
Formal Verification of Hardware
using MLIR

MSc. Thesis - Amelia Dobis (2nd October 2023 - 15th April 2024)

Advisors: Kevin Laeufer (UC Berkeley) & Prof. Zhendong Su (ETH Zürich)

Overview

1)Creating a Formal Backend for the CIRCT compiler

2)Creating a lowering for SVA properties

3)Verifying the Compiler Passes

4)Conclusion

Part 1: Creating a Formal
Back-end for CIRCT

Motivation: Formal Verification

class Counter extends Module {
val count = RegInit(0.U(6.W))
when(count === 42.U) { count := 0.U }
otherwise { count := count + 1.U }

}

Motivation: Formal Verification

class Counter extends Module {
val count = RegInit(0.U(32.W))
when(count === 42.U) { count := 0.U }
otherwise { count := count + 1.U }

}

How do we verify this simple design ?

Motivation: Formal Verification

class Counter extends Module {
val count = RegInit(0.U(32.W))
when(count === 42.U) { count := 0.U }
otherwise { count := count + 1.U }
assert(count < 42.U)

}

How do we verify this simple design ?

→ Add a simple assertion + Formal Tools

Motivation: Formal Verification

class Counter extends Module {

val count = RegInit(0.U(32.W))

when(count === 42.U) { count := 0.U }

otherwise { count := count + 1.U }

assert(count < 42.U)

}

CIRCT

Motivation: Formal Verification

class Counter extends Module {

val count = RegInit(0.U(32.W))

when(count === 42.U) { count := 0.U }

otherwise { count := count + 1.U }

assert(count < 42.U)

}

CIRCT Counter.sv

Motivation: Formal Verification

class Counter extends Module {

val count = RegInit(0.U(32.W))

when(count === 42.U) { count := 0.U }

otherwise { count := count + 1.U }

assert(count < 42.U)

}

CIRCT Counter.sv

Yosys

Jasper

c.btor2

c.smt2

Motivation: Formal Verification

class Counter extends Module {

val count = RegInit(0.U(32.W))

when(count === 42.U) { count := 0.U }

otherwise { count := count + 1.U }

assert(count < 42.U)

}

CIRCT Counter.sv

Yosys

Jasper

c.btor2

c.smt2

btormc

z3

SAT/UNSAT

Goal: Unified Verification

- Most existing verification tooling relies on SystemVerilog.

- Formal Verification requires many intermediary steps.

- CIRCT aims to unify compilation for all hardware languages.

→ Can we unify verification for all hardware languages into a single open-source tool?

Motivation: Formal Verification

class Counter extends Module {

val count = RegInit(0.U(32.W))

when(count === 42.U) { count := 0.U }

otherwise { count := count + 1.U }

assert(count < 42.U)

}

CIRCT Counter.sv

Yosys

Jasper

c.btor2

c.smt2

btormc

z3

SAT/UNSAT

Background: Sequential vs Combinatorial Logic
Combinatorial Logic: Non-stateful logic that simply immediately transforms inputs into outputs.

val a = IO(Input(32.W))
val b = a + 1.U
assert (b > a)

Background: Sequential vs Combinatorial Logic
Combinatorial Logic: Non-stateful logic that simply immediately transforms inputs into outputs.

Sequential Logic: Stateful logic where the transformations happened over several clock cycles.

val a = IO(Input(32.W))
val b = a + 1.U
assert (b > a)

class Counter extends Module {

val count = RegInit(0.U(32.W))

when(count === 42.U) { count := 0.U }

otherwise { count := count + 1.U }

assert(count < 42.U)

}

Background: Hardware to SMT Logic

Combinatorial Logic: Non-stateful logic that simply immediately transforms inputs into outputs.

Verifying Combinatorial Circuits: Core of BMC, convert circuit and assertion into an SMT formula.

val a = IO(Input(32.W))
val b = a + 1.U
assert (b > a)

(and
(eq b (add a 1)) // define b
(not (gt b a)) // can assertion be violated?

