
Unbounded Procedure Summaries from
Bounded Environments

Lauren Pick1, Grigory Fedyukovich2[0000−0003−1727−4043], and Aarti
Gupta1[0000−0001−6676−9400]

1 Princeton University, Princeton NJ, USA
2 Florida State University, Tallahassee, FL, USA

Abstract. Modular approaches to verifying interprocedural programs
involve learning summaries for individual procedures rather than veri-
fying a monolithic program. Modern approaches based on use of Sat-
isfiability Modulo Theory (SMT) solvers have made much progress in
this direction. However, it is still challenging to handle mutual recursion
and to derive adequate procedure summaries using scalable methods.
We propose a novel modular verification algorithm that addresses these
challenges by learning lemmas about the relationships among procedure
summaries and by using bounded environments in SMT queries. We have
implemented our algorithm in a tool called Clover and report on a de-
tailed evaluation that shows that it outperforms existing automated tools
on benchmark programs with mutual recursion while being competitive
on standard benchmarks.

Keywords: Program verification ·modular verification · procedure sum-
maries · bounded environments · CHC solvers.

1 Introduction

Automated techniques for modular reasoning about interprocedural recursive
programs have a rich history with various techniques spanning interprocedu-
ral dataflow analysis [56, 54], abstract interpretation [18], and software model
checking [6]. These techniques exploit the inherent modularity in a program by
deriving a summary for each procedure. Procedure summaries can be viewed as
specifications or interface contracts, where internal implementation details have
been abstracted away. In addition to aiding code understanding and mainte-
nance, they can be combined to verify the full program. A modular verification
approach that infers and composes procedure summaries may scale better than
a monolithic one that considers all procedure implementations at once.

A popular modern approach is to encode interprocedural program verifica-
tion problems as Constrained Horn Clauses (CHCs) [32], in which uninterpreted
predicates represent placeholders for procedure summaries. A CHC solver then
finds interpretations for these predicates such that these interpretations corre-
spond to summaries, enabling generation of procedure summaries.



2 L. Pick et al.

CHC solvers [32, 49, 42, 13, 39, 59, 27] query to backend SMT (Satisfiability
Modulo Theory) solvers [8] to find interpretations that make all CHC rules valid.
In addition to classic fixpoint computations, CHC solvers use model checking
techniques, e.g., counterexample guided abstraction refinement (CEGAR) [17],
interpolation [46], property-directed reachability (PDR) [12, 23], and guess-and-
check procedures [25]. They can thus find procedure summaries adequate for
verification but not necessarily least or greatest fixpoints. CHC-based verifiers
have been successfully applied to a range benchmark programs, but there remain
significant challenges in handling mutual recursion and in scalability.

We aim to address these challenges by leveraging program structure during
solving and learning relevant facts. Typical CHC-based verifiers may not main-
tain a program’s structure when encoding it into CHCs. In contrast, our method
uses the program call graph, which can be preserved easily in a CHC encoding,
to guide proof search.

For improving scalability, we ensure that the SMT queries in our method are
always bounded in size even when more of the program is explored. We wish
both to maintain scalability and to avoid learning over-specialized facts. We do
this by leveraging the call graph of the program, i.e., analyzing a procedure in
the context of a bounded number of levels in the call graph. Furthermore, such
a notion of a bounded environment enables us to refer to bounded call paths in
the program and learn special lemmas, called EC (Environment-Call) Lemmas,
to capture relationships among summaries of different procedures on such paths.
These lemmas are beneficial in handling mutual recursion.

Other techniques also trade off scalability and relevance by considering a
bounded number of levels in a call graph, e.g., in bounded context-sensitivity
or k-sensitive pointer/alias analysis [51], stratified inlining [44], and depth cut-
off [40] in program verification. However, other than Spacer [42], which is
restricted to k = 1 bounded environments, existing CHC solvers do not use
bounded environments to limit size of the SMT queries.

Summary of Contributions. This paper’s contributions are as follows:

– We propose a new CHC-solving method for generating procedure summaries
for recursive interprocedural programs (§6).

– We propose to handle mutual recursion by explicitly learning EC Lemmas
to capture relationships among different procedures on a call path (§5).

– We propose to use bounded environments (with bound k ≥ 1) (§4) to com-
pute individual procedure summaries. The SMT queries formulated in our
method are always bounded in size, thereby improving scalability.

– We have implemented our method in a tool called Clover and report on its
evaluation on several benchmark programs, along with a detailed comparison
against existing tools (§7).

To the best of our knowledge, EC Lemmas and bounded environments, the main
features of our algorithm, are novel for summary generation in modular verifiers.



Unbounded Procedure Summaries from Bounded Environments 3

main () { assert ¬(e(f() - 1)); }

f() {

return h(g());

}

g() {

x := havoc ();

return 2*x + 1;

}

h(x) {

return x + 1;

}

e (x) {

assume (x ≥ 0);

if (x = 0)

return true;

else return o(x - 1);

}

o (x) {

assume (x ≥ 1);

if (x = 1)

return true;

return e(x - 1);

}

(a)

main

e

o

f

g h

(b)

main

e

o

e

f

g h

(c)

Fig. 1: Example: (a) source code, (b) call graph, and (c) final derivation tree.

2 Motivating Example

We illustrate the main steps of our modular algorithm on the example program
shown in Fig. 1a. To keep our focus on intuition, we describe our algorithm in
terms of the program (CHC encodings are described later).

In Fig. 1a, e and o are defined mutually recursively and return true iff their
argument is respectively even or odd. Procedure f returns the (always-even)
result of calling h on g’s result, where g returns an arbitrary odd number and
h adds one to its input. The safety specification is that e(f()− 1) never holds.
We aim to infer over-approximate procedure summaries so that the assertion’s
truth follows from replacing procedure calls in main with these summaries.

We maintain context-insensitive over- and under-approximate summaries for
all procedures, each of which captures both pre- and post-conditions of its pro-
cedure. All over- (resp. under-) approximate summaries are initially > (resp.
⊥). At each step, we choose a target procedure p and its bounded environment,
then update p’s summaries based on the results of SMT queries on its over- or
under-approximate body. We also allow the bounded environment to be over-
or under-approximated, leading to four kinds of SMT queries. These queries let
us over- and under-approximate any procedure that is called before or after the
target, unlike Spacer [42] or Smash [31], which use two kinds of SMT queries.

Table 1 lists non-trivial verification steps that update various procedure sum-
maries. (Steps that do not update any summary are not listed.) The first column
lists the call path that is visited in each step, in which the last call is the current
target procedure whose summary is updated, and the call path is used to gener-
ate its bounded environment. The “Environment” (resp. “Target”) column shows
whether the bounded environment (resp. target) is over- or under-approximated.
The “Deductions” column lists deductions resulting from SMT queries in that
step. Note that formulas in this column (and in the remainder of this section)
are implicitly universally quantified over all variables and involve uninterpreted



4 L. Pick et al.

Table 1: Relevant steps to verify program in Fig. 1a.

Call graph path Environment Target Deductions (universally quantified)

1 main→ e Over Under x = 0 ∧ y = true ⇒ e(x, y)

2 main→ f→ h Over Under y = x+ 1⇒ h(x, y)

3 main→ e→ o Over Under x = 1 ∧ y = true ⇒ o(x, y)

4 main→ f→ g Over Under y mod 2 6= 0⇒ g(y)

5 main→ f→ g Under Over g(y)⇒ y mod 2 6= 0

6 main→ f→ h Under Over h(x, y)⇒ y = x+ 1

7 main→ f Over Under y mod 2 = 0⇒ f(y)

8 main→ f Under Over f(y)⇒ y mod 2 = 0

9
main → e →
o→ e

Over Over
(o(x, y)⇒ y ⇔ ((1 + x) mod 2 = 0))⇒
(e(m,n)⇒ n⇔ (m mod 2 = 0))

10 main→ e→ o Over Over
o(x, y)⇒ y ⇔ ((1 + x) mod 2 = 0))
e(x, y)⇒ x > 1 ∧ y ⇔ ((1 + x) mod 2 = 0)

predicates (e.g., h(x, y) in row 2). Except in row 9, all these formulas are implica-
tions that represent procedure summaries. Row 9 shows an implication between
two such formulas – this is an instance of an EC lemma (described later).

2.1 Using the Program Call Graph

Our algorithm chooses environment-target pairs based on the call graph of the
program, shown in Fig. 1b. It maintains explored paths through the call graph in
a data structure called a derivation tree, initially consisting of only one node that
represents entry procedure main. Fig. 1c shows the tree just before the algorithm
converges. The subset A of nodes available to be explored is also maintained,
and it is this subset that guides exploration in our algorithm.

To improve scalability, we use bounded environments from call paths to use
in SMT queries at each step. These bounded environments include bodies of the
ancestors of the target procedure, but only up to level k above the target in the
call graph. Ancestors at l > k above the target are soundly abstracted away so
that these environments capture at least the behaviors of the program before and
after the target procedure that may lead to a counterexample. Approximations
of these environments and of the bodies of target procedures help us learn new
facts about the targets. In this example, we use k = 2. When we target the last
call to e along path main→ e→ o→ e, main’s body will be abstracted.

2.2 Summary Updates using SMT Queries

We now consider the four SMT queries on a chosen environment-target pair
at each step. Suppose our algorithm has already considered the path to o on
row 3 (Table 1) and now chooses node g ∈ A in path main → f → g. Here, the
bounded environment includes calls to h (called by f) and e (called by main),
so we use their over-approximate summaries (both currently >). We under-
approximate the environment using summaries for h and e learned in rows 2
and 1, respectively. Over- and under-approximations of g are just its body with
local variables rewritten away (i.e., 2 * havoc() + 1), since it has no callees.



