Improving Formal
Verification Support in CIRCT

Amelia Dobis - April 2024 to August 2024

Goal of my work

= Improve efficiency and capabilities of Formal Verification inside of CIRCT and Chisel.

1. Improve existing verification infrastructure.

2. Introduce a new dedicated end-to-end verification flow in Chisel and CIRCT.

Goal of my work

= Improve efficiency and capabilities of Formal Verification inside of CIRCT and Chisel.
1. Improve existing verification infrastructure.

a. Update LTL dialect.
b. Improve SVA property emission.

2. Introduce a new dedicated end-to-end verification flow in Chisel and CIRCT.

Goal of my work

= Improve efficiency and capabilities of Formal Verification inside of CIRCT and Chisel.

1. Improve existing verification infrastructure.
a. Update LTL dialect.
b. Improve SVA property emission.

2. Introduce a new dedicated end-to-end verification flow in Chisel and CIRCT.
a. Integrate and expand btor2 back-end.

Explore the ideas related to co-locating designs and tests for formal tests.

Modularize formal verification through the introduction of formal contracts.

Redesign LTL dialect to better support property assertion synthesis.

an T

Overview:

Inline Tests:

Two types: formal and simulation.
Both share the same structure and interface in both Chisel and FIRRTL and differ mainly at

the CIRCT level. The structure revolves around creating a test hamess module and then using.

the formal or simulate constructs to declare them as a test.

Verification Maintenance and

/ Debugging

@ 7
Better LTL:

Extend the current LTL dialect to support more
SVA properties through direct emission to SVA
(only supported by some commercial simulators);
and add doc in the LTL rationale describing how
every SVA construct can be encoded in CIRCT.

o _J

Better SVA emission: <
Make the polarity of things consistent within Chisel
even if it doesnt align with SV by creating
additional intrinsic and SV ops. These include
verif.clocked_assertLike, sv.assert_propertylike,
and various emission tweaks. This allowed us to
get rid of Iti.disable in favor of an enable signal that

is part of the assertions.
All Chisel asserts use enable JJ/
T)
Add enable to < Pro[;?;tryegast:blei
verif.assertiike i J
7 &
I's 4 Fold single clock™
verif.clocked_asser’ = properties into
L - | verif.clocked_assert|
| svassert t_property = Update VerifToSV 15{
L J flip polarity

A

Inline Simulation
Tests

End-to-End Formal Verification Flow

Modular Formal Verification

f Inline Formal \ /
Tests

A

Formal \

Contracts

Chisel test

FIRRTL Simulate

Chisel contract trait

FiRATL Formal &

construct

| Update LowerToHW

v

verif.simulate
sim.peek/poke

sim.instance

CoreToArc (or something)

o

) Finished and merged into main

Current Focus

C‘ Work in Progress (started but not yet completed)

\Peﬂwms contract replacement and grouping into vent.formal ‘ /

it FIRRTL Contract
l constructs
' Update LowerToHW | { Update LowerToHW

verif.contract '(z)

—3
vorma—)
veritsymbolic_input | verit.requires
verif.concerte_inp verif.ensures
Lty) \(_ worsurss)

| |

PrepareForFormal Pass:

BTOR2 Backend

VerifToBTOR Pass
’ v

BTOR Dialect:
Contains ops for btor specific things such

as fair, justice, bad, and converting
registers into state+next+init

EmitBtor2: @/

Emission pass that should be a straightforward
string dump after the conversion fo the bior

dialect -- it just needs to maintain line numbers.

/ Open-Source SVA Properties \
(Chisel SVA properties: (j

Interface for verifying temporal properties of a design --
currently similar to SVA properties

) v
Resemble an AST for SVA properties J

FIRRTL LTL Intrinsics:

v
[LTL dialect redesign: ‘:‘\,
Modei temporal properties as “sequence blocks" that group all
logic that takes place "at the same time" and passes extemal |
blocks that are used internally around as "metadata” to delay
them accordingly. The expected delays can then be tracked by
the type-system that can maintain guarantees about metadata
being passed comectly. These ops are intended to feel similar
iin construction to the Biichi automata that are usually used fo |

‘\ mode! renw:! properties. N /
LTLToCore Pass: @

Convert the LTL sequences into core dialect ops by
generating the comect number of registers to lower
delay each part following the information encapsulated
in by the “sequence blocks".

<L cnisel emitBtor2 function ¢~

=

. l\/
/

Improving Existing Verification
Infrastructure

Overview:

Inline Tests: \

Two types: formal and simulation.
Both share the same structure and interface in both Chisel and FIRRTL and differ mainly at
the CIRCT level. The structure revolves around creating a test hamess module and then usmg
the formal or simulate constructs to declare them as a test.

-1

Verification Maintenance and

/ Debugging
F <)
Better LTL:
Extend the current LTL dialect to support more
SVA properties through direct emission to SVA
(only supported by some commercial simulators);
and add doc in the LTL rationale describing how
every SVA construct can be encoded in CIRCT.

/ Better SVA emission: J
Make the polarity of things consistent within Chisel
even if it doesnt align with SV by creating
additional intrinsic and SV ops. These include
verif.clocked_assertLike, sv.assert_propertyiike,
and various emission tweaks. This allowed us to
get rid of Iti.disable in favor of an enable signal that
is part of the assertions.

All Chisel asserts use enable

Add enable to J ng:regiast:mej
verif.assertlike L yosey
' Fold single clockJ

| verl!.clacksdaasser/ properties into
C /| verif.clocked_assert

sv.assert J)ropeny Updale VerifToSV \6/

flip polarity

g for property

4
.

~

/

A —
Inline Simulation
Tests

End-to-End Formal Verification Flow

Modular Formal Verification

/ Inline Formal \ v/> Formal \
Tests

‘f Chisel test

-

[FIRRTL Simulate |,

construct J
5

Update LowerToHW

-

verifsimulate |

sim.peek/poke

sim.instance
—

CoreToArc (or something)

5 ‘L»

g— Arcilato rﬂS

—en

gNork in Progress (started but not yet completed)

) Finished and merged into main

Current Focus

Contracts
e =)

-\Chisel test J [[chisel contract trai \
5| FIRRTL Formal J (FIHRTL‘Oontract]
construct ‘ e ‘
4\}: —
Update LowerToHW i | Update LowerToHW
verit.formal J " vertconmact. <

verif.symbolic_input verif.requires

__ verit.concerte_inp | \|__ veritensures

I
| |

PrepareForFormal Pass:
Performs contract replacement and grouping into vent.formal

&

BTOR2 Backend

VerifToBTOR Pass

v
BTOR Dialect: |
Contains ops for btor specific things such|
as fair, justice, bad, and converting |
registers into state+next+init ‘
EmitBtor2:
Emission pass that should be a straightforward

string dump after the conversion fo the bior
dialect -- it just needs to maintain line numbers.

Open-Source SVA Properties

/

%

Chisel SVA properties:
Interface for verifying temporal properties of a design --
currently similar to SVA properties

v

FIRRTL LTL Intrinsics:
Resemble an AST for SVA properties

v
{ LTL dialect redesign:
Modei temporal properties as “sequence blocks" that group all
logic that takes place “at the same time" and passes extemal
blocks that are used internally around as "metadata” to delay
them accordingly. The expected delays can then be tracked by
the type-system that can maintain guarantees about metadata
being passed comectly. These ops are intended to feel similar
iin construction to the Biichi automata that are usually used to
\ ‘mode/ temporal properties. /A

v
LTLToCore Pass: 0
Convert the LTL sequences into core dialect ops by
(generating the correct number of registers to fower
delay each part following the information encapsulated
in by the “sequence blocks".

|

_‘J:l L % L

N

«—— Chisel emitBtor2 function

Core Dialects ‘

J

Verification Maintenance and Debugging

1. Updating LTL to improve expressiveness
2. Making SVA property emission more stable
3. Debugging

Updating LTL

e Write out an SVA summary which describes how each part of SVA can be mapped to CIRCT. This document was
then merged into the LTL rationale.

e Introduce 3 new ops to the LTL dialect.

e Porting the LTL intrinsics in Chisel from intrinsic modules to intrinsic expressions, making the generated firrtl for
property much smaller.

e Providing a simpler interface for property assertions.

e Providing new interfaces to access all of the Itl features that CIRCT supports.

https://docs.google.com/document/d/1BwCpPMTskwJw8SFK2RSxOMzg--oMMjQLrcnt0npz-tw/edit?usp=sharing
https://github.com/llvm/circt/pull/7131
https://github.com/llvm/circt/pull/7065/
https://github.com/chipsalliance/chisel/pull/4053
https://github.com/chipsalliance/chisel/pull/4037
https://github.com/chipsalliance/chisel/pull/4120

Improving SVA Property Emission

Flipped the polarity of all disable signals, such that everything in Chisel and CIRCT uses enables.
Removed the 1t1.disable op from the IR thus simplifying the emission of property assertions.
Added an enable signal to the verif.assert like ops, to replace the removed 1t1.disable op.
Deprecated disabling individual properties in Chisel, as this couldn’t be mapped to SV.