)

Background: Hardware to SMT Logic

Sequential Logic: Stateful logic where the transformations happened over several clock cycles.

Verifying Sequential Circuits: Convert into state transition system -> bounded model checking

Background: BTOR2 and btormc

● BTOR2:
○ SMTLib-like format that allows for the explicit

encoding of state-transition systems.

○ Supports bitvector and array theories.

○ No need to manually unroll states, e.g.

● BTORMC:
○ Bounded Model Checker.

○ Supports btor2 format, uses the boolector SMT solver.

○ Optimized for solving in bitvector and array theories.

1 sort bitvector 32 ; declare a 32-bit type

2 state 1 count ; declare a 32-bit state

3 one 1 ; declare a 32-bit constant of value 1

4 and 1 2 3

5 next 1 2 4 ; count := count & 1

How do I do this in CIRCT?

● Front-ends get converted to the core dialects.

● Core dialects: Generalized representation of

hardware.

● Core dialects are the convergence point of all

front-ends.

● I can add a conversion pass to lower core

dialects to btor2.

My BTOR2 Conversion

● Sequential logic: Registers are converted to:

○ State: The declaration of the register

○ Next: How the state’s value transitions across cycles

○ Init: Give each state an initial value to avoid useless solver counter-examples

My BTOR2 Conversion

● Sequential logic: Registers are converted to:

○ State: The declaration of the register

○ Next: How the state’s value transitions across cycles

○ Init: Give each state an initial value to avoid useless solver counter-examples

● Combinatorial Logic: Core dialects are in a form that is semantically similar to SMT logic, thus the

conversion is straightforward.

My BTOR2 Conversion

● Sequential logic: Registers are converted to:

○ State: The declaration of the register

○ Next: How the state’s value transitions across cycles

○ Init: Give each state an initial value to avoid useless solver counter-examples

● Combinatorial Logic: Core dialects are in a form that is semantically similar to SMT logic, thus the

conversion is straightforward.

● Assertions & Assumptions:

○ Assertions: negated then converted to a bad instruction.

○ Assumptions: turned into constraint instructions.

My BTOR2 Conversion

My BTOR2 Conversion

My BTOR2 Conversion

My BTOR2 Conversion

My BTOR2 Conversion

Result

● Fully up-streamed into the CIRCT compiler.

● Formal verification without the use of commercial SV-based tools.

● Fully open-source + single tool experience for user!

● Integrated into firtool via the –btor2 flag.

● Use: firtool –btor2 counter.fir >> counter.btor2

● Also works with all other CIRCT front-ends (not just Chisel).

Result: Before

class Counter extends Module {

val count = RegInit(0.U(32.W))

when(count === 42.U) { count := 0.U }

otherwise { count := count + 1.U }

assert(count < 42.U)

}

CIRCT Counter.sv

Yosys

Jasper

c.btor2

c.smt2

btormc

z3

SAT/UNSAT

Result: After

class Counter extends Module {

val count = RegInit(0.U(32.W))

when(count === 42.U) { count := 0.U }

otherwise { count := count + 1.U }

assert(count < 42.U)

}

CIRCT

counter.btor2btormcSAT/UNSAT

firtool –btor2

Part 2 : Temporal Specifications in
our front-ends

Motivation: Specifying Sequential Circuits

class Counter extends Module {
val count = RegInit(0.U(32.W))
when(count === 42.U) { count := 0.U }
otherwise { count := count + 1.U }

}

How to write a specification for this simple design ?

Motivation: Specifying Sequential Circuits

class Counter extends Module {
val count = RegInit(0.U(32.W))
when(count === 42.U) { count := 0.U }
otherwise { count := count + 1.U }
assert(count < 42.U)

}

How to write a specification for this simple design ?

