. Finally, a programmer does not always know exactly which memory locations, or even

which variables, should be contained in each resource invariant. While the concurrent extension for

Cm addresses all of these issues to some extent, the last is of particular interest, and I will return

to it later.

Figure 2 The rules of concurrent separation logic

resource(e,R) R ⇔ (hold eR ∗ S)

Γ ` {e 7→ 0}make lock eR{e
πlock•→ R ∗ hold eR}

Γ ` {e
πlock•→ R ∗ hold eR}free lock e{e 7→ 0} Γ ` {e π•→ R}lock e{e π•→ R ∗ R}

Γ ` {e π•→ R ∗ R}unlock e{e π•→ R}
R ⇔ (hold eR ∗ S)

Γ ` {R}unlock e{emp}

precise (R)
Γ ` {e : {R}{S} ∗ R(~e)}fork e~e{e : {R}{S}}

As part of the ongoing Concurrent C Minor project, which aims at extending Leroy’s C Minor

with support for concurrency and proofs in separation logic, Hobor, Appel, and Nardelli [5] propose

an alternative formulation of concurrent separation logic, modeled after the locks paradigm of C-

threads. The rules of CCm separation logic4 are shown in figure 2. Threads are created dynamically

from functions through the fork command; resource invariants are protected by locks, areas of

memory set aside (again, dynamically) as signals between processes. Each lock l is created with
4In Hobor et al.’s formulation, 100% is used to indicate the lock share produced by make lock and consumed by

free lock. To avoid confusion between this 100% share and a full share, I will instead use πlock throughout.
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Figure 3 A concurrent program with a memory leak

void main() with pre:{emp} and post:{emp} {
p := call malloc and zero(4);
fork f(p);
return ();
}

void f(p) with pre:{p 7→ −} and post:{p 7→ −} {
while (true) { skip; }
}

some lock invariant R, an assertion of separation logic in which l is a free variable. Locking the

lock adds R to the environment of what is known, and unlocking it removes R. By assuring that

a lock can only be unlocked when the lock invariant is satisfied, this formulation of separation

logic provides a guarantee that whenever the lock is unlocked, the invariant holds. R can include

conditions on the contents of memory through assertions about pointers, as well as conditions on

the lock itself. The lock assertion e
π•→ R comes with a share of visibility π, allowing shares of

a lock to be passed out to various threads – if π = π1 ⊕ π2, then e
π•→ R ⇔ e

π1•→ R ∗ e
π2•→ R.

Through this mechanism, a program can give threads access to locks and the memory they protect

by passing them as parameters. Note that there are two rules for the unlock statement; the first is a

straightforward reversal of the rule for lock, while the second is more general but less intuitive. The

second unlock rule is useful in the situation where a lock’s visibility is part of the lock invariant,

but in most other cases the first, premise-free rule is sufficient.

The behavior of the fork function has important implications for the use of this version of

concurrent separation logic. Rather than incorporate the newly spawned thread as part of the

current program, as in O’Hearn’s model, CCm separation logic treats the new thread as a separate

entity, with its own set of assertions on the current state. The state is divided between the parent

and child threads at the moment of the thread’s creation, and thereafter the threads are analyzed

sequentially and separately, making the analysis valid for any interleaving of the two threads5.
5This approach is based on an assumption of sequential consistency, which guarantees that the actual execution

of a multithreaded program will consist of some interleaving of the threads. On modern multiprocessors, this may
not be a valid assumption; the oracle semantics of CCm defined by Hobor, Appel, and Nardelli [5] assure sequential
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The threads can only communicate by manipulating the locks visible to both of them; otherwise,

they have no knowledge of each other’s state. One important consequence of this fact is that

while {true}s{true} still implies that the thread s is memory safe and free from race conditions,

proving {emp}s{emp} does not ensure that s has no memory leaks. It is possible for a program

to allocate memory, pass it to a forked thread, and then terminate before the memory is freed, as

in the example in figure 3. Here, {emp}call main (){emp} is provable, but main still contains a

memory leak.

3 Implementation of CCm Separation Logic

Hobor, Appel, and Nardelli [5] present a theoretical framework for concurrent separation logic in

C Minor, extending both the language and the logic to handle C-style concurrency. Cm and its

sequential separation logic are defined and proved sound in the Coq proof assistant, allowing the

creation of machine-checked proofs based on Coq’s extensive library of tactics, as well as several

custom tactics such as those created by Appel [1]. The creation of a concurrent extension for Cm

then consists of the following steps:

1. The addition of concurrent statements to the definition of the Cm language.

2. The extension of the certified Cm compiler to produce and consume CCm.

3. The formalization of the rules of concurrent separation logic.

4. The extension of the proof of soundness of Cm separation logic to include the new concurrent

rules.

5. The extension of the existing framework of tactics to support proofs involving concurrent

programs.

In this section, I address items 1, 3, and 5, and use this partial implementation of CCm to prove

the correctness of a sample concurrent program by Hobor et al.

consistency on multiprocessors.
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In CCm, statements are redefined to include five new operations:

s : stmt ::= . . . | lock e | unlock e | fork e (~e) | make lock eR | free lock e

The make lock statement turns a pointer into a lock pointer with a lock invariant R, while free lock

turns a lock pointer back into an ordinary pointer; lock and unlock manipulate the state of the

provided lock. From an execution perspective, make lock and free lock have no effect, and lock and

unlock call on the underlying implementation of the locking mechanism: lock causes the current

thread to wait for the lock to become available, while unlock makes it available for the next waiting

thread. From a separation logic perspective, as shown in figure 2 above, make lock transforms

a state described by a maps-to assertion into a state described by the conjunction of two new

assertions: a lock assertion and a hold assertion. The lock assertion e
π•→ R indicates that the

expression e evaluates to a pointer to a lock with invariant R, and is visible to the current thread

with visibility π. The assertion hold eR gives the current thread the right to unlock the lock

pointed to by e, and implicitly contains a share of the lock’s visibility. The other lock statements

manipulate these assertions to produce the desired lock behavior.

The final concurrent statement is fork, which spawns a new thread from the provided function;

from the perspective of separation logic, it acts as a function call that never returns, taking the part

of the current state corresponding to its function precondition and disappearing. As per the CCm

concurrency model, once a thread is forked, it has no interaction with the parent thread, except by

changing the state of mutually visible locks. It is important to note that the lock assertion contains

no information about the current state of the lock. The memory protected by the lock is invisible

to the current thread when the lock is unlocked, and becomes visible when the current thread

locks the lock; this is the only information a thread receives from the lock and unlock commands.

This reflects the fact that it is impossible for a thread that does not currently hold the lock to

determine whether it is locked or unlocked, since at the moment of determination its state might

be simultaneously changed by another thread.

