Hash Tables
with External Chaining

by Andrew W. Appel and Robert M. Dondero Jr.,

Princeton University

© 2017. Earlier versions of these slides date all the way back to 1988.

/

Key-value store

Maintain a collection of key/value pairs
« Each key is a string; each value is an int
« Unknown number of key-value pairs

Examples
* (student name, grade)
« (“john smith”, 84), (“jane doe”, 93), (“bill clinton”, 81)
» (baseball player, number)
e (“Ruth”, 3), (“Gehrig”, 4), (“Mantle”, 7)
 (variable name, value)
e (“maxLength”, 2000), (“i”, 7), (“j”, -10)

-

Linked List Data Structure

struct Node

{ const char *key;
int value;
struct Node *next;

}:

struct List
{ struct Node *first;

¥: Really this is the
address at which
struct struct “Ruth” resides
struct Node Node
List

-

Linked List Data Structure

struct
List

Really this is the
address at which
“Ruth” resides

/

Linked List Algorithms

Create
e Allocate List structure; set First to NULL

 Performance: O(1) = fast

Add (no check for duplicate key required)
* Insert new node containing key/value pair at front of list
 Performance: O(1) = fast

Add (check for duplicate key required)
» Traverse list to check for node with duplicate key
* Insert new node containing key/value pair into list
« Performance: O(n) = slow

/

Linked List Algorithms

Search
* Traverse the list, looking for given key
« Stop when key found, or reach end
« Performance: O(n) = slow

Free
 Free Node structures while traversing
 Free List structure

« Performance: O(n) = slow

Would it be better to
keep the nodes
sorted by key?

-

Hash Table Data Structure

Array of linked lists

enum {BUCKET_COUNT = 1024} ;

struct Binding

{ const char *key; struct
int value;
struct Binding *next; Table

j

struct Table
{ struct Binding *buckets[BUCKET_COUNT];

};

Really this is the
address at which
“Ruth” resides

struct
Binding
struct
Binding

-
Hash Table Data Structure

Binding

7/= Bucket

BUCKET_COUNT-1

Hash function maps given key to an integer
Mod integer by BUCKET _COUNT to determine proper bucket

>/

-

Hash Table Example

Example: BUCKET_COUNT =7

Add (if not already present) bindings with these keys:
e the, cat, in, the, hat

-

Hash Table Example (cont.)

First key: “the”
o hash(“the”) = 965156977; 965156977 % 7 = 1

Search buckets[1] for binding with key “the”; not found

OO0~ wWNPEO

2

-

Hash Table Example (cont.)

Add binding with key “the” and its value to buckets[1]

- the

OO0~ wWNPEO

n

-

Hash Table Example (cont.)

1 7

Second key: “cat
« hash(“cat”) = 3895848756; 3895848756 % 7 = 2

Search buckets[2] for binding with key “cat”; not found

- the

OO0~ wWNPEO

2

-

Hash Table Example (cont.)

Add binding with key “cat” and its value to buckets[2]

- the

cat

OO0~ wWNPEO

5

-

Hash Table Example (cont.)

Third key: “in”
« hash(“in”) = 6888005; 6888005% 7 =5

Search buckets[5] for binding with key “in”; not found

- the

cat

OO0~ wWNPEO

Y

-

Hash Table Example (cont.)

Add binding with key “in” and its value to buckets[5]

- the

cat

imn

OO0~ wWNPEO

5

-

Hash Table Example (cont.)

Fourth word: “the”
e hash(“the”) = 965156977; 965156977 % 7 = 1

Search buckets[1] for binding with key “the”; found it!
« Don’ t change hash table

- the

cat

imn

OO0~ wWNPEO

°)

-

Hash Table Example (cont.)

Fifth key: “hat”
. hash(“hat”) = 865559739: 865559739 % 7 = 2

Search buckets[2] for binding with key “hat”; not found

- the

cat

imn

OO0~ wWNPEO

P

-

Hash Table Example (cont.)

Add binding with key “hat” and its value to buckets[2]

o At front or back? Doesn’t matter

 Inserting at the front is easier, so add at the front

- the

hat

cat

imn

OO0~ wWNPEO

2

/

Hash Table Algorithms

Create
» Allocate Table structure; set each bucket to NULL

 Performance: O(1) = fast

Add

« Hash the given key
Mod by BUCKET COUNT to determine proper bucket
Traverse proper bucket to make sure no duplicate key
Insert new binding containing key/value pair into proper bucket
Performance: O(1) = fast

Is the add
performance
always fast?

9

/

Hash Table Algorithms

Search
« Hash the given key
 Mod by BUCKET COUNT to determine proper bucket
e Traverse proper bucket, looking for binding with given key
« Stop when key found, or reach end
 Performance: O(1) = fast

Is the search
performance

Free always fast?

* Traverse each bucket, freeing bindings
 Free Table structure

« Performance: O(n) = slow

2

-

How Many Buckets?

Many!
 Too few = large buckets = slow add, slow search

But not too many!
« Too many = memory is wasted

This is OK:

v

v

BUCKET_COUNT-1

2

-
What Hash Function?

