
Unified Deductive Hardware
Verification

Amelia Dobis

PhD Student - Advisor: Mae Milano - Princeton PL/SNS

OPLSS 2025

1

2

● Hardware is hard: Very difficult to implement correctly

● Mistakes are expensive: Tape-out costs millions of dollars

● We need strong correctness guarantees that dynamic testing methods
don’t give us

○ <insert Dijkstra quote here>

Motivation: Practical Reality of Hardware Design

3

Motivation: Hardware Verification is Terrible

class Counter extends Module {

val count = RegInit(0.U(32.W))

when(count === 42.U) { count := 0.U }

otherwise { count := count + 1.U }

}

CIRCT Counter.sv

Yosys
Formal
Tools

c.btor2btormc

SMT
SolverSAT/UNSAT

TOOLS FOR
SV NOT YOUR
LANGUAGE!!

specification

4

● academia: “Hardware Verification is a solved problem just use BMC”
– Peter Müller, Spring 2022

● industry: “You should use Synopsis VC Formal”
– Every verification engineer, all day every day

Motivation: “reasons” why HW Verification is bad

5

● Meanwhile: Software get to use interactive modular verification tools.

○ here’s a demo

● These are unified and are adaptable to multiple (frontend) languages.

● Hardware engineers deserve nice things too!

Motivation: Deductive Program Verification is cool

http://viper.ethz.ch/viperonline/tool/silver?key=202507030117435d7f43b4c45c1df8e2d57f

6

Background: Deductive Program Verifiers

[1] VIPER TUTORIAL, http://viper.ethz.ch/tutorial/

7

Background: CIRCT

[2] CIRCT: Intermediate Representations as a Shared Foundation for Hardware Compilation; Amelia Dobis, Bea Healy, Schuyler
Eldridge, Tobias Grosser, Andrew Lenharth, Andrew Young, Chris Lattner, Fabian Schuiki, Hideto Ueno, John Demme, Julian
Oppermann, Lenny Truong, Leon Hielscher, Mae Milano, Martin Erhart, Mike Urbach, Morten Borup Petersen, Prithayan Barua, Robert
Young, Stephen Neuendorffer, Will Dietz; 2025

CIRCT

8

● Can we create a “Viper for Hardware”?

● How does Program Verification differ from Hardware Verification?

● What underlying methods do we need?

● Can we bypass SystemVerilog?

Goal: Deductive Hardware Verification

9

Unified Deductive Hardware Verification

Unified Deductive Hardware Verification

Single Interface Verification Condition
Generation

Supports Sequential
Designs

Supports many front-ends Weakest Precondition
computation

Supports Temporal Logic

Supports many backends Maintains Modularity Supports Parallel
Verification

1
0

Unified Deductive Hardware Verification

Chisel Kanagawa Verilog frontends

Unified Formal Verification Interface

BMC
Interface

circt-bmc

k-Induction
Interface

k-induction
tool

External
Target

circt-test

CIRCT

1
1

● How? → Introduce First Class Verification ops to the CIRCT compiler

verif_op ::= assert <s> <clk> | assume <s> <clk> | cover <s> <clk>
| formal <@sym> <body> | <s> = symbolic_input

op ::= verif.verif_op : <type>

Unified Deductive Hardware Verification

class formalTest extends Module with Formal {
// Inputs are interpreted as free/symbolic
val a = IO(Input(UInt(32.W)))
…

}

Chisel

verif.formal @formalTest {bound=500, method=BMC} {
%a = verif.symbolic_input : i32
…

}

MLIR

1
2

Unified Deductive Hardware Verification

verif.formal @formalTest {bound=500, method=BMC} {
%a = verif.symbolic_input : i32
…

}

BMC
Interface

circt-bmc

k-Induction
Interface

k-induction
tool

External
Target

circt-test

CIRCT

1
3

Unified Deductive Hardware Verification

Unified Deductive Hardware Verification

Single Interface Verification Condition
Generation

Supports Sequential
Designs

Supports many front-ends Weakest Precondition
computation

Supports Temporal Logic

Supports many backends Maintains Modularity Supports Parallel
Verification

1
4

● Goal: Maintain modularity during verification

● Problem: Current verification tools duplicate verification tasks for
module instances.

