
Formal Security Verification of Concurrent Firmware in SoCs
using Instruction-Level Abstraction for Hardware∗

Bo-Yuan Huang1, Sayak Ray2, Aarti Gupta1, Jason M. Fung2, Sharad Malik1
1Princeton University 2Intel Corporation

ABSTRACT
Formal security verification of firmware interacting with hardware

in modern Systems-on-Chip (SoCs) is a critical research problem.

This faces the following challenges: (1) design complexity and het-

erogeneity, (2) semantics gaps between software and hardware,

(3) concurrency between firmware/hardware and between Intellec-

tual Property Blocks (IPs), and (4) expensive bit-precise reasoning.

In this paper, we present a co-verification methodology to address

these challenges. We model hardware using the Instruction-Level

Abstraction (ILA), capturing firmware-visible behavior at the ar-

chitecture level. This enables integrating hardware behavior with

firmware in each IP into a single thread. The co-verification with

multiple firmware across IPs is formulated as a multi-threaded pro-

gram verification problem, for which we leverage software verifica-

tion techniques. We also propose an optimization using abstraction

to prevent expensive bit-precise reasoning. The evaluation of our

methodology on an industry SoC Secure Boot design demonstrates

its applicability in SoC security verification.

1 INTRODUCTION
Contemporary Systems-on-Chip (SoC) contains a combination of

different Intellectual Property Blocks (IPs) communicating through

on-chip interconnect, as illustrated in Figure 1. Within an individ-

ual IP, there are specialized accelerators for performance critical

functions, e.g. encryption, and also hardware assisted security so-

lutions like secure storage. Meanwhile, firmware (FW) runs on a

programmable processor and accesses specialized hardware (HW)

through memory-mapped I/O (MMIO). The two levels of interac-

tion, IP/IP and FW/HW, make their co-verification challenging.

The first challenge is dealing with the FW/HW interactions. Fig-

ure 2 shows an example of firmware accessing hardware to lock

a key (lines 5 and 6) before enabling a cryptographic accelerator,

where the locking of register write access is implemented in hard-

ware. Since the hardware functions are not captured by program

semantics, no off-the-shelf software verifier, e.g., CBMC [3], can be

used for sound verification of these interactions. Further, formally

verifying firmware and hardware components together using bit-

precise cycle-accurate models does not scale for multiple IPs. What

∗This work was supported in part by Semiconductor Research Corporation (SRC). It
was performed during the first author’s internship at Intel Corp.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DAC ’18, June 24–29, 2018, San Francisco, CA, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5700-5/18/06. . . $15.00

Figure 1: System-on-Chip High-Level Overview

1 uint32_t status = *ADDR_STATUS; // mmio read
2 if (( status >> 8) == INIT)
3 for(int i=0; i<KEY_SIZE; i++)
4 *( ADDR_KEY+i) = KEY[i]; // mmio write
5 status |= 1; // set lock bit
6 *ADDR_STATUS = status; // mmio write & lock
7 *ADDR_ENABLE = 1; // mmio write & enable

Figure 2: Firmware Setting up a Cryptographic Accelerator

is needed here is a suitable level of abstraction that bridges the

FW/HW semantic gap, while providing scalability in verification.

Another verification challenge is in handling concurrency.Within

an individual IP, firmware runs on the processor in parallel with

the accelerators. Among IPs, firmware sends and processes mes-

sages to/from other components. Previous works have addressed

reasoning about FW/HW concurrency [7, 15]. However, to the best

of our knowledge, concurrent firmware in multiple IPs has not been

formally verified. This is especially important in a heterogeneous

environment where IPs potentially have different processors and im-

plement distinct message handling and synchronizing mechanisms,

which increases the vulnerability to security attacks.

Bit-precise reasoning poses yet another scalability challenge.

Firmware often uses bit-wise operations, e.g., shifting and masking,

to access hardware states stored in aligned hardware registers. For

example, line 2 in Figure 2 shows a right shift to extract a 24-bit

value, and line 5 shows a bit-wise OR operation to set the first bit.

Checking such operations precisely requires expensive bit-wise

reasoning, e.g., via bit-blasting.