Introduced clocked assertions.

Fixed bugs related to properties being used in disable signals (which is disallowed in SV).

Explored various encodings for disable signals.

Explored using the LTL type system to simplify the property assertion verifier logic.

Introduced the sv.assert property

Updated ExportVerilog to support the new, simpler and more concise, emission of property assertions.

10

https://github.com/chipsalliance/chisel/pull/4236
https://github.com/llvm/circt/pull/7150
https://github.com/llvm/circt/pull/7150
https://github.com/chipsalliance/chisel/pull/4237
https://github.com/llvm/circt/pull/7022
https://github.com/llvm/circt/pull/7302
https://github.com/llvm/circt/pull/7104
https://github.com/llvm/circt/pull/7044
https://github.com/llvm/circt/pull/7302
https://github.com/llvm/circt/pull/7302

Verification Debugging

e ExpandWhens not supporting AssertProperty. This meant that property assertions declared under a when would
simply be ignored (fixed in PR#7021 and later improved in PR#7150).

e SVSim not firing assertions correctly when using Verilator (fixed in PR#4087).

e Firrtool lowering assertions incorrectly (fixed in PR#7157).

11

https://github.com/llvm/circt/pull/7021
https://github.com/llvm/circt/pull/7150
https://github.com/chipsalliance/chisel/pull/4087
https://github.com/llvm/circt/pull/7157

Overview:

Inline Tests:

Two types: formal and simulation.
Both share the same structure and interface in both Chisel and FIRRTL and differ mainly at

the CIRCT level. The structure revolves around creating a test hamess module and then using.

the formal or simulate constructs to declare them as a test.

Verification Maintenance and

/ Debugging

@ 7
Better LTL:

Extend the current LTL dialect to support more
SVA properties through direct emission to SVA
(only supported by some commercial simulators);
and add doc in the LTL rationale describing how
every SVA construct can be encoded in CIRCT.

o _J

Better SVA emission: <
Make the polarity of things consistent within Chisel
even if it doesnt align with SV by creating
additional intrinsic and SV ops. These include
verif.clocked_assertLike, sv.assert_propertylike,
and various emission tweaks. This allowed us to
get rid of Iti.disable in favor of an enable signal that

is part of the assertions.
All Chisel asserts use enable JJ/
T)
Add enable to < Pro[;?;tryegast:blei
verif.assertiike i J
7 &
I's 4 Fold single clock™
verif.clocked_asser’ = properties into
L - | verif.clocked_assert|
| svassert t_property = Update VerifToSV 15{
L J flip polarity

A

Inline Simulation
Tests

End-to-End Formal Verification Flow

Modular Formal Verification

f Inline Formal \ /
Tests

A

Formal \

Contracts

Chisel test

FIRRTL Simulate

Chisel contract trait

FiRATL Formal &

construct

| Update LowerToHW

v

verif.simulate
sim.peek/poke

sim.instance

CoreToArc (or something)

o

) Finished and merged into main

Current Focus

C‘ Work in Progress (started but not yet completed)

\Peﬂwms contract replacement and grouping into vent.formal ‘ /

it FIRRTL Contract
l constructs
' Update LowerToHW | { Update LowerToHW

verif.contract '(z)

—3
vorma—)
veritsymbolic_input | verit.requires
verif.concerte_inp verif.ensures
Lty) \(_ worsurss)

| |

PrepareForFormal Pass:

BTOR2 Backend

VerifToBTOR Pass
’ v

BTOR Dialect:
Contains ops for btor specific things such

as fair, justice, bad, and converting
registers into state+next+init

EmitBtor2: @/

Emission pass that should be a straightforward
string dump after the conversion fo the bior

dialect -- it just needs to maintain line numbers.

/ Open-Source SVA Properties \
(Chisel SVA properties: (j

Interface for verifying temporal properties of a design --
currently similar to SVA properties

) v
Resemble an AST for SVA properties J

FIRRTL LTL Intrinsics:

v
[LTL dialect redesign: ‘:‘\,
Modei temporal properties as “sequence blocks" that group all
logic that takes place "at the same time" and passes extemal |
blocks that are used internally around as "metadata” to delay
them accordingly. The expected delays can then be tracked by
the type-system that can maintain guarantees about metadata
being passed comectly. These ops are intended to feel similar
iin construction to the Biichi automata that are usually used fo |

‘\ mode! renw:! properties. N /
LTLToCore Pass: @

Convert the LTL sequences into core dialect ops by
generating the comect number of registers to lower
delay each part following the information encapsulated
in by the “sequence blocks".

<L cnisel emitBtor2 function ¢~

=

. l\/
/

Overview:

Inline Tests:
Two types: formal and simulation.
Both share the same structure and interface in both Chisel and FIRRTL and differ mainly ai
the CIRCT level. The structure revolves around creating a test hamess module and then usin
the formal or simulate constructs to declare them as a test.

Verification Maintenance and

/ Debugging \
(Better LTL: 4
Extend the current LTL dialect to support more
SVA properties through direct emission to SVA
(only supported by some commercial simulators);
and add doc in the LTL rationale describing how
every SVA construct can be encoded in CIRCT.

Y

/ Better SVA emission:

[Make the polarity of things consistent within Chisel \
even if it doesnt align with SV by creating
additional intrinsic and SV ops. These include
verif.clocked_assertLike, sv.assert_propertylike,
and various emission tweaks. This allowed us to
get rid of Iti.disable in favor of an enable signal that
is part of the assertions.

All Chisel asserts use enable

Deprecate J

Add enable to Property.disable
A .

verif.assertiike

Fold single clockJ'
properties into

)
verll.clockedﬁsser&y
L verif.clocked_assert,

sv.assert_property 'Upda(e VerifToSV (6/ |
L J flip polarity

| ExportVerilog for property assertions |

4
- 7

1 v/Inllne SImuInﬂon\
Tests

-

End-to-End Formal Verification Flow

Modular Formal Verification

K Inline Formal \ v/
Tests

Chisel test
| J

-

S— -
FIRRTL Simulate

=
» Chisel test

L J

B 2
FIRATL Formal </,

<
construct

v
Update LowerToHW

CoreToArc (or something)

1

T —

% Arcilator \g

=

Work in Progress (started but not yet comp|

J Finished and merged into main

Current Focus

construct
L)
Update LowerToHW |

vorma—)
verif.symbolic_input

Formal

Contracts

\

2)
Chisel contract trait |

L

v

constructs

A J

J

FIRRTL Contract |

| Update LowerToHW

v /
verif.contract J
verif.requires

& verif.ensures

| verif.concerte_inp |

PrepareForFormal Pass:
Performs contract replacement and grouping into vent.formal

BTOR2 Backe!

a

v

v

EmitBtor2:

nd

VerifToBTOR Pass

BTOR Dialect:

Contains ops for btor specific things such|
as fair, justice, bad, and converting

registers into state+next-init

Emission pass that should be a straightforward
string dump after the conversion fo the bior

\

-

dialect -- it just needs to maintain line numbers.

+— Chisel emitBtor2 function

/ Open-Source SVA Properties

(Chisel SVA properties:

Interface for verifying temporal properties of a design --
currently similar to SVA properties

v

FIRRTL LTL Intrinsics:
Resemble an AST for SVA properties

v

LTL dialect redesign:
Modei temporal properties as “sequence blocks" that group all
logic that takes place “at the same time" and passes extemal
blocks that are used internally around as "metadata” to delay
them accordingly. The expected delays can then be tracked by
the type-system that can maintain guarantees about metadata
being passed comectly. These ops are intended to feel similar
iin construction to the Biichi automata that are usually used to

\ ‘mode/ temporal properties. /

/

Dl

v
LTLToCore Pass: ‘;.
Convert the LTL sequences into core dialect ops by
generating the comect number of registers to lower
delay each part following the information encapsulated
in by the “sequence blocks".

|

‘ Core Dialects ‘

4

4

13

Re-imagining Formal Verification
in Chisel and CIRCT

Background: Formal Verification

What is Formal Verification?