● Solution: Introduce modularity into the specification language.

○ Hoare Logic can help with this!

Unified Deductive Hardware Verification

1
5

● Extend verif dialect to include hoare triples.

● %out = verif.contract (<inputs>) {<body>}
○ declares a Hoare Triple → inputs will be abstracted during verification.
○ Output is the result that can referenced in postconditions

● verif.requires %precondition : <type>
○ declares a precondition
○ Only valid inside of a verif.contract body

● verif.ensures %postcondition : <type>
○ declares a postcondition
○ Only valid inside of a verif.contract body

Unified Deductive Hardware Verification

1
6

Unified Deductive Hardware Verification
class A extends Module {

val in = IO(Input(UInt(32.W)))
val out = IO(Output(UInt(32.W)))
contract {

 requires in >= 0.U
 ensures out === in + 42.U

}
// ... Module body ...

}

hw.module @A (in %in: i32, out %out: i32) {
;; Module body defining res
%out = verif.contract %res {

%c0 = hw.constant 0: i32
%gt = comb.icmp bin ugte %in, %c0
verif.requires %gt : i1
%c42 = hw.constant 42 : i32
%in42 = comb.add bin %in, %c42 : i32
%post = comb.icmp bin eq %res, %in42
verif.ensures %post

}
hw.output %out

}

1
7

Unified Deductive Hardware Verification

hw.module @A (in %in: i32, out %out: i32) {
;; Module body defining res
%out = verif.contract %res {

…
verif.requires %gt : i1
…
verif.ensures %post

}
hw.output %out

}

What do we do with this?
→ Verification Condition Generation

1
8

Unified Deductive Hardware Verification

hw.module @A (in %in: i32, out %out: i32) {
;; Module body defining res
%out = verif.contract %res {

…
verif.requires %gt : i1
…
verif.ensures %post

}
hw.output %out

}

What do we do with this?
→ Verification Condition Generation
→ BMC Problem generation

1
9

Unified Deductive Hardware Verification

2
0

● Goal: Generate verif.formal tests for every module.

● Convert modules into formal tests by:
○ Replace inputs and outputs with symbolic variables
○ Assume all preconditions on the inputs
○ Assert all postconditions on the outputs

● Replace module instances with their contracts where:
○ All preconditions are asserted on the inputs given to the instance
○ All postconditions are assumed on the result of the instance

Unified Deductive Hardware Verification

2
1

Unified Deductive Hardware Verification

hw.module @A (in %in: i32, out %out: i32) {
;; Module body defining res
%out = verif.contract %res {

…
verif.requires %gt
…
verif.ensures %post

}
hw.output %out

}

verif.formal @A {...} {
;; Module body defining res

 %in = verif.symbolic_input : i32
 %out = verif.symbolic_input : i32

…
 verif.assume %gt

…
 verif.assert %post
}

2
2

Unified Deductive Hardware Verification
● Verification Compilation Flow (Weakest Precondition Computation):

class A extends Module {
//… IO …
contract {

 requires …
 ensures …
}}

class B extends Module
with Formal

{
val a1 = Instance(A)
val a2 = Instance(A)
assert(...)