In this paper, we present a co-verification methodology to ad-

dress these challenges. Specialized hardware features, e.g., access

control and direct memory access (DMA), are abstracted using

an Instruction-Level Abstraction (ILA) to handle FW/HW interac-

tions [21]. These ILAs are semi-automatically generated from high-

level specifications, whereas firmware programs are modeled at the

source level to avoid detailed modeling of various Instruction-set

architectures (ISAs) in a heterogeneous SoC. This enables represent-

ing the FW/HWbehavior of an IP as a single program thread. We can

then model co-verification of interacting IPs as a multi-threaded

program, where each thread corresponds to the firmware/inter-

rupt handler of an IP or the attacker. This allows us to leverage

techniques in software verification, such as context-bounding, to

manage the concurrent interleavings. We further improve scalabil-

ity using an optimization to abstract certain bit-wise operations,

which lowers the cost of expensive bit-precise reasoning.

We report the application of our co-verification methodology on

an industry SoC Secure Boot design where two heterogeneous IPs

communicate with each other. We explore a vulnerability where



an attacker is able to spoof commands in absence of access control

protection. Further, when access control protection is deployed to

mitigate this attack, we prove several properties relating to message

handling and DMA. Our experimental results show significant

improvement due to our proposed optimization for abstracting

bit-wise operations.

Overall this paper makes the following contributions:

• It shows the use of ILAs for FW/HW co-verification of multi-

ple IPs and demonstrates its applicability on an industry-scale

SoC design.

• It leverages software verification techniques for scalable co-

verification of parallel firmware and specialized hardware in

heterogeneous SoCs.

• It proposes an optimization that abstracts bit-wise operations

to lower the cost of expensive bit-precise reasoning.

The paper is organized as follows. In Section 2, we discuss the

system architecture of our case study for an industry SoC, which

serves as the running example through this paper. We then explain

the threat model and security concerns of the SoC Secure Boot in

Section 3. Section 4 describes our co-verification methodology and

the proposed optimization. Experimental results, related work and

conclusions are discussed in Sections 5, 6, and 7, respectively.

2 SYSTEM OVERVIEW FOR CASE STUDY
Contemporary SoCs contain multiple interacting IPs that communi-

cate through an on-chip interconnect, as illustrated in Figure 1. An

IP typically contains a programmable processor and several special-

ized hardware components for implementing performance-critical

functions or hardware-assisted security, e.g., DMA, encryption, ac-

cess control. The firmware runs on the processor and interacts with

this hardware through MMIO to implement the IP’s functionality.

In this section, we describe the system architecture for our case

study of an industry SoC design. We apply our co-verification

methodology for security verification of its Secure Boot feature.

2.1 System Architecture
Two interacting IPs are relevant to the Secure Boot flow, the security

engine (SE) and a functional module (FM), similar to the set-up in

Figure 1. FM is a security critical IP, e.g., a camera unit, power

management unit, or radio unit, whose run-time image needs to be

authenticated by SE before being booted. SE and FM communicate

through the on-chip interconnect, to which other IPs can also send

messages. The access control policy ensures that only valid (white-

listed) IPs can access the SE/FM communication channel.

2.1.1 Security Engine (SE). To reduce the trusted computing

base, cryptographic accelerators and security critical assets like

encryption keys are maintained in SE. Its firmware runs on a single-

threaded IA-32 processor, where the interrupt is masked during the

boot phase. SE maintains a secure memory that is hardware isolated

and internal-access-only, with the exception of the DMA engine in

FM. The firmware uses MMIO to configure internal routing logic

for controlling the accessibility of the secure memory.

2.1.2 Functional Module (FM). FM’s firmware runs on a 32-bit

RISC processor with non-nested interrupts. Messages to/from the

on-chip interconnect are buffered and processed by specialized

hardware, which may trigger interrupts to the processor when

Figure 3: Simplified Boot Flow and Possible Attack

handling some types of commands. Thus, message handling in FM

is a combination of interrupt routines and polling firmware. Further,

there is a DMA engine for boosting data transfer, such as copying

the authenticated run-time image. The DMA engine in FM can

access the secure memory in SE. FM firmware configures DMA and

message handling logic using MMIO.