Unbounded Procedure Summaries from Bounded Environments 5

In checks that over-approximate the procedure body, we try to learn an in-
terpolant that proves the absence of a subset of counterexamples along this
path in the program. Since target procedure body is over-approximated, any
interpolant found that separates its encoding from the counterexample cap-
tured by the environment will be an over-approximate summary for the target
procedure, expressing a fact about all behaviors of the procedure. Such over-
approximate summaries allow us to prove safety in a modular way. In checks
that under-approximate the procedure body, we try to find (part of) a bug.
Since the target procedure body is under-approximated, the interpolant is in-
stead an under-approximate summary, describing behaviors the procedure may
exhibit. Under-approximate summaries allow us to construct counterexamples
in the case where the program is unsafe. Approximating the environment and
target procedure body allows us to keep queries small.

Both the over-over and under-under checks fail here, so no updates are made.
A weaker version of the under-under check is the over-under check, in which the
environment is now over-approximated. Because it is weaker, it may result in
learning under-approximate summaries that may not be necessary, since the
over-approximated environment may contain spurious counterexamples. When
our algorithm performs this check, it finds a path that goes through the over-
approximated environment and the under-approximation of g’s body and thus
augments g’s under-approximation (row 4).

A corresponding weaker version of the over-over check is the under-over
check, in which the environment is under-approximated. Because the under-
approximated environment may not capture all counterexamples, the learned
interpolant by itself could be too weak to prove safety. Our algorithm refines g’s
over-approximation with the interpolant learned in this query (row 5).

Note that these two weaker checks are crucial in our algorithm. Consider a
different main function that contains only assert(f() mod 2 = 0). To prove
safety, we would need to consider paths main→ f→ h and main→ f→ g, but
for these paths, both “stronger” checks fail. Paths through the derivation tree
must be paths through the call graph, so we would not consider the bodies of h
and g simultaneously; the “weaker” checks allow us to learn summary updates.

2.3 Explicit Induction and EC lemmas

To demonstrate the need for and use of induction and EC lemmas for handling
mutual recursion, we now consider row 9 in Table 1, where we perform an over-
over check for the final call to e in the call path. The current derivation tree has
the same structure as the final derivation tree, shown in Fig. 1c.
No induction. At this stage, our over-approximation for f precisely describes
all possible behaviors of f (rows 7, 8), but no interpolant can be learned because
the over-approximation > of o in the body of procedure e is too coarse. Without
using induction, we cannot make any assumptions about this call to o, and are
stuck with this coarse over-approximation. Even if we inlined the body of o, we
would similarly still have an overly-coarse over-approximation for e.
Induction with EC lemmas. We can instead try to use induction on the body
of e. Its over-approximated environment includes counterexample paths that we



6 L. Pick et al.

would like to prove spurious. Let formula φ(x, y) denote property e(x, y)⇒ (y ⇔
x mod 2 = 0). The consequent in this implication is generated by examining the
environment for e, i.e., the environment implies the negation of the consequent3.
Problems arise when trying to prove this property by induction because there is
no opportunity to apply the inductive hypothesis about e. When the else branch
is taken, facts about o are needed to finish the proof for φ(x, y) and x > 0.

If we were to inline o and assume inductive hypothesis that φ(x, y) holds for
the inner call to e, an inductive proof would succeed without using EC lemmas.
However, such an inlining approach can lead to poor scalability and precludes
inference of summaries (e.g., for o) that could be useful in other call paths.
EC lemmas. Our algorithm discovers additional lemmas in the form of implica-

tions over certain procedure summaries (§5). Let formula θ(m,n)
def
= o(m,n) ⇒

(n⇔ (1+m) mod 2 = 0). (Again, the consequent in this implication is generated

by examining the environment for o.) Let ψ(x, y,m, n)
def
= θ(m,n)⇒ φ(x, y), i.e.,

ψ is similar to φ property, but with an additional assumption θ about o.
Validity of ψ is proved by case analysis: ψ(1, true,m, n) is trivially true, and

the proof of ψ(x, y,m, n) for x > 0 works because of the assumption θ. Thus,
the formula ψ(x, y,m, n) is learned as an EC lemma (see row 9).

Now, we reconsider the call to o along call path main → e → o. The dis-
covered EC lemma allows us to prove formula θ valid by induction. This new
over-approximate fact for o is combined with the EC lemma allowing the algo-
rithm to learn e(x, y)⇒ (y ⇔ x mod 2 = 0). This step corresponds to row 10.

3 Preliminaries

In this section, we define our notion of a program, introduce CHC notions and
encodings, and define contexts and derivation trees.

Programs. A program P is a set of procedures with entry point main. Each
procedure p has vectors of input and output variables inp and outp and a body
bodyp , which may contain calls to other procedures or recursive calls to p. When
p is clear from context, we omit it in the variables’ subscripts, e.g., p(in, out).
We encode a program as a system of CHCs C.

Definition 1. A CHC C is an implicitly universally-quantified implication for-
mula in first-order logic with theories of the form body ⇒ head. Let R be a set
of uninterpreted predicates. The formula head may take either the form R(~y) for
R ∈ R or ⊥. Implications in which head =⊥ are called queries. The formula
body may take the form φ(~x) or φ(~x) ∧R0(~x0) ∧ . . . ∧Rn(~xn), where each Ri is
an uninterpreted predicate, and φ(~x) is a fully interpreted formula over ~x (i.e.,
it contains only theory predicates), which may contain all variables in each ~xi
and (if the head is of the form R(~y)) all variables in ~y.

3 Expressions such as x mod 2 = 0 can be generated by existentially quantifying local
variables and then performing quantifier elimination.



Unbounded Procedure Summaries from Bounded Environments 7

Body of main: CHC for main:

assert (¬(e(f() - 1))); f(x) ∧ e(x− 1, y) ∧ y ⇒⊥

Body of e: CHC for even:

assume (x ≥ 0);

if (x = 0) return true; x = 0⇒ e(x,>)
else return o(x - 1); x 6= 0 ∧ o(x− 1, y)⇒ e(x, y)

Unfolding e in main: Unfolding e in main (CHCs):

assume(f() − 1 ≥ 0); f(x) ∧ x− 1 = 0⇒⊥
if (f() - 1 = 0) return true; f(x) ∧ x− 1 ≥ 0 ∧ x− 1 6= 0 ∧ o(x− 2, y)⇒⊥
else return o(f() − 2);

Fig. 2: Unfoldings (and intermediate steps) of e in the body of main from Fig. 1a.
Program snippets are shown on the left and CHC encodings on the right.

A system of CHCs for a program can be generated by introducing an unin-
terpreted predicate per procedure and encoding the semantics of each procedure
using these and theory predicates. Each application R(~x) in the body of a CHC
corresponds to a procedure call to a procedure p, where ~y = (inp, outp). By anal-
ogy, we refer each such R as a callee of the predicate in the head of the CHC. For
each C ∈ C with uninterpreted predicate applications {R0(~x0), . . . , Rn(~xn)} in its
body, we let calleeC be a one-to-one mapping from 0, . . . , n to these applications.
This mapping allows us to distinguish between different applications of the same
predicate within the same CHC body, which we can understand as distinguishing
between different callsites of the same callee within a procedure. We abuse nota-
tion and denote the corresponding predicate for a procedure p ∈ P in encoding C
as p. We assume that in any application p(~y) in the head of a CHC in C, ~y is the
same vector of variables inp, outp. We let C.body and C.head denote the body
and head of CHC C respectively. We let locC denote fv(C.body) \ fv(C.head),
where for a formula F , fv(F ) denotes the free variables in F . We assume that all
C,C ′ ∈ C are such that locC ∩ locC′ = ∅ and let locp =

⋃
{locC | C.head = p(~y)}.

Note that disjunction
∨
i{bodyi | body i ⇒ p(ỹ) ∈ C} gives the semantics of bodyp.

We abuse notation to use bodyp to refer to this disjunction.

Corresponding CHC encodings are shown in Fig. 2 for demonstration. We
assume the use of an encoding that preserves the call graph structure of the
program in CHCs; i.e., there will be a CHC with head containing p with an
application of q in its body iff p calls q.

Definition 2 (Solution). A solution for a system of CHCs C is an interpreta-
tion M for uninterpreted predicates R that makes all CHCs in C valid.

A CHC encoding is such that if it has a solution, the original program is
safe. To remember facts learned during our algorithm, we maintain two sets of
first-order interpretations of R called O and U , functioning as mappings from
from procedures to their over- and under-approximate summaries, respectively.



8 L. Pick et al.

Definition 3 (Procedure Summaries). The over- (O) and under-approximate
(U) summaries are such that all non-query CHCs body ⇒ head ∈ C are valid
under O and that implication head ⇒ body is valid under U .

From Def. 3, it is clear that for all p, O[p] = > and U [p] =⊥ are valid summaries.
We use these as initial summaries in the algorithm presented in Sect. 6. Note
that when O is a solution for the system of CHCs C (i.e., O makes the query
CHCs valid). When U is such that a query CHC is not valid, then verification
fails and a counterexample exists.

Definition 4 (Approximation). Given a formula Π and an interpretation

M ∈ {O,U}, an approximation Π̂M is defined as follows:

Π̂M
def
= Π ∧

∧
p(in,out) in Π

M [p](in, out)

In addition to approximations, we can manipulate CHCs using renaming and
unfolding.

Definition 5 (Renaming). For a formula F containing variables ~x, F [~x 7→ ~y]
denotes the simultaneous renaming of variables ~x to ~y in F .

Definition 6 (Unfolding). Let C be a system of CHCs. Let C ∈ C be a CHC
R0(~x0) ∧ . . . ∧ Rn(~xn) ∧ φ(~x) ⇒ R(~y) where calleeC(i) = Ri(~xi) for each i ∈
{0, . . . , n}. There is an unfolding of calleeC(k) per CHC in C whose head is an
application of predicate Rk. For such a CHC body ⇒ Rk(~yk) ∈ C, the unfolding
of Rk(~xk) in C is given by the following:∧

i∈{0,...,n},i6=k

Ri(~xi) ∧ body [~yk 7→ ~xk] ∧ φ(~x)⇒ (~y)

An unfolding is essentially a one-level inlining of one CHC in another. Fig. 2
illustrates what an unfolding of CHCs correponds to on our motivating example,
where e is unfolded in main.