}

frontend

hw.module @A(;...io...;) {
 %out_ = verif.contract %out : i32 {
 verif.requires …
 verif.ensures …
}}

verif.formal @B {attr} {
 %a1.in = verif.symbolic_input : i32
 %a2.in = verif.symbolic_input : i32
 %a1.out = hw.instance "a1"

@A(in: %a1.in) -> (out: i32)
 %a2.out = hw.instance "a2"

@A(in: %a2.in) -> (out: i32)
 verif.assert …
}

CIRCT core IR

verif.formal @A {attr} {
 %in = verif.symbolic_input : i32
 %out = verif.symbolic_input : i32
 verif.assume …
 verif.assert …
}

verif.formal @B {attr} {
 %a1.in = verif.symbolic_input : i32
 %a2.in = verif.symbolic_input : i32
 %a1.out = verif.symbolic_input : i32
 verif.assert prec_a1
 verif.assume post_a1
 %a2.out = verif.symbolic_input : i32
 ;...contract a2
}

CIRCT verification IR

2
3

Unified Deductive Hardware Verification

Unified Deductive Hardware Verification

Single Interface Verification Condition
Generation

Supports Sequential
Designs

Supports many front-ends Weakest Precondition
computation

Supports Temporal Logic

Supports many backends Maintains Modularity Supports Parallel
Verification

2
4

Unified Deductive Hardware Verification

● Goal: Allow for generation of
Bounded Model Checking (BMC)
problems from CIRCT.

● How? Lower to BTOR2 from the
CIRCT verification IR.

● idea: Convert design into
state-transition system + FOL

[3] Formal Verification of Hardware using MLIR, Amelia Dobis, Master Thesis, ETHZ 2023-2024

2
5

Unified Deductive Hardware Verification

[3] Formal Verification of Hardware using MLIR, Amelia Dobis, Master Thesis, ETHZ 2023-2024

2
6

Unified Deductive Hardware Verification

● Goal: Support Temporal Logic
in Specifications.

● How: Design a “reactive” IR
that encodes LTL through
small incremental
transformations.

● idea: encode LTL expression as
“triggering asynchronous
blocks”.

[4] Incremental Conversion of SVA Properties to Synthesizable Hardware; Amelia Dobis, Fabian Schuiki, Mae Milano; 2025

2
7

Unified Deductive Hardware Verification

[4] Incremental Conversion of SVA Properties to Synthesizable Hardware; Amelia Dobis, Fabian Schuiki, Mae Milano; 2025

a ##1 b[+] ##1 c

a b[+] c
can trigger after 1 cycle can trigger after 1 cycle

trigger: observe reg(valid(a))
has_been_triggered: trigger | has_been_triggered
has_observed_b: has_been_triggered & (has_observed_b | b)
valid: observe has_observed_b & has_been_triggered

trigger: 1
valid: observe a

trigger: observe
reg(valid(b+))
valid: observe c &
has_been_triggered

2
8

Unified Deductive Hardware Verification

● Enables Solver Parallelism
● Simplifies individual verification problems

○ No single verification task needs to solve for the entire system

verif.formal @A {attr} {…}
verif.formal @B {attr} {…}
verif.formal @C {attr} {…}
verif.formal @D {attr} {…}

A.btor2
C.btor2 btormc

If all succeed

counter-example

btormcbtormcbtormc
C.btor2
D.btor2

If one fails

2
9

Unified Deductive Hardware Verification

Unified Deductive Hardware Verification

Single Interface Verification Condition
Generation

Supports Sequential
Designs

Supports many front-ends Weakest Precondition
computation

Supports Temporal Logic

Supports many backends Maintains Modularity Supports Parallel
Verification

3
0

● Introduced the concept of Deductive Hardware Verification.
○ idea: use small bmc problems in a similar way as SMT Solver Queries

● Designed a unified system to support many hardware languages.

● Implemented System as part of the CIRCT Core.

● Tooling not perfect but a good start to make hardware verification as
efficient as program verification.

Conclusion

3
1

CIRCT: Final MLIR implementation of language constructs

https://github.com/llvm/circt

Formal Verification of Hardware using MLIR, ETHZ Master Thesis

https://doi.org/10.3929/ethz-b-000668906

Incremental Conversion of SVA Properties to Synthesizable Hardware,
LATTE’2025

https://capra.cs.cornell.edu/latte25/paper/14.pdf

Resources

https://github.com/llvm/circt
https://github.com/llvm/circt
https://doi.org/10.3929/ethz-b-000668906