2.1.3 On-chip Interconnect and Communication Protocol. IPs in-

teract through an on-chip interconnect following a prescribed com-

munication protocol. The protocol defines the interface, handshake

mechanism, and the architecture-visible behavior. For example, all

IPs are required to have a doorbell for each communication channel

to implement the handshake mechanism. The doorbells at the two

ends of a channel are mirrored, i.e., any write to one side will prop-

agate to the other side. Further, accessing a doorbell can trigger an

interrupt to the processor if the interrupt is not masked.

Note that the protocol only specifies the required functional-

ity, but not its implementation. In our case study, the protocol

implementation can be a combination of firmware programs and

physical registers within hardware logic, as in FM. Alternatively,

it can be implemented using specialized hardware only, as in SE.

This heterogeneity in the FW/HW boundary increases the diffi-

culty in abstracting this interface, and raises the importance of

co-verification, especially when interacting IPs have different syn-

chronizing methods.

2.1.4 Access Control Policy. The on-chip interconnect routes

and transmits messages to IPs, and the receiving IPs should in-

corporate access control protection. The designs in the case study

implement a white-list-based protection. All messages sent to the

on-chip fabric are tagged with a source hardware ID (HID), and

each IP maintains a valid list of trusted HIDs. The protection logic

blocks accesses from untrusted entities not in the valid list. A fail-

ure in access control may result in privilege escalation, enabling

messages from unauthorized entities being accepted. Correct config-

uration and integrity of the white-list is a critical security objective.

In this work, we assume that hardware IDs are not spoof-able. The

verification of HID uniqueness is beyond the scope of this paper.

3 SOC SECURITY AND SECURE BOOT
Modern SoCs implement a multitude of mechanisms to meet their

security requirements. For example, hardware protected secure

memory is used for storing confidential assets. Security primitives

can be implemented using a combination of hardware accelerators

and firmware programs. Further, access control protection can be

employed to prevent inter-IP communication from being attacked.

Verifying these security mechanisms requires not only checking the



Figure 4: Verification Methodology

hardware logic, but also reasoning about the FW/HW interaction

and the parallel execution between communicating IPs.

In this work, we study the security verification of an industry

SoC with a Secure Boot flow, the primary guarantee of trust. This

case study features complex FW/HW interactions and concurrent

execution between FW/HWwithin an IP and across IPs. We first in-

troduce the high-level aspects of the Secure Boot flow, then discuss

the security concerns and the threat model under consideration.

3.1 Secure Boot
Firmware integrity, one of the most fundamental security objec-

tives [4], specifies that all devices, at any time, can run

only authenticated firmware. In Secure Boot, a feature to help

resist attacks from malware, every piece of the firmware image

should be authenticated before being booted if it is updated or

fetched from an untrusted source.

To reduce the size of the trusted computing base, there is usually

a trusted component implementing all security primitives, such as

SE in Section 2. The trusted component authenticates the digital

signatures of all images to boot in the system, then sends the image

to the destination devices following the firmware load protocol. All

components should enforce proper access control and lock/unlock

mechanisms to ensure that only a valid image can be executed [9].

Steps 1 to 9 in Figure 3 show a simplified boot flow where FM

requests SE to authenticate its runtime image, and uses DMA to

transmit the authenticated image from the secure memory in SE.

Note the various FW/HW interactions and interactions between

different IPs in the system.

3.2 Security Concerns
Access control is critical for ensuring confidentiality and integrity

of secured assets and blocking untrusted external messages. How-

ever, as images and signatures are large, transferring data with

DMA is common to boost this process. This enlarges the attack

surface because DMA engines often bypass normal access control

mechanisms for performance reasons. The enlarged attack surface

and FW/HW interplay raise security concerns and require thorough

co-verification.

Concurrency is yet another concern for security. The support

for communication protocol and message handling between IPs

often differs from design to design. Some functionalities are imple-

mented in hardware, while others are programmed in firmware.

Some IPs have interrupt routines handling the events, while others

poll for updates. Designs can even switch between them to improve

performance [18]. Such heterogeneity is considered error-prone,

especially in the context where IPs (and some potential attackers)

execute in parallel. Failure of incorrect synchronization and the

Figure 5: Verification Toolchain

Time-of-Check/Time-of-Use (TOC/TOU) [2] issue are particularly

of interest for security verification.

