Formal Verification of Hardware
using MLIR

MSc. Thesis - Amelia Dobis (2nd October 2023 - 15th April 2024)
Advisors: Kevin Laeufer (UC Berkeley) & Prof. Zhendong Su (ETH Ziirich)

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Overview

1)Creating a Formal Backend for the CIRCT compiler
2)Creating a lowering for SVA properties
3)Verifying the Compiler Passes

4)Conclusion

Part 1: Creating a Formal
Back-end for CIRCT

Motivation: Formal Verification

class Counter extends Module {
val count = RegInit(0.U(6.W))
when (count === 42.U) { count := 0.U }

otherwise { count : count + 1.0 }

Motivation: Formal Verification

class Counter extends Module {
val count = RegInit(0.U(32.W))
when (count === 42.U) { count := 0.U }

otherwise { count : count + 1.0 }

}

How do we verify this simple design ?

Motivation: Formal Verification

class Counter extends Module {
val count = RegInit(0.U(32.W))
when (count === 42.U) { count := 0.0 }
otherwise { count := count + 1.U }
assert (count < 42.0)

}

How do we verify this simple design ?

— Add a simple assertion + Formal Tools

Motivation: Formal Verification
g I

class Counter extends Module {

val count = RegInit(0.U(32.W))

otherwise { count := count + 1.U }

assert (count < 42.0)

when (count === 42.U) { count := 0.U } >

Motivation: Formal Verification

val count = RegInit(0.U(32.W))

class Counter extends Module {
when (count === 42.U) { count := 0.U } — —> Counter.sv

otherwise { count := count + 1.U }

assert (count < 42.0)

Motivation: Formal Verification

-

c

lass Counter extends Module {
val count = RegInit(0.U(32.W))
when (count === 42.U) { count := 0
otherwise { count := count + 1.U }

assert (count < 42.0)

.U

}

~

c.btor2

Counter.sv

c.smt2

ea

Motivation: Formal Verification

-

\.

when (count === 42.U) { count := 0

otherwise { count

class Counter extends Module {

val count = RegInit(0.U(32.W))

:= count + 1.U }

assert (count < 42.0)

.U

}

~

SAT/UNSAT

—

c.btor2

Counter.sv

c.smt2

ea

Goal: Unified Verification

- Most existing verification tooling relies on SystemVerilog.
- Formal Verification requires many intermediary steps.
- CIRCT aims to unify compilation for all hardware languages.

— Can we unify verification for all hardware languages into a single open-source tool?

Motivation: Formal Verification
//;lass Counter extends Module { ‘\\

val count = RegInit(0.U(32.W))

when (count === 42.U) { count := 0.U }

|

otherwise { count := count + 1.U }

assert (count < 42.0)

\. /

c.btor?2
— —
%;:::j::i::i:;i} c.smt2
I—

SAT/UNSAT

Background: Sequential vs Combinatorial Logic

Combinatorial Logic: Non-stateful logic that simply immediately transforms inputs into outputs.

val a = IO (Input(32.W))
val b = a + 1.0
assert (b > a)

Background: Sequential vs Combinatorial Logic

Combinatorial Logic: Non-stateful logic that simply immediately transforms inputs into outputs.

val a = IO (Input(32.W))
val b = a + 1.0
assert (b > a)

Sequential Logic: Stateful logic where the transformations happened over several clock cycles.

class Counter extends Module {
val count = RegInit(0.U(32.W))
when (count === 42.U) { count := 0.U }
otherwise { count := count + 1.U }

assert (count < 42.0)

Background: Hardware to SMT Logic

Combinatorial Logic: Non-stateful logic that simply immediately transforms inputs into outputs.

Verifying Combinatorial Circuits: Core of BMC, convert circuit and assertion into an SMT formula.

val a =
val b =
assert

IO (Input(32.W))
a+ 1.0
(b > a)

(and

(eq b
(not

(add a 1)) // define b

(gt b a))

// can assertion be violated?

Background: Hardware to SMT Logic

Sequential Logic: Stateful logic where the transformations happened over several clock cycles.