The lock invariant in the make lock statement takes the form of a separation logic assertion,

making it the only statement to refer directly to the logic. In effect, this embeds the set of assertions
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of the logic in the set of statements of the language6. While this does not result in a problem of

recursive definition, since CCm assertions do not refer directly to statements, it does break the

abstraction barrier between the language and the logic. While programmers in the original C

Minor could write programs without any knowledge of the logic used to prove it correct, CCm

programmers must be able to provide separation logic formulas describing the resources protected

by each lock. While this does not interfere with the demonstration of a machine-checked proof of

a sample CCm program where the invariants are provided, it does present a problem of usability,

and the next section of this paper further investigates this problem and provides a partial solution.

The implementation of the extended statement set and separation logic of CCm is sufficient

theoretical framework to prove a sample program. However, the construction of the proof itself is

difficult given only Coq’s built-in tactics. The Calculus of Constructions is a deductive logic, so a

proposition once shown to be true is true throughout the proof. Separation logic, on the other hand,

is a linear logic; moving through a program consumes facts as the state changes from statement

to statement. Appel [1] has created tactics for sequential Cm that provide a natural interface for

separation logic reasoning in Coq. The most significant of these tactics, and the one requiring the

most significant extension for CCm, is the forward tactic.

The forward tactic is used to move forward through atomic statements, that is, statements that

execute a single operation, as opposed to those involving control flow or stack manipulation. The

atomic statements of Cm are store (mutation) and assignment, which can be further subdivided into

load (lookup) and heap-independent assignment. forward can be used when the next statement

in a program is an atomic operation, and the current precondition can be shown to be satisfied. It

operates by reducing the current proof obligation (goal) to a simpler subgoal on the remainder of

the program. In sequential Cm, forward can be applied in the following cases [1]:

• when the goal is {P}w := e;C{Q} where w is not free in P or e and e contains no memory
6While embedding the assertion type in the statement type in Coq does not result in a recursive definition, it

does raise another implementation issue: that of the sort of the statement type. While statements are of sort Set,
assertions are of sort Type, making them too large to embed in a Set. Coq offers two possible resolutions of this
problem. For the purposes of this section, the concurrent statements are added as axioms, allowing them to be
used interchangeably with sequential statements. In the next section, the other approach will be used; concurrent
statements will be defined as a separate, larger type, containing both assertions and sequential statements. The former
provides greater ease of use, while the latter is more logically sound, and makes possible the structural induction that
will be used in the proofs of the next section.
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Figure 4 An example of forward and other separation logic tactics
Lemma. If e1 and e2 contain no memory references, and i and j do not occur free in e1 or e2,
{e1 7→ 0 ∗ e2 7→ 1}i := [e1]; j := i; [e2]:=j{e1 7→ 0 ∗ e2 7→ 0}.

Proof in Coq.
Tactic Proof Obligation

intros. {e1 7→ 0 ∗ e2 7→ 1}i := [e1]; j := i; [e2]:=j{e1 7→ 0 ∗ e2 7→ 0}
forward. {e1 7→ 0 ∗ e2 7→ 1 ∗ i = 0}j := i; [e2]:=j{e1 7→ 0 ∗ e2 7→ 0}
forward. {e1 7→ 0 ∗ e2 7→ 1 ∗ i = 0 ∗ j = i}[e2]:=j{e1 7→ 0 ∗ e2 7→ 0}
assert subst i. {e1 7→ 0 ∗ e2 7→ 1 ∗ j = 0}[e2]:=j{e1 7→ 0 ∗ e2 7→ 0}
forward. e1 7→ 0 ∗ e2 7→ j ∗ j = 0 ⇒ e1 7→ 0 ∗ e2 7→ 0
assert subst j. e1 7→ 0 ∗ e2 7→ 0 ⇒ e1 7→ 0 ∗ e2 7→ 0
sep trivial. Proof complete.

references; the remaining subgoal is {P ∗ (w = e)}C{Q}.

• when the goal is {P1 ∗ (e 7→ e′) ∗ P2}w := [e];C{Q} where w is not free in e, e′, P1, or P2;

the remaining subgoal is {P1 ∗ (e 7→ e′) ∗ (w = e′) ∗ P2}C{Q}.

• when the goal is {P1 ∗ (e 7→ e′) ∗ P2}[e]:=e2;C{Q} where e contains no memory references;

the remaining subgoal is {P1 ∗ (e 7→ e2) ∗ P2}C{Q}.

The usefulness of this tactic can be seen in a proof such as that in figure 4. Here, two other

separation logic tactics are also used: assert subst, which replaces all occurrences of a variable

with its value, and sep trivial, which automatically proves trivial propositions about assertion

implication. The built-in Coq tactic intros serves to introduce the variables and premises. Thanks

to the forward tactic, the proof is straightforward.

For most tactics (such as assert subst), the desired functionality is unchanged in CCm; ex-

tending them is simply a matter of adding cases corresponding to the new statements and assertions.

The forward tactic, however, requires further modification. The new lock manipulation statements

(make lock, free lock, lock, and unlock) are also atomic, and thus forward should be extended to

handle the most common cases of their use. forward can be extended to cover the concurrent

atomic statements through the addition of four new cases:

• when the goal is {P1 ∗ e 7→ 0 ∗ P2}make lock eR;C{Q} and R is a valid lock invariant for

e; the remaining subgoal is {P1 ∗ e
πlock•→ R ∗ hold eR ∗ P2}C{Q}.

12



• when the goal is {P1 ∗ e
πlock•→ R ∗ hold eR ∗ P2}free lock e;C{Q}; the remaining subgoal is

{P1 ∗ e 7→ 0 ∗ P2}C{Q}.

• when the goal is {P1 ∗ e
π•→ R ∗P2}lock e;C{Q}; the subgoal is {P1 ∗ e

π•→ R ∗R ∗P2}C{Q}.

• when the goal is {P1 ∗ R ∗ P2}unlock e;C{Q} and R is a valid lock invariant for e; the

subgoal is {P1 ∗ P2}C{Q}.

Conditions for valid lock invariants are defined in the axioms of CCm separation logic (see figure 2

for details).

Using this implementation of CCm and concurrent separation logic, along with the newly ex-

tended tactics, it is possible to construct a machine-checked proof of the example in appendix B of

Hobor et al.7[5] The lemma in the example can be stated formally as

Theorem 3.1. ∀l.Γ ` {l
πf•→ R(l)}call f (l){emp} ∧ Γ ` {emp}call main (){emp}

where Γ(f) = f : {emp}{emp}.

Figures 5 and 6 show the program annotated with separation logic pre- and postconditions at

each line. Examination should show that each line, together with its precondition and postcondition,

forms a valid and provable separation logic triple8. Note that the assertions in main refer to a lock

share πmain that does not appear in the program; at the fork statement, a share πf of the lock

visibility is split off and passed to f, and πmain is the share that remains, i.e., the share such that

πf ⊕ πmain = πlock.