In Figure 3, we also illustrate an example attack, where the

attacker spoofs the command between SE and FM while running in

parallel with them. Without a proper mechanism to block invalid

messages, the attacker can spoof SE and send an instrumented

command (step A) notifying FM for image ready with an incorrect

source address and/or size of image. The DMA engine then accesses

the secure memory with an invalid configuration, bypassing normal

access control.

3.3 Threat Model
The two classes of security objectives we consider are integrity

and confidentiality of firmware assets. For example, we wish to

ensure that only the authenticated image will be transferred. We

also wish to ensure that no data in the secure memory can be read

by untrusted IPs due to mis-configuration of the DMA engine.

Our threat model covers the perspective of multiple components,

beyond an individual IP. We consider an attacker, e.g., an untrusted

IP, that has access to the on-chip interconnect, and can send com-

mands to other IPs, at any given time, with any arbitrary message.

Here we assume that the attacker has no hard-wired access to

critical internal registers, and can only attack through sending com-

mands to access states (registers) of the communication interface.

We also assume that the attacker cannot spoof the hardware IDs

used in the access control policy. This can be verified separately.

4 METHODOLOGY
In this section, we describe our methodology for system modeling,

abstraction, and verification. A pictorial overview of the overall ver-

ification methodology is shown in Figure 4, where the ultimate goal

is to model the co-verification of interacting IPs as a multi-threaded

program verification problem, in which each thread corresponds

to the firmware/interrupt handler of an IP or the attacker. First,

we abstract specialized hardware components, e.g., access control

and DMA (shown as HW 1a, HW 1b, etc. in the figure), by using

Instruction-Level Abstraction (ILA). Next, these ILA models are

composed with FW within each IP, to model each IP as a separate

program thread. Finally, to verify the concurrent interactions of

multiple IPs, we leverage context-bounding techniques from soft-

ware verification to verify their concurrent interleavings.

Figure 5 shows the verification toolchain that implements our

methodology. First, ILA models of specialized hardware are semi-

automatically generated from a register-level hardware specifica-

tion. Along with hardware ILAs, described in C, the firmware and

interrupt routines of all IPs are compiled into an LLVM intermedi-

ate representation (LLVM-IR) using the LLVM front-end Clang [1].

We compose the firmware programs and hardware ILAs at the

LLVM-IR level by substituting each MMIO access in firmware with



the corresponding ILA instruction (based on the address mapping).

Thus, the FW/HW interaction gets modeled as a software program.

We then use the SMACK translator [17] to translate this model

into a Boogie program [5]. Encoding of property assertions and

optimization are also performed during this step. The final system

is checked using the software verifier Corral [11]. As shown in Fig-

ure 4, we integrate FW/HW interaction within an IP using hardware

ILAs, and model the interaction across IPs as interacting parallel

programs. We now discuss salient aspects of our methodology.

4.1 Instruction-Level Abstraction
Co-verification of firmware and hardware with low-level finite

state machine hardware models is too detailed and does not scale.

Here, we found the Instruction-Level Abstraction (ILA) a perfect fit

for FW/HW co-verification [8, 21]. ILA is a high-level abstraction

for functional behavior of accelerators at the architecture level. It

extends the familiar notion of instructions to accelerators and pro-

vides an abstraction for modeling firmware-visible behavior while

abstracting low-level implementation details. It specifies hardware

behavior as a set of instructions, in which each instruction cor-

responds to a command on the interface, e.g., MMIO writes, and

defines how it affects the architectural state. In other words, for

memory-mapped accelerators, an ILA instruction is essentially a

functional specification that captures the firmware-visible behavior

of an MMIO instruction.

In this work, we constructed the abstraction semi-automatically

by translating from the machine-readable hardware specification

that comes with every hardware design in the industrial envi-

ronment where we investigated the case study. It describes the

firmware-visible behavior when accessing each of the architectural

registers. With relatively low manual effort to complete the model,

as will be shown in Section 5, the translation generates ILA models

where each ILA instruction is represented as a C function.

4.2 Source-Level Modeling and Verification
Firmware programs of all interacting IPs are modeled at the source

level, C in our case, where the properties to verify are expressed

as assertions. We model and verify the firmware at source level for

several reasons.

• Verifying firmware at the instruction level, e.g., [6, 16, 19],

requires modeling the instruction semantics of the underlying

processor. Due to growing heterogeneity in SoCs, this would

require a lot of effort in modeling various instruction sets.