Verifying Sequential Circuits: Convert into state transition system -> bounded model checking

N [)

class MyCounter extends Module {
val en = I0O(Input(Bool en=0_)en=1_)en=0
(P (())) count = 0 count = 0 count = 1

val count = RegInit(0.U(32.W))

when(en && count === 22.U) { count := 0.U } —>»

when(en && count =/= 22.U) { count := count + 1.U } en = ? :
count = (....... (

assert(count =/= 10.U) 10

_ AN)

Background: BTOR2 and btormc

BTOR2:
o SMTLib-like format that allows for the explicit 1 sort bitvector 32 ; declare a 32-bit type
encoding of state-transition systems. 2 state 1 count ; declare a 32-bit state
o Supports bitvector and array theories 3 one 1 ; declare a 32-bit constant of value 1
o Noneed to manually unroll states, e.g. 4 and 123
5 next 1 2 4 ; count := count & 1

BTORMC:
o Bounded Model Checker.
o Supports btor2 format, uses the boolector SMT solver.
o Optimized for solving in bitvector and array theories.

Front-ends

[Chisel] Python SVNH'DL]
How do | do this in CIRCT?
/ CIRCT \
e Front-ends get converted to the core dialects. @
FIRRTL

e Coredialects: Generalized representation of Core Dialects

h a rd ware. Design Verification

hw seq comb verif 1d

e Coredialects are the convergence point of all ¢ ¢ T

front-ends. M
e | canadd aconversion pass to lower core it

dialects to btor2.

v v

SystemVerilog Simulation

My BTOR2 Conversion

e Sequential logic: Registers are converted to:

o State: The declaration of the register
o Next: How the state’s value transitions across cycles

o Init: Give each state an initial value to avoid useless solver counter-examples

My BTOR2 Conversion

e Sequential logic: Registers are converted to:

o State: The declaration of the register
o Next: How the state’s value transitions across cycles
o Init: Give each state an initial value to avoid useless solver counter-examples

e Combinatorial Logic: Core dialects are in a form that is semantically similar to SMT logic, thus the

conversion is straightforward.

My BTOR2 Conversion

e Sequential logic: Registers are converted to:

o State: The declaration of the register
o Next: How the state’s value transitions across cycles
o Init: Give each state an initial value to avoid useless solver counter-examples

e Combinatorial Logic: Core dialects are in a form that is semantically similar to SMT logic, thus the

conversion is straightforward.

e Assertions & Assumptions:

o Assertions: negated then converted to a bad instruction.

o Assumptions: turned into constraint instructions.

My BTOR2 Conversion

//,élass Counter extends Module {

I val count = RegInit(0.U(32.W))

I when(count === 22.U) { count := 0.U }

I when(count =/= 22.U) { count := count + 1.U }

| assert(count =/= 10.U)

I TTT

1 sort bitvector 32

My BTOR2 Conversion

4 init 1 2 3

//,élass Counter extends Module { ‘\\\

val count = RegInit(0.U(32.W)) [

when(count =/= 22.U) { count :=

|
o
o
c
S
=
+
[y
c
(o]

I
I when(count === 22.U) { count := 0.U } }———
I
I

assert(count =/= 10.U) f———

\ J

My BTOR2 Conversion

//,élass Counter extends Module { ‘\\\

1 sort bitvector 32
2 state 1 count

3 zero 1

4 init 1 2 3

5 sort bitvector 1
6 constd 1 22
7eq526

8 ite 1 7 3 2

Py €

val count = RegInit(0.U(32.W)) i

when(count =/= 22.U) { count :=

|
o
o
c
S
=
+
[y
c
(o]

I
I when(count === 22.U) { count := 0.U } F———
I
I

assert(count =/= 10.U) f———

\ J

My BTOR2 Conversion

//,élass Counter extends Module {

val count = RegInit(0.U(32.W))