As an example of the reasoning used in the proof, I will outline the proof of what may be the

least obvious step: the statement lock l in f.

Lemma 1. {l
πf•→ R(l)}lock l{l

πf•→ R(l) ∗ hold l R(l) ∗ ∃v.(l + 1) 7→ v ∗ (l + 2) 7→ v ∗ (l + 3) 7→ 1}.

Proof.

1. By the lock rule, {l
πf•→ R(l)}lock l{l

πf•→ R(l) ∗ R(l)}.
7As mentioned earlier, the percentage notation for lock shares has been modified for clarity; the share indicated

by 50% in Hobor et al. is labeled as πf here, and 100% is written as πlock.
8Actually, as explained by Appel and Blazy [2], the separation logic “triple” contains six elements; in addition to

the standard Hoare triple and the global context Γ, there are also a return context R and block-exit context B. Here
R and B are trivial, and are omitted in the presentation of separation logic propositions.
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Figure 5 Sample concurrent program and assertions – part 1

void main() with pre:{emp} and post:{emp} {
{emp}
L := call malloc and zero(4);
{L 7→ 0 ∗ (L + 1) 7→ 0 ∗ (L + 2) 7→ 0 ∗ (L + 3) 7→ 0}
i := 0;
{L 7→ 0 ∗ (L + 1) 7→ 0 ∗ (L + 2) 7→ 0 ∗ (L + 3) 7→ 0 ∗ i = 0}
make lock L R(L);
{L

πlock•→ R(L) ∗ hold LR(L) ∗ (L + 1) 7→ 0 ∗ (L + 2) 7→ 0 ∗ (L + 3) 7→ 0 ∗ i = 0}
fork f(L);

{L
πmain•→ R(L) ∗ hold LR(L) ∗ (L + 1) 7→ 0 ∗ (L + 2) 7→ 0 ∗ (L + 3) 7→ 0 ∗ i = 0}

*(L+3) := 1;

{L
πmain•→ R(L) ∗ hold LR(L) ∗ (L + 1) 7→ 0 ∗ (L + 2) 7→ 0 ∗ (L + 3) 7→ 1 ∗ i = 0}

block {loop {
{L

πmain•→ R(L) ∗ R(L) ∗ ∃v′.i = v′}
if (*(L+3)==0) exit 0 else skip;

{L
πmain•→ R(L) ∗ hold LR(L) ∗ ∃v.(L + 1) 7→ v ∗ (L + 2) 7→ v ∗ (L + 3) 7→ 1 ∗ ∃v′.i = v′}

*(L+1) := i; *(L+2) := i;

{L
πmain•→ R(L) ∗ hold LR(L) ∗ ∃v.(L + 1) 7→ v ∗ (L + 2) 7→ v ∗ (L + 3) 7→ 1 ∗ ∃v′.i = v′}

unlock L;

{L
πmain•→ R(L) ∗ ∃v′.i = v′}

i := i+1;

{L
πmain•→ R(L) ∗ ∃v′.i = w}

lock L;

{L
πmain•→ R(L) ∗ R(L) ∗ ∃v′.i = v′}

}}
{L

πlock•→ R(L) ∗ hold LR(L) ∗ ∃v.(L + 1) 7→ v ∗ (L + 2) 7→ v ∗ (L + 3) 7→ 0}
free lock L;
{L 7→ 0 ∗ ∃v.(L + 1) 7→ v ∗ (L + 2) 7→ v ∗ (L + 3) 7→ 0}
call free(L,4);
{emp}
return ();
{emp}
}
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Figure 6 Sample concurrent program and assertions – part 2

void f(l) with pre:{l
πf•→ R(l)} and post:{emp} {

{l
πf•→ R(l)}

loop {
{l

πf•→ R(l)}
lock l;

{l
πf•→ R(l) ∗ hold l R(l) ∗ ∃v.(l + 1) 7→ v ∗ (l + 2) 7→ v ∗ (l + 3) 7→ 1}

*(l+1) := *(l+1) * 2;

{l
πf•→ R(l) ∗ hold l R(l) ∗ ∃v.(l + 1) 7→ v ∗ 2 ∗ (l + 2) 7→ v ∗ (l + 3) 7→ 1}

*(l+2) := *(l+2) * 2;

{l
πf•→ R(l) ∗ hold l R(l) ∗ ∃v.(l + 1) 7→ v ∗ (l + 2) 7→ v ∗ (l + 3) 7→ 1}

if (*(l+1) > 10) {*(l+3) := 0; unlock l; return (); }
else skip;

{l
πf•→ R(l) ∗ hold l R(l) ∗ ∃v.(l + 1) 7→ v ∗ (l + 2) 7→ v ∗ (l + 3) 7→ 1}

unlock l;

{l
πf•→ R(l)}

}
{emp}
}
S(l, P ) = (∃v.((l + 1)) 7→ v ∗ (l + 2) 7→ v) ∗

(((l + 3) 7→ 1) ∨ (((l + 3) 7→ 0) ∗ l
πf•→ P ))

R(l) = µP. (hold l P ) ∗ S(l, P )

2. By the definition of R, R(l) ⇔ hold l R(l) ∗ S(l, R(l)).

3. Then l
πf•→ R(l) ∗ R(l) ⇔ l

πf•→ R(l) ∗ hold l R(l) ∗ S(l, R(l)).

4. S(l, R(l)) = ∃v.((l + 1)) 7→ v ∗ (l + 2) 7→ v ∗ ((l + 3) 7→ 1 ∨ ((l + 3) 7→ 0 ∗ l
πf•→ R(l))).

5. Now, among the clauses of the separating conjunction in the postcondition, we have both

l
πf•→ R(l) and ((l +3) 7→ 1∨ ((l +3) 7→ 0 ∗ l

πf•→ R(l))). However, a share can never be joined

to itself, and so l
πf•→ R(l) ∗ l

πf•→ R(l) ⇒ false.

6. Then the right branch of the disjunction cannot hold, and so the left branch must hold.

7. Then the postcondition can be rewritten as l
πf•→ R(l) ∗ hold l R(l) ∗ ∃v.(l + 1) 7→ v ∗

(l + 2) 7→ v ∗ (l + 3) 7→ 1.
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The rest of the proof proceeds along similar lines. Here the Coq implementation of CCm and

concurrent separation logic, along with the extended tactics described above, provides a framework

for the construction of a complete machine-checked proof of the memory safety and freedom from

race conditions of this sample real-world program.

4 Thread-Modular Shape Analysis

One of the most difficult aspects of applying formal program analysis methods to real-world con-

current programs is the problem of lock invariants. While most programmers are familiar with the

lock paradigm of C-threads, they rarely consider exactly what conditions a lock enforces. In the

case of CCm, make lock is the only statement that contains a separation logic assertion, breaking

the abstraction that allows programmers to use the language without understanding the underlying

proof mechanisms. However, it is far more difficult to reason about programs with locks when the

lock invariants are not known at the start of the analysis. While it is not possible to use separation

logic as presented here without providing lock invariants in code, for a certain subset of CCm, it is

possible to infer the lock invariants using proven program analysis methods.