• Preserving the source level program structure enables better

utilization of software verification techniques, e.g., inferring

loop invariants, abstraction by function summary, etc.

• Rich support in the LLVM ecosystem facilitates rapid devel-

opment of a verification toolchain.

Beyond an individual firmware, wemodel the communicating IPs

as a multi-threaded program. Each firmware program or interrupt

routine (if not masked) of an IP is initiated in a program thread,

as is the attacker. Architectural states of the hardware interface

between firmware threads are modeled as shared global variables.

The access control mechanism blocks invalid accesses based on

the tagged hardware ID (HID). In this work, we abstract the HID

generation logic, and perform the checking on the program thread

ID returned by system calls.

1 uint32_t global_hw_reg;
2
3 void lockChannel () {
4 uint32_t x;
5 x = mmioRead(ADDR);
6 x |= 1; // set lock bit
7 mmioWrite(ADDR , x);
8 }
9
10 uint32_t readVersion () {
11 uint32_t x;
12 x = mmioRead(ADDR);
13 return (x >> 8) & 255;
14 }
15
16 uint32_t readID () {
17 uint32_t x;
18 x = mmioRead(ADDR);
19 return (x >> 8) & 31;
20 }

Figure 6: Register Bit-Fields

and Firmware Example

1 typedef struct _reg_t {
2 int lock;
3 int sts;
4 int rsv;
5 } reg_t;
6
7 void lockChannel () {
8 reg_t x;
9 x = mmioRead(ADDR);
10 x.lock = 1;
11 mmioWrite(ADDR , x);
12 }
13
14 int readVersion () {
15 reg_t x;
16 x = mmioRead(ADDR);
17 return x.rsv;
18 }
19
20 int readID (){
21 reg_t x;
22 x = mmioRead(ADDR);
23 return x.rsv;
24 }

Figure 7: Optimized Firmware

In our case study, the FW interacts with HW through MMIO

instructions, where the instructions can be viewed as function calls

to hardware that are blocking. In general, such calls may be non-

blocking, requiring additional concurrent exploration of threads

for hardware instructions, as in [7].

4.3 Verification Engine
The systemmodel represented in LLVM-IR is converted into amono-

lithic Boogie program (an intermediate verification language) [5],

which is then be checked by the software verifier Corral [11]. The

LLVM-IR to Boogie conversion is extended from SMACK [17] to sup-

port bit-precise checking for parallel programs. The Corral/Boogie

verifier generates verification conditions for procedures across the

program, which are then checked by a theorem prover/SMT solver.

This general approach has been applied successfully to industry-

scale designs [10]. In this paper we leverage it with our FW/HW

modeling to address SoC security verification challenges.

One of the critical challenges in our problem is to verify all

possible interleavings of different IPs, which is notoriously difficult

due to state explosion. Here, Corral sequentializes the concurrent

execution by bounding the number of thread contexts [12]. This

improves scalability in bug finding and provides bounded-proofs

up to a given bound.

4.4 Optimization for Bit-Wise Operations
We propose an optimization where we over-approximate bit-wise

operations on bit-fields of hardware registers based on two obser-

vations in our case study.

• Security properties relying on hardware-assisted access con-

trol usually depend only on configuration registers, and on a

few bits in the registers.

• Most bit-wise operations in the firmware are used for access-

ing bit-fields in the aligned hardware register.

Multiple hardware architectural states are often packed into one

aligned register as different bit-fields. Therefore, accessing these

hardware states requires the firmware to use bit-wise operations for

masking and shifting. Figure 6 shows an example of a 32-bit register



containing three bit-fields and the firmware functions accessing it.

Bit-wise operations are used in lines 6, 13, and 19.

In SoC security verification, especially at the FW/HW boundary,

precisely checking bit-wise operations is expensive, e.g., via bit-

blasting. Therefore, we over-approximate some variables and bit-

wise operations based on their hardware specification in the ILA

and by analyzing firmware patterns. We now informally explain the

optimization with an example. Figure 7 shows the optimized version

of the firmware in Figure 6. Note that the actual optimization is

implemented at the Boogie program level, here we show the C

version for ease of understanding.