1 sort bitvector 32
2 state 1 count

3 zero 1

4 init 1 2 3

5 sort bitvector 1
6 constd 1 22
7eq526

8 ite 1 7 3 2

p €

o

when(count === 22.U) { count

0.U } — /8neq526
7 3

when(count =/= 22.U) { count

count + 1.U } I—

assert(count =/= 10.U)

f___

\

/

10
akil
12
13
14

\\‘ 15

rI

9 ite 1

2

one 1

sort bitvector 33
add 11 2 10

slice 1 12 31 0
ite 1 8 13 8

hext 1 2 14

>

4

My BTOR2 Conversion

//,élass Counter extends Module { ‘\\\

1 sort bitvector 32
2 state 1 count

3 zero 1

4 init 1 2 3

5 sort bitvector 1
6 constd 1 22
7eq526

8 ite 1 7 3 2

p €

o

val count = RegInit(0.U(32.W)) i

when(count =/= 22.U) { count := count + 1.U } F———
—

assert(count =/= 10.U) [

I
I when(count === 22.U) { count := 0.U } F———
I
I

\ J

rI

8 neq 52 6
9 ite 17 3

10
akil
12
13
14
15

2

one 1

sort bitvector 33
add 11 2 10

slice 1 12 31 0
ite 1 8 13 8

hext 1 2 14

>

~

\ 4

16
alys
18
19

constd 1 10
neq 5 2 16
not 5 17
bad 18

4
.

Result

e Fully up-streamed into the CIRCT compiler.

e Formal verification without the use of commercial SV-based tools.
e Fully open-source + single tool experience for user!

e Integrated into firtool via the -btor2 flag.

e Use: firtool -btor2 counter.fir >> counter.btor2

e Alsoworks with all other CIRCT front-ends (not just Chisel).

Result: Before

-

\.

when (count === 42.U) { count := 0

otherwise { count

class Counter extends Module {

val count = RegInit(0.U(32.W))

:= count + 1.U }

assert (count < 42.0)

.U

}

SAT/UNSAT

—

c.btor2

Counter.sv

c.smt2

ea

Result: After

//;lass Counter extends Module {

val count = RegInit(0.U(32.W))
when (count === 42.U) { count := 0
otherwise { count := count + 1.U }

assert (count < 42.0)

N

.U

}

SAT/UNSAT | \——

firtool -btor2

counter.btor?2 J

Part 2 : Temporal Specifications in
our front-ends

Motivation: Specifying Sequential Circuits

class Counter extends Module {
val count = RegInit(0.U(32.W))
when (count === 42.U) { count := 0.U }
otherwise { count := count + 1.U }

}

How to write a specification for this simple design ?

Motivation: Specifying Sequential Circuits

class Counter extends Module {
val count = RegInit(0.U(32.W))
when (count === 42.U) { count := 0.0 }
otherwise { count := count + 1.U }
assert (count < 42.0)

}

How to write a specification for this simple design ?

e Counter never exceeds 42 — assert (count < 42.0)

Motivation: Specifying Sequential Circuits

class Counter extends Module {
val count = RegInit(0.U(32.W))
when (count === 42.U) { count := 0.U }

otherwise { count := count + 1.U }

}

How do write specify this simple design (with assertions) ?

e Counter never exceeds 42 — assert (count < 42.0U)
e Counteris monotonically increasing— 227

Motivation: Specifying Sequential Circuits

Counter is monotonically increasing — No good way in Chisel
— Usually go through SystemVerilog Assertion Properties

1) Compile Design down to SV
2) Modify design to add SVA property assertion:

assert property counter < 42 |-> counter > Spast (counter)

Motivation: Specifying Sequential Circuits

Counter is monotonically increasing — No good way in Chisel
— Usually go through SystemVerilog Assertion Properties

1) Compile Design down to SV
2) Modify design to add SVA property assertion:

assert property counter < 42 |-> counter > Spast (counter)

Problem: Only supported by commercial SV tools

Challenge: Temporal Specifications

- Expressing temporal relations requires poorly supported SystemVerilog Assertion
properties.
- These are mainly supported in commercial tools for SystemVerilog.

— How do we support temporal specifications for our open-source formal backend ?