Definition 7 (Environment). For a CHC C of the form
∧
i∈{1..n}Ri(~xi) ∧

φ( ~x1, . . . , ~xn)⇒⊥, the environment for Rk( ~xk) is given by the following:∧
i∈{1..n},i6=k

Ri(~xi) ∧ φ( ~x1, . . . , ~xn)

By analogy with programs, the environment for Rk( ~xk) intuitively captures
the procedure calls in C before and after the procedure call for Rk( ~xk). Note that
if C is simply an encoding of a single procedure body, then the environment will
only capture the immediate callees of that procedure. On the other hand, if C is,
for example, an unfolding of the CHC representing main, then the environment
may contain any calls before and after the call corresponding to Rk( ~xk) in a
full but potentially spurious counterexample run of the program so long as they
have corresponding predicate applications in the unfolding C.



Unbounded Procedure Summaries from Bounded Environments 9

Definition 8 (Derivation Tree). A derivation tree D = 〈N,E〉 for system of
CHCs P is a tree with nodes N and edges E, where each n ∈ N is labeled with
uninterpreted predicate p = proc(n), a context query CHC ctx (n), and an index
i = idx (n) such that calleectx(n)(i) is an application of p.

Our algorithm uses the derivation tree is capture the already-explored un-
foldings starting from the encoding of main and to further guide exploration.
Each node n ∈ N represents a verification subtask, where the body of ctx (n) rep-
resents a set of (potentially spurious) counterexamples. The goal of each subtask
is to find a solution for the system of CHCs consisting of all non-query CHCs in
C with the query CHC ctx (n) and refine the over-approximation O[proc(n)] to
reflect the learned facts, or, if this cannot be done, to expand proc(n)’s under-
approximation U [proc(n)] to demonstrate (part of) a real counterexample.

A program’s initial derivation tree consists of only one node labeled with
procedure main and a query CHC from the system C. We maintain the invariant
that if s is the parent of t, then the ctx (t) must be able to be constructed
by unfolding a predicate in ctx (s). Furthermore, we require that the unfolded
predicate is one of the predicates that was added in the previous unfolding step
to get ctx (s). This notion of a derivation tree is similar to other CHC-based
work [49, 59], but our invariant restricts the way in which we can expand the
tree (i.e., the way in which we can unfold from main) – every derivation tree
path corresponds to a call graph path. We let e(n) refer to the environment for
calleectx(n)(idx (n)) in ctx (n).

For a derivation tree path d (of length |d|) whose final node is n, the full
context ctx (n) can be derived by unfolding all of proc(n)’s ancestors in the root
node’s context CHC along the corresponding call graph path for the original pro-
gram4. We also denote this full context as unfold(d, |d|). For k < |d|, unfold(d, k)
corresponds to unfolding the bodies of the last k − 1 procedure calls in d into
the body of proc(n)’s kth ancestor. Note that unfold(d, k) only unfolds ancestors
on the call path; any other of the ancestors remain represented as uninterpreted
predicates. For k ≥ |d|, unfold(d , k) = unfold(d, |d|). (See also Def. 9.)

4 Bounded Contexts and Environments

Here we define bounded contexts and environments. Our algorithm uses these
bounded versions in all SMT queries described later.

Definition 9 (Bounded context). For a given bound k, and a path d = n0 →
. . .→ nm−1 → nm in a derivation tree, a k-bounded context for nm is a formula

bctx (nm) over variables bvs
def
= fv(unfold(d, k)), defined as follows:

bctx (nm)
def
= unfold(d, k).body ∧ interface(d, k) ∧ summ(d , k)⇒⊥

Here, we also have the following:

– interface(d, k) is a formula over the inputs and outputs of the procedure for
node nm−k , k < m (or >, if k ≥ m)

4 We lift the ancestor relationship from nodes to their procedures.



10 L. Pick et al.

– summ(d, k) is a formula over the inputs and outputs of the other callees of
the k-bounded ancestors of proc(nm).

Note unfold(d , k) ignores any restrictions due to ancestors that are more
than k-levels above proc(nm). Such restrictions are expressed in interface(d, k),
which represents the interface between the k-bounded context and the rest of
the context above it. In practice, we compute interface(d, k) as QE(∃fv(e(nm))\
bvs.ê(nm)O,`), where QE denotes quantifier elimination. We approximate quan-
tifier elimination using the standard model-based projection technique [10]. We
can always use interface(d, k) = >, which treats ancestor procedures above
bound k as havocs; we found this choice ineffective in practice.

In what follows, we refer to unfold(d, k).body ∧ interface(d, k) as B(d, k) or
simply as B when d and k are clear. Again, we require that each bctx (nm) (and
thus each B(d, k)) can be computed from its parent nm−1’s bounded context via
a single unfolding. Given our choice of interface(d, k), using such a method to
compute a child node’s bounded context lets us avoid (approximate) quantifier
elimination on large formulas since only one procedure body’s variables need to
be eliminated when starting from the parent’s bounded context.

The summ(d, k) formula can be either > or a conjunction that adds approx-
imation constraints based on summaries for the other callee procedures. We use
bctx .body = B when summ(d, k) = >, or bctx .body = B̂M or bctx .body = b̂M
for M ∈ {O,U}, where b is the environment for calleectx(nm)(idx (nm)) (when
summ(d, k) is the conjunction from approximating with M).

Example 1. The figure shows a bounded context for predicate p with bound 2
for the derivation tree path shown with solid edges. Ancestor predicates q1, q2
are unfolded in unfold(d, 2), and summ(d, 2) approximates callees r0, r1, r2:

main

q4

q3

q2 r2

q1
r1
r0

p

interface(d, 2)

unfold(d, 2)

For scalability, our algorithm (§6) considers verification subtasks with the bounded
context of a given procedure. Our algorithm’ queries use bounded environments,
which can be computed from bounded contexts.

Definition 10 (Bounded environment). For a node n, its bounded environ-
ment benv(n) is the environment for the predicate calleectx(n)(idx (n)) in ctx (n).

We define a bounded parent relationship between nodes s, t ∈ N , where s→ t
is not necessarily in E, but where ctx (s) has proc(t) as a callee.

Definition 11 (Bounded parent). A node s is a bounded parent of node t in
derivation tree D, denoted s ∈ Bparent(t,D), iff there is some index i such that
calleectx(s)(i) is an application of proc(t) and bt ⇔ next(bs, proc(t), i), where bt
and bs are bodies of the bounded contexts of s and t.



Unbounded Procedure Summaries from Bounded Environments 11

Note that the parent of a node n is always a bounded parent for n, and that
n may have several bounded parents because the approximation of different full
environments may lead to the same bounded environment. We use bounded par-
ents in our algorithm (§6) to avoid considering redundant verification subtasks.

5 EC lemmas

We also learn a set L of EC lemmas, which are implications capturing assump-
tions under which a procedure has a particular over-approximation.

Definition 12 (Environment-Call (EC) Lemmas). Let proc(n) = p for
some node n in a derivation tree. An EC lemma for p, where n has ancestors
with procedures {qi} along a derivation tree path, is of the following form:

∀fv(Si) ∪ in ∪ out .
∧
i

Si ⇒ (p(in, out)⇒ prop)

Here, prop is a formula with fv(prop) ⊆ in ∪ out, each Si is of the form
qi(ini, out i) ⇒ propi, where qi is some ancestor’s uninterpreted predicate, and
propi is a formula with fv(propi) ⊆ ini ∪ out i.

Intuitively, an EC lemma allows us to learn that prop is an over-approximation
of procedure p under the assumptions {Si} about its ancestors with procedures
{qi}. Each Si itself is an assumption that propi over-approximates qi. These
ancestors are in target p’s environment, so we call these formulas Environment-
Call (EC) Lemmas. In practice, we learn EC lemmas involving ancestors whose
procedures are callees of p to help set up induction for mutual recursion.

6 Modular Verification Algorithm

We now describe our modular verification algorithm. We first outline the top-
level procedure (§6.1) based on iteratively processing nodes in the derivation
tree. Then we describe how each node is processed using SMT queries (§6.2),
the order in which SMT queries are performed (§6.3), and how induction is
performed and how EC lemmas are learned and used (§6.4). We present the
correctness and the progress property of our algorithm and discuss limitations
(§6.5). (Additional heuristics are described in Appendix B.)

6.1 Algorithm Outline

Our algorithm constructs a derivation tree based on the call graph of the pro-
gram, which is used to guide the selection of CHCs to explore. We achieve scal-
ability by considering only bounded environments in all our SMT queries. We
present these queries as part of proof rules that capture the major steps of our
algorithm. The use of induction and EC lemmas enables handling of mutually
recursive programs. The state during verification is captured by proof (sub)goals.

Definition 13 (Proof (sub)Goal). For system of CHCs C, derivation tree
D = 〈N,E〉, a subset A ⊆ N of available nodes, over- and under-approximate
summary maps O and U , a set of EC lemmas L, and Res ∈ {>,⊥}, a proof
(sub)subgoal is denoted D,A,O,U, L, C ` Res.



12 L. Pick et al.

Algorithm 1 Modular Verification Procedure

1: procedure Verify( )
2: N ← {n} with proc(n) = main
3: Goal ← 〈N, ∅〉, N,O,U, ∅, C ` Res
4: while Goal .A 6= ∅ or summaries are insufficient do
5: Goal ← ProcessNode(n,Goal) for n ∈ Goal .A

6: return Result(Goal)

Main loop. Alg. 1 shows the top-level procedure for our method. The Ver-
ify procedure constructs an initial proof goal containing an initial derivation
tree, initial summary maps, and empty sets of lemmas. Initially all nodes in the
derivation tree are available, i.e., they are in A. It then iteratively chooses an
available node and tries to update its summaries (using routine ProcessNode),
thereby updating the current goal. The loop terminates when no more nodes are
available or when the current summaries are sufficient to prove/disprove safety.
Result returns safe if the summaries are sufficient for proving safety, unsafe if
they are sufficient for disproving safety, or unknown otherwise.