- Idea: Instead of testing your design through simulation, prove its correctness statically using
formal methods.

- How?

- Annotate your design with a specification in the form of assertions and assumptions.

- Use design + specification to generate Verification Conditions (VC).

- Check the satisfiability of the VCs using SMT solvers — if unsatisfiable then your design matches the spec.
- Why?

- Provides stronger guarantees than simulation — checks are exhaustive.

- Canquickly find edge case bugs in the design implementation.

15

Background: Verification Conditions

Idea: Convert design into conjunction of constraints (signal definitions) and negated assertion conditions.

val a
val b
assert

IO (Input(32.W))
a+ 1.0
(b > a)

(and

(eq b
(not

(add a 1)) // define b

(gt b a))

// can assertion be violated?

16

Background: Verification Conditions

Handling State: Create “state-transition systems” from registers + memories, requires Bounded Model

Checking to be verified.

class MyCounter extends Module {

K}

val en = I0O(Input(Bool()))
val count = RegInit(0.U(32.W))

when(en && count === 22.U) { count :
when(en && count =/= 22.U) { count :

assert(count =/= 10.U)

~

0.U }
count + 1.U }

_4

/

en = 0 en = 1

count = 0 count = 0 count = 1

\

en = 0

17

Background: BTOR2 and btormc

BTOR2:

o

SMTLib-like format that allows for the explicit 1 sort bitvector 32
encoding of state-transition systems. 2 state 1 count
Supports bitvector and array theories. 3 one 1
No need to manually unroll states, e.g. 4 and 1 2 3

S next 1 2 4

; declare a 32-bit type
; declare a 32-bit state

; declare a 32-bit constant of value 1

; count := count & 1

BTORMC:
o Bounded Model Checker.
o Supports btor2 format, uses the boolector SMT solver.
o Optimized for solving in bitvector and array theories.

18

Motivation: Formal Verification

-

\.

when (count === 42.U) { count := 0

otherwise { count

class Counter extends Module {

val count = RegInit(0.U(32.W))

:= count + 1.U }

assert (count < 42.0)

.U

}

~

SAT/UNSAT

—

c.btor2

Counter.sv

c.smt2

Jasper
Gold

‘a

19

Motivation: Formal Verification

-

c

lass Counter extends Module {
val count = RegInit(0.U(32.W))

when (count === 42.U) { count

assert (count < 42.0)

~

J
o A e

:= 0.0 } — — c.btor2

otherwise { count := count + 1.U }

l
orms 2

SAT/UNSAT

20

Overview:

Inline Tests: \

Two types: formal and simulation.
Both share the same structure and interface in both Chisel and FIRRTL and differ mainly at
the CIRCT level. The structure revolves around creating a test hamess module and then using.
the formal or simulate constructs to declare them as a test. /

Contracts
Chisel test > Chisel test]
Verification Maintenance and Chisel contract trait
/ Debugging \ v G .
- 7 FIRRTL Simulate | .| FIRRTL Formal J e ——
Better LTL: i > consinic B) IS coniirct constructs
Extend the current LTL dialect to support more v
SVA properties through direct emission to SVA | Update LowerToHW | Update LowerToHW (
(only supported by some commercial simulators) S s (f‘ l Upciai EoweeTol W
and add doc in the LTL rationale describing how @ SrETRT— -
4 verif.simulate “verifformal Y- a /)
\eiew SVA construct can be encoded in CIRCL sim.peek/poke (T l x;:;:::qn&rag J

/ Better SVA emission: J
Make the polarity of things consistent within Chisel
even if it doesnt align with SV by creating
additional intrinsic and SV ops. These include
verif.clocked_assertLike, sv.assert_propertylike,
and various emission tweaks. This allowed us to
get rid of Iti.disable in favor of an enable signal that
is part of the assertions.

All Chisel asserts use enable |

[Deprecate J
Add enable to J pert
verif.assertiike EEaly e J
J
| Fold single clockJ

properties into

-
verif.clocked_assel
L /| verif.clocked_assert |

sv.assert J)ropeny Updale VerifToSV 16/

g for property

J lip polarity

|
\

A ——————
Inline Simulation
Tests

End-to-End Formal Verification Flow

M&ﬂﬂi iamal Verification
/ Inline Formal \ / Formal \
Tests

sim.instance
& J)

CoreToArc (or something)

J\'—\

/

(‘ Work in Progress (started but not yet completed)
) Finished and merged into main

Current Focus

verif. concerte _inp / verif.ensures J

¥
PrepareForFormal Pass:

Performs contract replacement and grouping into vent.formal

BTOR2 Backend \

VerifToBTOR Pass
v

BTOR Dialect:
(Contains ops for btor specific things such
as fair, justice, bad, and converting
registers into state+next+init

EmitBtor2:

string dump after the conversion fo the bior
dialect -- it just needs to maintain line numbers.

(Chisel SVA properties:
Interface for verifying temporal properties of a design --
currently similar to SVA properties

: v

FIRRTL LTL Intrinsics:
Resembie an AST for SVA properties

/’ Open-Source SVA Properties (I\
)
J
J

: a

“ LTL dialect redesign: \
Modei temporal properties as “sequence blocks" that group all
logic that takes place “at the same time" and passes extemal
blocks that are used internally around as "metadata” to delay
them accordingly. The expected delays can then be tracked by
the type-system that can maintain guarantees about metadata
being passed comectly. These ops are intended to feel similar
iin construction to the Biichi automata that are usually used to

\ ‘mode! temporal properties. y
& =/
LTLToCore Pass: |

Convert the LTL sequences into core dialect ops by
(generating the correct number of registers to fower
delay each part following the information encapsulated
in by the “sequence blocks".

Emission pass Wat should be a straighfiorvard ¢ 1| Ghigel emitBtor2 function 1
S —

Core Dialects ‘

\ L J

l
/

21

Inline Formal: Unified formal test interface

e |dea: Create a unified interface for all formal tests.
o Allows for simple user interface.
o Back-end can be defined through build parameters.
o Testis co-located with design

22

Inline Formal: Unified formal test interface

class Foo extends Module {
val in = IO (Input (UInt (32.W))
val out = IO (Output (UInt (32.W))

/* body of the module */

// Some formal test

test formal testFoo(500) {
val dut = Instantiate (Foo)
AssertProperty (/* some property */)

Inline Formal: Unified formal test interface

class Foo extends Module {
val in = IO (Input (UInt (32.W))
val out = IO (Output (UInt (32.W))

/* body of the module */

// Some formal test

test formal testFoo(500) {
val dut = Instantiate (Foo)
AssertProperty (/* some property */)

Formal tests can target either btor2 or circt-bmc.

Formal tests are ignored during SV generation for
synthesis.

Formal tests are included in SV generation for
testing.

Verif constructs: PR #7145
FIRRTL op: PR#7374

24

https://github.com/llvm/circt/pull/7145
https://github.com/llvm/circt/pull/7374

Overview:

Inline Tests: \

Two types: formal and simulation.
Both share the same structure and interface in both Chisel and FIRRTL and differ mainly at
the CIRCT level. The structure revolves around creating a test hamess module and then using.
the formal or simulate constructs to declare them as a test. /

Contracts
Chisel test > Chisel test]
Verification Maintenance and Chisel contract trait
/ Debugging \ v G .
- 7 FIRRTL Simulate | .| FIRRTL Formal J e ——
Better LTL: i > consinic B) IS coniirct constructs
Extend the current LTL dialect to support more v
SVA properties through direct emission to SVA | Update LowerToHW | Update LowerToHW (
(only supported by some commercial simulators) S s (f‘ l Upciai EoweeTol W
and add doc in the LTL rationale describing how @ SrETRT— -
4 verif.simulate “verifformal Y- a /)
\eiew SVA construct can be encoded in CIRCL sim.peek/poke (T l x;:;:::qn&rag J

/ Better SVA emission: J
Make the polarity of things consistent within Chisel
even if it doesnt align with SV by creating
additional intrinsic and SV ops. These include
verif.clocked_assertLike, sv.assert_propertylike,
and various emission tweaks. This allowed us to
get rid of Iti.disable in favor of an enable signal that
is part of the assertions.