Background: What should we support?

e SVA Sequences: Defines a series of predicates that should hold.

sequence s;

@ (posedge clock) a ##[0:2] b ##1 c;

endsequence;

Background: What should we support?

SVA Sequences: Defines a series of predicates that should hold.

sequence s;

@ (posedge clock) a ##[0:2] b ##1 c;

endsequence;

SVA Property: Encodes a concurrently checked predicate that represents a relation

between elements in a design. Can be disabled, can contain sequences.

assert property (@ (posedge clock)
disable iff (reset)
a |=>Db // if a holds then b holds after one cycle

How can CIRCT support this?

LTL dialect supports various temporal expressions:

O O O O O

1tl

1tl
1tl

.delay:delays input by a given number of cycles.
1tl.

implication:encodes animplication.

.concat : encodes a sequence of events.
.disable:disables a property on a condition.
1tl.

clock:associates a clock to a property.

Verif dialect supports assertions and assumptions.

verif.has been reset checks if the circuit has
been reset yet or not. Useful for disabling properties
before circuit is initialized.

(@]

Front-ends

[

owa | [ovamn | (s |

CIRCT

FIRRTL

Core Dialects

|

Design Verification
seq comb verif 1tl
|}

;
g
v

1
1
convert core to
BTOR2
1

sV
Gt

v v

SystemVerilog

Simulation

How can CIRCT support this?

Problem: LTL and Verif can only be lowered to
SVA, not supported anywhere else.

Solution: Lower LTL and Verif constructs to the
core design dialects, so that they can be used in
all targets (including btor2).

— Can then be used with our formal back-end.

Front-ends

e

1
1
arc
convert core to
ot)
1
______ f
1

i U
SystemVerilogj Simulation lj .btor2

How do we lower SVA properties?

e 2 methods:
1) Build an automaton that monitors the property, make it deterministic and implement it as a FSM.
2) Design custom direct lowerings for a select set of properties.

e Problems:

o Method 1) requires an expensive automaton conversion into an internal representation

o No good general method exists to encode properties as automaton in a modular way.

e —|optformethod2)

How to Lower LTL and Verif to Core dialects?

1) Add support for property assertions.
2) ldentify most common SVA properties and sequences.

3) Create adirect lowering for the identified properties.

First Step: Property Assertions

- Properties assertions: encode concurrently checked assertions.
- Are always clocked.
- Canbedisabled.
- By default are disabled as long as the circuit has not been reset.
- Properties can encode temporal relations between signals in the design.

First Step: Support Property Assertions

AssertProperty (property, clock, disable=default)

g

%0 = seqg.from clock %clock
strue = hw.constant true
59 = verif.has been reset 50, sync %reset

%10 = comb.xor bin %9, Strue : il
%13 = 1ltl.disable S%property if %10 : il

%14 = 1ltl.clock %13, posedge %0 : !ltl.property
verif.assert $14 : !1tl.property

First Step: Support Property Assertions

e verif.has been reset: Create aregisterthatissettoits own value OR reset
o reg hbr := hbr || reset

e 1ltl.disable S%property if %disable:
O property := disable || reset || property
o lgnoresthe property if the circuit is in a reset cycle or the property is disabled

e 1ltl.clock + verif.assert: Directly maptosupported sv dialect constructs

Second Step: Find which SVA properties to encode

e Previous work has analyzed which properties were most common in open-source designs:

o Result:
m Non-Overlapping Implication (NOI) (i.e. aimplies b after n cycles)
m Concatenation (a always holds n cycles after b)

e Engineersthat rely on Chisel most commonly used properties:

Property Description Verilator Support
a |->b Simple implication Yes
a ##n b Constant delay concatenation No
a ##2 b ##[1:5] c Variable delay concatenation No
(disable iff (d)) ... | Custom disabling of properties No

Third Step: Custom Lowerings

e NOI and Concatenation are chosen.
e NOI: “aimplies b after n cycles”

o Create a pipeline of registers to delay the antecedent by n cycles
o Create aregister to track the current cycle

a ##n true |-> b

reg delay, a 0, ..., a n;
delay' = reset 2?2 0 : delay + 1
a 0' = a;

al' =ao0;