Gotsman et al.[3] have proposed a thread-modular shape analysis for discovering the lock in-

variants of concurrent programs, precisely the tool to make concurrent separation logic accessible

and restore the abstraction between statements and assertions. As a thread-modular analysis, it

operates separately on each thread of the program, without requiring a model of concurrency that

tracks the interleaving of threads. The analysis infers lock invariants in terms of separation logic

assertions, making it particularly suited for this application. While the paper cited proposes a

general framework for such analyses, defined in terms of lattice theory, its demonstrative example

demonstrates the application of the framework to a C-like programming language, with locks much

like those used in CCm. Thus, by implementing the analysis in the machine-checked environment

of CCm, we obtain a tool that can be used to translate a simple subset of CCm, with a make lock

statement that requires no information about the lock invariant, to a memory-safe program in full

CCm. The analysis and the associated tool will be the subject of this section.

The tactics used in the sample proof of the previous section were an example of semi-automated
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proof tools. A user creates a machine-checked proof in Coq by combining built-in and custom tac-

tics, using his judgement to determine the appropriate tactic for each step, and occasionally pro-

viding information that the proof assistant cannot determine automatically. The shape analysis,

on the other hand, is a fully automated algorithm, which produces lock invariants without human

guidance. As a result, some elements of CCm may be too complex for the algorithm to handle.

Both the set of concurrent statements and the set of separation logic assertions must be restricted

to eliminate any ambiguity in the analysis. While some generality is lost through the fully auto-

mated approach, there is a corresponding increase in usability. Without knowing anything about

concurrent separation logic, a user can write a program in the algorithm’s input language and have

it automatically transformed into a valid CCm program with a guarantee of memory safety.

Figure 7 Sample program for thread-modular shape analysis

void thread1(l) { void thread2(l)} { void main()
while(nondet()) { while(nondet()) { l := malloc and zero(3);

lock l; lock l; make lock l;
n := malloc and zero(3); n := *(l+1); *(l+1) := l;
*n := data; if(n != l) { *(l+2) := l;
next := *(l+1); prev := *(n+2); unlock l;
*(n+1) := next; next := *(n+1); fork thread1(l);
*(n+2) := l; *(prev+1) := next; fork thread2(l);
*(l+1) := n; *(next+2) := prev; return ();
next := *(n+1); data := *n; }
*(next+2) := n; call free(n,3);
unlock l; }

} else skip;
return (); unlock l;
} }

return ();
}

n data l lock
n + 1 next l + 1 next
n + 2 prev l + 2 prev

Figures 7 shows a sample program for the thread-modular shape analysis, adapted to CCm from

Gotsman et al.[3] main forks off threads thread1 and thread2; thread1 adds nodes to the circular

doubly-linked list at l, while thread2 removes nodes from the list as long as more than one node

remains. With the addition of sequential code to generate and process the data in the list, this

models a common paradigm in concurrent programming. The most significant differences between
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this program and the example in the previous section are the make lock statement in main, which

does not declare the lock invariant for l, and the use of temporary variables prev and next to separate

store and load operations. These and other special features of this program will be examined in

further detail as the analysis is explained.

To simplify the separation-logic representation of the data structures in the program, Gotsman

et al. define two new assertions, node and dll. node(i, n, p) asserts that i is a node in a doubly-linked

list as shown in figure 7, with next pointer n and previous pointer p. dll(f, p, n, l) asserts that the

heap forms a doubly-linked list with first node f and last node l, where p is the previous pointer

of f and n is the next pointer of l. Formally,

• node(i, n, p) ::= ∃d.i 7→ d ∗ (i + 1) 7→ n ∗ (i + 2) 7→ p

• dll(f, p, n, l) is the least assertion such that dll(f, p, n, l) ⇔

(f = n ∧ p = l ∧ emp). ∨ ∃x.(node(f, x, p) ∗ dll(x, f, n, l))

The demonstration of the analysis on the sample program will make use of these definitions.

The basis of the algorithm is an underlying sequential analysis, which is run repeatedly on each

thread to build up increasingly accurate approximations of the lock invariants of the program. On

the sample program, the first step is to analyze the main function and find an initial approximation

for each lock invariant. The line make lock l signals to the analysis that l is a lock for which the

invariant must be inferred. The analysis then tracks the state of the program until the unlock

statement, at which point part of the state is split off and used as an approximation of the lock

invariant. Recall that in the simple separation logic rule for unlock, as shown in figure 2, the effect of

an unlock statement is to subtract the lock invariant from the current state. Similarly, at an unlock

statement, the analysis subtracts a portion of the current state and uses it as its approximation of

the lock invariant. In this case, the state at the line unlock l includes (l + 1) 7→ l ∗ (l + 2) 7→ l,

which is used as the first approximation I0 of the invariant of l.

The algorithm then runs the sequential analysis on one of the threads. The order chosen has

no effect on the outcome of the analysis; in this case, we will assume that it starts with thread1.

Entering the while loop, it iterates over the loop body to determine the loop invariant. At the line
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lock l, the analysis adds the current approximation of the lock invariant for l to the current state,

just as the separation logic rule for lock adds the lock invariant to the current state. At the line

unlock l, the analysis again subtracts a portion of the current state and adds it to the lock invariant

as a disjunct. In this case, the state at the unlock statement includes (l + 1) 7→ n ∗ (l + 2) 7→

n ∗ node(n, data, l, l). Since n is a local variable, it must be existentially quantified for use in the

lock invariant of l, yielding the new disjunct I1 = ∃x.((l+1) 7→ x ∗ (l+2) 7→ x ∗ node(x, data, l, l)).

The approximation of the lock invariant of l is now I0 ∨ I1, and this new invariant will be used in

the analysis of the next thread.

Next the analysis moves to the code of thread2. At lock l, both possibilities for the lock invariant

of l must be considered. Under the approximation I0, (l + 1) 7→ l, so the code inside the if clause

is not executed, and no further information is discovered. Using the approximation I1 results in

a state containing (l + 1) 7→ l ∗ (l + 2) 7→ l at the unlock statement, which is equal to I0, so

again no new information is discovered, and this completes the first iteration over the threads of

the program. The second iteration performs the same process with the newly discovered case I1

of the lock invariant. In thread1, another new possibility is discovered, which can be abstracted to

I2 = ∃x, y.((l + 1) 7→ x ∗ (l + 2) 7→ y ∗ dll(y, l, l, x). In thread2, this leads to the rediscovery of the

invariant case I1, and so no further information is added. In the third iteration, trying the new

case I2 in each thread leads to no new cases of the lock invariant. The analysis has reached a fixed

point, and I0 ∨ I1 ∨ I2 is the final approximation of the lock invariant of l.

