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Abstract—Modern system-on-chip (SoC) designs comprise
programmable cores, application-specific accelerators, and I/O
devices. Accelerators are controlled by software/firmware and
functionality is implemented by this combination of pro-
grammable cores, firmware, and accelerators. Verification of
such SoCs is challenging, especially for system-level proper-
ties maintained by a combination of firmware and hardware.
Attempting to formally verify the full SoC design with both
firmware and hardware is not scalable, while separate verifica-
tion can miss bugs. A general technique for scalable system-level
verification is to construct an abstraction of SoC hardware and
verify firmware/software using it. There are two challenges in
applying this technique in practice. Constructing the abstraction
to capture required details and interactions is error-prone and
time-consuming. The second is ensuring abstraction correctness
so that properties proven with it are valid. This paper intro-
duces a methodology for SoC design and verification based on
the synthesis of instruction-level abstractions (ILAs). The ILA
is an abstraction of SoC hardware which models updates to
firmware-visible state at the granularity of instructions. For hard-
ware accelerators, the ILA is analogous to the instruction-set
architecture definition for programmable processors and enables
scalable verification of firmware interacting with hardware accel-
erators. To alleviate the disadvantages of manual construction of
abstractions, we introduce two algorithms for synthesis of ILAs
from partial description called templates. We then show how the
ILA can be verified to be correct. We evaluate the methodology
using a small SoC design consisting of the 8051 microcontroller
and two cryptographic accelerators. The methodology uncovered
15 bugs.

Index Terms—Accelerator architectures, formal verification,
model checking, system-on-chip (SoC), systems modeling.

I. INTRODUCTION

THE END of Dennard-scaling [8] has led to power and
thermal constraints limiting performance of ICs. We are
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now in the era of “dark silicon,” where significant parts
of an IC must be powered-off in order to stay within its
power and thermal budgets [10]. Despite the technological
limitations imposed by the dark silicon era, the demand for
increased performance and energy-efficiency has not sub-
sided and this has led to rise of accelerator-rich system-on-
chip (SoC) architectures [5]. Application-specific functionality
is implemented using fixed-function or semi-programmable
accelerators for increased performance and energy-efficiency.
As a result, modern SoC designs contain a number of
programmable cores, semi-programmable accelerators, I/O
devices, and memories. Modern SoCs also contain firmware;
this executes on programmable cores, interacts closely with
hardware and orchestrates operation of accelerators and I/O
devices.

A. Challenges in SoC Verification

The prevalence of firmware and the emergence of
accelerator-rich architectures have introduced new challenges
in SoC verification. These are described below.

1) Challenges Due to Firmware: Firmware lies between the
operating system and hardware and interacts closely with the
hardware. Firmware and hardware make many assumptions
about the behavior of the other component. As a result, veri-
fying the two separately requires explicitly enumerating these
assumptions and verifying that the other component satisfies
them. An example from a commercial SoC highlighting the
importance of capturing these interactions is provided in [35].
A series of I/O write operations could be executed by mali-
cious firmware leaving an accelerator in a “confused” state
after which sensitive cryptographic keys could be exfiltrated.
The bug was because implicit assumptions made by hard-
ware about the timing of firmware I/O writes were violated
by the malicious code. This points to the need for scalable
co-verification of SoC hardware and firmware.

2) Challenges Due to Accelerator-Rich SoCs: The emer-
gence of accelerator-rich SoC architectures has obsoleted
existing hardware/software (HW/SW) and hardware/firmware
(HW/FW) abstractions. In the past, programmable hardware
meant a programmable core and this was modeled using the
core’s instruction-set architecture (ISA) specification. Software
could be compiled, verified, and reasoned about using this
ISA-specification. However, with the proliferation of semi-
programmable accelerators in today’s SoCs, the ISA abstrac-
tion is inadequate at the system-level. System functionality

0278-0070 c© 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-2288-3396


SUBRAMANYAN et al.: TEMPLATE-BASED PARAMETERIZED SYNTHESIS OF UNIFORM ILAs FOR SoC VERIFICATION 1693

may now be implemented using accelerators and so an ISA-
centric view of execution is incomplete. Firmware typically
controls and interacts with accelerators by executing memory-
mapped I/O (MMIO) reads and writes. These MMIO reads
and writes are commands to the accelerator to perform various
functions. For example, a command could instruct an acceler-
ator to fetch a block of data from memory, encrypt it using a
specified key and write the result back to memory. However,
from the perspective of the ISA, all that has occurred is an I/O
write. Therefore, there is an important need for abstractions
that model the HW/FW and HW/SW interfaces presented by
accelerators in modern SoC designs.

B. Abstractions for SoC Verification

Aggressive time-to-market requirements mean firmware and
software for SoCs must be designed before hardware is ready.
This requires models of SoC hardware. In practice, such
models are usually transaction-level models (TLMs) of SoC
components written in SystemC [4], [28], [39]. TLMs divide
SoC computations into transactions and application-level func-
tionality is implemented as a sequence of transactions. While
TLMs are important, it is difficult to assign system-level mean-
ing and precise semantics to transactions written in SystemC.
Furthermore, TLMs can be quite detailed and formal analysis
of the TLM along with firmware is challenging.

TLMs illustrate one instantiation of a general solution
to the modeling problem: construction of abstractions of
SoC hardware. An abstraction of SoC functionality is con-
structed and when verifying properties involving firmware, the
abstraction is used instead of the bit-precise cycle-accurate
hardware model. Verification using the abstraction is more
scalable because irrelevant firmware-invisible details are not
included in the abstraction. While the general technique is
well-known, we are aware of only a few efforts that have
applied this to the co-verification of SoC hardware and
firmware [27], [31], [45], [46].

Although the idea of constructing abstractions for firmware
verification is attractive, it is challenging to apply in practice.
Firmware interacts with hardware components in a myriad of
ways. For the abstraction to be useful, it needs to model all
interactions and capture all updates to firmware-visible state.

1) Firmware usually controls accelerators in the SoC by
writing to memory-mapped registers within the acceler-
ators. These registers may set the mode of operation of
the accelerator, the location of the data to be processed,
or return the current state of the accelerator’s operation.
The abstraction needs to model these “special” reads and
writes to the MMIO space correctly.

2) Once operation is initiated, accelerators step through a
high-level state machine that implements the data pro-
cessing functionality. Transitions of this state machine
may depend on responses from other SoC components,
the acquisition of semaphores, external inputs, etc. These
state machines have to be modeled to ensure there are
no bugs involving race conditions or malicious external
input that cause unexpected transitions or deadlocks.

3) Another concern is preventing compromised/malicious
firmware from accessing sensitive data. To prove that

such requirements are satisfied, the abstraction needs to
capture issues, such as a sensitive value being copied
into a firmware-visible temporary register.

Manually constructing an abstraction which captures these
details, as proposed for example in [45] and [46], is not
practical because it is error-prone, as well as tedious and
very time-consuming. Abstractions that focus on specific types
of properties, like the control flow graph from [27], can
address certain verification concerns, but do not capture all
of the above requirements. A third alternative is to verify
the firmware using a software/SystemC model of the hard-
ware [4], [18], [39]. This too misses bugs present in the
hardware implementation but not the SystemC model. The
underlying problem with these approaches is in correctness
of the abstraction. If the hardware implementation is not con-
sistent with the abstraction, properties proven using it are not
valid.

C. Instruction-Level Abstractions for SoC Verification

In this paper, we propose a general methodology for SoC
verification based on the construction of abstractions of hard-
ware components that capture updates to all firmware-visible
state. We call such abstractions instruction-level abstractions
(ILAs) and propose techniques for semi-automatic synthesis
of ILAs and verification of their correctness.

1) Instruction-Level Abstractions: An ILA of a hardware
component is an abstraction that models all firmware-visible
state variables and associated state updates in that component.
In programmable cores, the ILA models all architectural reg-
isters, and in accelerators it models all memory-mapped and
I/O addressable registers. The insight underlying the ILA is
that firmware only views changes in system state at the gran-
ularity of instructions. So hardware components need only be
modeled at this granularity.