//

an' =a (n-1)

assert (aelay <n) || (an —->Db)

| | reset

Lowering: a ##n true |-> b

/ a ##n |-> b \
a_| a_ a_n
a D Q D Q D Q‘ @,
|

Third Step: Custom Lowerings

e Concatenation “b holds n cycles after a”
o Create apipeline of registers to
delay the all registers in the
sequence by a certain amount of
cycles
o Create aregister to track the
current cycle

a ##n0 a0 ##nl al ... ##nm am

D =sum(i : O0..m) (ni) // total delay
reg delay;
reg a 0, ..., a last; // D registers

reg a0 0, ..
reg al 0, ..
Y
reg am-1 last;
delay' = reset 2?2 0
a 0'
a 1!
Y
a last'
a0 _0'
a0 1"
Y
a0 last' = a0 (D - m);
Y
am-1 last' = am-1;
assert (delay < D)
|| reset

., a0 _last; //
., al last; //

(D - m) registers

(D - m - (m-1)) registers

= : delay + 1;
ajy
a

0;

|l a last && and(i : 0..m) (ai last) &&

am

a ##n0 a0 ##nl al ... ##nm am
a_0 a_1 a_2 a3 a_last
a—Po o—»0o oo o0 o> ... —»D Q
a0_0 a0_1 a0_2 a0_last
a0 —» 0o o0 o—»D o> ...—»D (o
al_0 al_1 al_last
A -
al=—>D QP o> ... > Q =
»”
A -
> > > >
. A -
F o
am_minusl_last am =
am_minusl o b Q
delay
D Q

disable

Result: SVA properties without tool support

e SVA properties and sequences can now be used regardless of the simulator or tool
being used.
e LTL Lowering pass is integrated into firtool -btor2

e SVA properties and sequences can be used in the formal back-end.

Result: Specifying Sequential Circuits

class Counter extends Module {
val count = RegInit(0.U(32.W))
when (count === 42.U) { count := 0.U }

otherwise { count : count + 1.0 }

}

How to write a specification for this simple design ?

Result: Specifying Sequential Circuits

class Counter extends Module {
val count = RegInit(0.U(32.W))
when (count === 42.U) { count := 0.0 }
otherwise { count := count + 1.U }
AssertProperty (count < 42 |-> count > countdelay(l))

}

How to write a specification for this simple design ?

— counter is monotonically increasing?

Result: Specifying Sequential Circuits

class Counter extends Module {
val count = RegInit(0.U(32.W))
when (count === 42.U) { count := 0.0 }
otherwise { count := count + 1.U }
AssertProperty (count === 42.U |[=> count === 0.U)
}

How to write a specification for this simple design ?

— |Is counter reset correctly?

Result: Integration into Formal flow

/class Counter extends Module { \
val count = RegInit(0.U(32.W))

when (count === 42.U) { count := 0.U } |:>
otherwise { count := count + 1.U }
AssertProperty (count === 42.U |=> count === 0.0U)

K } / firtool -btor2

SAT/UNSAT <:| < counter.btor2 J

Part 3: Verifying the new
passes

Verifying the new Passes

oal: Design an automated test suite that verifies the correctness of the new passes.

1) BTORZ2 emission: Compare with Scala FIRRTL Compiler using Equivalence Checking.

2) SVA Property Lowering: Exhaustively test all possible inputs within a given
cycle-bound and compare SVA property to lowered version in a commercial

simulator.

BTOR2 Equivalence Check

Run same design through the Scala FIRRTL
Compiler and CIRCT and create a miter circuit
from the two outputs.

Miter circuit: Merged circuit that checks the
equivalence of the outputs of two designs.

Result: Behavior differed due to uninitialized
registers being handled differently.