All Chisel asserts use enable |

[Deprecate J
Add enable to J pert
verif.assertiike EEaly e J
J
| Fold single clockJ

properties into

-
verif.clocked_assel
L /| verif.clocked_assert |

sv.assert J)ropeny Updale VerifToSV 16/

g for property

J lip polarity

|
\

A ——————
Inline Simulation
Tests

End-to-End Formal Verification Flow

M&ﬂﬂi iamal Verification
/ Inline Formal \ / Formal \
Tests

sim.instance
& J)

CoreToArc (or something)

J\'—\

/

(‘ Work in Progress (started but not yet completed)
) Finished and merged into main

Current Focus

verif. concerte _inp / verif.ensures J

¥
PrepareForFormal Pass:

Performs contract replacement and grouping into vent.formal

BTOR2 Backend \

VerifToBTOR Pass
v

BTOR Dialect:
(Contains ops for btor specific things such
as fair, justice, bad, and converting
registers into state+next+init

EmitBtor2:

string dump after the conversion fo the bior
dialect -- it just needs to maintain line numbers.

(Chisel SVA properties:
Interface for verifying temporal properties of a design --
currently similar to SVA properties

: v

FIRRTL LTL Intrinsics:
Resembie an AST for SVA properties

/’ Open-Source SVA Properties (I\
)
J
J

: a

“ LTL dialect redesign: \
Modei temporal properties as “sequence blocks" that group all
logic that takes place “at the same time" and passes extemal
blocks that are used internally around as "metadata” to delay
them accordingly. The expected delays can then be tracked by
the type-system that can maintain guarantees about metadata
being passed comectly. These ops are intended to feel similar
iin construction to the Biichi automata that are usually used to

\ ‘mode! temporal properties. y
& =/
LTLToCore Pass: |

Convert the LTL sequences into core dialect ops by
(generating the correct number of registers to fower
delay each part following the information encapsulated
in by the “sequence blocks".

Emission pass Wat should be a straighfiorvard ¢ 1| Ghigel emitBtor2 function 1
S —

Core Dialects ‘

\ L J

l
/

25

Overview:

Inline Tests: \

Two types: formal and simulation.
Both share the same structure and interface in both Chisel and FIRRTL and differ mainly at
the CIRCT level. The structure revolves around creating a test hamess module and then usmg
the formal or simulate constructs to declare them as a test.

Verification Maintenance and

@ 7
Better LTL:

Extend the current LTL dialect to support more
SVA properties through direct emission to SVA
(only supported by some commercial simulators);
and add doc in the LTL rationale describing how
every SVA construct can be encoded in CIRCT.

/

/ Better SVA emission: J
Make the polarity of things consistent within Chisel
even if it doesnt align with SV by creating
additional intrinsic and SV ops. These include
verif.clocked_assertLike, sv.assert_propertyiike,
and various emission tweaks. This allowed us to
get rid of Iti.disable in favor of an enable signal that
is part of the assertions.

J

All Chisel asserts use enable

Add enable to J Pro%:lregias‘:blej
verif.assertlike L ¥)
' Fold single clockJ

| verl!.clacksdﬁasser/ properties into
C /| verif.clocked_assert

sv.assert J)ropeny Updale VerifToSV lG/

lip polarity

g for property

4
-

~

A ———— f
Inline ﬂmullﬂon
T

Chisel test

End-to-End Formal Verification Flow

Modular Formal Verification

/ Inline Formal \ v/w Formal \
Tests

Contracts

i [tiasicontragt tralt
Chisel test | Chisel contract 'ralt}
it
FIRRTL Formal rg 3

[FIRRTL Simulate |,
L construct

Update LowerTon

-

veritsimulate |
sim.peek/poke

sim.instance
—

CoreToArc (or something)

1

" constuct ‘ FIRRTL Contract
constructs
#‘ =
Update LowerToHW \ | Update LowerToHW
verit formal ‘J [verif.contract ‘J
verif.symbolic_input verif.requires

L verif.concerte_inp j/ \t verif.ensures J

I
| |

PrepareForFormal Pass:
Performs contract replacement and grouping into vent.formal

/

Q:‘ Work in Progress (started but not yet completed)
) Finished and merged into main

Current Focus

B

BTOR2 Backend

4 N

VerifToBTOR Pass
v

BTOR Dialect:

Contains ops for btor specific things such|

as fair, justice, bad, and converting
registers into state+next+init

v

EmitBtor2:

Emission pass that should be a straightforward
string dump after the conversion fo the btor

dialect -- it just needs to maintain line numbers.

/ Open-Source SVA Properties

(Chisel SVA properties: 4
Interface for verifying temporal properties of a design --

currently similar to SVA properties)

p v 7

FIRRTL LTL Intrinsics: Vo

Resemble an AST for SVA properties
) v

[LTL dialect redesign: ‘3,

Modei temporal properties as “sequence blocks" that group all
logic that takes place “at the same time" and passes extemal
blocks that are used internally around as "metadata” to delay
them accordingly. The expected delays can then be tracked by
the type-system that can maintain guarantees about metadata
being passed comectly. These ops are intended to feel similar
iin construction to the Biichi automata that are usually used to
\ mode! temporal properties.

/
v
LTLToCore Pass: 0
Convert the LTL sequences into core dialect ops by
(generating the correct number of registers to fower
delay each part following the information encapsulated
in by the “sequence blocks".

|

«—— Chisel emitBtor2 function

Core Dialects ‘

N /

J

N\

26

Handling Modularity in Designs under Verification

e Problem: Current solutions for generating VCs for module instances:
o Inline Module VC — Requires re-checking the same VCs multiple times — slow verification
o Manually define assumptions to abstract away certain parts
m Difficult to get right
m Very manual process
m Oftenincomplete abstraction

— We only want to verify a module exactly once.

(not once per instance)

27

Handling Modularity in Designs under Verification

e |dea: Allow for user to define “verification checkpoints” that can be used as abstractions to verify
module instances.
e Formal Contracts: Define a contract that the module is proven to support.
o Pre-conditions: Specifications over the module’s inputs
B “Whatdo |l expect correct inputs to look like?”

o Post-conditions: Guarantees for the module’s outputs
m “Given certain inputs, what do my outputs look like?”

28

Handling Modularity in Designs under Verification

e Module Correctness: Assuming our preconditions can we use our module’s definition to prove our

post-conditions.
o VC: {Pre-conditions} -> ({Body} AND NOT ({Post-conditions}))

e Instance Correctness: Knowing that our Module is correct, our pre-conditions holding implies that

our post-conditions hold.
o Assert ({Pre-conditions}) + Assume ({Post-conditions})

29

Inline Formal: Unified formal test interface

class Foo extends Module with Contract {
val in = IO(Input(UInt(32.W))
val out = IO (Output(UInt(32.W))

// define contract
contract {

require(in > 0.0)

require(in < 1000.0)

ensure(/* some post-condition *)

}

/* body of the module */

// Some formal test

test formal testFoo (500) {
val dut = Instantiate(Foo)
AssertProperty(/* some property *))

30

Inline Formal: Unified formal test interface

class Foo extends Module with Contract {
val in = IO(Input(UInt(32.W))
val out = IO (Output(UInt(32.W))

// define contract
contract {
require(in > 0.0)
require(in < 1000.0)
ensure(/* some post-condition *)

/* body of the module */

// Some formal test

test formal testFoo (500) {
val dut = Instantiate(Foo)
AssertProperty(/* some property *))

=

// module test

test formal Foo (500) {
val dut = Instantiate(Foo)
Assume(dut.in > 0.0U)
Assume(dut.in < 1000.0)
Assert(/*Body*/ && /*Post-conditions*))

// module instance test

test formal testFoo (500) {
val dut = Instantiate(Foo)
Assert(dut.in > 0.0)
Assert(dut.in < 1000.0)
Assume (/*Post-conditions*))
AssertProperty(/* some property *))

31

Overview:

Inline Tests:
Two types: formal and simulation.
Both share the same structure and interface in both Chisel and FIRRTL and differ mainly at

the CIRCT level. The structure revolves around creating a test hamess module and then using /

the formal or simulate constructs to declare them as a test.