Choice of procedures and environments. ProcessNode can be viewed as mak-
ing queries on an environment-procedure pair. If the algorithm chooses node n,
then the pair consists of benv(n) and the procedure corresponding to proc(n).
Note that the call graph guides the choice of the target since all paths in D corre-
spond to call graph paths, and the bounded environment, which is computed by
unfolding the k-bounded ancestors of the target. Importantly, the chosen node
must be in A; this choice can be heuristic as long as no node in A is starved.

Summary Inference. Our algorithm learns new summaries for target predicates
by applying four proof rules. For ease of exposition, we first describe these proof
rules without induction (next subsection), followed by rules for induction and EC
lemma. While these proof rules resemble those in Smash [31], our queries involve
k-bounded environments with k ≥ 1 and our summaries are first-order theory for-
mulas; in Smash, queries use bounded environments with k = 1 and summaries
are pre-/post-condition pairs over predicate abstractions. Additional proof rules
specify the removal and addition of nodes in D and A. Appendix Aprovides the
complete set of rules, omitted here due to space constraints.

6.2 Proof Rules without Induction

The algorithm updates the current Goal whenever a proof rule can be applied.
Note that we are building a proof tree from the bottom-up, so an application of
a rule here involves matching the conclusion to the current Goal . We abbreviate
some common premises with names as shown in Fig. 3. For a node n ∈ A, let p be
its procedure and b be its bounded environment. Also let body be the renaming
of the body of p. The distinct feature of our algorithm is that the proof rules
use only bounded environments.

The SAFE and UNSAFE rules (Fig. 4) allow us to conclude the safety or find
a counterexample of the original program P using over- or under-approximate



Unbounded Procedure Summaries from Bounded Environments 13

AVAIL n ∈ A PROC p = proc(n) BENV b = benv(n) IDX i = idx (n)

BODY body = bodyp [in, out 7→ fv(calleebctx(n)(i)), locp 7→ fresh(locp)]
PROP hyp = ∀in, out ∈ fv(body).p(in, out)⇒ indProp
IND indProp = ∀vars(ψ) \ (inp ∪ outp).I

Fig. 3: Abbreviated premises, where fresh(~x) returns a vector ~x′ of fresh variables.

SAFE
O is a solution for C
D,A,O,U, L, C `⊥

UNSAFE
∃body ⇒⊥∈ C.b̂odyU 6⇒⊥
D,A,O,U, L, C ` >

OVER-OVER (OO)

AVAIL PROC BENV BODY

b̂odyO ⇒ I I⇒ ¬b̂O O′ = O[p 7→ O[p] ∧ I] D,A,O′, U, L, C ` Res

D,A,O,U, L, C ` Res

UNDER-UNDER (UU)

AVAIL PROC BENV IDX body ⇒ p(in, out) ∈ C
π = body [in, out 7→ fv(calleebctx(n)(i)), locC 7→ fresh(locC)]

π̂U ∧ b̂U 6⇒⊥ U ′ = U [p 7→ U [p] ∨ ∃locC .π] D,A,O,U ′, L, C ` Res

D,A,O,U, L, C ` Res

Fig. 4: Proof rules without induction.

summaries, respectively. In the latter case, the underapproximate summaries
demonstrate that there is no solution for set of CHCs C. If either rule is applicable
to the proof goal, we have found sufficient summaries.

The OVER-OVER (OO) rule (Fig. 4) can be used to update a predicate p’s
over-approximate summary. If the conjunction of over-approximation of bodyp
and the bounded environment is unsatisfiable, then we can find an interpolant
I and use it to refine the map O for p. The UNDER-OVER (UO) rule (Ap-
pendix A)is similar, except it uses an under-approximation of the environment.

Example 2. Recall the example in Fig. 1a. Row 5 in Table 1 shows the over-
approximate summary y mod 2 6= 0 for procedure g obtained as a result of UO.

The UNDER-UNDER (UU) rule (Fig. 4) can be used to update predicate
p’s under-approximation. Let π be the body of a CHC whose head is p(~y),
where variables ~y have been renamed to the variables that p is applied to in
calleebctx(n)(i) and the rest of the variables have been renamed to fresh ones. If
the conjunction of the under-approximations of π and b is satisfiable, then we
can update p’s under-approximate summary U with ∃locC .π.

If the environment were unbounded, then this check being satisfiable would
actually indicate a concrete counterexample, since the context would be an un-
folding of a query CHC and UNSAFE would hold, but since our environment is
bounded, the context may not be an unfolding of the query CHC, since it may be



14 L. Pick et al.

Algorithm 2 Procedure to learn from a node.

1: procedure ProcessNode(n, Goal)
2: for C ∈ C with C.head = proc(n)(in, out) do
3: if OU(n, C, Goal) then UU(n, C, Goal)

4: if no UU call above returned true then
5: if ¬OO(n, Goal) then UO(n, Goal)

6: if no UU nor OO call above returned true then AddNodes(n,Goal)

7: updated ← any summaries were updated above
8: Processed(n, updated ,Goal)
9: return Goal

missing some constraints. We can only conclude that there might be a counterex-
ample that involves unfolding this application of p. We want to remember the
part that goes through p so that we do not need to unfold it in the full context
and thus add ∃locp.π to U [p]. The OVER-UNDER (OU) rule (Appendix A) is
the same as UU but over-approximates the bounded environment.

Example 3. Recall the example in Fig. 1a. Row 7 in Table 1 shows the under-
approximate summary y mod 2 = 0 for procedure f obtained as a result of OU.

6.3 Ordering and Conditions for SMT Queries

The way in which proof rules are applied to process a node is shown in Alg. 2. In
the pseudocode, OO, UO, OU, and UU refer to attempts to apply the correspond-
ing rules (e.g., OO(n,Goal) tries to apply the OO rule with n ∈ A as the AVAIL
premise). Rules that update under-approximations (UU, OU) are applied per
CHC with head proc(n)5, whereas rules that update over-approximations (OO,
UO) are applied to the disjunction of all such CHCs’ bodies. They return true
upon successful application (and update Goal), or false otherwise.

If we have neither found any counterexamples through the bounded environ-
ment (i.e., all UU attempts failed), nor eliminated the bounded verification sub-
task (i.e., the OO attempt failed), then we try to derive new facts by adding new
available nodes for the callees of proc(n). Procedure AddNodes adds these nodes
while avoiding adding redundant nodes to D (more details in Appendix C).If any
summary updates were made for proc(n), then the procedure Processed (line
8) will add the bounded parents of n to A, so that new information can be
propagated to the parents’ summaries. It then removes n from A.

6.4 Proof Rules for Induction

For programs with unbounded recursion, the OO and UO rules (Fig. 4) are
insufficient for proving safety; we therefore extend the rules with induction where
the goal is to show that the paths in the approximated bounded environment are
spurious. For ease of exposition, we first discuss an extension of OO that does
not use EC lemmas and then discuss one that does. (Corresponding extensions
for rule UO are similar and can be found in Appendix A.)

5 In the implementation, multiple checks can be done together.



Unbounded Procedure Summaries from Bounded Environments 15

OVER-OVER-IND (OOI)

AVAIL PROC BENV BODY IND PROP

b̂odyO ∧ hyp ⇒ I I⇒ ¬b̂O O′ = O[p 7→ O[p] ∧ I] D,A,O′, U, L, C ` Res

D,A,O,U, L, C ` Res

OVER-OVER-IND-LEMMAS (OOIL)

AVAIL PROC BENV BODY IND PROP

S = assumps(n,D) b̂odyO ∧ Inst(L) ∧ Inst(S) ∧ hyp ⇒ I I⇒ ¬b̂O
L′ = L ∪ {∀vars(S), in, out .

∧
S ⇒ (p(in, out)⇒ I)} D,A,O,U, L′, C ` Res

D,A,O,U, L, C ` Res

Fig. 5: Proof rules for induction.

Without EC lemmas. The rule OVER-OVER-IND (OOI) in Fig. 5 is a replace-
ment for OO that uses induction to find new over-approximate facts. The first
five premises are the same as in rule OO. As before, we aim to learn a refinement
I for the over-approximate summary of p, where I⇒ ¬b̂O.

The base case is that I over-approximates p for all CHCs that do not have
any applications of p in their body, i.e. for all body ⇒ p(~y) ∈ C where p does not
occur in body , body ⇒ I. For the inductive step, we consider such CHCs where
body contains calls to P . The inductive hypothesis, which is captured by formula
hyp, is that I over-approximates all recursive calls to p inside these bodies. We
check both the base case and the inductive step at once with the implication

b̂odyO ∧ hyp ⇒ I. If the induction succeeds, then we strengthen O[p] with I.

With EC lemmas. The OVER-OVER-IND-LEMMAS (OOIL) proves weaker
properties than OOIL by doing induction under certain assumptions. These
properties are EC lemmas.

OOIL makes assumptions for current node n and performs induction using
these assumptions and known EC lemmas. In particular, assumps(n,D) is a
set of assumptions {ai | 1 ≤ i ≤ j} for some j ≥ 0. When j = 0, the set of
assumptions is empty, and OOIL has the same effect as applying OOI. Each
assumption ai is of the following form:

qi(inqi , outqi)⇒ ∀vars(bi) \ inqi ∪ outqi .¬bi ,
where qi is the predicate for an ancestor of n and qi is called by target p in some
CHC. The ancestor node’s bounded environment is bi. Intuitively, each assump-
tion is that the ancestor’s bounded verification subtask has been discharged.

The Inst function takes a set of formulas, conjoins them, and replaces each
application of an uninterpreted predicate with its interpretation in O. When
applied to a set of assumptions S, it has an additional step that precedes the
others: it first adds a conjunct ai[inqi 7→ x, outqi 7→ y] for each predicate appli-
cation qi(x, y) in body to each each element ai ∈ S. This corresponds to applying
the assumption in the induction hypothesis. If induction succeeds, we learn the
EC lemma that I over-approximates p(in, out) under the assumptions S.



16 L. Pick et al.

Example 4. In §2, when we chose procedure e and proved an EC lemma, we used
j = 1 to make an assumption about its caller o.

Appendix A contains additional rules that allow lemmas to be simplified.
There may be multiple attempts at applying the OOIL proof rule with different
j values. For scalability, we require that j not exceed the bound k used for
bounded contexts, limiting the number of these attempts.