(1) Hardware registers and dependent program variables are nor-

mally modeled as fix-width bit-vectors to enable bit-precise

reasoning. In the optimization, we model these variables as

arithmetic integers. Registers containing multiple bit-fields

are modeled as a set of integers, representing the architectural

state defined in the hardware specification. For example, in

Figure 7, type reg_t is used to model three architectural states.

(2) Bit-wise operations for accessing architectural states are sub-

stituted by expressions in linear integer arithmetic, if applica-

ble. For example, masking then shifting is replaced by an as-

signment to the associated architectural state. In cases where

the operation is not confined to bit-field manipulation for

hardware states, e.g., firmware defined usage, we can selec-

tively apply over-approximation. In our example, line 6 in

Figure 6 is replaced by the equivalent assignment, whereas

the firmware-defined bit-field manipulations in lines 13 and 19

are further abstracted.

The replacement for hardware defined bit-fields and their manipu-

lations is sound and complete if the value to assign does not exceed

the maximum capacity of the bit-field. This property can be checked

separately. In the case study, we identified the bit-fields and the

manipulations by analyzing firmware patterns based on the ILAs.

In practice, security critical states are implemented using dedi-

cated hardware bits, e.g. lock in the example, and are well-defined

in the hardware specification. Meanwhile, firmware-defined data

manipulations are usually security irrelevant and are apt to be ab-

stracted. These design characteristics enable the applicability of the

optimization, as demonstrated in our case study.

5 EVALUATION
This section describes our case study of verifying the Secure Boot

flow in the industrial SoC design discussed in Section 2. We wish

to verify the system when there is an untrusted IP (attacker) run-

ning in parallel with the security engine (SE) and the functional

module (FM). We will describe the properties being checked and

the verification results.

5.1 Experimental Results
We performed the experiments on a 32-bit virtual machine with

an Intel i5 2.4 GHz core and 4GB memory. Table 1 summarizes the

experimental results of verifying the case study with and without

applying bit-precise abstraction. Columns 2 and 3 show the upper

bounds for thread context switches [12] and loop unrolling used by

the verifier, determined based on design knowledges. Verification

time and memory usage are reported in columns 4 and 5, respec-

tively. Columns 6 to 8 show the (source level) length, number of

thread contexts, and the number of hardware interactions (MMIO)

in the counter-example trace if the property is violated.

The system model comprises two main parts: (1) firmware pro-

grams, and (2) hardware abstractions, i.e., ILAs. Firmware programs

of FM and SE, including relevant interrupt routines, are imple-

mented in C with 18.5k lines of code. Hardware ILAs, e.g., the DMA

engine and on-chip fabric, are semi-automatically generated from

hardware specifications. The specifications are available in a ma-

chine readable format (14k lines) and describe the firmware-visible

behavior when accessing each of the architectural registers. The

generated ILAs are represented in C, where about 500 lines are

manually constructed in a total of 9500 lines for the abstraction

models. As a reference, after the unused functions are removed

by LLVM passes, the final integrated model has about 8.9k lines

of LLVM-IR. Further, we abstract some parts of the operations as

uninterpreted functions, for improving scalability and reducing

modeling effort. They can be verified in a separate step.

5.1.1 Access Control Mitigation. We consider an attacker trying

to spoof the messages between SE and FM by sending commands

to the on-chip interconnect. We first verified the integrity of the

message between SE and FM without modeling the access control

protection. The property was violated, and the verifier generated

a counter-example, denoted as A1 in Table 1. The trace showed a

path where the attacker modified the value of an interface register

during SE/FM interaction, hence spoofing the intended message.

We then modeled the mitigation that blocks the invalid access to the

interface states. The tool gave a context-bounded proof for end-to-

end command integrity and non-accessibility of the interface state

from untrusted IPs, denoted as property A2 and A3, respectively.

5.1.2 DMA and Message Handling. The second set of properties

we checked is to ensure correct configuration of DMA commands

and the message handling mechanisms, denoted as properties Di

and Ii , respectively. No invalid address should be accessed and only
dedicated messages will be processed. We verified these two sets of

properties without modeling the attacker, i.e., only SE and FM. As

shown in the table, no bug was found up to the given bounds.

5.1.3 Scalability of Bug Finding. To further explore how the

methodology scales, we instrumented the design, and placed error

states in tricky corner cases. The traces reaching the error states

are denoted as Ri in the table. The results show the applicability of

our methodology in finding bugs that heavily interleave between

different IP firmware, interrupt routines, and hardware operations.