Verification Maintenance and
Debugging

-

(Better LTL: J‘

Extend the current LTL dialect to support more
SVA properties through direct emission to SVA
(only supported by some commercial simulators);
and add doc in the LTL rationale describing how
every SVA construct can be encoded in CIRCT. |

Better SVA emission: J
Make the polarity of things consistent within Chisel \
even if it doesnt align with SV by creating
additional intrinsic and SV ops. These include
verif.clocked_assertLike, sv.assert_propertyiike,
and various emission tweaks. This allowed us to
get rid of Iti.disable in favor of an enable signal that
is part of the assertions.

All Chisel asserts use enable

Add enable to J Pro?;:lregiast:bleJ
verif.assertiike L V- J
é/ Fold single clockJ'

verll.clacksdaasse properties into

/| verif.clocked_assert |
sv.assert J)ropenyJ Update VerifToSV \6/
L flip polarity

| ExportVerilog for property lsserllony

e /

E‘ Work in Progress (started but not yet

Inline Simulation
Tests

1

End-to-End Formal Verification Flow

Modular Formal Verification

/ Inline Formal \ r/> Formal \
Tests

| Chisel test [

S , J

FIRRTL Simulate ||
construct |

> |l v

Update LowerToHW

-

verifsimulate |

sim.peek/poke

sim.instance
—

CoreToArc (or something)

W ‘L»—

g— Arcilator \S

e~

Contracts
[:
> Chisel test) cmsel contract trait \
.| FIRRTL Formal . —_—
construct FIRRTL Contract
Iff constructs
i —a—
Update LowerToHW | ‘ Update LowerToHW
verit.formal J " vertconmact. <
verif.symbolic_input verif.requires

verif.concerte_inp verif.ensures
- I = \t

| |

PrepareForFormal Pass:

Performs contract replacement and grouping into vent.formal l/

BTOR2 Backend

\

&

VerifToBTOR Pass
v

BTOR Dialect:
Contains ops for btor specific things sucm
as fair, justice, bad, and converting
registers into state+next-init

v ‘l)
EmitBtor2: ‘J

Emission pass that should be a straightforward
string dump after the conversion fo the bior
dialect -- it just needs to maintain line numbers.

<«—+— Chfitel emitBtor2 function

/ Open-Source SVA Properties
(Chisel SVA properties:
Interface for verifying temporal properties of a design --
currently similar to SVA properties

v

FIRRTL LTL Intrinsics:
Resemble an AST for SVA properties

v

{ LTL dialect redesign:
Modei temporal properties as “sequence blocks" that group all
logic that takes place “at the same time" and passes extemal
blocks that are used internally around as "metadata” to delay
them accordingly. The expected delays can then be tracked by
the type-system that can maintain guarantees about metadata
being passed comectly. These ops are intended to feel similar
iin construction to the Biichi automata that are usually used to
mode! temporal properties.

v
LTLToCore Pass: 0
Convert the LTL sequences into core dialect ops by
(generating the correct number of registers to fower
delay each part following the information encapsulated
in by the “sequence blocks".

|

olal

\ /)

Core Dialects ‘

J

N

) Finished and merged into main

Current Focus

32

End-to-End Verification Flow

class Foo extends Module with Contract {
val in = IO(Input(UInt(32.W))
val out = IO (Output(UInt(32.W))

// define contract
contract {
require(in > 0.U)
require (in < 1000.U)
ensure (/*

st-condition */)

me

// me formal test

test formal testFoo(500) {
val dut = Instantiate (Foo)
AssertProperty(/* some pro

class Bar extends Module with Contract {
val in = IO (Input(UInt(32.W))
val sign = IO (Input (Bool())
val out = IO (Output(UInt(32.W))

contract {

require(sign |[-> in > 0.0U)
require(!sign |-> in < 0.U)
// Ensures rt erti

ensure ((sign |=> out > 0.U) &&
(!'sign |=> out < 0.0))

val fool = Instantiate (Foo)
val foo2 = Instantiate (Foo)

bar that us multiple

test formal testBar (500) {
val fool = Instantiate (Bar)
AssertProperty (/*c

object Bar extends App {
ChiselStage.emitBtor2 (new Bar)
}

33

End-to-End Verification Flow

class Foo extends Module with Contract {
val in = IO(Input(UInt(32.W))
val out = IO (Output(UInt(32.W))

contract {
require(in > 0.U)
require (in < 1000.U)
ensure (/* some st-condition */)

// e f mal test

test formal testFoo(500) {
val dut = Instantiate (Foo)
AssertProperty (/*

class Bar extends Module with Contract {
val in = IO (Input(UInt(32.W))
val sign = IO (Input (Bool())
val out = IO (Output(UInt(32.W))

contract {
require(sign |[-> in > 0.0U)
require(!sign |-> in < 0.U)
// Ensur K t s E erti
ensure ((sign |) &&
(!'sign |=> out < 0.0))

val fool = Instantiate (Foo)
val foo2 = Instantiate (Foo)

that us multiple

test formal testBar (500) {
val fool = Instantiate (Bar)
AssertProperty (/*c

object Bar extends App {
ChiselStage.emitBtor2 (new Bar)
}

sbt run

circuit Bar:
public module Foo:
input in : UInt<32>
output out : UInt<32>
contract:
node precO =
require prec0
node precl = 1lt(in, 1000
require precl
node post = ;;

gt(in, 0)

ensure post

;7 Some Formal
public module Foo:
input s_in : UInt<32>
inst dut of Foo
connect dut.in, s_in
intrinsic(circt_verif_ assert(...))

formal testFoo of Foo, bound = 500

public module Bar:
input in : UInt<32>
input sign : Bool
output out : UInt<32>
contract:

node prec0

require prec0

node precl =
require precl
node post = ;;s
ensure post

inst fool of Foo
inst foo2 of Foo

;; body of bar that uses multiple Foos ;;

public module Bar:
input s_in : UInt<32>
input s_en : Bool
inst dut of Bar
connect dut.in, s_in
connect dut.en, s_en
intrinsic(circt_verif assert(...))

formal testBar of Bar, bound = 500

intrinsic(circt_1tl implication(...))

intrinsic(circt_1tl_implication(...))

34

End-to-End Verification Flow

class Foo extends Module with Contract {
val in = IO(Input(UInt(32.W))
val out = IO (Output(UInt(32.W))

// define contract

contract {

require(in > 0.U)

require (in < 1000.U)

ensure (/* some post-condition */)

/* body of the module */

// Some formal test

test formal testFoo (500) {

val dut = Instantiate (Foo)
AssertProperty(/* some property */)

class Bar extends Module with Contract {
val in = IO (Input(UInt(32.W))
val sign = IO (Input (Bool())
val out = IO (Output(UInt(32.W))

contract {
require(sign [-> in > 0.0U)
require(!sign [-> in < 0.0)
// Ensures support SVA properties
ensure ((sign |=> out > 0.U) &&
(!sign |=> out < 0.U))

val fool = Instantiate (Foo)
val foo2 = Instantiate (Foo)

/* body of bar that uses multiple Foos */

test formal testBar (500) {
val fool = Instantiate (Bar)
AssertProperty (/*some property*/)

object Bar extends App {
ChiselStage.emitBtor2 (new Bar)

}

sbt run

circuit Bar:
public module Foo:
input in : UInt<32>
output out : UInt<32>

contract:
node precO = gt(in, 0)
require prec0
node precl = 1lt(in, 1000
require precl
node post = ;;some post-condition;;
ensure post

public module Bar:
input s_in : UInt<32>
input s_en : Bool
inst dut of Bar
connect dut.in, s_in
connect dut.en, s_en
intrinsic(circt_verif assert(...))

formal testBar of Bar, bound = 500

;; Body of the module

;; Some Formal Test
public module Foo:
input s_in : UInt<32>
inst dut of Foo
connect dut.in, s_in
intrinsic(circt_verif_ assert(...))

formal testFoo of Foo, bound = 500

public module Bar:
input in : UInt<32>
input sign : Bool
output out : UInt<32>

Contract:
require prec0
require precl

ensure post

node prec0O = intrinsic(circt_ltl_implication(...))
node precl = intrinsic(circt_ltl_implication(...))

node post = ;;some post-condition;;

inst fool of Foo
inst foo2 of Foo

;; body of bar that uses multiple Foos ;;