2) Uniform and Hierarchical ILAs: Accelerators in today’s
SoCs perform computation in response to commands sent
by programmable cores [5]. This computation is typi-
cally bounded in length. Our insight is to view commands
from the programmable cores to the accelerators as analo-
gous to “instruction opcodes” and state-updates in response
to these commands as “instruction execution.” We propose
a uniform ILA which models accelerators using the same
fetch/decode/execute sequence as a programmable core. The
command is analogous to “fetch,” the case-split determining
how the command is processed is “decode,” and the state
update is “execute.” Imposing this structure on an abstraction
for accelerators allows firmware interactions with accelerators
to be modeled using well-understood instruction-interleaving
semantics, enabling use of standard tools like software model
checkers. Verification of SoC hardware is also easier because
conformance with an ILA can be checked compositionally on
a “per-instruction” basis leveraging work in microprocessor
verification [23], [25].

We also propose hierarchical ILAs which allow the con-
struction of compositional models of an accelerator as con-
sisting of a macroILA and possibly several microILAs. The
macroILA comprises a set of macroinstructions, each of which
may be implemented by a sequence of microinstructions that
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Fig. 1. Overview of the ILA-based SoC verification methodology.

comprise a microILA at a lower level of abstraction. This
is analogous to complex instruction set computer instruc-
tions being implemented as a series of microinstructions.
Hierarchy helps manage complexity and models different
levels of abstraction in hardware components.

3) ILA Synthesis: Manual construction of ILAs is tedious
and error-prone. These challenges are exacerbated for third-
party IPs as ILAs have to be constructed post hoc from existing
implementations. Therefore, techniques for automated syn-
thesis of ILAs are important. To address this challenge, we
propose techniques for the synthesis of ILAs from partial
descriptions known as templates. Instead of manually con-
structing the complete abstraction, the verification engineer
now has an easier task of writing a template that partially
defines the operation of hardware components. The synthe-
sis framework infers the complete abstraction and fills in the
missing details by using a blackbox simulator1 of the hardware
component. Simulators are often constructed for SoC design
and validation, e.g., for simulation-based testing of firmware.
In principle, it may be possible to extract abstractions through
automated analysis of such simulators. However, in practice,
the scale and complexity of simulator codebases make this
infeasible. This paper helps constructs ILAs in this scenario.
The template abstraction, synthesis framework, and blackbox
simulator are shown in boxes 1, 2, and 3 in Fig. 1.

4) ILA Verification: To validate the ILA and ensure that
the hardware implementation is consistent with the ILA, a
set of temporal refinement relations are defined by the verifi-
cation engineer. These relations specify equivalence between
ILA and the register-transfer level (RTL) hardware implemen-
tation. These refinement relations are verified using hardware
model checking to ensure that RTL behavior matches the ILA.
If the refinement relations are proven, we have a guarantee
that the abstraction is a correct over-approximation of hard-
ware and any properties proven using the abstraction are in
fact valid. If the proof fails, we get counterexamples that can
be used to fix either the implementation or the template. ILA
verification is shown in boxes 5, 6 and 7 in Fig. 1.

5) Methodology: Fig. 1 is an overview of the methodology.
Blue boxes (1 and 7) show the components that are provided
by the verification engineer. We assume the RTL model and a
simulator are already available; these are gray (boxes 3 and 5).

1The term blackbox simulator (also referred to as an I/O Oracle [21]) means
the simulator can be used to find the next state and outputs of the component
given a specific current state and input value.

Automatically generated artifacts are green (box 4) and off-
the-shelf tools are red (boxes 6 and 8). The synthesis algorithm
(box 2) is in yellow.

D. Contributions

We introduce a general methodology for template-based
synthesis of ILAs for SoC verification. The methodology
has three advantages. It helps verification engineers easily
construct correct abstractions that are useful in verifying
system-level properties of SoCs.

We introduce a language for template-based synthesis
that is tailored to modeling hardware components in mod-
ern SoCs. We introduce two synthesis algorithms based
on the counter-example guided inductive synthesis (CEGIS)
paradigm [21], [22]. Our first algorithm adapts CEGIS to
our context—the synthesis of SoC abstractions. Our second
algorithm improves upon this by taking advantage of the
instruction-based structure of the ILA and is up to 18× faster
than the first algorithm. Together, these algorithms enable
scalable synthesis of SoC ILAs. Finally, we show how synthe-
sized ILAs can be verified to be correct abstractions of SoC
hardware.

We present a case study applying the methodology to the
verification of a simple SoC design built from open-source
components. The SoC consists of the 8051 microcontroller
and two cryptographic accelerators. We discuss synthesis and
verification of ILAs in this SoC and describe the bugs found
during verification. The methodology helped find a total of 15
bugs in the simulator and RTL.

This methodology was first presented in a conference arti-
cle [38]. This journal paper introduces the notion of uniform
and hierarchical ILAs (Section II). While similar abstrac-
tions involving fetch, decode, and execute have been proposed
before, our contribution is in showing how a uniform abstrac-
tion can be used for both processors and semi-programmable
accelerators. This in turn allows us to build on work in
software verification to analyze programs that interact with
accelerators. This paper also introduces a novel parameterized
synthesis algorithm (Section IV) which is up to 18× faster
(geometric mean 1.9×) than the algorithm presented in [38].
We also include new experimental results (Section VI) that
evaluate applicability of uniform and hierarchical ILAs and
the new synthesis algorithm.

This paper describes synthesis and verification of ILAs, as
opposed to system-level verification using ILAs (boxes 8 and
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9 in Fig. 1). An example of security-verification using ILAs
in part of a commercial SoC with a 32-bit microcontroller and
other peripherals is published in [37]. ILA-based verification
was successful in finding bugs in this commercial SoC.

II. INSTRUCTION-LEVEL ABSTRACTIONS

This section provides an overview of uniform and hierar-
chical ILAs.

A. Architectural State and Inputs

The architectural state variables of an ILA are modeled as
Boolean, bitvector, or memory variables. As with ISAs, the
architectural state refers to state that is persistent and visible
across instructions.

Let B = {0, 1} be the Boolean domain and let bvecl
denote all bitvectors of width l. Mk×l : bveck → bvecl maps
from bitvectors of width k to bitvectors of width l and rep-
resents memories of address width k bits and data width l
bits. Booleans and bitvectors are used to model state registers
while the memory variables model hardware structures like
scratchpads and random access memories. A memory variable
supports two operations: read(mem, a) returns data stored at
address a in memory mem. write(mem, a, d) returns a new
memory which is identical to mem except that address a maps
to d, i.e., read(write(mem, a, d), a) = d.

Let S represent the vector of state variables of an ILA
consisting of Boolean, bitvector, and memory variables. In
an ILA for a microprocessor, S contains all the architec-
tural registers, bit-level state (e.g., status flags), and data and
instruction memories. In an accelerator, S contains all the
software-visible registers and memory-structures. A state of
an ILA is a valuation of the variables in S.

Let vector W represent the input variables of the ILA; these
are Boolean and bitvector variables which model input ports
of processors/accelerators.

Let typeS[i] be the “type” of state variable S[i]; typeS[i] = B

if S[i] is Boolean, typeS[i] = bvecl if S[i] is a bitvector of
width l and typeS[i] = Mk×l if S[i] is a memory.

B. Fetch/Decode/Execute

1) Fetching Instruction: The result of fetching an instruc-
tion is an “opcode.” This is modeled by the function
Fo : (S × W) → bvecw, where w is the width of the
opcode. For instance, in the 8051 microcontroller, Fo(S, W) �
read(S[IMEM], S[PC]), where S[IMEM] is the instruction
memory and S[PC] is the program counter. We are using the
notation S[IMEM] to denote the fact that IMEM is a member
of the state vector S.