● Counter never exceeds 42 → assert(count < 42.U)

Motivation: Specifying Sequential Circuits

class Counter extends Module {
val count = RegInit(0.U(32.W))
when(count === 42.U) { count := 0.U }
otherwise { count := count + 1.U }

}

How do write specify this simple design (with assertions) ?

● Counter never exceeds 42 → assert(count < 42.U)
● Counter is monotonically increasing → ???

Motivation: Specifying Sequential Circuits

Counter is monotonically increasing → No good way in Chisel

→ Usually go through SystemVerilog Assertion Properties

1) Compile Design down to SV
2) Modify design to add SVA property assertion:

 assert property counter < 42 |-> counter > $past(counter)

Motivation: Specifying Sequential Circuits

Counter is monotonically increasing → No good way in Chisel

→ Usually go through SystemVerilog Assertion Properties

1) Compile Design down to SV
2) Modify design to add SVA property assertion:

 assert property counter < 42 |-> counter > $past(counter)

Problem: Only supported by commercial SV tools

Challenge: Temporal Specifications

- Expressing temporal relations requires poorly supported SystemVerilog Assertion

properties.

- These are mainly supported in commercial tools for SystemVerilog.

→ How do we support temporal specifications for our open-source formal backend ?

Background: What should we support?
● SVA Sequences: Defines a series of predicates that should hold.

sequence s;

@(posedge clock) a ##[0:2] b ##1 c;

endsequence;

● SVA Property: Encodes a concurrently checked predicate that represents a relation
between elements in a design. Can be disabled, can contain sequences.

assert property (@(posedge clock)

disable iff (reset)

a ##1 b |=> (c |-> d)

);

Background: What should we support?
● SVA Sequences: Defines a series of predicates that should hold.

sequence s;

@(posedge clock) a ##[0:2] b ##1 c;

endsequence;

● SVA Property: Encodes a concurrently checked predicate that represents a relation
between elements in a design. Can be disabled, can contain sequences.

assert property (@(posedge clock)

disable iff (reset)

a |=> b // if a holds then b holds after one cycle

);

How can CIRCT support this?

● LTL dialect supports various temporal expressions:
○ ltl.delay : delays input by a given number of cycles.
○ ltl.implication : encodes an implication.
○ ltl.concat : encodes a sequence of events.
○ ltl.disable : disables a property on a condition.
○ ltl.clock : associates a clock to a property.

● Verif dialect supports assertions and assumptions.
○ verif.has_been_reset: checks if the circuit has

been reset yet or not. Useful for disabling properties
before circuit is initialized.

How can CIRCT support this?

● Problem: LTL and Verif can only be lowered to

SVA, not supported anywhere else.

● Solution: Lower LTL and Verif constructs to the

core design dialects, so that they can be used in

all targets (including btor2).

→ Can then be used with our formal back-end.

How do we lower SVA properties?

● 2 methods:

1) Build an automaton that monitors the property, make it deterministic and implement it as a FSM.

2) Design custom direct lowerings for a select set of properties.

● Problems:

○ Method 1) requires an expensive automaton conversion into an internal representation

○ No good general method exists to encode properties as automaton in a modular way.

● → I opt for method 2)

How to Lower LTL and Verif to Core dialects?

1) Add support for property assertions.

2) Identify most common SVA properties and sequences.

3) Create a direct lowering for the identified properties.

First Step: Property Assertions

- Properties assertions: encode concurrently checked assertions.
- Are always clocked.
- Can be disabled.

- By default are disabled as long as the circuit has not been reset.

- Properties can encode temporal relations between signals in the design.