Tool is open-source:
https://github.com/Dobios/btor2-opt

/

Logical Equivalence Checker

input DUT
1

SFC CIRCT

\ 4

sfc. btorlﬁ circt. bto%

11 and 1 10 9

1 sort bitvector 32
2 input 1 a
12 output 11

1 sort bitvector 32
2 input 1 a

\
: Circuit Miter

11 and 1 10 9

12 and 1 11 10

1 sort bitvector 32
2 input 1 a
13 output 12

21 and 1 20 19
22 sort bitvector 1

23 neq 22 21 11
24 bad 23

]_l_’

o

!

btormc

sat?

Bug

/

https://github.com/Dobios/btor2-opt

Cycle-Bound Exhaustive tester / i i

tte Property G te Input Vectors
. i :0..N => (a ##1 true [-> b) i :0..2Acycles => Bitvector(i)
Generate all possible NOI properties within a given number] [’ J

of cycles. il: a b
Yy v v

o Compile each property twice: through the normal i e i [o——
CIRCT pipeline and through my custom pipeline.

. . . Standard lowering | My lowering
Generate all possible input vectors for a given number of J—B
CYCIGS. dutltl.sv dutcore.sv th.sv

Generate a testbench that stimulates both designs for each [

set of input vectors. o s L 5w

Run both designs on the the testbench using Synopsys VCS | l

and compare the outputs. > =7 >
\ /

—

Cycle-Bound Exhaustive tester f i i

Generate Property Generate Input Vectors
. . . i :0..N => (a ##1 true [-> b) i :0..2Acycles => Bitvector(i)
Result: Found a bug in how generated register were being [] [J

reset in the lowered version using only 20 cycles of i& a b
\ \ 4
eXhaUStive testing. dut.scala CIRCT (Generate Test-Bench
T

N
Tool is open-source: i{;
https://github.com/Dobios/SVExhaustiveTester hale

dutcore.sv

ﬁj
N 2

https://github.com/Dobios/SVExhaustiveTester

Conclusion

Conclusion: What is this for?

e Enables formal verification to be done in high level hardware languages like
Chisel using SVA properties entirely in an open-source compiler.

class Counter extends Module {

val count = RegInit(0.U(5.W)) ‘ ‘

when (count === 32.U) { count := 0.U }

otherwise { count := count + 1.U }
AssertProperty (count < 32.U0 [=> count > 0.0U) @

} SAT: count = 31 @ cycle 31
count =0 @ cycle 32

Conclusion: Impact

e Alot of support from the CIRCT developer community
o Triggered many other works (which | participate in) around Itl:
m Automatadialect + FSM lowering with University of Cambridge
m LTL dialect extensions
o Many new works in the verifications space of CIRCT

— The future looks bright for open-source verification support in high-level hardware
languages!

Overview

1) Created a unified formal backed integrated into the CIRCT compiler
a) Supports converting all of CIRCT’s frontends into the btor2 format

Overview

1) Created a unified formal backed integrated into the CIRCT compiler
a) Supports converting all of CIRCT’s frontends into the btor2 format
2) Created lowerings for property assertions to a generally supported form
a) Supports Non-overlapping Implication and Concatenation
b) Isintegrated into the formal backend

Overview

1) Created a unified formal backed integrated into the CIRCT compiler
a) Supports converting all of CIRCT’s frontends into the btor2 format
2) Created lowerings for property assertions to a generally supported form
a) Supports Non-overlapping Implication and Concatenation
b) Isintegrated into the formal backend
3) Designed an automated test-suited to verify to new additions to CIRCT.

Resources

e Written Thesis:
o https://doi.org/10.3929/ethz-b-000668906
e BTOR2Format:
o https://link.springer.com/chapter/10.1007/978-3-319-96145-3_32
e CIRCT:
o https://circt.llvm.org/docs/GettingStarted/
o https://github.com/llvm/circt
e Verification works:
o https://github.com/Dobios/btor2-opt
o https://github.com/Dobios/SVExhaustiveTester

https://doi.org/10.3929/ethz-b-000668906
https://link.springer.com/chapter/10.1007/978-3-319-96145-3_32
https://circt.llvm.org/docs/GettingStarted/
https://github.com/Dobios/circt
https://github.com/Dobios/btor2-opt
https://github.com/Dobios/SVExhaustiveTester

Any Questions ?