Programmable cores repeatedly fetch, decode, and execute
instructions, i.e., they always “have” an instruction to exe-
cute. However, accelerators may be event-driven and execute
an instruction only when a certain trigger occurs. This is
modeled by the function Fv : (S × W) → B. For example,
suppose an accelerator executes an instruction when either
I[Cmd1Valid] or I[Cmd2Valid] is asserted, then Fv(S, W) �
I[Cmd1Valid] ∨ I[Cmd2Valid]. Here, Cmd1Valid refers to an
input and the notation I[Cmd1Valid] denotes that this is a
member of the input vector I.

2) Decoding Instruction: Decoding an instruction involves
examining an opcode and choosing the state update operation
that will be performed. We represent the different choices by
defining a set of functions D = {δj|1 ≤ j ≤ C} for some
constant C, where each δj : bvecw → B. Recall Fo : (S×W)→
bvecw is a function that returns the current opcode. Each δj
is applied on the result of Fo. The functions δj must satisfy
the condition: ∀j, j′, S, W : j �= j′ =⇒ ¬(δj(Fo(S, W)) ∧
δj′(Fo(S, W))); i.e., the functions δj use a “one-hot” encoding.

For convenience let us also define the predicate opj �
δj(Fo(S, W)). When opj is 1, it selects the jth instruction.
For example, in the case of the 8051 microcontroller, D =
{δ1(f ) � (f = 0), δ2(f ) � (f = 1), . . . , δ256(f ) � f =
255}.2 Recall we had defined Fo for this microcontroller
as Fo(S, W) � read(S[IMEM], S[PC]). Therefore, opj ⇔
read(S[IMEM], S[PC]) = (j − 1). We are “case-splitting” on
each of the 256 values taken by the opcode and each of these
performs a different state update. The functions δj choose
which of these updates is to be performed.

3) Executing Instruction: For each state element S[i] define
the function Nj[i] : (S×W)→ typeS[i]. Nj[i] is the state update
function for S[i] when opj = 1. For example, in the 8051
microcontroller, opcode 0x4 increments the accumulator.
Therefore, N4[ACC] = ACC+ 1.

The complete next state function N : (S×W)→ S is defined
in terms of the functions Nj[i] over all i and j.

C. Hierarchical ILAs

Hierarchical ILAs handle different levels of abstraction in
hardware components and allow ILAs to contain other ILAs.
We call the inner ILAs microILAs while the outer/parent
ILA is called a macroILA. Each microILA has its own state
and input variables, fetch, decode, and next state functions:
Sμ, Wμ, Fμ

o , Fμ
v , Dμ, and Nμ, respectively. Each microILA is

associated with a valid function Vμ : S×W → B, where S and
W are the state and input variables of the macroILA containing
it. Vμ = 1 iff the valuation of the state variables Sμ is legal,
and the microILA only executes when Vμ = 1 MacroILAs
and microILAs execute concurrently and asynchronously.

Communication between the macro and micro ILAs hap-
pens in two ways. The microILA can read all macro-state
and use these in its next state computations. Similarly, the
macroILA can read microILA state when Vμ = 1 and use
these variables in the macroILA’s next state computation.

An example of hierarchical ILAs in our experimental plat-
form is an ILA for an accelerator that implements the advanced
encryption standard (AES) algorithm. The AES accelerator
has two parts. One part contains the configuration registers
and the processor core interface. The other is a state machine
that repeatedly fetches data from the shared RAM, encrypts it
and writes back the encrypted data. We model the encryption
state machine as a microILA, and each state in it is modeled
as a “microinstruction.” The interface that interacts with the
processor and controls the state machine is the macroILA.

2We are abusing notation here by writing elements of bvec8 as 0 . . . 255.
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Fig. 2. Syntax for expressions.

D. Putting It All Together

To summarize, an ILA is the tuple: A =
〈S, W, Fo, Fv, D, N, Lμ〉. S and W are the state and input
variables. Fo, Fv, D, and N are the fetch, decode, and next
state functions, respectively. Lμ = {(Vμp , Aμp), . . .} is a set
of microILAs contained within this ILA. Vμp : (S×W)→ B

is the valid function associated with the microILA Aμp .

E. Syntax

The language of expressions allowed in Fo, Fv, D, and Nj[i]
is shown in Fig. 2. Expressions are quantifier-free formulas
over the theories of bitvectors, bitvector arrays, and uninter-
preted functions. They can be of type Boolean, bitvector, or
memory, and each of these has the usual variables, constants,
and operators with standard interpretations. The synthesis
primitives, shown in bold, will be described in Section III.

III. ILA SYNTHESIS

The goal of ILA synthesis is to help semi-automatically
synthesize the functions Nj[i]. To do this, we build on work in
oracle-guided program synthesis [21], [22]. In particular, we
assume availability of a simulator that models state updates
performed by the accelerator. In practice, this simulator can
be either an RTL description of the hardware component, or
a high-level C/C++/SystemC simulator. Note this is a black-
box simulator, also called an I/O oracle, which can be used to
simulate the execution of a component given an initial state
and an assignment to the component’s inputs.

A. Notation and Problem Statement

Let Sim : (S × W) → S be the I/O oracle for the next
state function N. Define Simi : (S × W) → typeS[i] to be
the function that projects the state element S[i] from Sim.3

3Simi(S, W) = Sim(S, W)[i].

In order to help synthesize the function implemented by Simi,
the SoC designers write a template next state function, denoted
by Ti : (�× S×W)→ typeS[i].

� is a set of synthesis variables, also referred to as
“holes” [33], and different assignments to � result in differ-
ent next state functions. Unlike N[i], Ti is a partial description
and is therefore easier to write. It can omit certain low-level
details, such as the mapping between individual opcodes and
operations, opcode bits, and source and destination registers,
etc. These details are filled-in by the CEGIS algorithm by
observing the output of Simi for carefully selected values
of (S, W).

Problem Statement (ILA Synthesis): For each state element
S[i] and each opj, find an interpretation of �, �i

j, such that
∀S, W : opj =⇒ (Ti(�

i
j, S, W) = Simi(S, W)).

Note the synthesis procedure is repeated for each instruction
(each j) and each state element (each i), and the corresponding
synthesis result is �i

j.

B. Template Language

The template identifies: 1) elements of architectural state;
2) components of each instruction: the fields and ranges
on/in which the instruction operates; 3) a skeleton of pos-
sible state updates; and 4) the direction of data-flow. Most
importantly, the template implicitly decouples the orthogo-
nal concerns of precisely matching low-level bitfields in order
to identify opcodes and the state updates performed by each
opcode. In our experience, these tightly coupled concerns are
often the most error-prone and tedious parts of manual model
construction.

The synthesis primitives in the currently implemented tem-
plate language are shown in bold in Fig. 2. Note our
algorithms/methodology are not dependent on these specific
synthesis primitives. The only requirement placed on the prim-
itives is that they can be “compiled” to some quantifier-free
formula over bitvectors, arrays, and uninterpreted functions.
These theories are typically supported in all modern satisfia-
bility modulo theory (SMT) solvers, e.g., Z3 [7].

1) Synthesis Primitives: The expression choice ε1 ε2 asks
the synthesizer to replace the choice primitive with either ε1
or ε2 based on simulation results. choice ε1 ε2 is translated to
the formula ITE(φb, ε1, ε2), where φb ∈ � is a new Boolean
variable associated with this instance of the choice primitive.
Its value is determined by the synthesis procedure.

The primitives extract-slice and extract-subword, synthesize
bitvector extract operators. The synthesis process determines
the indices to be extracted from. The replace-slice and replace-
subword are the counterparts of these primitives; they replace
a part of the bitvector with an argument expression. The prim-
itive in-range synthesizes a bitvector constant that is within the
specified range. Adding new synthesis primitives is easy and
straightforward in our framework.