Should distribute bindings across the buckets well
 Distribute bindings over the range 0, 1, .., BUCKET_COUNT-1

 Distribute bindings evenly to avoid very long buckets

This is not so good:

v

BUCKET_COUNT-1

v

What would be the
worst possible hash
function?

2

/

How to Hash Strings?

Simple hash schemes don’ t distribute the keys evenly

enough
 Number of characters, mod BUCKET _COUNT
e Sum the numeric codes of all characters, mod BUCKET COUNT

A reasonably good hash function:
« Weighted sum of characters s, in the string s

e (z a's;) mod BUCKET COUNT
» Bestif a and BUCKET _COUNT are relatively prime

. E.g., a=65599, BUCKET COUNT = 1024 @
* Even better if BUCKET _COUNT is prime.

Footnote [A. Appel]: 1 originally designed this homework so that BUCKET _COUNT is a prime number.
In 2016 | wondered, “wouldn’t it work just as well if aand BUCKET _COUNT are just relatively
prime? Measurements show no: using a prime number of buckets leads to more even

distribution of bucket contents.”

J

How to Hash Strings?

Potentially expensive to compute & a's;

So let’ s do some algebra (“Horner’s rule”)
* (by example, for string s of length 5, a=65599).

h = 265599i*s.

h = 65599%*s, + 65599'*s, + 655992*s, + 655993*s, + 655994*s,
Direction of traversal of s doesn’t matter, so..

h = 65599%*s, + 65599'*s, + 655992*s, + 655993*s, + 655994*s,

h

655994*s, + 655993*s, + 655992*s, + 655991*s, + 655990*s,

h = (((((sp) * 65599 + s;) * 65599 + s,) * 65599 + s;) * 65599) + s,

24

How to Hash Strings?

Yielding this function

size_t hash(const char *s, size_t bucketCount)
{ si1ze t 1;
size_ t h = 0;
for (1=0; s[1]!'="\0"; 1++)
h = h * 65599 + (size t)s|i];
return h % bucketCount;

}

25

How to Protect Keys?

Suppose Table add() function contains this code:

void Table add(struct Table *t, const char *key, i1nt value)

{ .
struct Binding *p =

(struct Binding*)malloc(sizeof(struct Binding));
p->key = key;

}

26

-

How to Protect Keys?

Problem: Consider this calling code:

struct Table *t;

Table add(t, k, 3);

char k[100] = "Ruth™; k

Ruth\0

)

-

How to Protect Keys?

Problem: Consider this calling code:

struct Table *t;
char k[100] = "Ruth™;

K| Gehrig\o

Table add(t, k, 3);
strcpy(k, "Gehrig™);

What happens if the
client searches t for
“Ruth”? For Gehrig?

%)

How to Protect Keys?

Solution: Table_add() saves a defensive copy of the
given key

void Table add(struct Table *t, const char *key, i1nt value)
{ .
struct Binding *p =

(struct Binding*)malloc(sizeof(struct Binding));
p->key = (const char*)malloc(strlen(key) + 1);
strcpy((char*)p->key, key);

¥ Why add 17

29

-

How to Protect Keys?

Now consider same calling code:

struct Table *t;

Table add(t, k, 3);

char k[100] = "Ruth™; k

Ruth\0

Ruth\0

»)

-

How to Protect Keys?

Now consider same calling code:

struct Table *t;
char k[100] = "Ruth™;

Table add(t, k, 3);
strcpy(k, "Gehrig™);

Hash table is
not corrupted

Gehrig\O

Ruth\0

"

-

Who Owns the Keys?

Then the hash table owns its keys
* That is, the hash table owns the memory in
which its keys reside
e Hash_ free() function must free the memory
In which the key resides

2

-

Summary

Common data structures and associated algorithms
e Linked list
« (Maybe) fast add
e Slow search
e Hash table
» (Potentially) fast add
« (Potentially) fast search
* Very common

Hash table issues
* Hashing algorithms
« Defensive copies
« Key ownership

2

	Hash Tables �with External Chaining
	Key-value store
	Linked List Data Structure
	Linked List Data Structure
	Linked List Algorithms
	Linked List Algorithms
	Hash Table Data Structure
	Hash Table Data Structure
	Hash Table Example
	Hash Table Example (cont.)
	Hash Table Example (cont.)
	Hash Table Example (cont.)
	Hash Table Example (cont.)
	Hash Table Example (cont.)
	Hash Table Example (cont.)
	Hash Table Example (cont.)
	Hash Table Example (cont.)
	Hash Table Example (cont.)
	Hash Table Algorithms
	Hash Table Algorithms
	How Many Buckets?
	What Hash Function?
	How to Hash Strings?
	How to Hash Strings?
	How to Hash Strings?
	How to Protect Keys?
	How to Protect Keys?
	How to Protect Keys?
	How to Protect Keys?
	How to Protect Keys?
	How to Protect Keys?
	Who Owns the Keys?
	Summary