First Step: Support Property Assertions

%0 = seq.from_clock %clock

%true = hw.constant true
%9 = verif.has_been_reset %0, sync %reset
%10 = comb.xor bin %9, %true : i1
%13 = ltl.disable %property if %10 : i1

%14 = ltl.clock %13, posedge %0 : !ltl.property
verif.assert %14 : !ltl.property

AssertProperty(property, clock, disable=default)

First Step: Support Property Assertions

● verif.has_been_reset: Create a register that is set to its own value OR reset

○ reg hbr := hbr || reset

● ltl.disable %property if %disable:

○ property := disable || reset || property

○ Ignores the property if the circuit is in a reset cycle or the property is disabled

● ltl.clock + verif.assert: Directly map to supported sv dialect constructs

Second Step: Find which SVA properties to encode
● Previous work has analyzed which properties were most common in open-source designs:

○ Result:

■ Non-Overlapping Implication (NOI) (i.e. a implies b after n cycles)

■ Concatenation (a always holds n cycles after b)

● Engineers that rely on Chisel most commonly used properties:

Third Step: Custom Lowerings

● NOI and Concatenation are chosen.

● NOI: “a implies b after n cycles”
○ Create a pipeline of registers to delay the antecedent by n cycles

○ Create a register to track the current cycle

reg delay, a_0, ..., a_n;
delay' = reset ? 0 : delay + 1
a_0' = a;
a_1' = a_0;
// ...
a_n' = a_(n-1)
assert (delay < n) || (a_n -> b) || reset

a ##n true |-> b

Lowering: a ##n true |-> b

Third Step: Custom Lowerings

● Concatenation “b holds n cycles after a”
○ Create a pipeline of registers to

delay the all registers in the

sequence by a certain amount of

cycles

○ Create a register to track the

current cycle

D = sum(i : 0..m)(ni) // total delay
reg delay;
reg a_0, ..., a_last; // D registers
reg a0_0, ..., a0_last; // (D - m) registers
reg a1_0, ..., a1_last; // (D - m - (m-1)) registers
//...
reg am-1_last;
delay' = reset ? 0 : delay + 1;
a_0' = a;
a_1' = a_0;
//...
a_last' = a_(D-1);
a0_0' = a_0;
a0_1' = a0_0;
//...
a0_last' = a0_(D - m);
//...
am-1_last' = am-1;
assert (delay < D) || a_last && and(i : 0..m)(ai_last) && am

|| reset

a ##n0 a0 ##n1 a1 ... ##nm am

Result: SVA properties without tool support

● SVA properties and sequences can now be used regardless of the simulator or tool

being used.

● LTL Lowering pass is integrated into firtool –btor2

● SVA properties and sequences can be used in the formal back-end.

Result: Specifying Sequential Circuits

class Counter extends Module {
val count = RegInit(0.U(32.W))
when(count === 42.U) { count := 0.U }
otherwise { count := count + 1.U }

}

How to write a specification for this simple design ?

Result: Specifying Sequential Circuits

class Counter extends Module {
val count = RegInit(0.U(32.W))
when(count === 42.U) { count := 0.U }
otherwise { count := count + 1.U }
AssertProperty(count < 42 |-> count > count.delay(1))

}

How to write a specification for this simple design ?

→ counter is monotonically increasing?

Result: Specifying Sequential Circuits

class Counter extends Module {
val count = RegInit(0.U(32.W))
when(count === 42.U) { count := 0.U }
otherwise { count := count + 1.U }
AssertProperty(count === 42.U |=> count === 0.U)

}

How to write a specification for this simple design ?

→ Is counter reset correctly?

Result: Integration into Formal flow
class Counter extends Module {

val count = RegInit(0.U(32.W))

when(count === 42.U) { count := 0.U }

otherwise { count := count + 1.U }

AssertProperty(count === 42.U |=> count === 0.U)

}

CIRCT

counter.btor2btormcSAT/UNSAT

firtool –btor2

Part 3: Verifying the new
passes

Verifying the new Passes

Goal: Design an automated test suite that verifies the correctness of the new passes.

1) BTOR2 emission: Compare with Scala FIRRTL Compiler using Equivalence Checking.