6.5 Correctness and Progress

The correctness and progress claims for Alg. 1 are stated below.

Theorem 1 (Correctness). Alg. 1 returns safe (resp. unsafe) only if the pro-
gram with entry point main never violates the assertion (resp. a path in main

violates the assertion).

Proof. (Sketch) The CHC encoding is such that there is solution to the system
of CHCs C iff the program does not violate the assertion. As a result, if the
over-approximate summaries O constitute a solution and proof rule SAFE can
be applied, the program does not violate the assertion. The under-approximate
summaries U in every proof subgoal are guaranteed to be such that for any p ∈ C,
U [p] implies any over-approximation O[p]. If UNSAFE can be applied, then the
under-approximate summaries U imply that there is no possible solution O. The
summaries in U can be used to reconstruct a counterexample path through the
original program in this case.

Theorem 2 (Progress). Processing a node in the derivation tree leads to at
least one new (non-redundant) query.

Proof. (Sketch) Initially, no nodes in A have been processed, and after a node is
processed, it is removed from the derivation tree. The only way that a node can
be processed and not have a new query made about it is if an already-processed
node is re-added to A and this node does not have a new query that can be made
about it. The AddNodes and MakeUnavailable procedures are the only ones
that add nodes to A. The AddNodes procedure, by definition, will only add a
node to A if there is a new query that can be made about it. MakeUnavailable
only adds bounded parents of nodes whose summaries were updated. For any
such bounded parent, at least one approximation of its procedure’s body must
be different than it was the last time the bounded parent was processed, since
one of its callee’s summaries was updated.

Limitations. If the underlying solver is unable to find appropriate interpolants,
the algorithm may generate new queries indefinitely. (The underlying problem
is undecidable, so this is not unusual for modular verifiers.) Note, however, that
because environments are bounded, each query’s size is restricted.



Unbounded Procedure Summaries from Bounded Environments 17

7 Evaluation and Results

We implemented our algorithm in a tool called Clover on top of CHC solver
FreqHorn [25] and SMT solver Z3 [50]. We evaluated Clover and compared
it with existing CHC-based tools on three sets of benchmarks (described later)
that comprise standard collections and some new examples that include mutual
recursion. We aimed to answer the following questions in our evaluation:

– Is Clover able to solve standard benchmarks?
– Is Clover more effective than other tools at handling mutual recursion?
– To what extent do EC lemmas help Clover solve benchmarks?
– How does the bound k for environments affect Clover’s performance?

We compared Clover against tools entered in the annual CHC-solver com-
petition (CHC-Comp) in 2019: Spacer [42], based on PDR [12]; Eldarica [39],
based on CEGAR [17]; HoIce [13], based on ICE [29]; PCSat [55]; and Ulti-
mate Unihorn [22], based on trace abstraction [35].

For all experiments, we used a timeout of 10 minutes (as used in CHC-Comp).
We ran Clover on a MacBook Pro, with a 2.7GHz Intel Core i5 processor and
8GB RAM, but the other tools were run using StarExec [58]. Clover was not
run on StarExec due to difficulties with setting up the tool with StarExec6.

7.1 Description of Benchmarks

To evaluate Clover, we gathered three sets of varied benchmarks. The first
set’s benchmarks range from ˜10-7200 lines, and the latter two sets have smaller
but nontrivial code (˜100 lines). The latter two sets were manually encoded into
CHCs, and we plan to contribute them to CHC-Comp. Additional details follow.

CHC-Comp. We selected 101 benchmarks from CHC-Comp [14] that were con-
tributed by HoIce and PCSat, since their encodings preserve procedure calls
and feature nonlinear CHCs (which can represent procedures with multiple
callees per control-flow path)7.

Real-World. Two families of benchmarks are based on real-world code whose cor-
rectness has security implications. The Montgomery benchmarks involve prop-
erties about the sum of Montgomery representations [41] of concrete numbers.
The s2n benchmarks are based on Amazon Web Services’ s2n library [3] and
involve arrays of unbounded length (not handled by the tool PCSat).

Mutual Recursion. This set of benchmarks containing mutual recursion was
created because few CHC-Comp benchmarks exhibit mutual recursion, likely
due to lack of tool support. Even-Odd benchmarks involve various properties of
e and o (defined as in §2) and extensions that handle negative inputs. Another
benchmark family is based on the Hofstadter Figure-Figure sequence [38]. Mod

6 We expect that our platform is less performant than the StarExec platform
7 We did not compare against FreqHorn since it cannot handle nonlinear CHCs.



18 L. Pick et al.

Table 2: Number of Benchmarks Solved by Clover and Competing Tools.
Clover

Spacer
Elda-
rica

HoIce PCSat
Ulti-
mate
Auto-
mizer

k=2 k=9 k=10 k=10, no
EC lem-
mas

CHC-Comp (101) 80 77 77 72 93 94 92 81 76
Montgomery (12) 0 11 12 12 5 12 12 3 11
s2n (4) 3 4 4 4 3 0 2 N/A 4
Even-Odd (24) 24 24 24 0 12 0 9 0 0
Hofstadter (5) 4 5 4 5 1 4 5 5 0
Mod n (15) 0 15 15 0 0 0 0 0 0
Combination (2) 0 2 2 0 0 0 0 0 0
Total Solved (163) 111 138 138 93 114 110 120 89 91

10 100 600

10

100

600

Runtime (s) of competing tool

R
u
n
ti
m
e
(s
)
of

C
l
o
v
e
r
.

Spacer Eldarica HoIce PCSat Ultimate Unihorn

10 100 600

10

100

600

Runtime (s) of competing tool
R
u
n
ti
m
e
(s
)
of

C
l
o
v
e
r
.

Fig. 6: Timing results for the Real World (left) and Mutual Recursion (right) bench-
marks. Points below the diagonal line are those for which Clover outperforms the
corresponding tool. Points on the right edge indicate timeouts of the other tool.

n benchmarks consider mutually-recursive encodings of λx.x mod n = 0 for n =
3, 4, 5. These serve as proxies for recursive descent parsers, which may have deep
instances of mutual recursion. We could not directly conduct experiments on
such parsers, since existing front-ends [33, 21] cannot handle them. Combination
benchmarks result from combining Montgomery and Even-Odd benchmarks.

7.2 Results and Discussion

Table 2 gives a summary of results. It reports the number of benchmarks solved
for each benchmark set by Clover with bound parameter k being 2, 9, and
10 (the best-performing bounds for the three benchmark sets) and by the other
tools. It also reports results for Clover with k = 10 but without EC lemmas.
Fig. 6 show the timing results for other tools against Clover for Real-World
and Mutual Recursion benchmarks.

Efficacy on standard benchmarks. As can be seen in Table 2, Clover
performs comparably with other tools on the CHC-Comp benchmarks, and sig-
nificantly outperforms them on the other two sets of benchmarks. We expect
that we can further improve the performance of Clover with additional opti-
mizations and heuristics, such as those that improve the quality of interpolants.

Efficacy on Mutual Recursion benchmarks. Table 2 and Fig. 6 demon-
strate that Clover is more effective and often more efficient at solving Mu-
tual Recursion benchmarks than the other tools. Few tools are able to handle



Unbounded Procedure Summaries from Bounded Environments 19

1 2 3 4 5 6 7 8 910

50

100

Bound

%
o
f

b
en

ch
m

a
rk

s
so

lv
ed

CHC-Comp Real-World Mutual Recursion

2 3 4 5 6 7 8 9 10
4.2

4.4

4.6

Bound

R
u
n
ti

m
e

(s
)

o
f
C
l
o
v
e
r

5 6 7 8 9 10

40

50

60

Bound

R
u
n
ti

m
e

(s
)

o
f
C
l
o
v
e
r

Fig. 7: Left: Percentage of benchmarks Clover solves with different bounds on differ-
ent benchmark categories; Center, Right: Timing results on a representative bench-
mark from CHC-Comp and Mutual Recursion, respectively.

the Even-Odd benchmarks, which Clover (with EC lemmas) can solve at any
bound value greater than 2. Other tools are unable to solve even half of the
Mutual Recursion benchmarks, reinforcing that Clover is a useful addition to
existing tools that enables handling of mutual recursion as a first class concern.

Usefulness of EC lemmas. Running Clover with and without EC lemmas
using bound k = 10 revealed their usefulness for many of the benchmarks. In
particular, the columns for bound 10 with and without EC lemmas in Table 2
show that EC lemmas are needed to allow Clover to solve several CHC-Comp
benchmarks and all the Mutual Recursion benchmarks except the Hofstadter
ones. These results indicate that Clover’s ability to outperform other tools on
the these benchmarks relies on EC lemmas.

Comparison of Different Bounds. Fig. 7 (left) shows the number of bench-
marks successfully solved by Clover in each set as the bound value is varied.
Running Clover with too small a bound impedes its ability to prove the prop-
erty or find a counterexample, since the environment is unable to capture suffi-
cient information.On the other hand, running Clover with too large a bound
affects the runtime negatively. This effect can be observed in Fig. 7 center and
right, which show how the runtime varies with the bound for a representative
benchmark from the CHC-Comp and Mutual Recursion sets, respectively. Note
that at a bound k < 2, Clover does not solve the given CHC-Comp benchmark,
and at k < 5, Clover does not solve the given Mutual Recursion benchmark.
These results confirm the expected trade-off between scalability and environ-
ment relevance. The appropriate trade-off – i.e., the best bound parameter to
use – depends on the type of program and property. As seen in Fig. 7 (left), the
bound values that lead to the most benchmarks being solved differ per bench-
mark set. Rather than having a fixed bound, or no bound at all, the ability to
choose the bound parameter in Clover allows the best trade-off for a particular
set of programs. If the best bound is not known a priori, bound parameters of
increasing size can be determined empirically on representative programs.

We also report data on how the number and solving time for each type of
SMT query varies with the bound k, averaged over benchmarks in each set.
Fig. 8 shows the statistics on the average number of queries of each type (top),
on the average time taken to solve the query (bottom). These data are from all
runs for which Clover is successful and gives an answer of safe or unsafe.