35

End-to-End Verification Flow

lowerToHW
FIRRTL

module {
hw.module @Foo (in %in i32, out 132) {

%foo.0 = verif.contract (%out) 132 -> (i32) {

~“bb0 (%$f00.0 i32):
%c0_1i32 = hw.constant 0 i32
$precO = comb.icmp bin ugt %in, %cO0_i32 i32
verif.require %precO : il
%c1000_1i32 = hw.constant 1000 132
$precl = comb.icmp bin ult %in, c1000_ i32 i32

verif.require %precl : il

$post =
verif.ensure %post : il
verif.yield %foo.0 i32
}
%out = i32
hw.output %foo0.0
}
verif.formal GtestFoo(k = 500) {

%s_1in = verif.symbolic_input 132

%foo.0 = hw.instance "foo" (@Foo(
in: %s_in i32

) => ("" i32)

%spec =

verif.assert %spec : il

hw.module @Bar (in %in i32, in %$sign il, out

%bar.0 = verif.contract(%out) {

“bb0 ($bar.0 i32):
%c0_1i32 = hw.constant 0 132
%ingt0 = comb.icmp bin ugt %in, %c0_i32
%precO = ltl.implication %sign, %ingtO
verif.require %precO !1tl.property
%inlt0 = comb.icmp bin ult %in, %c0_1i32

$true = hw.constant 1 : il
%ns = comb.xor %sign, %$true : il

%precl = 1ltl.implication %ns, %inlt0
verif.require S%precl !1tl.property

verif.ensure ..

verif.yield %bar.0 i32
}
%fool.0 = hw.instance "fool" @Foo(...) ->
%f002.0 = hw.instance "foo2" @Foo(...) ->
Sout =
hw.output %bar.0
}
verif.formal Q@testBar(k = 500) {
%s_in = verif.symbolic_input i32

%s_sign = verif.symbolic_input : il

%bar.0 = hw.instance "dut" @Bar(

in: %s_in i32, sign: %s_sign: i32
) => (""" i32)
%spec =

verif.assert %spec : il

(on.
(enn

i32) |

i32
1tl.property

i32

1tl.property

CORE

36

End-to-End Verification Flow

module {
hw.module @Foo (in %in : i32, out : i32) { hw.module @Bar (in %in : i32, in %sign : il, out : 132) {
%foo.0 = verif.contract (%out) i32 -> (132) | %bar.0 = verif.contract(%out) {
“bb0 ($f00.0 132): ~bb0 ($bar.0 : i32):

%c0_i32 = hw.constant 0 : 132 %c0_132 = hw.constant 0 : 132

%precO = comb.icmp bin ugt %in, %cO_i32 : i32 %ingt0 = comb.icmp bin ugt %in, %c0_1i32 : i32

il %precO = ltl.implication %sign, %ingtO : 1tl.property
verif.require %precO : !ltl.property

%inlt0 = comb.icmp bin ult %in, %c0_i32 : i32

verif.require %$prec0O
%c1000_i32 = hw.constant 1000 : i32
$precl = comb.icmp bin ult %in, c1000 i32 : i32

verif.require %precl il %true = hw.constant 1 : il
$post = %ns = comb.xor %sign, S$true : il
verif.ensure %post : il %precl = ltl.implication %ns, %inlt0 : 01tl.property

lowerToHW

verif.yield %foo.0 : 132 verif.require %precl : !ltl.property

1 verif.ensure ..
—FIRRTL Sout = ... : 132 verif.yield %bar.0 : i32 %
}

hw.output %foo0.0

} %$fo0l.0 = hw.instance "fool" Q@Foo(...) -> (...)
%f002.0 = hw.instance "foo2" @Foo(...) -> (...)
verif.formal @testFoo(k = 500) { Sout =

%s_1in = verif.symbolic input : 132 hw.output %bar.0

$foo.0 = hw.instance "foo" @Foo(}

in: %s_in : 132
) => (""" i32) verif.formal GtestBar(k = 500) {
%spec = %s_in = verif.symbolic_input : 132
verif.assert %spec : il %s_sign = verif.symbolic_input : il
%bar.0 = hw.instance "dut" @Bar(

in: %s_in : 132, sign: %s_sign: i32
) => ("" : 132)
%spec =
verif.assert %spec : il

Core

PrepareForFormal

End-to-End Verification Flow

Formal

verif.formal @Foo(k = 500) {
%$s_in = verif.symbolic_input : 132
%$f00.0 = verif.symbolic_input : i32
%c0_132 = hw.constant 0 : 132
$precO = comb.icmp bin ugt %in, %c0_i32 : i32
verif.assume %precO : il
%$c1000_i32 = hw.constant 1000 : i32
$precl = comb.icmp bin ult %in, cl1000_i32 : i32

verif.assume %precl : il
%post =
verif.assert %post : il

}
verif.formal Q@testFoo(k = 500) {
%s_in = verif.symbolic_input : 132
$foo.0 = verif.symbolic_input : i32
%c0_132 = hw.constant 0 : 132
$precO = comb.icmp bin ugt %in, %c0_1i32 : i32
verif.assert %precO : il
%$cl1000_1i32 = hw.constant 1000 : i32
$precl = comb.icmp bin ult %in, c1000_i32 : i32

verif.assert %precl : il
%post =
verif.assume %post : il
%spec =
verif.assert %spec : il

verif.formal @Bar(k = 500) {

%s_in = verif.symbolic_input : 132
%s_sign = verif.symbolic_input : il
%$bar.0 = verif.symbolic_input : i32

%c0_132 = hw.constant 0 : 132

%ingt0 = comb.icmp bin ugt %s_in, %c0_i32 : i32

$precO = 1ltl.implication %s_sign, %ingt0O : !ltl.property
verif.assume %prec(O : !ltl.property

%inlt0 = comb.icmp bin ult %s_in, %c0_i32 : i32

%true = hw.constant 1 : il

%ns = comb.xor %s_sign, S%true : il

$precl = ltl.implication %ns, %inlt0O : !1ltl.property
verif.assume %precl : !ltl.property

verif.assert ..

%$fool.0 = verif.symbolic_input : i32

%c0_132 = hw.constant 0 : 132

$precO = comb.icmp bin ugt %..., %c0_1i32 : i32
verif.assert %precO : il

%c1000_i32 = hw.constant 1000 : i32

verif.formal @testBar (k

$precl = comb.icmp bin ult %..., cl000_i32 : %s _in verif.symbolic_input i32
verif.assert %precl : il %$s_sign verif.symbolic_input il
$post = ... $bar.0 verif.symbolic_input i32
verif.assume %post : il %c0 132
// 2 instance %$ingt0 = comb.icmp bin ugt %s_in, %c0_i32
%f002.0 = verif.symbolic_input : i32 %precO = 1ltl.implication %s sign, %ingt0
%prec0_0 = comb.icmp bin ugt %..., %c0_132 verif.assert %precO 11tl.property
verif.assert %prec0_0 : il %inlt0 = comb.icmp bin ult %s in, %c0 i32
sprecl 0 = comb.icmp bin ult %..., cl1000 i3: Strue
verif.assert %precl 0 : il %ns = comb.xor %s sign, il
$post_0 = $precl 1tl.implication %ns, %inlt0
verif.assume %post 0 : il verif.assert %precl !1tl.property
Sout = ... verif.assume

$spec

verif.assert %spec

!'1tl.property

Core

PrepareForFormal

End-to-End Verification Flow

Formal

mod

> a pa

500) {

verif.formal @Foo (k

%$s_in = verif.symbolic_input i32
%$f00.0 = verif.symbolic_input i32
%c0_132 = hw.constant 0 i32
$precO = comb.icmp bin ugt %in, %c0_i32 i32
verif.assume %precO : il
%$c1000_i32 = hw.constant 1000 i32
$precl = comb.icmp bin ult %in, cl1000_i32 i32
verif.assume %precl : il
%post =
verif.assert %post : il
i
verif.formal Q@testFoo(k = 500) {
%$s_in = verif.symbolic_input i32
$foo.0 = verif.symbolic_input i32
%c0_132 = hw.constant 0 i32
$precO = comb.icmp bin ugt %in, %c0_i32 i32
verif.assert %precO : il
%$cl1000_i32 = hw.constant 1000 i32
$precl = comb.icmp bin ult %in, c1000_i32 i32
verif.assert %precl : il
%post =
verif.assume %post : il
%spec =
verif.assert %spec : il

rerif.formal (Bar(k = 500) {
%s_in = verif.symbolic_ input i32
%s_sign = verif.symbolic_input : il
%$bar.0 = verif.symbolic_input i32
%c0_132 = hw.constant 0 i32
%ingt0 = comb.icmp bin ugt %s_in, %c0_i32 i32
$precO = 1ltl.implication %s_sign, %ingt0 !1tl.property
verif.assume $precO !1tl.property
%inlt0 = comb.icmp bin ult %s_in, %c0_i32 i32
%true = hw.constant 1 : il
%ns = comb.xor %s_sign, S%true : il
$precl = ltl.implication %ns, %$inlt0 !1tl.property

verif.assume Sprecl !1tl.property

verif.assert ..