If the algorithm is sound, a program on which it completes is guaranteed to have the following

three properties: the approximated lock invariants are valid, each thread in the program is memory

safe, and the program contains no race conditions. These conditions are also those guaranteed

for a program p for which {true}p{true} has been shown. Furthermore, much of the sequential

analysis consists of finding separation logic assertions on the program state at each lock and unlock

statement. This suggests that the entire algorithm may be expressible in terms of the application

of the rules of separation logic. Then the soundness of the algorithm would follow from the sound-

ness of separation logic, and creating a Coq implementation of the algorithm for CCm would be

straightforward. The rest of this section will deal with the details and the consequences of this
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reinterpretation.

The analysis determines the program state at each lock manipulation statement through a

separation logic assertion. However, the assertions used by the analysis are different from the

general assertions of separation logic. While in separation logic, any condition on program state

that satisfies certain requirements is a valid assertion9, the analysis uses a simplified set of assertions

to capture only the relevant aspects of the program state. This set of simple assertions can be

inductively defined as follows:

A : simple assert ::= emp | true | false | A ∧A | A ∨A | A ∗ A | e = e | e 7→ e

| e : {is lock w π} | defined(e) | is lock w π | hold w

The first line of cases are some of the standard terms and operators of separation logic assertions,

and their meaning is unchanged in the context of the algorithm. defined(e) asserts that e has a

defined value, that is, that it can be evaluated in the program context to some value of the language;

formally, defined(e) ::= ∃(v : value).e = v. is lock w π and hold w correspond to the standard

assertions w
π•→ R and hold w R respectively, but with two important differences: the lock pointer

must be an identifier (specifically a global identifier), and the lock invariant is not specified. The

latter is necessary in an algorithm for finding lock invariants, while the former allows locks to be

uniquely identified across multiple threads. Finally, e : {is lock w π} asserts that e is a function

with precondition equal to the separating conjunction of some number of is lock assertions on its

arguments; since the return values of forked threads are not checked, the postcondition can be

assumed to be true. In the original statement of the algorithm, the initial state of each thread was

held to be emp, and no mention is made of lock-related assertions; however, the is lock and hold

assertions are implicitly present throughout the algorithm, and this is reflected in this reduced set

of assertions.

This simplified assertion set is accompanied by an implication relation analogous to the one on

full separation logic assertions. In standard separation logic, P ⇒ Q ::= P (st) ⇒ Q(st), that is, for

all states in which P holds, Q also holds. This definition of implication, while powerful and general,
9For more on the precise definition of assertions, see Appel and Blazy [2]
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is impossible to check algorithmically. Thus, the corresponding relation on simple assertions must

have a more limited scope, while remaining powerful enough to produce the preconditions required

for the various separation logic rules. Such an implication algorithm must be able to handle at

least the following cases:

• associativity and commutativity of the ∗, ∧, and ∨ operators,

• substitution of expressions used in equalities,

• splitting off and possibly combining shares of lock visibility,

• deduction of defined assertions from other information about the state,

• expansion and collapsing of data structure assertions such as node and dll.

As long as the implication algorithm is sound, its range does not affect the soundness of the

algorithm, but it does impact its versatility, and as such is an important topic for further research.

We can now formally define the language on which the algorithm operates, and in which the

example in figure 7 is written. This language uses the expression syntax of CCm, but with a

modified set of statements adapted to the requirements of the algorithm. This statement type is

defined inductively as

ss : simple stmt ::= w := e | [e]:=e | skip | return () | if e then ss else ss | while e ss | ss; ss

| malloc and zero(n) | make lock w | free lock w | lock w | unlock w | fork e ~w

The first line of cases is a subset of the statements of sequential Cm, while the remainder are

adapted from the concurrent statements of CCm. As noted above, lock manipulation statements

are constrained to operate on global identifiers, the only arguments to a forked thread must be lock

identifiers, and the make lock statement does not declare a lock invariant. make lock can only be

used in the main function of a program, and not in any forked threads, so that the algorithm can

identify initial lock invariants. Further, the loop, block, and exit commands of sequential Cm are

subsumed by while, restricting the language to simple loops, and function calls are omitted. The
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return command takes no arguments, since the return values of forked threads are ignored. Since

function calls do not exist in the simplified language, standard function malloc and zero is made

into a statement, and its argument is required to be a number rather than an expression, reducing

the amount of computation required in the algorithm. Cursory examination should show that the

example program above consists entirely of these simple statements.

Note that from this definition, not every simple assertion is a complete separation logic asser-

tion, and not every simple statement is a complete CCm statement. However, we can define a

straightforward transformation from simple assertions and statements to full assertions and state-

ments. The incomplete assertions are is lock and hold, while the incomplete statement is make lock;

all three are missing lock invariants, while all other cases of assertions and statements are valid in

full separation logic and CCm. Then given a map θ from lock pointers to lock invariants, define

A with θ as the recursive replacement of assertions of the form is lock w π and holdw in A by

w
π•→ θ[w] and hold w θ[w] respectively, and ss with θ as the recursive replacement of the statement

make lock w by make lock w θ[w] in ss. Then A with θ is a separation logic assertion, and ss with θ

is a CCm statement. These transformations are undefined when θ does not contain a lock invariant

for some lock pointer w in A or ss. Since the output of the thread-modular shape analysis is a

map from the locks in a program to their lock invariants, the analysis can be seen as providing the

missing link θ between the source language and full CCm.

Given these definitions, the action of the sequential analysis on a thread can be expressed in

terms of the syntax-directed application of a set of inductive rules similar to those of separation

logic, as shown in figures 8 and 9. The conclusions of these rules are judgements of the form

Γ ` 〈θP , P 〉s〈θQ, Q〉, where P and Q are simple assertions, s is a simple statement, and θP and

θQ are maps from global identifiers to simple assertions. As in the separation logic judgement

Γ ` {P}s{Q}, P is an assertion on the state of the program before s and Q is an assertion on the

state of the program after s. Similarly, θP is the set of approximated lock invariants before s is

analyzed, and θQ is the set updated with the new information learned from s. θ[w] represents the

approximation of the lock invariant for the lock at w. In many rules no new information is gained

about the lock invariant; in these cases, θP and θQ are omitted, and are assumed to be identical.
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Figure 8 The sequential analysis as inductive rules part 1: sequential statements

imsv ss R Γ ` 〈P 〉ss〈Q〉
Γ ` 〈P ∗ R〉ss〈Q ∗ R〉

frame
pure e inde w e P ⇒ defined(e)
Γ ` 〈P 〉w := e〈defined(e) ∗ w = e〉

pure e′ inde w e inde w e′ P ⇒ e 7→ e′

Γ ` 〈P 〉w := *(e)〈e 7→ e′ ∗ w = e′〉

pure e pure e′ P ⇒ e 7→ e′ ∗ defined(e1)
Γ ` 〈P 〉*(e) := e1〈e 7→ e1〉 Γ ` 〈P 〉skip〈P 〉