20 L. Pick et al.

1 2 3 4 5 6 7 8 910

10

20

Bound

A
v
g
.

#
o
f

O
O

q
u
er

ie
s

1 2 3 4 5 6 7 8 910

20

40

60

Bound

A
v
g
.

#
o
f

O
U

q
u
er

ie
s

1 2 3 4 5 6 7 8 910
0

10

20

Bound

A
v
g
.

#
o
f

U
U

q
u
er

ie
s

1 2 3 4 5 6 7 8 910

10

20

Bound

A
v
g
.

#
o
f

U
O

q
u
er

ie
s

1 2 3 4 5 6 7 8 910
0

0.2

0.4

0.6

0.8

1

BoundA
v
g
.

ti
m

e
(s

)
o
f

O
O

q
u
er

ie
s

CHC-Comp Real-World Mutual Recursion

1 2 3 4 5 6 7 8 910

2

4

·10−2

BoundA
v
g
.

ti
m

e
(s

)
o
f

O
U

q
u
er

ie
s

1 2 3 4 5 6 7 8 910
0

0.5

1

1.5

·10−2

BoundA
v
g
.

ti
m

e
(s

)
o
f

U
U

q
u
er

ie
s

1 2 3 4 5 6 7 8 910
0

0.2

0.4

BoundA
v
g
.

ti
m

e
(s

)
o
f

U
O

q
u
er

ie
s

Fig. 8: Average statistics (top four plots: number, bottom four: solve times) of SMT
queries made by Clover as the bound changes (for successful runs).

We can use these data along with the data in Fig. 7 to (roughly) compare
an approach restricted to k = 1 with an approach that allows k > 1 in bounded
environments. Note that Clover differs significantly in other respects from tools
like Spacer and Smash that enforce k = 1 in environments8, making it difficult
to perform controlled experiments to compare this aspect alone.

Note from Fig. 8 that for the CHC-Comp and Mutual Recursion sets of
benchmarks, the number of SMT queries of all types is lower at k > 1 in com-
parison to k = 1. This result indicates that benchmarks that can be solved with
k > 1 require on average fewer updates to procedure summaries than are needed
on average for benchmarks that can be solved with k = 1, confirming the benefit
of improved relevance when going beyond a restricted environment with k = 1.
The data for the Real-World does not follow this trend because a higher bound
(k = 10) is needed to solve the examples (as can be seen in Fig. 7).

From Fig. 8, it is clear that the OU and UU queries are cheaper than OO and
UO queries, which is expected since the latter require over-approximating the
target’s body. Unsurprisingly, OO queries are the most expensive. Average times
of non-OO queries for k > 1 are lower than (or about the same as) average times
for k = 1 for the CHC-Comp and Mutual Recursion sets but continue to increase
with k in the Real-World set because solving the Montgomery benchmarks relies
on propagating under-approximations from increasingly large call graph depths.

8 Related Work

There is a large body of existing work that is related in terms of CHC solving,
program analysis, and specification inference.

8 Unlike Spacer it does not use PDR to derive invariants, and unlike Smash it is not
limited to predicate abstractions.



Unbounded Procedure Summaries from Bounded Environments 21

8.1 CHC-solving for Program Verification

Program verification problems, including modular verification, can be encoded
into systems of CHCs [32, 49, 33, 21]. There are many existing CHC-solver based
tools [13, 42, 48, 59, 26, 15, 32, 39, 61] that can solve such systems. Clover has
many algorithmic differences from these efforts.

Most existing tools do not place any bounds on the environments (if they are
used at all). This includes approaches that unfold a relation at each step [48, 59]
and CEGAR-based approaches [32, 39] where counterexamples can be viewed as
environments. These tools face scalability issues as environments grow; Duality
makes larger interpolation queries as more relations are unfolded [49], and El-
darica makes larger tree/disjunctive interpolation queries for counterexamples
that involve more procedures [39].

Spacer [42], which is based on PDR [12, 23], considers bounded environments
but only allows a bound of one (k = 1). The difference between Duality and a
PDR-like approach has been referred to as the variable elimination trade-off [48],
where eliminating too many variables can lead to over-specialization of learned
facts (PDR) and eliminating no variables can lead to larger subgoals (Duality).
Our parameterizable bounded environments enable a trade-off between the two.
Another significant difference between Spacer and Clover is that the former
uses PDR-style bounded assertion maps to perform induction, whereas we use
induction explicitly and derive EC lemmas. Duality may also implicitly use
assumptions, and some other tools [13, 59] learn lemmas with implications, but
none of them learn lemmas in the form of EC lemmas.

HoIce [13], FreqHorn [26], and LinearArbitrary [61] are based on
guessing summaries and do not have any notion of environments similar to ours.
All of these approaches have trade-offs between scalability of the search space
and expressivity of guessed summaries.

8.2 Program Analysis and Verification

Techniques such as abstract interpretation [18, 19, 24] and interprocedural dataflow
analysis [56, 54] can infer procedure summaries and perform modular verification.
These approaches often use fixed abstractions and path-insensitive reasoning,
which may result in over-approximations that are too coarse for verification.

The software model checker Bebop [6] in SLAM [7] extended interprocedural
dataflow analysis with path sensitivity. Related model checkers include a direct
precursor to Duality [47] and other adaptations of PDR to software [37, 16]. Of
these, GPDR [37] is similar to Spacer, but lacks modular reasoning and under-
approximations. Specification inference (including Houdini-style learning [28])
has also been used to enable modular verification of relational programs [43, 52].

Another tool Smash [31] is closely related to our work. It uses over- and
under-approximate procedure summaries, and alternation between them. How-
ever, it does not have any notion of a parameterizable bounded environment.
The environment for a procedure call is expressed as a pair of a precondition
and a postcondition, where the former is an under-approximation of the pro-
gram execution preceding the call, and the latter is an over-approximation of



22 L. Pick et al.

the program execution following the call. These environments are thus bounded
environments with a fixed bound of 1. More importantly, procedure summaries
in Smash are comprised of predicate abstractions. In contrast, our summaries
are richer formulas in first-order logic theories. We do not rely on predicate
abstraction unlike Smash and other related tools [31, 30, 34].

8.3 Specification Inference

Existing work on specification inference is also relevant. Many past efforts [2, 4,
9, 53, 57, 60] focused on learning coarse interface specifications or rules specifying
the correct usage of library API calls, rather than learning logical approxima-
tions of procedures. Other specification inference techniques learn procedure
summaries for library API procedures by using abstract interpretation [36, 19]
or learn information-flow properties about the procedures [45, 52]. Other related
work [1] infers maximal specifications for procedures with unavailable bodies,
and other techniques assume an angelic environment setting [11, 20] – specifica-
tions inferred by these techniques may not be valid over-approximations. Another
technique [5] also uses interpolation to infer over-approximate summaries but is
not applicable to recursive programs.

9 Conclusions

We have presented a modular algorithm for generating procedure summaries and
safety verification of interprocedural programs that addresses the challenges of
handling mutual recursion and scalability of SMT queries. The novel features of
our algorithm are use of bounded environments to limit the size of SMT queries,
and a mechanism for performing induction under assumptions that uses these
bounded environments to learn EC lemmas that capture relationships between
summaries of procedures on call paths in the program.

We have implemented our algorithm in a CHC-based tool called Clover.
An evaluation demonstrates that Clover is competitive with state-of-the-art
tools on benchmarks from CHC-Comp and based on real-world examples, and
is especially effective at solving benchmarks containing mutual recursion. Our
algorithm can also be combined with existing invariant-generation techniques to
successfully solve benchmarks with unbounded arrays.

Acknowledgements This material is based upon work supported by the Na-
tional Science Foundation Graduate Research Fellowship Program under Grant
No. DGE-1656466. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily re-
flect the views of the National Science Foundation. This work was supported in
part by the National Science Foundation award FMitF 1837030.

References

1. Albarghouthi, A., Dillig, I., Gurfinkel, A.: Maximal specification synthesis. In:
POPL. pp. 789–801. ACM (2016)



Unbounded Procedure Summaries from Bounded Environments 23

2. Alur, R., Cerný, P., Madhusudan, P., Nam, W.: Synthesis of interface specifications
for java classes. In: POPL. pp. 98–109. ACM (2005)

3. Amazon Web Services: https://github.com/awslabs/s2n (2019)
4. Ammons, G., Bod́ık, R., Larus, J.R.: Mining specifications. In: POPL. pp. 4–16.

ACM (2002)
5. Asadi, S., Blicha, M., Fedyukovich, G., Hyvärinen, A.E.J., Even-Mendoza, K.,

Sharygina, N., Chockler, H.: Function summarization modulo theories. In: LPAR.
EPiC Series in Computing, vol. 57, pp. 56–75. EasyChair (2018)

6. Ball, T., Rajamani, S.K.: Bebop: a path-sensitive interprocedural dataflow engine.
In: PASTE. pp. 97–103. ACM (2001)

7. Ball, T., Rajamani, S.K.: The SLAM toolkit. In: CAV. Lecture Notes in Computer
Science, vol. 2102, pp. 260–264. Springer (2001)

8. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo the-
ories. In: Handbook of Satisfiability, Frontiers in Artificial Intelligence and Appli-
cations, vol. 185, pp. 825–885. IOS Press (2009)

9. Beckman, N.E., Nori, A.V.: Probabilistic, modular and scalable inference of type-
state specifications. In: PLDI. pp. 211–221. ACM (2011)

10. Bjørner, N., Janota, M.: Playing with quantified satisfaction. In: LPAR (short
papers). EPiC Series in Computing, vol. 35, pp. 15–27. EasyChair (2015)

11. Blackshear, S., Lahiri, S.K.: Almost-correct specifications: a modular semantic
framework for assigning confidence to warnings. In: PLDI. pp. 209–218. ACM
(2013)

12. Bradley, A.R.: SAT-Based Model Checking without Unrolling. In: VMCAI. Lecture
Notes in Computer Science, vol. 6538, pp. 70–87. Springer (2011)

