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Key-value store

Maintain a collection of key/value pairs
« Each key is a string; each value is an int
« Unknown number of key-value pairs

Examples
* (student name, grade)
« (“john smith”, 84), (“jane doe”, 93), (“bill clinton”, 81)
» (baseball player, number)
e (“Ruth”, 3), (“Gehrig”, 4), (“Mantle”, 7)
 (variable name, value)
e (“maxLength”, 2000), (“i”, 7), (“j”, -10)
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Linked List Data Structure

struct Node

{ const char *key;
int value;
struct Node *next;

}:

struct List
{ struct Node *first;

¥: Really this is the
address at which
struct struct “Ruth” resides
struct Node  Node
List
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Linked List Data Structure

struct
List

Really this is the
address at which
“Ruth” resides
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Linked List Algorithms

Create
e Allocate List structure; set First to NULL

 Performance: O(1) = fast

Add (no check for duplicate key required)
* Insert new node containing key/value pair at front of list
 Performance: O(1) = fast

Add (check for duplicate key required)
» Traverse list to check for node with duplicate key
* Insert new node containing key/value pair into list
« Performance: O(n) = slow
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Linked List Algorithms

Search
* Traverse the list, looking for given key
« Stop when key found, or reach end
« Performance: O(n) = slow

Free
 Free Node structures while traversing
 Free List structure

« Performance: O(n) = slow

Would it be better to
keep the nodes
sorted by key?
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Hash Table Data Structure

Array of linked lists

enum {BUCKET_COUNT = 1024} ;

struct Binding

{ const char *key; struct
int value;
struct Binding *next; Table

j

struct Table
{ struct Binding *buckets[BUCKET_COUNT];

};

Really this is the
address at which
“Ruth” resides

struct
Binding
struct
Binding
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Hash Table Data Structure

Binding

7/= Bucket

BUCKET_COUNT-1

Hash function maps given key to an integer
Mod integer by BUCKET _COUNT to determine proper bucket

>/
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Hash Table Example

Example: BUCKET_COUNT =7

Add (if not already present) bindings with these keys:
e the, cat, in, the, hat
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Hash Table Example (cont.)

First key: “the”
o hash(“the”) = 965156977; 965156977 % 7 = 1

Search buckets[1] for binding with key “the”; not found

OO0~ wWNPEO

2
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Hash Table Example (cont.)

Add binding with key “the” and its value to buckets[1]

- the

OO0~ wWNPEO

n
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Hash Table Example (cont.)

1 7

Second key: “cat
« hash(“cat”) = 3895848756; 3895848756 % 7 = 2

Search buckets[2] for binding with key “cat”; not found

- the

OO0~ wWNPEO

2
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Hash Table Example (cont.)

Add binding with key “cat” and its value to buckets[2]

- the

cat

OO0~ wWNPEO

5
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Hash Table Example (cont.)

Third key: “in”
« hash(“in”) = 6888005; 6888005% 7 =5

Search buckets[5] for binding with key “in”; not found

- the

cat

OO0~ wWNPEO

Y
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Hash Table Example (cont.)

Add binding with key “in” and its value to buckets[5]

- the

cat

imn

OO0~ wWNPEO

5
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Hash Table Example (cont.)

Fourth word: “the”
e hash(“the”) = 965156977; 965156977 % 7 = 1

Search buckets[1] for binding with key “the”; found it!
« Don’ t change hash table

- the

cat

imn

OO0~ wWNPEO

°)
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Hash Table Example (cont.)

Fifth key: “hat”
. hash(“hat”) = 865559739: 865559739 % 7 = 2

Search buckets[2] for binding with key “hat”; not found

- the

cat

imn

OO0~ wWNPEO

P
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Hash Table Example (cont.)

Add binding with key “hat” and its value to buckets[2]

o At front or back? Doesn’t matter

 Inserting at the front is easier, so add at the front

- the

hat

cat

imn

OO0~ wWNPEO

2
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Hash Table Algorithms

Create
» Allocate Table structure; set each bucket to NULL

 Performance: O(1) = fast

Add

« Hash the given key
Mod by BUCKET COUNT to determine proper bucket
Traverse proper bucket to make sure no duplicate key
Insert new binding containing key/value pair into proper bucket
Performance: O(1) = fast

Is the add
performance
always fast?