C. Illustrative Example

We illustrate the definition of an ILA and template next state
function using the processor shown in Fig. 3. The instruction
to be executed is read from the ROM. Its operands can either
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Fig. 3. Simple processor for illustration.

be an immediate value (data) from the ROM or from the 4-
entry register file. For simplicity, we assume that the only
two operations supported by the processor are addition and
subtraction.

The architectural state for the processor is S =
〈ROM, PC, R0, R1, R2, R3〉 and input set W is empty.
typeROM = M8×8 while all the other variables are of type
bvec8. The opcode which determines the next instruction is
stored in the ROM and so Fo � read(ROM, PC); Fv � 1.
D = {δj|1 ≤ j ≤ 256}, where each δj(f ) � f = j − 1.4 The
template next state functions, TPC and TRi , are as follows:

TPC = choice (PC+ 1) (PC+ 2)

imm = read(ROM, PC+ 1)

src1 = choice R0 R1 R2 R3

src2 = choice R0 R1 R2 R3 imm

res = choice (src1 + src2) (src1 − src2)

TRi = choice res Ri (0 ≤ i ≤ 3).

D. CEGIS Algorithm

The CEGIS algorithm for synthesizing Nj[i] from tem-
plate next state function Ti and the simulator Sim is
shown in Algorithm 1. The function SYNTHESIZEALL calls
SYNCEGIS for each opj (the different opcodes) and each
S[i] (each of element of architectural state). In each case,
SYNCEGIS returns �i

j which is used to compute the next
state function as Nj[i](S, W) = Ti(�

i
j, S, W).

SYNCEGIS tries to find an interpretation of (S, W), say
�, which for some two interpretations of � : �1 and �2,
is such that Ti(�1,�) �= Ti(�2,�). To understand the algo-
rithm, observe that Ti(�, S, W) defines a family of next-state
functions. Different functions are selected by different assign-
ments to �. The key idea is to repeatedly find distinguishing
inputs [21] while ensuring the simulation input/output val-
ues observed thus far are satisfied. A distinguishing input
for �1 and �2 is an assignment to S and W such that the
Ti(�1, S, W) �= Ti(�2, S, W). The distinguishing input � is
found in line 13. Next, we use the simulator Simi to find
the correct output O and assert that the next distinguishing
input must satisfy the condition that the output for � is O
(lines 15, 16 and 17). When no more distinguishing inputs can
be found, then all assignments to S define the same transition
relation and we pick one of these assignments in line 21.

4In the rest of this paper, we shall refer to the elements of the state vector
as ROM, PC etc., instead of S[ROM] or S[PC] in order to keep notation
uncluttered.

Algorithm 1 CEGIS Algorithm
1: function SYNTHESIZEALL(T , Sim)
2: for all S[i] ∈ S do
3: for all opj do
4: �i

j ← SYNCEGIS(opj,Ti, Simi)

5: Nj[i](S, W)← Ti(�
i
j, S, W)

6: end for
7: end for
8: end function
9: function SYNCEGIS(opj,Ti, Simi)

10: k← 1
11: R1 ← opj ∧ (θ ↔ (Ti(�1, S, W) �= Ti(�2, S, W)))

12: while sat(Rk ∧ θ) do
13: �← MODEL(S,W)(Rk ∧ θ) � get dist. input �

14: O← Simi(�) � simulate �

15: O1 ← (Ti(�1,�) = O)

16: O2 ← (Ti(�2,�) = O)

17: Rk+1 ← Rk ∧ O1 ∧ O2 � enforce output O for �

18: k← k + 1
19: end while
20: if sat(Rk ∧ ¬θ) then
21: return MODEL�1 (Rk ∧ ¬θ)

22: end if
23: return ⊥
24: end function

IV. PARAMETERIZED SYNTHESIS

In this section, we present an improved synthesis algorithm.
We start with a high-level discussion of how the algorithm
works before presenting its details.

A. Motivating Parameterized Synthesis

As the inner loop of SYNTHESIZEALL in Algorithm 1
shows, SYNCEGIS is executed for each of the different
decode functions represented by opj. For the illustrative exam-
ple from Section III-C, this means that we execute Algorithm 1
for each opcode: {op1 ⇐⇒ read(ROM, PC) = 0, op2 ⇐⇒
read(ROM, PC) = 1, . . . , op256 ⇐⇒ read(ROM, PC) =
255}. Consider the synthesis of one element of architectural
state: PC. Excluding a few instructions that operate on an
immediate value, for most opcodes, the next state function for
the PC is PC + 1.5 However, Algorithm 1 repeatedly redis-
covers the same next state function (PC + 1) by computing
new distinguishing inputs and then pruning the search space
according to the corresponding simulator outputs. Finding dis-
tinguishing inputs is the most computationally expensive part
of synthesis. The parameterized synthesis algorithm attempts
to avoid this computation as much as possible.

To understand how parameterized synthesis works, let us
first consider a strawman proposal. For the first opcode, i.e.,
when executing SYNCEGIS(op1, Ti, Simi) we will execute
SYNCEGIS as usual. However, we will record the distin-
guishing inputs, the corresponding simulator outputs and next
state function computed by the algorithm. Let the sequence
of pairs of distinguishing inputs and simulator outputs be
〈(�1, O1), . . . , (�k, Ok)〉. Now suppose we are executing
SYNCEGIS(op2, Ti, Simi). The strawman proposal does not

5This is a common scenario. For all elements of architectural state, there
are often a few next state functions that occur across many different opcodes.
For example, in the case of R0, the most common next state function is the
identity function R0.
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Fig. 4. DIT. The notation ROM = [0] means that all entries in the ROM
map to value zero. The notation ROM = [0 �→ 1, else : 0x0] means that
ROM address 0 maps to 1, but all other addresses map to 0. The notation
RF = (0, 0, 0x47, 0x1) refers to the valuation of the register file; it means
that R0 = R1 = 0, R2 = 0x47, and R3 = 0x1.

recompute distinguishing inputs but instead presents the dis-
tinguishing inputs computed for op1 : 〈�1, . . . , �k〉 to the
simulator and evaluates its output. Suppose these outputs are
the same as those observed for op1 : 〈O1, . . . , Ok〉. This
means the search space has been pruned identically and so
the next state functions are the same for both op2 and op1.
If this occurs, the SMT solver need never be invoked for the
computation of distinguishing inputs!

Unfortunately, this strawman proposal is flawed. This is
because the distinguishing inputs are computed for a spe-
cific opj : � |= opj ∧ (θ ↔ (Ti(�1, S, W) �= Ti(�2, S, W))).
However, ∀j, j′ : j �= j′ =⇒ ¬(opj ∧ opj′). The distinguishing
inputs for opj and op′j must be different. To make this idea
work, we need a way of transforming distinguishing inputs
computed for opj into distinguishing inputs for opj′ . If we
could do this, then we would not need to recompute distin-
guishing inputs if the next state function was “seen” before.

B. Intuitive Explanation

We start with an explanation of the algorithm using a
worked out example for the processor shown in Section III-C.
Fig. 4 shows a distinguishing input tree (DIT). A DIT con-
sists of three types of nodes: 1) distinguishing input nodes
(shown in red); 2) simulator outputs (green); and 3) symbolic
expressions for the next state (blue). Each path from the root
to a leaf node in the tree represents an equivalence class of
semantically equivalent next state functions (Nj[i]) and the dis-
tinguishing inputs and corresponding outputs that occur along
this path uniquely identify this next state function.

The tree shown in Fig. 4 shows the computa-
tion of Nj[R0] over different opj. Consider the path
〈(�1, O1), (�2, O2a), Na[R0]〉 in Fig. 4. This path starts
at the root (�1) and terminates at a leaf (Na[RA]).
It corresponds to the computation of N1[R0], where
op1 ⇔ read(ROM, PC) = 0x0. For the first opcode (op1),
parameterized synthesis works identically to SYNCEGIS with
the only difference being that distinguishing inputs, simulator
outputs, and the next state function are inserted into the DIT.

Now suppose we are synthesizing N2[R0]. Recollect that
op2 ⇔ read(ROM, PC) = 1. As described earlier, our goal
is to reuse the previously computed distinguishing input �1.