13. Champion, A., Kobayashi, N., Sato, R.: Hoice: An ice-based non-linear horn clause
solver. In: APLAS. Lecture Notes in Computer Science, vol. 11275, pp. 146–156.
Springer (2018)

14. CHC-Comp: https://chc-comp.github.io (2019)
15. Chen, Y., Hsieh, C., Tsai, M., Wang, B., Wang, F.: Verifying recursive programs

using intraprocedural analyzers. In: SAS. Lecture Notes in Computer Science,
vol. 8723, pp. 118–133. Springer (2014)

16. Cimatti, A., Griggio, A.: Software model checking via IC3. In: CAV. Lecture Notes
in Computer Science, vol. 7358, pp. 277–293. Springer (2012)

17. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: CAV. Lecture Notes in Computer Science, vol. 1855,
pp. 154–169. Springer (2000)

18. Cousot, P., Cousot, R.: Static Determination of Dynamic Properties of Recursive
Procedures. In: IFIP. pp. 237–278 (1977)

19. Cousot, P., Cousot, R., Fähndrich, M., Logozzo, F.: Automatic inference of nec-
essary preconditions. In: Proceedings of International Conference on Verification,
Model Checking, and Abstract Interpretation, VMCAI. pp. 128–148 (2013)

20. Das, A., Lahiri, S.K., Lal, A., Li, Y.: Angelic verification: Precise verification mod-
ulo unknowns. In: CAV (1). Lecture Notes in Computer Science, vol. 9206, pp.
324–342. Springer (2015)

21. De Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: Verimap: A tool for ver-
ifying programs through transformations. In: TACAS. Lecture Notes in Computer
Science, vol. 8413, pp. 568–574. Springer (2014)

22. Dietsch, D., Heizmann, M., Hoenicke, J., Nutz, A., Podelski, A.: Ultimate TreeAu-
tomizer. In: HCVS/PERR. EPTCS, vol. 296, pp. 42–47 (2019)

23. Eén, N., Mishchenko, A., Brayton, R.K.: Efficient implementation of property di-
rected reachability. In: FMCAD. pp. 125–134. FMCAD Inc. (2011)



24 L. Pick et al.

24. Fähndrich, M., Logozzo, F.: Static contract checking with abstract interpretation.
In: FoVeOOS. Lecture Notes in Computer Science, vol. 6528, pp. 10–30. Springer
(2010)

25. Fedyukovich, G., Kaufman, S.J., Bod́ık, R.: Sampling invariants from frequency
distributions. In: FMCAD. pp. 100–107. IEEE (2017)

26. Fedyukovich, G., Prabhu, S., Madhukar, K., Gupta, A.: Solving Constrained Horn
Clauses Using Syntax and Data. In: FMCAD. pp. 170–178. ACM (2018)

27. Fedyukovich, G., Prabhu, S., Madhukar, K., Gupta, A.: Quantified Invariants via
Syntax-Guided Synthesis. In: CAV, Part 1. Lecture Notes in Computer Science,
vol. 11561, pp. 259–277. Springer (2019)

28. Flanagan, C., Leino, K.R.M.: Houdini, an annotation assistant for esc/java. In:
FME. Lecture Notes in Computer Science, vol. 2021, pp. 500–517. Springer (2001)

29. Garg, P., Löding, C., Madhusudan, P., Neider, D.: ICE: A robust framework for
learning invariants. In: Proceedings of the International Conference on Computer
Aided Verification (CAV). pp. 69–87 (2014)

30. Godefroid, P., Huth, M., Jagadeesan, R.: Abstraction-based model checking us-
ing modal transition systems. In: CONCUR. Lecture Notes in Computer Science,
vol. 2154, pp. 426–440. Springer (2001)

31. Godefroid, P., Nori, A.V., Rajamani, S.K., Tetali, S.: Compositional may-must
program analysis: unleashing the power of alternation. In: POPL. pp. 43–56. ACM
(2010)

32. Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing soft-
ware verifiers from proof rules. In: PLDI. pp. 405–416. ACM (2012)

33. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The seahorn verification
framework. In: CAV (1). Lecture Notes in Computer Science, vol. 9206, pp. 343–
361. Springer (2015)

34. Gurfinkel, A., Wei, O., Chechik, M.: Yasm: A software model-checker for verifica-
tion and refutation. In: CAV. Lecture Notes in Computer Science, vol. 4144, pp.
170–174. Springer (2006)

35. Heizmann, M., Hoenicke, J., Podelski, A.: Refinement of trace abstraction. In: SAS.
Lecture Notes in Computer Science, vol. 5673, pp. 69–85. Springer (2009)

36. Henzinger, T.A., Jhala, R., Majumdar, R.: Permissive interfaces. In: ESEC/SIG-
SOFT FSE. pp. 31–40. ACM (2005)

37. Hoder, K., Bjørner, N.: Generalized property directed reachability. In: SAT. Lec-
ture Notes in Computer Science, vol. 7317, pp. 157–171. Springer (2012)

38. Hofstadter, D.R., et al.: Gödel, Escher, Bach: an eternal golden braid, vol. 20. Basic
books New York (1979)

39. Hojjat, H., Rümmer, P.: The ELDARICA horn solver. In: FMCAD. pp. 1–7. IEEE
(2018)

40. Ivancic, F., Balakrishnan, G., Gupta, A., Sankaranarayanan, S., Maeda, N.,
Tokuoka, H., Imoto, T., Miyazaki, Y.: DC2: A framework for scalable, scope-
bounded software verification. In: IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE). pp. 133–142 (2011)

41. Koc, C.K., Acar, T., Kaliski, B.S.: Analyzing and comparing montgomery multi-
plication algorithms. IEEE micro 16(3), 26–33 (1996)

42. Komuravelli, A., Gurfinkel, A., Chaki, S.: Smt-based model checking for recursive
programs. Formal Methods in System Design 48(3), 175–205 (2016)

43. Lahiri, S.K., McMillan, K.L., Sharma, R., Hawblitzel, C.: Differential assertion
checking. In: ESEC/SIGSOFT FSE. pp. 345–355. ACM (2013)



Unbounded Procedure Summaries from Bounded Environments 25

44. Lal, A., Qadeer, S., Lahiri, S.K.: A solver for reachability modulo theories. In: Pro-
ceedings of the International Conference on Computer Aided Verification (CAV).
pp. 427–443 (2012)

45. Livshits, V.B., Nori, A.V., Rajamani, S.K., Banerjee, A.: Merlin: specification in-
ference for explicit information flow problems. In: PLDI. pp. 75–86. ACM (2009)

46. McMillan, K.L.: Interpolation and sat-based model checking. In: CAV. Lecture
Notes in Computer Science, vol. 2725, pp. 1–13. Springer (2003)

47. McMillan, K.L.: Lazy annotation for program testing and verification. In: CAV.
Lecture Notes in Computer Science, vol. 6174, pp. 104–118. Springer (2010)

48. McMillan, K.L.: Lazy annotation revisited. In: CAV. Lecture Notes in Computer
Science, vol. 8559, pp. 243–259. Springer (2014)

49. McMillan, K.L., Rybalchenko, A.: Solving constrained horn clauses using interpo-
lation (2013)

50. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: TACAS. Lecture
Notes in Computer Science, vol. 4963, pp. 337–340. Springer (2008)

51. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer-
Verlag (1999)

52. Pick, L., Fedyukovich, G., Gupta, A.: Automating modular verification of secure in-
formation flow. In: FMCAD. pp. 158–168. TU Wien Academic Press, IEEE (2020)

53. Ramanathan, M.K., Grama, A., Jagannathan, S.: Static specification inference
using predicate mining. In: PLDI. pp. 123–134. ACM (2007)

54. Reps, T.W., Horwitz, S., Sagiv, S.: Precise interprocedural dataflow analysis via
graph reachability. In: POPL. pp. 49–61. ACM Press (1995)

55. Satake, Y., Kashifuku, T., Unno, H.: PCSat: Predicate constraint satisfaction
(2019), https://chc-comp.github.io/2019/chc-comp19.pdf

56. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. In:
Program Flow Analysis: Theory and Applications. pp. 189–233 (1981)

57. Shoham, S., Yahav, E., Fink, S., Pistoia, M.: Static specification mining using
automata-based abstractions. In: ISSTA. pp. 174–184. ACM (2007)

58. Stump, A., Sutcliffe, G., Tinelli, C.: Starexec: a cross-community infrastructure
for logic solving. In: International joint conference on automated reasoning. pp.
367–373. Springer (2014)

59. Unno, H., Torii, S., Sakamoto, H.: Automating induction for solving horn clauses.
In: CAV (2). Lecture Notes in Computer Science, vol. 10427, pp. 571–591. Springer
(2017)

60. Yang, J., Evans, D., Bhardwaj, D., Bhat, T., Das, M.: Perracotta: mining temporal
API rules from imperfect traces. In: ICSE. pp. 282–291. ACM (2006)

61. Zhu, H., Magill, S., Jagannathan, S.: A data-driven CHC solver. In: PLDI. pp.
707–721. ACM (2018)



26 L. Pick et al.

A Full Set of Derivation Rules

AVAIL n ∈ A PROC p = proc(n)
BENV b = benv(n) IDX i = idx (n)
NODE n ∈ D.N
PATH C = body ⇒ p(in, out) ∈ C∧

π = body [in, out 7→ fv(calleebctx(n)(i)), localC 7→ fresh(localC)]
BODY body = bodyp [in, out 7→ fv(calleebctx(n)(i)), locp 7→ fresh(locp)]
CALL calleeC(idx (n′)) = proc(n′)(~x)
NCTX ctx (n′) is the unfolding of proc(n′)(~x) in C
PROP hyp = ∀in, out ∈ vars(body).p(in, out)⇒ indProp
IND indProp = ∀vars(ψ) \ (inp ∪ outp).I

SAFE
O is a solution for C
D,A,O,U, L, P `⊥

UNSAFE

∃body ⇒⊥∈ C.b̂odyU 6⇒⊥
D,A,O,U, L, P ` >

OVER-OVER (OO)