2) SVA Property Lowering: Exhaustively test all possible inputs within a given

cycle-bound and compare SVA property to lowered version in a commercial

simulator.

BTOR2 Equivalence Check

● Run same design through the Scala FIRRTL

Compiler and CIRCT and create a miter circuit

from the two outputs.

● Miter circuit: Merged circuit that checks the

equivalence of the outputs of two designs.

● Result: Behavior differed due to uninitialized
registers being handled differently.

● Tool is open-source:

https://github.com/Dobios/btor2-opt

https://github.com/Dobios/btor2-opt

Cycle-Bound Exhaustive tester

● Generate all possible NOI properties within a given number

of cycles.

○ Compile each property twice: through the normal
CIRCT pipeline and through my custom pipeline.

● Generate all possible input vectors for a given number of

cycles.

● Generate a testbench that stimulates both designs for each

set of input vectors.

● Run both designs on the the testbench using Synopsys VCS

and compare the outputs.

Cycle-Bound Exhaustive tester

● Result: Found a bug in how generated register were being

reset in the lowered version using only 20 cycles of

exhaustive testing.

● Tool is open-source:

https://github.com/Dobios/SVExhaustiveTester

https://github.com/Dobios/SVExhaustiveTester

Conclusion

Conclusion: What is this for?

● Enables formal verification to be done in high level hardware languages like

Chisel using SVA properties entirely in an open-source compiler.

CIRCT btormc

SAT: count = 31 @ cycle 31
 count = 0 @ cycle 32

class Counter extends Module {

val count = RegInit(0.U(5.W))

when(count === 32.U) { count := 0.U }

otherwise { count := count + 1.U }

AssertProperty(count < 32.U |=> count > 0.U)

}

Conclusion: Impact

● A lot of support from the CIRCT developer community

○ Triggered many other works (which I participate in) around ltl:

■ Automata dialect + FSM lowering with University of Cambridge

■ LTL dialect extensions

○ Many new works in the verifications space of CIRCT

→ The future looks bright for open-source verification support in high-level hardware

languages!

Overview

1) Created a unified formal backed integrated into the CIRCT compiler

a) Supports converting all of CIRCT’s frontends into the btor2 format

2) Created lowerings for property assertions to a generally supported form

a) Supports Non-overlapping Implication and Concatenation

b) Is integrated into the formal backend

3) Designed an automated test-suited to verify to new additions to CIRCT.

Overview

1) Created a unified formal backed integrated into the CIRCT compiler

a) Supports converting all of CIRCT’s frontends into the btor2 format

2) Created lowerings for property assertions to a generally supported form

a) Supports Non-overlapping Implication and Concatenation

b) Is integrated into the formal backend

3) Designed an automated test-suited to verify to new additions to CIRCT.

Overview

1) Created a unified formal backed integrated into the CIRCT compiler

a) Supports converting all of CIRCT’s frontends into the btor2 format

2) Created lowerings for property assertions to a generally supported form

a) Supports Non-overlapping Implication and Concatenation

b) Is integrated into the formal backend

3) Designed an automated test-suited to verify to new additions to CIRCT.

Resources
● Written Thesis:

○ https://doi.org/10.3929/ethz-b-000668906

● BTOR2 Format:
○ https://link.springer.com/chapter/10.1007/978-3-319-96145-3_32

● CIRCT:
○ https://circt.llvm.org/docs/GettingStarted/

○ https://github.com/llvm/circt

● Verification works:
○ https://github.com/Dobios/btor2-opt
○ https://github.com/Dobios/SVExhaustiveTester

https://doi.org/10.3929/ethz-b-000668906
https://link.springer.com/chapter/10.1007/978-3-319-96145-3_32
https://circt.llvm.org/docs/GettingStarted/
https://github.com/Dobios/circt
https://github.com/Dobios/btor2-opt
https://github.com/Dobios/SVExhaustiveTester

Any Questions ?