verif.symbolic_input

%fo0l.0 = i32
%c0_132 = hw.constant 0 i32
$precO = comb.icmp bin ugt %..., %c0_i32 i32
verif.assert %precO : il
%c1000_i32 = hw.constant 1000 i32 verif.formal @testBar (k = 500) {
$precl = comb.icmp bin ult %..., cl000_i32 %s_in = verif.symbolic_ input i32
verif.assert Sprecl : il %s_sign = verif.symbolic_input : il
spost = %bar.0 = verif.symbolic_ input : i32
verif.assume tpost : il %c0_i32 = hw.constant 0 : i32
// foo 2 e %ingt0 = comb.icmp bin ugt %s_in, %c0_i32 i32
%$£002.0 = verif.symbolic_input i32 %precO = ltl.implication %s_sign, %ingt0 !1tl.property
%prec0_0 = comb.icmp bin ugt %..., %c0_132 verif.assert %precO 11tl.property
verif.assert %prec0_0 : il %inlt0 = comb.icmp bin ult %s in, %c0 i32 : i32
$precl 0 = comb.icmp bin ult %..., c1000_1i3:¢ %true = hw.constant 1 : il
verif.assert %$precl 0 : il %ns = comb.xor %s_sign, %true : il
spost_0 = Sprecl = 1ltl.implication 3%ns, %inlt0 11tl.property
verif.assume %post 0 : il verif.assert %precl !1tl.property
Sout = verif.assume

$spec =

verif.assert %spec : il

}

39

PrepareForFormal

e Perform Contract replacement.
o Module: assume preconditions + assert postconditions & body
o Instance: assert preconditions + assume postconditions

e Create Formal Tests for Modules.
e Yield aformatthat can be used in formal back-ends.

40

Formal

End-to-End Verification Flow

module {
verif.formal @Foo(k = 500) {

}
verif.formal GtestFoo(k = 500) {

}
verif.formal @Bar(k = 500) {

}
verif.formal GtestBar(k = 500) {

}

ExportBtor2

—

foo.btor2
—

testFoo.btor2 p}\
bar.btor2 }/’

testBar.btor2

If all unsat

If

'&g
\ '{IF' counter-example

41

Overview:

Inline Tests:
Two types: formal and simulation.
Both share the same structure and interface in both Chisel and FIRRTL and differ mainly at

the CIRCT level. The structure revolves around creating a test hamess module and then using /

the formal or simulate constructs to declare them as a test.

Verification Maintenance and
Debugging

-

(Better LTL: J‘

Extend the current LTL dialect to support more
SVA properties through direct emission to SVA
(only supported by some commercial simulators);
and add doc in the LTL rationale describing how
every SVA construct can be encoded in CIRCT. |

Better SVA emission: J
Make the polarity of things consistent within Chisel \
even if it doesnt align with SV by creating
additional intrinsic and SV ops. These include
verif.clocked_assertLike, sv.assert_propertyiike,
and various emission tweaks. This allowed us to
get rid of Iti.disable in favor of an enable signal that
is part of the assertions.

All Chisel asserts use enable

Add enable to J Pro?;:lregiast:bleJ
verif.assertiike L V- J
é/ Fold single clockJ'

verll.clacksdaasse properties into

/| verif.clocked_assert |
sv.assert J)ropenyJ Update VerifToSV \6/
L flip polarity

| ExportVerilog for property lsserllony

e /

E‘ Work in Progress (started but not yet

Inline Simulation
Tests

1

End-to-End Formal Verification Flow

Modular Formal Verification

/ Inline Formal \ r/> Formal \
Tests

| Chisel test [

S , J

FIRRTL Simulate ||
construct |

> |l v

Update LowerToHW

-

verifsimulate |

sim.peek/poke

sim.instance
—

CoreToArc (or something)

W ‘L»—

g— Arcilator \S

e~

Contracts
[:
> Chisel test) cmsel contract trait \
.| FIRRTL Formal . —_—
construct FIRRTL Contract
Iff constructs
i —a—
Update LowerToHW | ‘ Update LowerToHW
verit.formal J " vertconmact. <
verif.symbolic_input verif.requires

verif.concerte_inp verif.ensures
- I = \t

| |

PrepareForFormal Pass:

Performs contract replacement and grouping into vent.formal l/

BTOR2 Backend

\

&

VerifToBTOR Pass
v

BTOR Dialect:
Contains ops for btor specific things sucm
as fair, justice, bad, and converting
registers into state+next-init

v ‘l)
EmitBtor2: ‘J

Emission pass that should be a straightforward
string dump after the conversion fo the bior
dialect -- it just needs to maintain line numbers.

<«—+— Chfitel emitBtor2 function

/ Open-Source SVA Properties
(Chisel SVA properties:
Interface for verifying temporal properties of a design --
currently similar to SVA properties

v

FIRRTL LTL Intrinsics:
Resemble an AST for SVA properties

v

{ LTL dialect redesign:
Modei temporal properties as “sequence blocks" that group all
logic that takes place “at the same time" and passes extemal
blocks that are used internally around as "metadata” to delay
them accordingly. The expected delays can then be tracked by
the type-system that can maintain guarantees about metadata
being passed comectly. These ops are intended to feel similar
iin construction to the Biichi automata that are usually used to
mode! temporal properties.

v
LTLToCore Pass: 0
Convert the LTL sequences into core dialect ops by
(generating the correct number of registers to fower
delay each part following the information encapsulated
in by the “sequence blocks".

|

olal

\ /)

Core Dialects ‘

J

N

) Finished and merged into main

Current Focus

42

What
has
been

Verification Maintenance and
Debugging

@ 7

&

/ Better SVA emission: J
Make l(le po!ariry of things co{lsislenf within Chisel

Inline Tests: \

Two types: formal and simulation.
Both share the same structure and interface in both Chisel and FIRRTL and differ mainly at
the CIRCT level. The structure revolves around creating a test hamess module and then using.
the formal or simulate constructs to declare them as a test. /

Better LTL:

Extend the current LTL dialect to support more
SVA properties through direct emission to SVA
(only supported by some commercial simulators);
and add doc in the LTL rationale describing how
every SVA construct can be encoded in CIRCT.

even if it doesnt align with SV by creating
additional intrinsic and SV ops. These include
verif.clocked_assertLike, sv.assert_propertyiike,
and various emission tweaks. This allowed us fo
get rid of Iti.disable in favor of an enable signal that

\ Chisel test |
N —
v

/

—

A ————— f
Inline Simulation
Tests

Inline Formal \
Tests

p——

> Chiseltest
.| FIRRTL Formal J

FIRRTL Simulate |
N @nstruct J

Update LowerToHW

-

veritsimulate |
sim.peek/poke

sim.instance)

CoreToArc (or something)

construct J
Update LowerToHW |

(" veritformal ‘J
verif.symbolic_input

| verif.concerte_inp
% I ’/

@ S (Chisel SVA properties:

Contracts Interface for verifying temporal properties of a design --

currently similar to SVA properties)
Chisel contract trait J *
2 (FIRRTL LTL Intrinsics: 4
‘f FIRRTL Contract | L Resemble an AST for SVA properties

constructs v 0
‘ Update LowerToHW LTL dialect redesign: \

verif.contract ‘J
verif.requires

\\\ verif.ensures /

|

PrepareForFormal Pass:

Performs contract replacement and grouping into vent.formal

End-to-End Formal Verification Flow
Modular Formal Verification / Open-Source SVA Properties \

Modei temporal properties as “sequence blocks" that group all
logic that takes place “at the same time" and passes extemal
blocks that are used internally around as "metadata” to delay
them accordingly. The expected delays can then be tracked by
the type-system that can maintain guarantees about metadata
being passed comectly. These ops are intended to feel similar
iin construction to the Biichi automata that are usually used to
‘mode/ temporal properties. /
: o