Such reasoning for concurrency among deep function calls in a huge

code base is especially hard for human inspection and simulation-

based validation.

5.1.4 Improvements due to Optimization. As Table 1 shows, there

are significant improvements in both the verification time, memory

usage, and also the quality of proofs (higher bounds) when our

optimization is applied. With less than 75 lines in the model being

manually modified (other parts are automated), the optimization

enables better scalability in not only proving properties but also in

bug finding.

6 RELATEDWORK
Previous works address the importance of verifying SoC security

by applying formal verification at different levels, from firmware



Table 1: Verification Results
Without Optimization With Optimization

Bounds Resource Usage Counter Example Bounds Resource Usage Counter Example

Prop Ctx Unroll Time (s) Mem (Mb) Length Ctx MMIO Ctx Unroll Time (s) Mem (Mb) Length Ctx MMIO

A1 - - - - - - - 12 5 45.6 124.1 395 7 4

A2 - - - - - - - 12 5 5308.9 139.5 - - -

A3 - - - - - - - 12 5 5190.0 157.2 - - -

D1 30 5 8.9 134.9 - - - 45 10 4.7 153.9 - - -

D2 30 5 44686.0 2780.7 - - - 45 10 133.9 472.2 - - -

D3 30 5 45094.9 3033.3 - - - 45 10 135.8 477.9 - - -

I1 30 5 14.6 126.9 - - - 45 10 4.9 150.2 - - -

I2 30 5 1075.9 411.1 - - - 45 10 5.7 158.8 - - -

R1 30 5 1673.2 313.7 235 4 1 30 10 30.3 269.8 240 4 1

R2 30 5 42641.2 913.7 332 4 3 30 10 69.0 387.9 349 4 3

R3 30 5 timed out (24hr) 30 10 977.2 559.4 709 7 12

R4 30 5 timed out (24hr) 30 10 922.5 591.2 817 7 16

R5 30 5 timed out (24hr) 30 10 4053.6 655.7 1153 11 23

load protocols [9] to the underlying hardware RTL logic [20]. In

our work, we address formal co-verification of the Secure Boot

implementation, checking parallel firmware programs of multiple

communicating IPs, along with the hardware accelerators.

There have been efforts for co-verifying single-threaded firmware

with hardware at instruction level, using bounded model check-

ing [6, 19] and interval property checking [16]. To reason about

FW/HW concurrency, Kroening et al. perform symbolic execution

on the firmware with hardware RTL models [15] and virtual pro-

totypes (software models serving as hardware proxies) [7]. They

too model firmware programs at a higher level (CIL) to avoid de-

tailed ISA modeling, similar to our use of LLVM-IR as an intermedi-

ate representation. However, our methodology verifies concurrent

firmware of multiple interacting IPs, and leverages software verifi-

cation techniques for scalable co-verification.

Other related works use concolic execution for finding informa-

tion flow bugs [22] and use automata-theoretic verification tech-

niques to verify PCI drivers [13]. To reduce the effort in verification,

use of abstractions [6, 14, 16] and avoiding expensive bit-precise

reasoning [10] are the keys.

7 CONCLUSIONS
This paper presents a formal co-verification methodology for veri-

fying firmware of interacting IPs along with specialized hardware,

and demonstrates its applicability in security verification in a het-

erogeneous SoC. We model the co-verification as a multi-threaded

program verification problem (as shown in Figure 4), and leverage

software verification techniques. Firmware programs are modeled

at the source level to avoid detailed ISA modeling, and specialized

hardware components are modeled using the Instruction-Level Ab-

straction (ILA) for better scalability in verification. ILAs capture

firmware-visible behavior at the architecture level, and are semi-

automatically generated from hardware specifications. We propose

an optimization that uses abstraction to further avoid expensive

bit-precise reasoning.

Our proposed verification methodology applies broadly to the

general SoC security verification problem shown in Figure 1, and

we demonstrate it on a specific case study of an industrial SoC

Secure Boot implementation. Our experiments explore an attack

where commands can be spoofed in the absence of access control

protection, and prove command integrity when its mitigation is

deployed. The experimental results show significant improvements

due to our proposed optimization for handling bit-precise oper-

ations in accessing bit-fields. In future work, we will investigate

use of program synthesis techniques for finding suitable linear

integer-based abstractions for expensive bit-precise operations.