The distinguishing characteristic of �1 is in the assignments
to R0, R1, R2, R3, and read(ROM, PC+ 1). The distinguishing
nature does not depend on read(ROM, PC) which contains
the opcode. We would be able to reuse this distinguishing
input for op2 if we changed the assignment to ROM such
that read(ROM, 0) = 0x1 while “keeping everything else the
same.” The tricky part here is formalizing keeping everything
else the same.

Let us consider a strawman proposal to achieve this.
Suppose we use an SMT solver and find an assignment
ROM′ such that ROM′ |= op2. One such assignment is all
ROM addresses in ROM′ map to 1: ROM′ = [1]. Now con-
sider the distinguishing input �1′ � 〈ROM′ = [1], PC =
0, RF = (0, 0, 0x47, 0x7)〉. �1′ is exactly the same as �1,
except that ROM′ has been changed so that ROM′ |= op2.
But �1′ and �1 are not equivalent in terms of distinguish-
ing power. �1 can distinguish between the functions R3 + R3
and R3+ read(ROM, PC+1). The former evaluates to 2 while
the latter evaluates to 1 under the assignment �1. However,
�1′ cannot distinguish between these functions (both evaluate
to 2) and is weaker in terms of distinguishing power than �1.
Therefore, a more precise formulation of keeping everything
else the same involves showing that the new input does not
weaken the original assignment’s distinguishing power. The
algorithm introduced in this section allows us to reuse distin-
guishing inputs by making simple syntactic substitutions while
retaining the same distinguishing power.

Let �1′ = 〈ROM : [0 �→ 1, else : 0],
PC : 0, RF : (0,0,0x47,0x1)〉 be a “minimally changed”
version of �1. Note �1′ retains the distinguishing power
of �1 while also satisfying op2. We call �1′ an SD-variant
interpretation of �1. A formal definition of SD-variant
interpretations is in the next section.6 Our algorithm com-
putes SD-variant distinguishing inputs by solving a simple
SMT instance for the predicate opj, and then performs a
syntactic substitution on the distinguishing inputs in the DIT.

Now suppose �1′ results in the same output O1′ = 0 from
the simulator. This means that the search space can be pruned
in the same was with O1. Therefore, we continue following this
path in the DIT and compute the next SD-variant distinguishing
input of �2. Now, the simulator returns an output we have
not seen before. We insert this into the tree as node O2b. We
are now on a new path in the tree and use the SMT solver
to compute distinguishing input �3b. At this point, we do
not have any reusable information and the algorithm devolves
into CEGIS. And this eventually results in the computation of
N2[R0] as R0. Now for all the other opcodes which have the
same next state function R0, we can just follow this path in
the DIT instead of solving many more new SMT instances.

C. Definitions

Definition 1 (Supporting Subexpressions): Let ε be an
expression and σ be some subexpression (some node in the
abstract syntax tree) of ε. We say σ is a supporting subex-
pression of ε if there exist ν1 and ν2 such that substituting σ

with ν1 and ν2 in ε causes ε to differ: i.e., ε[σ/ν1] �= ε[σ/ν2].
In other words, σ is a subexpression that affects the value

6S stands for support and D is the set of decode functions, so an SD-variant
interpretation varies only over the support of the decode functions.
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of ε. For example, let ε � read(ROM, PC + 1) = 0. Then
ν1 � PC+ 1 is a supporting subexpression of ε.

Definition 2 (Complete Set of Supporting Subexpressions):
Let Sε = {σ1, . . . , σp, . . . , σL} be a set of supporting subex-
pressions of ε. We say Sε is a complete set of supporting
subexpressions, if for all interpretations I1 and I2 of ε, if
�ε�I1

�= �ε�I2
then there exists some σp ∈ Sε such that

�σp�I1
�= �σp�I2

.7 In other words, if two interpretations dif-
fer in the value of ε, then at least one of the expressions in a
complete set of supporting expressions of ε must also differ.
Let us return to example of ε � read(ROM, PC + 1) = 0.
The singleton set {read(ROM, PC+ 1)} is in fact a complete
set of supporting subexpressions for ε. This is because ε is
a Boolean, and if its truth value changes from 0 to 1 or vice
versa, it must be because read(ROM, PC+ 1) changed.

We can extend this definition to a set of expressions
E = {ε1, . . . , εq, . . . , εQ}. SE = {σ1, . . . , σp, . . . , σL} is a com-
plete set of supporting subexpressions for the set E if for
all interpretations I1, I2 and all εq ∈ E, if �εq�I1

�= �εq�I2
then there exists some σp ∈ SE such that �σp�I1

�= �σp�I2
.

Consider the set of expression E � {read(ROM, PC) =
0, read(ROM, PC) = 1, . . . , read(ROM, PC) = 255}. The
singleton set SE � {read(ROM, PC)} is a complete set of sup-
porting expressions for E. Any change in the truth value of any
element of E must necessarily be accompanied by a change
in the valuation of the sole member of SE.

Definition 3 (σp-Variant Interpretations): Given a subex-
pression σp, we say that two interpretations I1 and I2 are
σp-variant if for all expressions ε, �ε�I1

�= �ε�I2
=⇒

�σp�I1
�= �σp�I2

. In other words, if two interpretations are
σp-variant, then they differ only in their assignments to
σp and expressions that depend on σp and nothing else.
Let σp � read(ROM, PC). Then the assignments �1 =
〈ROM : [0], PC : 0, RF : (0,0,0x47,0x1)〉 and �1′ =
〈ROM : [0 �→ 1, else : 0], PC : 0, RF : (0,0,0x47,0x1)〉
are σp-variant.

This definition can be extended to a set of subexpressions
SE. Two interpretations are SE-variant if for all expressions ε,
if �ε�I1

�= �ε�I2
, there exists σp ∈ SE such that �σp�I1

�= �σp�I2
.

If we define SE as the singleton set {read(ROM, PC)}, then �1

and �1′ as defined in the previous paragraph are SE-variant.

D. Sketch of the Algorithm

Suppose we have a complete set of supporting subexpres-
sions SD for the set of decode predicates {opj|1 ≤ j ≤ C}.
Now consider the template next state function Ti. Suppose
for all SD-variant interpretations I1 and I2, �Ti�I1

= �Ti�I2
,

then we say Ti is SD-invariant. TRi are all SD invariant for the
definitions given in Section III-C.

The key insight is the following: if Ti is SD-invariant, given
a set of distinguishing inputs �1,�2, . . . ,�k, all SD-variants
of these inputs will also prune the search space in the same
way (assuming of course that the simulator outputs are the
same for each of these inputs). Ti is SD-invariant, so it does
not “depend” on the interpretation of the predicates opj. The
distinguishing nature of �k is not “affected” by SD, therefore
it can be replaced by an SD-variant of itself.

7Notation �ε�I refers to expression ε evaluated under interpretation I.