LTLToCore Pass:

Convert the LTL sequences into core dialect ops by
generating the comect number of registers to lower

is part of the assertions. C_/ J\’ﬂ
J Arcilator S

All Chisel asserts use enable | &—’_/"

done?:

JJ / BTOR2 Backend \ o "f::m@imzm"f"mum
Add enable to J Deprcats (i \
; 4 Property.disable | VerifToBTOR Pass
verif.assertiike L)
\ J! . : |
p kf | Fold single clock™ " e
verif.clocked_asser’ = properties into BTOR Dialect: 1 Gore Dialects ‘
C 7 verif.clocked_assert | Contains ops for btor specific things such| L J
pe W 6/ as fair, justice, bad, and converting \ 3
sv.assert_property = Update VerifToSV 6/ registers into state+next+init
L J flip polarity /,
P g for property [EmitBtor2: [/ - J
Emission pass that should be a straightforward ~
\ / Lol il wgpiloryard ¢—— Chisel emitBtor2 function

& / dialect -- it just needs to maintain line numbers/

Q:' Work in Progress (started but not yet completed)

) Finished and merged into main

Current Focus

Future
Work:

Inline Tests:

Two types: formal and simulation.

Both share the same structure and interface in both Chisel and FIRRTL and differ mainly at
the CIRCT level. The structure revolves around creating a test hamess module and then using.

the formal or simulate constructs to declare them as a test.

Verification Maintenance and
Debugging

@ 7
Better LTL:

Extend the current LTL dialect to support more
SVA properties through direct emission to SVA
(only supported by some commercial simulators);
and add doc in the LTL rationale describing how
every SVA construct can be encoded in CIRCT.

Better SVA emission: <
Make the polarity of things consistent within Chisel
even if it doesnt align with SV by creating
additional intrinsic and SV ops. These include
verif.clocked_assertLike, sv.assert_propertylike,
and various emission tweaks. This allowed us to
get rid of iti.disable in favor of an enable signal that
is part of the assertions.
‘JJ‘/

All Chisel asserts use enable

P ——
vl Deprecate (f
Add enable to J
verif.assertiike J EEaly e J
f
Fold single clock™"

- {
verif.clocked_asser’ = properties into
L -/ | verif.clocked_assert

: s
Update VerifToSV t‘&f

| svassert_property
L) flip polarity

A e
Inline Simulation
Tests

| End-to-End Formal Verification Flow

/ Modular Formal Verification

/ Inline Formal \ / Formal
Tests

Contracts

verif.simulate
sim.peek/poke
sim.instance

"CoreToArc (or something) |

=

C’ Work in Progress (started but not yet completed)

) Finished and merged into main

Current Focus

verif.symbolic_input verif.requires
verif.concerte_inp J/ verif.ensures
|

v W = v ;
[verif.formal J‘ [verif.contract ‘J’
p

B

Chisel test Chisel contract trait
FIRRTL Simulate FiRATL Formal & SR e
> Consitct il
| Update LowerToHW Update LowerToHW | l Update LowerToHW
B 2 : 4

J

| |

PrepareForFormal Pass:

-
!Peﬂwms contract replacement and grouping into vent.formal

(=

| VerifToBTOR Pass
v

BTOR Dialect:
Contains ops for btor specific things such,
as fair, justice, bad, and converting
registers into state+next+init

b 4

v
EmitBtor2:
Emission pass that should be a straightforward

dialect -- it just needs to maintain line numbers.

S
string dump after the e b /4—— Chisel emitBtor2 function

Open-Source SVA Properties

Chisel SVA properties: J
Interface for verifying temporal properties of a design --
currently similar to SVA properties
; 7
FIRRTL LTL Intrinsics: <
Resemble an AST for SVA properties J

v
(LTL dialect redesign: @,
Modei temporal properties as “sequence blocks" that group all
logic that takes place "at the same time" and passes extemal |
blocks that are used internally around as "metadata” to delay
them accordingly. The expected delays can then be tracked by
the type-system that can maintain guarantees about metadata |
being passed correctly. These ops are intended fo feel similar |
in construction to the Biichi automata that are usually used fo |

‘\ mode! renw:! properties. N /
LTLToCore Pass: @

Convert the LTL sequences into core dialect ops by
generating the comect number of registers to lower
delay each part following the information encapsulated
in by the “sequence blocks".

-

=

~

44

Conclusion

e Formally Verifying Circuits should be as simple and efficient as implementing them.
o Verification engineers should not have to repeat work.
Introduced a unified interface for writing Formal Tests for any back-end.
Introduced a formal contract system, for retaining modularity during verification.
e Designed a compilation flow that integrates both elements in Chisel and CIRCT.

= This is a WIP, the core building blocks and passes are there, still need to provide Chisel interfaces and
connect everything together.

— Please reach out if you want to help out!

45

What
has
been

Verification Maintenance and
Debugging

@ 7

&

/ Better SVA emission: J
Make l(le po!ariry of things co{lsislenf within Chisel

Inline Tests: \

Two types: formal and simulation.
Both share the same structure and interface in both Chisel and FIRRTL and differ mainly at
the CIRCT level. The structure revolves around creating a test hamess module and then using.
the formal or simulate constructs to declare them as a test. /

Better LTL:

Extend the current LTL dialect to support more
SVA properties through direct emission to SVA
(only supported by some commercial simulators);
and add doc in the LTL rationale describing how
every SVA construct can be encoded in CIRCT.

even if it doesnt align with SV by creating
additional intrinsic and SV ops. These include
verif.clocked_assertLike, sv.assert_propertyiike,
and various emission tweaks. This allowed us fo
get rid of Iti.disable in favor of an enable signal that

\ Chisel test |
N —
v

/

—

A ————— f
Inline Simulation
Tests

Inline Formal \
Tests

p——

> Chiseltest
.| FIRRTL Formal J

FIRRTL Simulate |
N @nstruct J

Update LowerToHW

-

veritsimulate |
sim.peek/poke

sim.instance)

CoreToArc (or something)

construct J
Update LowerToHW |

(" veritformal ‘J
verif.symbolic_input

| verif.concerte_inp
% I ’/

@ S (Chisel SVA properties:

Contracts Interface for verifying temporal properties of a design --

currently similar to SVA properties)
Chisel contract trait J *
2 (FIRRTL LTL Intrinsics: 4
‘f FIRRTL Contract | L Resemble an AST for SVA properties

constructs v 0
‘ Update LowerToHW LTL dialect redesign: \

verif.contract ‘J
verif.requires

\\\ verif.ensures /

|

PrepareForFormal Pass:

Performs contract replacement and grouping into vent.formal

End-to-End Formal Verification Flow
Modular Formal Verification / Open-Source SVA Properties \

Modei temporal properties as “sequence blocks" that group all
logic that takes place “at the same time" and passes extemal
blocks that are used internally around as "metadata” to delay
them accordingly. The expected delays can then be tracked by
the type-system that can maintain guarantees about metadata
being passed comectly. These ops are intended to feel similar
iin construction to the Biichi automata that are usually used to
‘mode/ temporal properties. /
: o

LTLToCore Pass:

Convert the LTL sequences into core dialect ops by
generating the comect number of registers to lower

is part of the assertions. C_/ J\’ﬂ
J Arcilator S

All Chisel asserts use enable | &—’_/"

done?:

JJ / BTOR2 Backend \ o "f::m@imzm"f"mum
Add enable to J Deprcats (i \
; 4 Property.disable | VerifToBTOR Pass
verif.assertiike L)
\ J! . : |
p kf | Fold single clock™ " e
verif.clocked_asser’ = properties into BTOR Dialect: 1 Gore Dialects ‘
C 7 verif.clocked_assert | Contains ops for btor specific things such| L J
pe W 6/ as fair, justice, bad, and converting \ 3
sv.assert_property = Update VerifToSV 6/ registers into state+next+init
L J flip polarity /,
P g for property [EmitBtor2: [/ - J
Emission pass that should be a straightforward ~
\ / Lol il wgpiloryard ¢—— Chisel emitBtor2 function

& / dialect -- it just needs to maintain line numbers/

Q:' Work in Progress (started but not yet completed)

) Finished and merged into main

Current Focus