Γ ` 〈P 〉return ()〈false〉
Γ ` 〈θ0, P 〉ss1 〈θ1, Q〉 Γ ` 〈θ1, P 〉ss2 〈θ2, Q〉 pure e

Γ ` 〈θ0, P 〉if e then ss1 else ss2 〈θ2, Q〉

Γ ` 〈θ0, P 〉ss1 〈θ1, Q〉 Γ ` 〈θ1, Q〉ss2 〈θ2, Q
′〉

Γ ` 〈θ0, P 〉ss1 ; ss2 〈θ2, Q
′〉

P ⇒ emp n > 0
Γ ` 〈P 〉w := malloc and zero(n)〈w 7→ 0 ∗ (w + 1) 7→ 0 ∗ . . . ∗ (w + n− 1) 7→ 0〉

Three new predicates appear in the premises of these rules: pure, inde, and imsv. These are

defined as follows:

• pure e means that the expression e contains no memory references.

• inde w e means that w is not free in e.

• imsv ss P means that no free variables in P are modified by ss (imsv stands for “independent

of modified statement variables”).

The truth of these properties can be determined algorithmically through case analysis. Two ad-

ditional helper functions are used in the rule for unlock. split local separates an assertion P into

two parts: a local assertion Ploc, which is retained as the current state after the unlock statement,

and a frame assertion Pr, which is taken as a new possibility for the lock invariant. This split

is chosen such that P ⇔ Ploc ∗ Pr. For a more detailed explanation of the split into local and

frame assertions, see Gotsman et al.[3] The second helper function, add disj, adds a disjunct to the

current approximation of a lock invariant, as long as that particular disjunct is not already present

in the invariant; it also existentially quantifies any local variables in the new disjunct, and abstracts
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Figure 9 The sequential analysis as inductive rules part 2: while and concurrent statements

Γ ` 〈θ0, P 〉ss〈θ1, P 〉
Γ ` 〈θ0, P 〉while e ss〈θ1, P 〉

Γ ` 〈θ0, P 〉ss〈θ1, Q〉 Γ ` 〈θ1, Q〉while e ss〈θ2, Q
′〉

Γ ` 〈θ0, P 〉while e ss〈θ2, Q
′〉

P ⇒ w 7→ 0
Γ ` 〈θ, P 〉make lock w 〈add disj θ[w] emp, is lock e πlock ∗ hold w 〉

P ⇒ is lock w πlock ∗ hold w

Γ ` 〈P 〉free lock w〈w 7→ 0〉
P ⇒ is lock w π θ[w] = A

Γ ` 〈θ, P 〉lock w〈θ, is lock w π ∗ hold w ∗ A〉

P ⇒ is lock w π ∗ hold w ∗ P0 θ[w] = A split localP0 = (Ploc, Pr)
Γ ` 〈θ, P 〉unlockw〈add disj θ[w]Pr, is lock w π ∗ Ploc〉

Γ(e) = e : {R} P ⇒ R(~w)
Γ ` 〈P 〉fork e ~w〈emp〉

matching clauses into the associated data structure assertions.

Given these rules, the sequential analysis can be described as follows. At each statement in

the thread under consideration, the analysis begins by applying its version of the frame rule to

remove extraneous information. It then chooses the rule that matches the structure of the current

statement, and uses its auxiliary functions (including the implication algorithm described above)

to verify the rule’s premises given the current state P and lock approximations θP . If any of these

premises cannot be verified, the program is either incorrect or too complex, and the algorithm fails.

Otherwise, the postcondition Q and new approximations θQ specified by the rule are used as the

current state and approximations for the next statement in the thread. The two rules for while

cause the algorithm to iterate over the body of a loop, accumulating cases of lock invariants, until

the loop invariant reaches a fixed point; even if the loop is infinite in the execution of the program,

as long as a stable loop invariant can be found, the analysis will proceed. Once no more statements

remain, the analysis is complete. Note that the assertions constructed in the map θ are not valid

lock invariants, as they do not satisfy the precondition of the separation logic rule for make lock

(see figure 2); to remedy this, we define a function mklk such that mklk θ[l] ⇔ hold l (mklk θ[l]) ∗ θ[l]

for all θ[l], and the lock invariant for a lock l in the program is approximated as mklk θ[l] at the

end of the analysis. For simplicity, this replacement will be assumed to be performed by the with
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function described above in further notation.

As a concrete example of this description, consider the analysis on its first iteration through

the sample program in figure 7, at the line lock l. The precondition for thread1 is is lock l π1 for

some π1 such that π1 ⊕ π2 = πlock, and the current approximation for the lock invariant of l is I0,

so the current lock map θc has θc[l] = I0. The algorithm chooses the lock rule from figure 9 and

uses the implication algorithm to verify that is lock l π1 ⇒ is lock l π1. This leads to a conclusion of

the form Γ ` 〈θ, P 〉lock w〈θ, is lock w π ∗ hold w ∗ A〉. Substituting the values of P , θ, and w gives

Γ ` 〈θc, is lock l π1〉lock l〈θc, is lock l π1 ∗ hold l ∗ I0〉, so the current map is unchanged, and the

current state becomes is lock l π1 ∗ hold l ∗ I0. This is consistent with the behavior of the analysis

as described above, while maintaining the lock-related assertions appropriate to the current state

of l.

Since the rules of the sequential analysis are derived from those of separation logic, it is natural

to expect that the results of the analysis on a thread also show something about the separation

logic properties of the thread. Since the lock invariant approximation changes over the course of

the analysis of a thread, it is not possible to assert that Γ ` 〈θP , P 〉ss〈θQ, Q〉 ⇒ Γ ` {P}ss{Q} in

the general case. However, this property does hold during the last iteration on a thread, when the

set of lock approximations is unchanged.

Theorem 4.1. Γ ` 〈θ, P 〉ss〈θ, Q〉 ⇒ Γ ` {P with θ}ss with θ{Q with θ}.

Proof: by structural induction on the judgement Γ ` 〈θ, P 〉ss〈θ, Q〉.

The conclusion Γ ` 〈θ, P 〉ss〈θ, Q〉 can only be reached by the application of one of the rules

of figures 8 and 9. Thus, the lemma can be proved by showing that each rule of the analysis is

transformed by with to a valid rule of separation logic. The rules in figure 8 lead directly to cases

of the rules of Cm separation logic10, as laid out by Appel and Blazy [2]; in each case, the rule is a

composition of the pre rule with a specialization of the rule for the case of ss. The first and second

while rules both match the separation logic rule for while; in the first case, the loop invariant is P ,
10One more complicated case is the return rule, which in standard Cm separation logic depends on the return

context R. For the purposes of the algorithm, since values will never be returned and the postconditions of all
threads are assumed to be true, R can be assumed to map the empty list to true in all threads, leading to the
analysis rule shown above.
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and in the second it is P ∨ Q ∨ Q′. The analysis rules for make lock, free lock, and lock also lead

directly to compositions of pre and the corresponding separation logic rules, under the substitution

defined by with. The case of unlock is the most difficult, and merits its own lemma:

Lemma 2. Γ ` 〈θ, P 〉unlock w〈θ, Q〉 ⇒ Γ ` {P with θ}unlock w{Q with θ}.