Algorithm 2 Parameterized Synthesis
1: procedure SYNTHESIZEALL(D, T , Sim)
2: for all S[i] ∈ S do
3: SD ← GETSUPPSET(D)

4: reextract← CHECKSUPPINVARIANT(Ti, SD)

5: �t ←⊥
6: for all opj do
7: if SD is non-empty then
8: Nj[i]← SYNPARAM(opj,Ti, Simi, �t)
9: else

10: Nj[i]← SYNCEGIS(opj,Ti, Simi)
11: end if
12: end for
13: end for
14: end procedure
1: function SYNPARAM(opj,Ti, Simi,�t)
2: k← 1
3: R1 ← opj ∧ (θ ↔ (Ti(�1, S, W) �= Ti(�2, S, W)))

4: while true do
5: if �′ found in �t then
6: �← FIXUP(�′, opj)
7: else
8: �← MODEL(S,W)(Sk ∧ θ)

9: end if
10: if � = ⊥ then
11: return EXTRACT(Rk)
12: end if
13: O← Simi(�)

14: O1 ← (Ti(�1,�) = O)

15: O2 ← (Ti(�2,�) = O)

16: Rk+1 ← Rk ∧ O1 ∧ O2
17: if O not in �t then
18: INSERT(�t, �, O)

19: end if
20: end while
21: end function

The above suggests Algorithm 2. It starts by comput-
ing a complete set of supporting expressions SD using
GETSUPPSET in line 3. In our current implementation,
GETSUPPSET returns a set containing bitvector and Boolean
variables and expressions of the form read(M, addr) occur-
ring in the opj’s. The computation of SD need not always
succeed. In our implementation, we do not handle the case
when the opcode involves expressions involving modified
memories; e.g., read(write(M, addr1), addr2) and failover to
SYNCEGIS.8

Line 4 checks if the template Ti is SD-invariant for the SD we
computed. This is stored as the flag re-extract. It is important
to note that even if Ti is not SD-invariant, we can still specu-
latively reuse distinguishing inputs. However, in this case, we
do need to verify that Rk ∧ θ is unsatisfiable when we reach
the leaf node of the DIT. We then use either SYNPARAM
or SYNCEGIS (if computation of SD failed) to compute the
Nj[i] for each opj.

Line 5 of SYNPARAM checks if we already have a dis-
tinguishing input in the DIT �t. If so, we find a SD-variant
interpretation such that � |= opj. This is done by the pro-
cedure FIXUP in line 6. FIXUP finds a model for opj and
then performs a syntactic substitution on the distinguishing
input �′ in the tree. If we have reached a leaf node in the
tree, we use EXTRACT to get the result of the synthesis.
In most cases, EXTRACT just returns the function stored in

8Note, this restriction only applies to the opcode (Fo from Section II),
not to the next state function. This corner case does not occur in any of the
designs in our evaluation.
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the leaf node of the tree. However, if Ti was not SD-invariant
(re-extract = false) or if we are on a new path in the tree,
EXTRACT uses the SMT solver to compute the result. tree.
Note even if we are just following an existing path in the
DIT, we update the formula Rk in lines 14–16. This is just
the construction of syntax trees for these formulas. The SMT
solver is not used to compute distinguishing inputs using the
Rk unless we diverge from the outputs stored in the tree.
Procedure INSERT adds a new output node to the DIT.

V. ILA CORRECTNESS AND VERIFICATION

In this section, we discuss correctness of the ILA synthe-
sized by the algorithms presented in Sections III and IV,
describe why additional verification of the ILA may be
necessary and then describe how this verification is done.

A. Correctness of Synthesized ILA

The template next state function Ti represents a family of
possible next state functions. The synthesis algorithms pick
a function from this family consistent with the I/O relations
exhibited by the simulator Sim. The synthesized result N is
guaranteed to be correct if the next state function implemented
by the simulator Sim is one of functions represented by the
family Ti. We now formalize this notion of correctness.

1) Template Bugs: Consider the ILA A =
〈S, W, Fo, Fv, D, N, Lμ〉 and the template next state func-
tion Ti. We say that Ti can express N if for all state
elements S[i] and each opj, there exists �i

j such that
opj =⇒ Ti(�

i
j, S, W) = Nj[i](S, W).

We refer to the scenario when Ti cannot express N as a
template bug because this occurs when the template next state
function Ti has not been constructed correctly by the verifica-
tion engineer. A template bug may result in the SMT solver
returning an unsatisfiable result when attempting to find a dis-
tinguishing input. When this happens, our synthesis framework
prints out the unsat core of Rk. In our experience, examining
the simulation inputs and outputs present in the unsat core is
sufficient to identify the bug.

Unfortunately, a unsatisfiable result from the SMT solver is
not guaranteed if Ti cannot express N. In such a scenario,
the algorithm may also return an incorrect transition rela-
tion and this will be discovered when verifying the ILA (see
Section V-B1).

2) Simulator Bugs: Since Sim models a simulator and real-
world simulators may contain bugs, it is possible that Sim
is not equivalent to the idealized transition relation N, i.e.,
Sim(S, W) = N(S, W) does not hold for all S and W. This
will also either cause an unsatisfiable result or an incorrect
transition relation. The former can be debugged using the unsat
core of Rk while the latter will be detected during verification.

3) Correctness of Synthesis: In the absence of template and
simulator bugs, we have the following result about correctness
of the synthesized next state functions.9

Theorem 1: If Ti can express N and ∀S, W : Sim(S, W) =
N(S, W) then for each state element S[i] and for each

9The absence of template and simulator bugs corresponds to the notion of
a valid structure hypothesis in the terminology of [32].

opj, Algorithms 1 and 2 will terminate with result �i
j and

∀S, W : opj =⇒ Ti(�
i
j, S, W) = Nj[i](S, W).

B. Verification of Synthesized ILAs

Once we have an ILA, the next step is to verify that it cor-
rectly abstracts the hardware implementation. This is required
because Theorem 1 only guarantees correctness of synthesis in
the absence of template and simulator bugs. For strong guar-
antees of correctness, including correctness in the presence
of potential template and simulator bugs, we need to verify
correctness of the synthesized ILA against the RTL hardware
implementation.

1) Verifying Abstraction Correctness: For state variables
that model outputs of hardware components, we expect that
ILA outputs always match implementation outputs. In this
case, refinement relations are of the form G(xILA = xRTL).

However, if we are considering internal state variables of
hardware components, the above property is likely to be false.
For example, consider a pipelined microprocessor with branch
prediction. The processor may mispredict a branch and execute
“wrong-path” instructions. Although these instructions will
eventually be flushed, while they are being executed registers
in the RTL will contain the results of these wrong-path instruc-
tions and so xRTL will not match xILA. Therefore, we consider
refinement relations of the following form: G(condij =⇒
xILA = xRTL) [25]. The predicate condij specifies when the
equivalence between state in the ILA and the corresponding
state in the implementation holds; e.g., in a pipelined micro-
processor, we might expect that when an instruction commits,
the architectural state of the implementation matches the ILA.

2) Compositional Verification: Defining the refinement
relations as above allows compositional verification [23].
Consider the property ¬(φ U (condij∧(xILA �= xRTL))), where
φ states that all refinement relations hold until time t−1. This
is equivalent to G(condij =⇒ xILA = xRTL), but we can now
abstract away irrelevant parts of φ when proving equivalence
of xILA and xRTL. For example, when considering opj, we can
abstract away the implementation of other opcodes opj′ and
assume these are implemented correctly. This simplifies the
model and verifies each opcode separately.

3) Examples of Refinement Relations: One part of our case
study is a pipelined microcontroller with limited specula-
tive execution. Here, the refinement relations are of the form
G(inst_finished =⇒ (xILA = xRTL)). These relations state
that the ILA state variables and implementation state variables
must match when each instruction completes.

The other part of our case study involves the verification
of two cryptographic accelerators. Here, the refinement rela-
tions are of the following form: G(hlsm_state_changed =⇒
xILA = xRTL). The predicate hlsm_state_changed is true when-
ever the high-level state machine in the accelerator changes
state. This refinement relation states that the high-level state
machines of the ILA and RTL have the same transitions.
The RTL state machine also has some “low-level” states but
such states do not exist in the ILA and are not visible to the
firmware, and hence do not need to match ILA state.

4) Verification Correctness: If we prove the refinement
relations for all outputs of the ILA and implementation, then
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Fig. 5. Example SoC block diagram.

we know that the ILA and implementation have identical exter-
nally visible behavior. Hence, any properties proven about the
behavior of the external inputs and outputs of the ILA are also
valid for the implementation.

Proving the property G(xILA = xRTL) for all external
outputs may not be scalable, so we adopt McMillan’s compo-
sitional approach. We prove refinement relations of the form
¬(φ U (condij∧xILA �= xRTL)) for internal state and use these
to prove the equivalence of the outputs.