9
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Hash Table Algorithms

Search
« Hash the given key
 Mod by BUCKET COUNT to determine proper bucket
e Traverse proper bucket, looking for binding with given key
« Stop when key found, or reach end
 Performance: O(1) = fast

Is the search
performance

Free always fast?

* Traverse each bucket, freeing bindings
 Free Table structure

« Performance: O(n) = slow

2
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How Many Buckets?

Many!
 Too few = large buckets = slow add, slow search

But not too many!
« Too many = memory is wasted

This is OK:

v

v

BUCKET_COUNT-1

2
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What Hash Function?

Should distribute bindings across the buckets well
 Distribute bindings over the range 0, 1, .., BUCKET_COUNT-1

 Distribute bindings evenly to avoid very long buckets

This is not so good:

v

BUCKET_COUNT-1

v

What would be the
worst possible hash
function?

2
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How to Hash Strings?

Simple hash schemes don’ t distribute the keys evenly

enough
 Number of characters, mod BUCKET _COUNT
e Sum the numeric codes of all characters, mod BUCKET COUNT

A reasonably good hash function:
« Weighted sum of characters s, in the string s

e (z a's;) mod BUCKET COUNT
» Bestif a and BUCKET _COUNT are relatively prime

. E.g., a=65599, BUCKET COUNT = 1024 @
* Even better if BUCKET _COUNT is prime.

Footnote [A. Appel]: 1 originally designed this homework so that BUCKET _COUNT is a prime number.
In 2016 | wondered, “wouldn’t it work just as well if aand BUCKET _COUNT are just relatively
prime? Measurements show no: using a prime number of buckets leads to more even

distribution of bucket contents.”

J




How to Hash Strings?

Potentially expensive to compute & a's;

So let’ s do some algebra (“Horner’s rule”)
* (by example, for string s of length 5, a=65599).

h = 265599i*s.

h = 65599%*s, + 65599'*s, + 655992*s, + 655993*s, + 655994*s,
Direction of traversal of s doesn’t matter, so..

h = 65599%*s, + 65599'*s, + 655992*s, + 655993*s, + 655994*s,

h

655994*s, + 655993*s, + 655992*s, + 655991*s, + 655990*s,

h = (((((sp) * 65599 + s;) * 65599 + s,) * 65599 + s;) * 65599) + s,

24



How to Hash Strings?

Yielding this function

size_t hash(const char *s, size_t bucketCount)
{ si1ze t 1;
size_ t h = 0;
for (1=0; s[1]!'="\0"; 1++)
h = h * 65599 + (size t)s|i];
return h % bucketCount;

}

25



How to Protect Keys?

Suppose Table add() function contains this code:

void Table add(struct Table *t, const char *key, i1nt value)

{ .
struct Binding *p =

(struct Binding*)malloc(sizeof(struct Binding));
p->key = key;

}

26
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How to Protect Keys?

Problem: Consider this calling code:

struct Table *t;

Table add(t, k, 3);

char k[100] = "Ruth™; k

Ruth\0

)
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How to Protect Keys?

Problem: Consider this calling code:

struct Table *t;
char k[100] = "Ruth™;

K| Gehrig\o

Table add(t, k, 3);
strcpy(k, "Gehrig™);

What happens if the
client searches t for
“Ruth”? For Gehrig?

%)




How to Protect Keys?

Solution: Table_add() saves a defensive copy of the
given key

void Table add(struct Table *t, const char *key, i1nt value)
{ .
struct Binding *p =

(struct Binding*)malloc(sizeof(struct Binding));
p->key = (const char*)malloc(strlen(key) + 1);
strcpy((char*)p->key, key);

¥ Why add 17

29
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How to Protect Keys?

Now consider same calling code:

struct Table *t;

Table add(t, k, 3);

char k[100] = "Ruth™; k

Ruth\0

Ruth\0

»)
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How to Protect Keys?

Now consider same calling code:

struct Table *t;
char k[100] = "Ruth™;

Table add(t, k, 3);
strcpy(k, "Gehrig™);

Hash table is
not corrupted

Gehrig\O

Ruth\0

"
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Who Owns the Keys?

Then the hash table owns its keys
* That is, the hash table owns the memory in
which its keys reside
e Hash_ free() function must free the memory
In which the key resides

2




-

Summary

Common data structures and associated algorithms
e Linked list
« (Maybe) fast add
e Slow search
e Hash table
» (Potentially) fast add
« (Potentially) fast search
* Very common

Hash table issues
* Hashing algorithms
« Defensive copies
« Key ownership

2
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