Proof.

1. The substitution of lock invariants and application of the pre rule leaves the proof obligation

Γ ` {w π•→ mklk θ[w] ∗ hold w mklk θ[w] ∗ P0}unlock w{w π•→ θ[w] ∗ Ploc}.

2. By the definition of split local, P0 ⇒ Ploc ∗ Pr, and since θ is unchanged by the application

of the rule, θ[w] already includes the disjunct Pr.

3. Since P ⇒ P ∨Q for all P , this implies that Pr ⇒ θ[w].

4. Applying the pre rule with this fact leaves the premise

Γ ` {w π•→ mklk θ[w] ∗ hold w mklk θ[w] ∗ Ploc ∗ θ[w]}unlockw{w π•→ θ[w] ∗ Ploc}.

5. Applying the frame rule reduces this to

Γ ` {w π•→ mklk θ[w] ∗ hold w mklk θ[w] ∗ θ[w]}unlockw{w π•→ θ[w]}.

6. By the definition of mklk, hold w mklk θ[w] ∗ θ[w] ⇔ mklk θ[w], so this is equivalent to Γ `

{w π•→ mklk θ[w] ∗ mklk θ[w]}unlock w{w π•→ θ[w]}.

7. This is true by the first separation logic rule for unlock.

Finally, the analysis rule for fork leads to the corresponding separation logic rule through the

application of the global rule, which states that Γ ` {P ∗ Γ}s{Q ∗ Γ} ⇒ Γ ` {P}s{Q} (this

is true by the definition of the global context Γ). Thus, for all statements ss, Γ ` 〈θ, P 〉ss〈θ, Q〉

implies Γ ` {P with θ}ss with θ{Q with θ}, and the final iteration of the sequential analysis on a

thread can be seen as the application of the rules of CCm separation logic.

This analysis is used to create the full thread-modular shape analysis by applying it iteratively

over the set of threads in the program as described above. The starting state for main is true,

and the starting states for all other threads are defined by their preconditions. An iteration of the
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sequential analysis on main is complete when Γ ` 〈θP , true〉main〈θQ, Q〉 has been reached for some

Q. Similarly, an iteration on a thread with name n and body t is complete when

Γ ` 〈θP , R〉t〈θQ, Q〉 is reached for some Q, where R is the precondition for n (i.e., Γ(n) = n : {R}).

An iteration over a thread t is said to discover no new information if the algorithm determines

that Γ ` 〈θ, P 〉t〈θ, Q〉 for some P and Q. Thus, the thread-modular analysis terminates when

Γ ` 〈θ, P 〉ss〈θ, Q〉 is reached for main and each thread in the program in an iteration.

The analysis is a useful tool if it is sound, that is, if a program using the lock invariants produced

by the analysis is memory-safe and free from race conditions. Gotsman et al.[3] provide a proof of

soundness for the general thread-modular shape analysis framework, using the concepts of lattice

theory. However, in keeping with the reinterpretation of the algorithm in the terms of separation

logic, this particular instance of the algorithm may be proved sound more concisely by taking

advantage of separation logic’s soundness. Recall that the soundness of separation logic guarantees

that if {true}p{true} can be proven for a program p, then p is memory-safe and free from race

conditions. More specifically, a concurrent program can be divided into a main function and a list

of threads. Then such a program is safe if two properties hold. First, Γ ` {true}call main (){true}

must hold for the main function. This is provable only if the global context Γ contains some function

assertion t : {R}{S} for each forked thread. Then the second property is that for each thread with

name n and body t in the list of threads, Γ(n) = n : {R}{S} ⇒ Γ ` {R}t{S}. Only if these two

properties hold is the program guaranteed to be memory-safe and free from race conditions.

Thus, the algorithm can be proved sound by showing that these two properties hold on the

programs it analyzes. Let p = (main, n, t) designate the program p consisting of main function

main and threads with names n and bodies t. Define the judgement Γ ` tmsa p = θ to mean “the

thread-modular shape analysis on the program P , run with global context Γ, produces a set of

approximated lock invariants θ”. Then the properties of soundness can be written as follows:

Theorem 4.2. ∀Γ, p. Γ ` tmsa p = θ ∧ p = (main, n, t) ⇒ (Γ ` {true}main with θ{true} ∧

∀(ni, ti) in n, t. Γ(ni) = ni : {R} ⇒ Γ ` {R with θ}ti with θ{true}).

Proof.

1. If the algorithm completed on p, then in the last iteration, the sequential analysis ran on main
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and each thread (ni, ti) without discovering any new lock invariants, so by the definition of the

analysis, Γ ` 〈θ, true〉main〈θ, Q〉 for some Q, and for each thread (ni, ti), Γ ` 〈θ, R〉ti〈θ, Q〉

for some Q.

2. By theorem 4.1, this means that Γ ` {true}main with θ{Q with θ} for some Q and for each

(ni, ti), Γ ` {R with θ}t with θ{Q with θ} for some Q.

3. Q ⇒ true for all Q, so by the post rule, the above implies that Γ ` {true}main with θ{true},

and similarly, for each thread, Γ ` {R with θ}t with θ{true}.

Thus, this particular instantiation of the thread-modular shape analysis algorithm is sound as

long as CCm separation logic is sound.

5 The Analysis in Coq

The thread-modular shape analysis forms a tool for transforming simple concurrent C-like programs

without lock invariants into valid CCm. Since CCm is defined and implemented in the Coq proof

assistant, the simplest way to create a machine-checked version of the analysis is to implement it

in Coq as well. One of the fundamental constructs of Coq is the inductive definition, and so the

simple assertion and statement types described above are easily transferred to Coq. A translation

function from simple assertions to the corresponding expressions in full separation logic is similarly

straightforward. The analysis itself is an inductive relation defined by the rules of figures 8 and

9; it holds when these rules can be applied to form a judgement Γ ` 〈θP , P 〉ss〈θQ, Q〉. Since the

application of the rules in the analysis is directed by the structure of the statement ss, it should be

possible to build an algorithmic function (Coq Fixpoint) that follows the semantics of the relation

and completely models the behavior of the algorithm.