AV AIL PROC BENV BODY

b̂odyO ⇒ I I⇒ ¬b̂O O′ = O[p 7→ O[p] ∧ I] D,A,O′, U, L, C ` Res

D,A,O,U, L, C ` Res

UNDER-OVER (UO)

AV AIL PROC BENV BODY

b̂odyO ⇒ I I⇒ ¬b̂U
O′ = O[p 7→ O[p] ∧ I] D,A,O′, U, L, P ` Res

D,A,O,U, L, P ` Res

UNDER-UNDER (UU)

AV AIL PROC BENV IDX PATH

π̂U ∧ b̂U 6⇒⊥ U ′ = U [p 7→ U [p] ∨ ∃locC .π] D,A,O,U ′, L, C ` Res

D,A,O,U, L, C ` Res

OVER-UNDER (OU)

AV AIL PROC BENV IDX PATH

π̂U ∧ b̂O 6⇒⊥ U ′ = U [p 7→ U [p] ∨ ∃locC .π] D,A,O,U ′, L, C ` Res

D,A,O,U, L, C ` Res

ADD-NODE (AN)

AV AIL PROC PATH CALL NCTX
D′.E = D.E ∪ {n→ n′} ∀n′′ ∈ D.N.bctx (n′) 6= bctx (n′′)

A′ = A ∪ {n′} D′, A′, O, U, L, C ` Res

D,A,O,U, L, C ` Res



Unbounded Procedure Summaries from Bounded Environments 27

MAKE-AVAILABLE (MA)

NODE PROC PATH CALL NCTX
n′′ ∈ D.N bctx = bctx (n′′)

A′ = A ∪ {n′′} D,A′, O, U, L, C ` Res

D,A,O,U, L, C ` Res

MAKE-UNAVAILABLE (MU)

AV AIL D, (A \ {n}), O, U, L, C ` Res

D,A,O,U, L, C ` Res

OVER-OVER-IND-LEMMAS (OOIL)

AV AIL PROC BENV BODY IND PROP

S = assumps(n,D) b̂odyO ∧ Inst(L) ∧ Inst(S) ∧ hyp ⇒ I
I⇒ ¬b̂O L′ = L ∪ {∀vars(S ), in, out .

∧
S ⇒ (p(in, out)⇒ I)}

D,A,O,U, L′, C ` Res

D,A,O,U, L, C ` Res

UNDER-OVER-IND-LEMMAS (UOIL)

AV AIL PROC BENV BODY IND PROP

S = underAssumps(n,D) b̂odyO ∧ Inst(L) ∧ Inst(S) ∧ hyp ⇒ I
I⇒ ¬b̂U L′ = L ∪ {∀vars(S ), in, out .

∧
S ⇒ (p(in, out)⇒ I)}

D,A,O,U, L′, C ` Res

D,A,O,U, L, C ` Res

REDUCE-LEMMAS (RL)

ec = ∀vars(S ), in, out .
∧
S ⇒

(
p(in, out)⇒ ψ

)
∈ L

a ∈ S p′ ∈ P (p′(in, out)⇒ O[p′])⇒ a S ′ = S \ {a}
L′ = (L \ {ec}) ∪

{
∀vars(S ′), in, out .

∧
S′ ⇒

(
p(in, out)⇒ ψ

)}
D,A,O,U, L′, C ` Res

D,A,O,U, L, C ` Res

ELIM-LEMMAS (EL)

ec = ∀in, out .> ⇒ (p(in, out)⇒ prop) ∈ L
O′ = O[p 7→ O[p] ∧ prop]

D,A,O′, U, L \ {ec}, C ` Res

D,A,O,U, L, C ` Res

B Heuristics

B.1 Prioritizing choice of node

The Verify procedure from Fig. 1 employs a heuristic to choose which node
in the set A to call ProcessNode on next. The factors that contribute toward
an node’s priority are as follows, with ties in one factor being broken by the



28 L. Pick et al.

next factor, where depth(n) denotes the depth of node n in D and previous(n)
denotes the number of times that the node n has been chosen previously:

– A lower α ∗ depth(n) + β ∗ previous(n) score gives higher priority, where α
and β are weights

– A lower call graph depth of proc(n) gives higher priority

– A later index callee−1ctx(n) gives higher priority

We prioritize nodes n with lower depth(n) values because they are more likely
to help propagate learned summaries up to the main procedure’s callees. This
priority is moderated by the previous(n) score which should prevent the starva-
tion of nodes with larger depth(n) values. Our current heuristic search is more
BFS-like, but for some examples, a DFS-like search is better. We plan to improve
our heuristics in future work.

B.2 Avoiding Redundant Queries

If we have previously considered a node n that we are now processing, we can
avoid making the same queries that we have previously made. E.g., if none of
the over-approximate summaries for any of the predicates in benv(n) nor any of
over-approximate summaries for any of the procedures called by proc(n) have
been updated since the last time n was processed, we do not need to redo the
over-over check.

B.3 Learning Over-approximate Bodies

Although there are many existing methods to interpolate, in many cases they
are useless (recall our motivating example where an interpolant is just >). To
improve our chances of learning a refinement for an over-approximate summary,
whenever we apply one of the proof rules that involves over-approximating the
procedure body (e.g., OO, UO, OOIL, UOIL), we ensure that we at least learn
the result of over-approximating the procedure body as an over-approximate
fact. For example, if we consider doing this for OO, we would simply replace

premise O′ = O[p 7→ O[p] ∧ I] with O′ = O[p 7→ O[p] ∧ I ∧ ∃locp.b̂odyO]. Note

that the result of applying quantifier elimination to I ∧ ∃locp.b̂odyO is also an
interpolant. Similarly, if we consider doing this for OOIL, we replace the goal

D,O,U,L′, P ` Res with D,O[p 7→ ∃locp.b̂odyO], U, L′, P ` Res.

B.4 Preventing summaries from growing too large

Although we want to increase our chances of learning useful refinements of over-
approximations as we have just discussed, we still wish to prevent summaries
from becoming too complicated. We can achieve this in a few ways.



Unbounded Procedure Summaries from Bounded Environments 29

Algorithm 3 Procedure for adding nodes in derivation tree

procedure AddNodes(n, Goal)
for CHC C ∈ C where C.head is an application of proc(n) do

for p(~xi) = calleeC(i) that is not a callee of ctx (n′) where n′ → n ∈ D.E do
if ¬TryAddNode(n, C.body , p, i, Goal) then

MakeAvailableIfNew(n, C.body , p, i, Goal)

Quantifier Elimination One way that we can achieve this is to use quantifier
elimination or an approximation thereof on each conjunct (resp. disjunct) that
we add to an over- (resp. under-) approximate summary. For example, we can
replace U ′ = U [p 7→ U [p] ∨ ∃locC .π] with U ′ = U [p 7→ U [p] ∨ QE(∃locC .π)] in
the UU rule. We illustrate how to do this using two examples:

– Instead of using premise O′ = O[p 7→ O[p] ∧ I ∧ ∃locp.b̂odyO] for the OO
rule as just discussed, we use the following premise: O′ = O[p 7→ O[p] ∧ I ∧
QE(∃locp.b̂odyO)]

– We can also apply this to properties we learn by induction. Instead of using
the premise L′ = L ∪ {∀vars(A).

∧
A ⇒ (p(in, out) ⇒ indProp) for rule

OOIL, use the following premise: L′ = L ∪ {∀vars(A).
∧
A⇒ (p(in, out)⇒

QE (indProp))
– Replace premise U ′ = U [p 7→ U [p] ∨ ∃locC .π] with U ′ = U [p 7→ U [p] ∨

QE(∃locC .π)] in the UU rule.

This use of QE leads to quantifier-free summaries.
When we update over- (resp. under-) approximate summaries, we can use

over- (resp. under-) approximate QE. By comparison, under- (resp. over-) ap-
proximate QE would lead to unsoundness. Approximating QE is not only cheaper
but can also further simplify the resulting summary.

Selective Updates We can also prevent summaries from growing too quickly syn-
tactically by only performing semantic updates. For example, consider O from
the goal of the OO rule and O′ from its subgoal. If O[p] ⇒ O′[p], then al-
though O′[p] contains more conjuncts than O[p], it does not provide any new
information. In this case, we avoid the update and simply use O in the subgoal
instead of O′. Similarly, if we consider U from the goal of UU and U ′ from its
subgoal, then we only want to update the under-approximation if we have that
U ′[p] 6⇒ U [p]. Over-approximate summaries become monotonically more con-
strained, so if O[p]⇒ O′[p], then O[p]⇔ O′[p] must hold. Under-approximations
become monotonically less constrained.

C Addition of Nodes in Derivation Tree

The AddNodes procedure is shown in Alg. 3. For every CHC C with an appli-
cation of p = proc(n) as its head, it calls procedure
TryAddNode(n,C.body , p, i,Goal), which tries to apply AN to Goal with premises
n ∈ A (AVAIL), CHC C whose body can be renamed to get π (PATH), and call to



30 L. Pick et al.

p = proc(n′) ∈ P at index i in C.body (CALL). If TryAddNode succeeds in ap-
plying AN, then it updates Goal to be the subgoal of the application and returns
true. If it fails, then it performs no updates and returns false. If TryAddNode
fails, then there is already a node n′′ in D with the same bounded environment
that the new node n′ would have. In this case, AddNodes calls MakeAvail-
ableIfNew, which applies MA if either of the following hold:

– n′′ has never been processed before
– n′′ has previously been processed with summaries Oprev and Uprev and the

body body of proc(n) or the bounded environment benv for n′′ has a different

over- or under-approximation than before, i.e., b̂odyMprev
6= b̂odyM or else

b̂envMprev
6= b̂envM for M ∈ {O,U}

Similarly to TryAddNode, the procedure
MakeAvailableIfNew(n,C.body , p, i,Goal) applies MA with premises n ∈
D.N (NODE), CHC C whose body can be renamed to get π (PATH), and callee
proc(n′) ∈ P at index i in C (CALL). Both TryAddNode and MakeAvail-
ableIfNew have the side-effect of updating Goal to be the subgoal of the ap-
plied rule (if any).