REFERENCES
[1] Clang: a C Language Family Frontend for LLVM. https://clang.llvm.org
[2] S. Bratus, N. D. Cunha, E. Sparks, and S. W. Smith. 2008. TOCTOU, Traps, and

Trusted Computing. In TRUST. 14–32.
[3] E. Clarke, D. Kroening, and F. Lerda. 2004. CBMC - A Tool for Checking ANSI-C

Programs. In TACAS, Vol. 2988. 168–176.
[4] A. Cui, M. Costello, and S. J. Stolfo. 2013. When Firmware Modifications Attack :

A Case Study of Embedded Exploitation. In NDSS.
[5] R. Deline and K. R. M. Leino. 2005. BoogiePL: A Typed Procedural Language for

Checking Object-Oriented Programs of Program and Types. Technical Report.
[6] D. Große, U. Kühne, and R. Drechsler. 2006. HW/SWCo-Verification of Embedded

Systems using Bounded Model Checking. In GLSVLSI. 43–48.
[7] A. Horn, M. Tautschnig, C. Val, L. Liang, T. Melham, J. Grundy, and D. Kroening.

2013. Formal Co-Validation of Low-Level Hardware/Software Interfaces. In
FMCAD. 121–128.

[8] B.-Y. Huang, H. Zhang, P. Subramanyan, Y. Vizel, A. Gupta, and S. Malik. 2018.
Instruction-Level Abstraction (ILA): A Uniform Specification for System-on-Chip
(SoC) Verification. arXiv preprint arXiv:1801.01114 (2018).

[9] S. Krstic, J. Yang, D. W. Palmer, R. B. Osborne, and E. Talmor. 2014. Security of
SoC Firmware Load Protocols. In HOST. 70–75.

[10] A. Lal and S. Qadeer. 2014. Powering the Static Driver Verifier Using Corral. In
FSE. 202–212.

[11] A. Lal, S. Qadeer, and S. Lahiri. 2012. Corral : A Solver for Reachability Modulo
Theories. In CAV. 427–443.

[12] A. Lal and T. Reps. 2009. Reducing Concurrent Analysis Under a Context Bound
to Sequential Analysis. Formal Methods in System Design 35, 1 (2009), 73–93.

[13] J. Li, F. Xie, T. Ball, V. Levin, and C. Mcgarvey. 2010. An Automata-Theoretic
Approach to Hardware/Software Co-verification. In FASE. 248–262.

[14] S. Malik and P. Subramanyan. 2016. INVITED: Specification and Modeling for
Systems-on-Chip Security Verification. In DAC. 1–6.

[15] R. Mukherjee, M. Purandare, R. Polig, and D. Kroening. 2017. Formal Techniques
for Effective Co-verification of Hardware/Software Co-designs. In DAC. 1–6.

[16] M. D. Nguyen, M. Wedler, D. Stoffel, and W. Kunz. 2011. Formal Hardware/Soft-
ware Co-Verification by Interval Property Checking with Abstraction. In DAC.
510–515.

[17] Z. Rakamari and M. Emmi. 2014. SMACK : Decoupling Source Language Details.
In CAV. 106–113.

[18] J. H. Salim, R. Olsson, and A. Kuznetsov. 2001. Beyond Softnet. In ALS. 18–18.
[19] B. Schmidt, C. Villarraga, J. Bormann, D. Stoffel, M. Wedler, and W. Kunz. 2013.

A Computational Model for SAT-based Verification of Hardware-dependent Low-
Level Embedded System Software. In ASPDAC. 711–716.

[20] P. Subramanyan and D. Arora. 2015. Formal Verification of Taint-propagation
Security Properties in a Commercial SoC Design. In DATE. 1–2.

[21] P. Subramanyan, B.-Y. Huang, Y. Vizel, A. Gupta, and S. Malik. 2017. Template-
based Parameterized Synthesis of Uniform Instruction-Level Abstractions for
SoC Verification. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst (2017).

[22] P. Subramanyan, S. Malik, H. Khattri, A. Maiti, and J. Fung. 2016. Verifying
Information Flow Properties of Firmware using Symbolic Execution. In DATE.
1393–1398.