If such compositional refinement relations are proven for
all firmware-visible state in the ILA and implementation, this
shows that all firmware-visible state updates are equivalent
between the ILA and the implementation. Further, transitions
of the high-level of state machines in the ILA are equiv-
alent to those in the implementation. This guarantees that
firmware/hardware interactions in the ILA are equivalent to the
implementation, thus ensuring correctness of the abstraction.

VI. EVALUATION

This section presents an evaluation of the proposed method-
ology and algorithms. We describe the evaluation methodol-
ogy, the example SoC used as a case study, and then presents
the synthesis and verification results.

A. Methodology

This section describes our implementation and the libraries
and tools used, the structure of the example SoC, its firmware
programming interface and our verification objectives.

1) Implementation Details, Tools, and Libraries: Our syn-
thesis framework (box 2 in Fig. 1) was implemented in C++
using the Z3 SMT solver [7]. The synthesis framework can be
invoked using a domain-specific language (DSL) embedded in
Python. This DSL is used to describe ILAs and template next
state functions (box 1 in Fig. 1). ILA verification (box 6 in
Fig. 1) was done using ABC’s hardware model checker [40].
ABC performs verification on gate-level netlists, while the
RTL description (box 5 in Fig. 1) of our SoC is in behav-
ioral Verilog. We used a modified version of Yosys [44] to
synthesize netlists from behavioral Verilog. Experiments were
run on a machine with an Intel Xeon E3-1230 CPU and 32 GB
of RAM. Our synthesis framework, templates, and synthesized
ILAs are available at [36].

2) Example SoC Structure: We evaluate this methodology
using an SoC design consisting of the 8051 microcontroller
and two cryptographic accelerators. A block diagram of design
is shown in Fig. 5. The RTL (Verilog) implementation of the
8051 is from OpenCores.org [41]. We used i8051sim from

TABLE I
LINES OF CODE AND SIZE IN BYTES OF EACH MODEL

University of California, Riverside as a blackbox instruction-
level simulator of the 8051 [24]. One accelerator [19] imple-
ments encryption/decryption using the AES [11]. The second
accelerator [34] implements the SHA-1 cryptographic hash
function [12]. We wrote interface modules that exposed the
AES and SHA-1 accelerators to the 8051 using an MMIO
interface. The accelerators and microcontroller share access to
the XRAM, which stores input and output data for the accel-
erators. We implemented high-level simulators in Python for
the two accelerators.

3) Firmware Programming Interface: Firmware running on
the 8051 configures the accelerators by writing to memory-
mapped registers. Operation is started by writing to the start
register which is also memory-mapped. The accelerators use
direct memory access to fetch the data from the external
memory (XRAM), perform the operation and write the result
back to XRAM. Firmware determines completion by polling
a memory-mapped status register.

4) Verification Objectives: In this paper, we focus on pro-
ducing a verified ILA of the SoCs hardware components.
The objectives here are to verify that: 1) each instruction in
the 8051 is executed according to the ILA; 2) firmware pro-
gramming the cryptographic accelerators by reading/writing to
appropriate memory-mapped registers produces the expected
results; and 3) ensure that implementation of the cryptographic
accelerators matches the high-level state machines in the ILA.
We do not verify correctness of encryption/hashing and model
these as uninterpreted functions.

B. Synthesis and Verification of the 8051 ILA

This section describes synthesis of the 8051 ILA from its
template and verification of the ILA against RTL.

1) Synthesizing the 8051 ILA: We constructed a template
ILA of the 8051 which models all opcodes and elements of
architectural state. We used i8051sim as the blackbox sim-
ulator. Note this is equivalent to synthesizing the ISA of the
8051. Our methodology ensures that the constructed ILA spec-
ification is precisely defined and correct; this is a significant
challenge in practice. For example, Godefroid and Taly [14]
reported that ISA documents only partially define some
instructions and leave some state undefined. They also report
instances, where implementation behavior contradicts the ISA
document and cases, where implementation behavior changes
between different generations of the same processor-family.
Our methodology avoids these pitfalls.

As one indication of the effort involved in building the
model, Table I compares the size of the template ILA with
the simulator and the RTL implementation. The template ILA
is smaller than the high-level simulator (i8051sim) by a factor
of 5. Note the simulator is much smaller than the RTL. This
supports our claim that ILAs can be synthesized with lesser
effort than manual construction.
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(a) (b)

Fig. 6. Execution time: baseline versus parameterized synthesis. (a) 8051 ILA. (b) Accelerator ILAs.

Fig. 6(a) shows the execution times for synthesis of each
element of architectural in the ILA for the 8051. The blue
bars show the execution time for Algorithm 1 (SYNCEGIS)
while the yellow bars show the execution time for Algorithm 2
(SYNPARAM), which improves upon SYNCEGIS using the
distinguishing-input tree. Note the y-axis is in log-scale. We
see that for the challenging synthesis problems, e.g., the
IRAM, SYNPARAM is about 18× faster than SYNCEGIS.
Similarly for PSW, SYNPARAM is about 2× faster. Overall,
SYNPARAM is significantly faster than SYNCEGIS, with
speedup increasing for challenging instances. Average and
geometric mean speedups of SYNPARAM over SYNCEGIS
are 2.6× and 2.0×, respectively.

2) Monolithic Verification of 8051 ILA: We first attempted
to verify the 8051 by generating a large monolithic Verilog
model from the ILA that implemented the entire functionality
of the processor in a single cycle. The IRAM in this model was
abstracted from a size of 256 bytes to 16 bytes. This abstracted
model was generated automatically using the synthesis library.
We manually implemented the abstraction reducing the size of
the IRAM in the RTL implementation.

We used this model to verify properties of the form
G(inst_finished =⇒ xILA = xRTL). For the external out-
puts of the processor, e.g., the external ram address and data
outputs, the properties were of the form G(output_valid =⇒
xILA = xRTL). Verification was initially done using bounded
model checking (BMC) with ABC using the bmc3 command.
After fixing some bugs and disabling the remaining (17) buggy
instructions, we were able to reach a bound of 17 cycles after
5 h of execution.

3) Compositional Verification of 8051 ILA: To improve
scalability, we generated a set of per-instruction models which
only implement the state updates for one of the 256 opcodes,
the implementation of the other 255 opcodes is abstracted
away. We then verified a set of properties of the form:
¬(φ U(inst_finished ∧ opcode = oi ∧ xILA �= xRTL)). Here,
φ states that all architectural state matches until time t − 1.
We then attempted to verify five important properties stating
that: 1) PC; 2) accumulator; 3) the IRAM; 4) XRAM data
output; and 5) XRAM address must be equal for the ILA and
the implementation.

Results for these verification experiments are shown in
Table II. Each row of the table corresponds to a particular
property. Columns 2–6 show the bounds reached by BMC
within 2000 s. For example, the first row shows that for 25

TABLE II
RESULTS WITH PER-INSTRUCTION MODEL

instructions, the BMC was able to reach a bound between 21
to 25 cycles without a counterexample; for ten instructions, it
achieved a bound between 26 to 30 cycles and for the remaining
204 instructions, the BMC reached a bound between 31 and 35
cycles. The last column shows the number of instructions for
which we could prove the property. These proofs were done
using the pdr command which implements the IC3 unbounded
model checking algorithm [3] with a time limit of 1950 s. Before
running pdr, we preprocessed the netlists using the gate-level
abstraction [26] technique with a time limit of 450 s.

4) Bugs Found During 8051 Verification: Seven bugs were
found in the simulator during ILA synthesis. Bugs in CJNE,
DA, MUL, and DIV instructions were due to signed integers
being used, where unsigned values were expected. Another
was a typo in AJMP and the last was a mismatch between
RTL and the simulator when dividing by zero.

An interesting bug in the template was for the POP instruc-
tion. The POP <operand> instruction updates two items of
state: 1) <operand> = RAM[SP] and 2) SP = SP - 1.
But what if operand is SP? The RTL set SP using 1) while the
ILA used 2). This was discovered during model checking and
the ILA was changed to match the RTL. This shows one of
the key benefits of our methodology: there are no undefined
corner cases and all state updates are precisely defined and
consistent between the ILA and RTL.