The proof of soundness for the algorithm described above may also be translatable to a proof in

Coq, using the built-in tactics along with the special CCm tactics described in section 3. However,

a more indirect approach results in both a simpler proof of soundness and improved guarantees

of safety. As shown in theorem 4.1, the final pass of the analysis can be seen as the syntax-

directed application of certain facts of separation logic, derived from the base axioms to match the
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Figure 10 The rules of the verification function part 1: sequential statements

pure e inde w e P ⇒ defined(e) ∗ R imsv (w := e) R

Γ ` {P}w := e{defined(e) ∗ w = e ∗ R}

pure e′ inde w e inde w e′ P ⇒ e 7→ e′ ∗ R imsv (w := *(e))R

Γ ` {P}w := *(e){e 7→ e′ ∗ w = e′ ∗ R}

pure e pure e′ P ⇒ e 7→ e′ ∗ defined(e1) ∗ R imsv (*(e) := e1) R

Γ ` {P}*(e) := e1{e 7→ e1 ∗ R}

Γ ` {P}skip{P} Γ ` {P}return (){false}

Γ ` {P}s1{Q} Γ ` {P}s2{Q} pure e

Γ ` {P}if e then s1 else ss2{Q}
Γ ` {P}s1{Q} Γ ` {Q}s2{Q′}

Γ ` {P}s1; s2{Q′}

P ⇒ emp ∗ R imsv (w := malloc and zero(n))R n > 0
Γ ` 〈P 〉w := malloc and zero(n)〈w 7→ 0 ∗ (w + 1) 7→ 0 ∗ . . . ∗ (w + n− 1) 7→ 0 ∗ R〉

structure of the analysis. These facts can easily be expressed and proved correct in Coq using the

implementation of CCm separation logic in section 3. Then, as long as the premises of these facts

can be checked algorithmically, a function that applies the rules deterministically to a CCm program

can be created and proved sound with respect to CCm separation logic, without involving the simple

statement type or the semantics of the analysis. As mentioned in section 4, the truth of most of the

premises can be determined by case analysis, and the implication algorithm can provide decisions

on the truth of premises of the form P ⇒ Q. The construction of subsidiary checker functions

to automate the case analyses, along with a Coq version of the implication algorithm, allows the

creation of a proved-correct Coq verification function for the output of the analysis. Rather than

prove the analysis sound in Coq, I take advantage of the correspondence between the analysis and

separation logic to produce a verification function which both follows the structure of the analysis

and can be easily proved correct from its definition.

Figures 10 and 11 show the facts of separation logic used by the verification function. These

correspond directly to the analysis rules of figures 8 and 9 respectively, with the incorporation of

the frame rule into each other rule11. The proof of theorem 4.1 outlines the derivation of each of
11In many cases, the premise imsv s R is trivial, since only a few statements modify the values of variables. It is
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Figure 11 The rules of the verification function part 2: while and concurrent statements

Γ ` {P}s{P}
Γ ` {P}while e s{P}

Γ ` {P}s{Q} Γ ` {Q}while e s{Q′}
Γ ` {P}while e s{Q′}

P ⇒ w 7→ 0 ∗ R imsv (make lock w mklk I) R

Γ ` {P}make lock w (mklk I){e
πlock•→ (mklk I) ∗ hold w (mklk I) ∗ R}

P ⇒ w
πlock•→ A ∗ hold w A ∗ R imsv (free lock w) R

Γ ` {P}free lock w{w 7→ 0 ∗ R}

P ⇒ w
π•→ A ∗ R imsv (lock w) R

Γ ` {P}lock w{w π•→ A ∗ A ∗ R}
P ⇒ w

π•→ A ∗ A ∗ R imsv (unlock w) R

Γ ` {P}unlock w{w π•→ A ∗ R}

Γ(e) = e : {A} P ⇒ A(~w) ∗ R imsv (fork e ~w) R

Γ ` {P}fork e ~w{R}

these facts from the axioms of concurrent separation logic. The verification function is then simply

the syntax-directed application of these rules, starting with the precondition true; its soundness

reduces to the soundness of each rule, which in turn reduces to the soundness of separation logic.

If at any point the premises of a rule cannot be proved, or the statement under consideration does

not match one of the rules, the verification fails. The result of the function is a proof of safety for

a CCm program, and by the results of theorem 4.1, we expect that verification will succeed on any

output of the thread-modular shape analysis, since the verification function effectively reproduces

the final iteration of the analysis.

This two-part approach at first seems counterintuitive – after all, if the analysis can be proven

sound, verifying the results seems unnecessary. However, the approach provides several notable

benefits. First, the domain of the machine-checked proof involved is reduced from the inner workings

of the analysis to the familiar ground of CCm separation logic; it is easy to show that the verification

function produces valid results, since it consists entirely of the application of separation logic rules.

Second, the verification function provides the user with both the proved-safe program and the proof

itself, the correctness of which is guaranteed by the proof of soundness of CCm separation logic.

included here to make clear the derivation of each fact from the frame rule.
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Finally, if the analysis results in a program that is not safe, through a hole in the informal proof or

a flaw in the formalization or implementation, the verification function will fail and the user will

not be presented with spurious results. Thus, the two-part model reduces the size of the trusted

code base on which the validity of the results depends. The increased simplicity and security of the

two-part model may be generalizable to various other machine verification problems, and a more

detailed examination of the paradigm is a topic for further research.

6 Conclusions

Program analysis tools implemented in a theorem prover can benefit from both increased automa-

tion and machine-checked guarantees of correctness. To this end, the CompCert project [9] led

to the development of C Minor, an intermediate language completely defined in the Coq proof

assistant. Appel and Blazy [2] adapted the formalism of separation logic to Cm, providing a tool

for proving the correctness and memory safety of C-like programs. By extending this base imple-

mentation with the syntax and semantics of Concurrent C Minor defined by Hobor, Appel, and

Nardelli [5], I have defined a framework for the semi-automated construction of proofs for programs

using a realistic model of concurrency. Using this framework, I demonstrated the correctness of a

sample concurrent program in the machine-checked environment of Coq. This is a step towards the

complete implementation of CCm in Coq, which will ultimately allow the verification of real-world

concurrent programs written in high-level languages such as C and Java.

Next, I explained the application of the thread-modular shape analysis framework proposed

by Gotsman et al.[3] for automatically inferring lock invariants to CCm. In basic CCm, the lock

creation statement make lock brings separation logic assertions into the program code, requiring

users to understand both the language and the logic to create concurrent programs. I defined a

variant of CCm without declared lock invariants on which the analysis can operate, and reinter-

preted the analysis in terms of the rules of CCm separation logic. This allowed a simplified proof

of soundness for the analysis based on the soundness of separation logic, as well as the construction

of a verification algorithm for the output of the analysis. Both the analysis and the verification

algorithm are implemented in Coq, forming a machine-checked function from the source language
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of the analysis to a corresponding CCm program accompanied by a proof of safety. This two-part

model led to both a simplified proof of correctness and a reduction in the size of the trusted portion

of the algorithm. These benefits may be generalizable to a larger set of static analyses, and the

model merits further investigation.
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