In the RTL model, we found a total of 7+ 1 bugs. One of
these is an entire class of bugs related to the forwarding of
special function register (SFR) values from an in-flight instruc-
tion to its successor. This affects 17 different instructions and
all bit-addressable architectural state. We partially fixed this.
A complete fix appears to require significant effort. Another
interesting issue was due to reads from reserved/undefined
SFR addresses. The RTL returned the previous value stored
in a temporary buffer which could potentially have security
implications and result in unintended leakage of information



SUBRAMANYAN et al.: TEMPLATE-BASED PARAMETERIZED SYNTHESIS OF UNIFORM ILAs FOR SoC VERIFICATION 1703

TABLE III
LINES OF CODE AND SIZE OF EACH MODEL

through undefined state. Various corner-case bugs were found
in the AJMP, JB, JNB, JBC, AJMP, DA, and POP instructions.

C. Synthesis and Verification of Accelerator ILAs

We constructed five ILAs for the accelerators. One ILA for
the AES accelerator is a monolithic ILA (aes-py), the two
others are hierarchical and contain a macroILA that responds
to commands from the processor core and a microILA for
encryption state machine. These hierarchical ILAs were syn-
thesized using a high-level Python simulator (aes-py-uinst)
and from the RTL (aes-verilog-uinst). Similarly, two SHA-
1 ILAs were synthesized: a monolithic ILA (sha1-py) and a
hierarchical ILA containing a microILA similar to the AES
accelerator (sha1-py-uinst).

1) Synthesis Results: Table III compares the sizes of the
template ILA with the simulators. The template ILA is again
smaller in size than the simulator, but the difference in size is
not as pronounced as with the 8051. This is mainly because
the accelerators are simpler than the 8051 and so the python
simulators constructed for them are also small. However, these
results again demonstrate that ILAs can be synthesized for
nontrivial accelerators fairly easily.

Fig. 6(b) shows the execution time for the two synthesis
algorithms–SYNCEGIS and SYNPARAM. Except for a few
outliers, SYNPARAM is faster than SYNCEGIS with average
and geometric mean speedups of 2.1× and 1.4×, respectively.
These synthesis instances are easier those for the 8051 and so
the potential speedup is lower.

2) Verifying Accelerator ILAs: To simplify verification,
we reduced the size of the XRAM to just one byte as we
were not looking to prove correctness of reads and writes
to XRAM. We then examined set of properties of the form
G(hlsm_state_change =⇒ (xILA = xRTL)). We were able
to prove that the AES:State, AES:Addr, and AES:Len in the
implementation matched the ILA using the pdr command. For
other firmware-visible state, BMC found no property violation
up to 199 cycles with a time limit of one hour.

D. Scaling ILA-Based Verification to Larger Designs

Experimental results in this paper and the case study in [37]
show that ILAs can be constructed for nontrivial designs. We
now discuss the challenges in applying this methodology on
larger SoCs. Our methodology consists of two parts: 1) syn-
thesis and 2) verification. A complex processor, such as an
x86 processor, has thousands of instructions and hundreds of
architectural state variables. Constructing a template for such
a processor will be challenging. However, this is known to be

a difficult problem and [14], [17] have shown that synthesis
is very helpful in constructing models of ISAs.

Turning to verification, while a more complex processor
would indeed be harder to verify, the ILA does not add new
additional complexity here. If the design is too large for
formal verification, techniques like randomized testing, and
simulation-based verification may be used. Since the ILA is
a precise machine-readable description of SoC hardware, it is
amenable to such semi-formal verification techniques.

VII. RELATED WORK

A. Abstraction Synthesis

We build on recent progress in syntax-guided synthe-
sis [1], [33]. Our synthesis algorithm is based on oracle-guided
synthesis [21], the theoretical underpinnings of which are stud-
ied in [22]. Our contribution is the application of synthesis to
constructing abstractions for SoC verification and the param-
eterized formulation which makes ILA synthesis tractable.
Godefroid and Taly [14] applied Oracle-guided synthesis to
construct a model for a subset of x86 ALU instructions.
Heule et al. [17] also tackled the same problem but combined
stochastic search techniques with modern constraint solvers.
Both [14] and [17] require processor-specific knowledge of
the opcode format and argument format and associated man-
ual effort to encode instruction functionality in templates.
This manual effort may be acceptable when building a sin-
gle model, such as the target of their work: part of an x86
CPU. Unlike [14] and [17], we are interested in constructing
complete ILAs for diverse accelerators and processor cores
and repetitive manual analysis can be a significant bottleneck
in this.

B. Processor Modeling and Verification

Formal modeling of ISAs for processors is now a well-
studied topic. An early effort was the construction of a
specification for and formal verification of the FM8501 micro-
processor by Hunt [20]. More recently, Fox and Myreen [13]
as well as the ISA-formal project at ARM have constructed
formal specifications of ARM ISAs [29], [30]. Goel et al. [15]
constructed a specification of both user-level and system-level
instructions in the x86 ISA. All these specifications can be
used to reason about software and also to verify that hardware
correctly implements the ISA. While our goals for the ILA
are similar, we wish to go beyond modeling programmable
cores and also model application-specific accelerators. A sec-
ond difference is our use of synthesis for semi-automatic
construction.

The refinement relations we use in proving that the abstrac-
tion and the implementation match are based on the refinement
relations for processor verification presented in [23] and [25].
Also helpful in our verification effort were techniques for
memory modeling and abstraction in model checking, such
as Velev’s memory model [43]. While these verification tech-
niques are very important, these are not the focus of this paper.
We focus on synthesizing abstractions. To verify their cor-
rectness, we can leverage the rich body of work in hardware
verification.
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C. SoC Verification

A number of efforts have studied TLM of SoCs using
System-C [4], [16], [28], [39], [42] and the Spec-C lan-
guage [9]. A key difference between ILAs and TLMs is that
ILAs seek to precisely delineate the HW/FW interface while
showing refinement between the ILA and SoC hardware. Both
of these remain challenging with TLMs. Also, ILA synthesis
can help construct models bottom-up for existing legacy SoC
IPs.

Although many studies in recent years have investigated
the problems of firmware and hardware verification, most of
these studies have typically focused on separate verification of
hardware and firmware. Examples include [2], [6], [18], [31],
all of which use symbolic execution to analyze firmware.
These efforts do not address co-verification of hardware and
firmware, a critical requirement for SoC verification. One
approach to compositional SoC co-verification of hardware
and firmware is by Xie et al. [45], [46] which involves the con-
struction of “bridge” specifications. Our methodology makes
it easy to construct the equivalent of the bridge specifications
while also ensuring this specification (abstraction) is correct.

VIII. CONCLUSION

Modern SoCs consist of programmable cores, accelera-
tors and peripheral devices as well as firmware running on
the programmable cores. Functionality of the SoC is derived
by a combination of firmware and hardware. Verifying such
SoCs is challenging because formally verifying a unified SoC
description with firmware and hardware is not scalable, while
verifying the two components separately may miss bugs.

In this paper, we introduced a methodology for SoC verifi-
cation based on synthesizing ILAs of SoCs. The ILA captures
updates to all firmware-accessible states in the SoC and can be
used instead of the bit-precise cycle-accurate hardware model
while proving system-level properties involving firmware and
hardware. One advantage of our methodology is that the ILA
is verifiably correct: we prove that the behavior of the ILA
matches the implementation. Another advantage is that instead
of specifying the complete ILA, the verification engineer has
an easier task of writing a template ILA which partially defines
the operation of the hardware components, and our synthesis
algorithm reconstructs the missing details. We demonstrated
the applicability of our methodology by using it to verify
a small SoC consisting of the 8051 microcontroller and two
cryptographic accelerators. The verification process uncovered
several bugs substantiating our claim that the methodology is
effective.
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