
Syntax-Guided Termination Analysis

Grigory Fedyukovich(B) , Yueling Zhang, and Aarti Gupta

Princeton University, Princeton, USA
{grigoryf,yuelingz,aartig}@cs.princeton.edu

Abstract. We present new algorithms for proving program termina-
tion and non-termination using syntax-guided synthesis. They exploit
the symbolic encoding of programs and automatically construct a for-
mal grammar for symbolic constraints that are used to synthesize either
a termination argument or a non-terminating program refinement. The
constraints are then added back to the program encoding, and an off-
the-shelf constraint solver decides on their fitness and on the progress
of the algorithms. The evaluation of our implementation, called Freq-

Term, shows that although the formal grammar is limited to the syntax
of the program, in the majority of cases our algorithms are effective
and fast. Importantly, FreqTerm is competitive with state-of-the-art
on a wide range of terminating and non-terminating benchmarks, and
it significantly outperforms state-of-the-art on proving non-termination
of a class of programs arising from large-scale Event-Condition-Action
systems.

1 Introduction

Originated from the field of program synthesis, an approach of syntax-guided
synthesis (SyGuS) [2] has recently been applied [14,16] to verification of pro-
gram safety. In general, a SyGuS-based method walks through a set of candi-
dates, restricted by a formal grammar, and searches for a candidate that meets
the predetermined specification. The distinguishing insight of [14,16], in which
SyGuS discovers inductive invariants, is that a formal grammar need not nec-
essarily be provided by the user (as in applications to program synthesis), but
instead it could be automatically constructed on the fly from the symbolic encod-
ing of the program being analyzed. Despite being incomplete, the approach shows
remarkable practical success due to its ability to discover various facts about pro-
gram behaviors whose syntactic representations are compact and look similar to
the actual program statements.

Problems of proving and disproving program termination have a known con-
nection to safety verification, e.g., [7,19,28,39,40]. In particular, to prove termi-
nation, a program could be augmented by a counter (or a set of counters) that is

This work was supported in part by NSF Grant 1525936.
Y. Zhang—Visiting Student Research Collaborator from East China Normal Uni-
versity, China.

c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10981, pp. 124–143, 2018.
https://doi.org/10.1007/978-3-319-96145-3_7

https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96145-3_7&domain=pdf
https://orcid.org/0000-0003-1727-4043

Syntax-Guided Termination Analysis 125

initially assigned a reasonably large value and monotonically decreases at each
iteration [38]. It remains to solve a safety verification task: to prove that the
counter never goes negative. On the other hand, to prove that a program has
only infinite traces, one could prove that the negation of a loop guard is never
reachable, which boils down to another safety verification task. This knowledge
motivates us not only to exploit safety verification as a subroutine in our tech-
niques, but also to adapt successful methods across application domains.

We present a set of SyGuS-based algorithms for proving and disproving ter-
mination. For the former, our algorithm LinRank adds a decrementing counter
to a loop, iteratively guesses lower bounds on its initial value (using the syntactic
patterns obtained from the code), which lead to the safety verification tasks to be
solved by an off-the-shelf Horn solver. Existence of an inductive invariant guar-
antees termination, and the algorithm converges. Otherwise LinRank proceeds
to strengthening the lower bounds by adding another guess. Similarly, our algo-
rithm LexRank deals with a system of extra counters ordered lexicographically
and thus enables termination analysis for a wider class of programs.

For proving non-termination, we present a novel algorithm NontermRef

that iteratively searches for a restriction on the loop guard, that might lead to
infinite traces. Since safety verification cannot in general answer such queries, we
build NontermRef on top of a solver for the validity of ∀∃-formulas. In partic-
ular, we prove that if at the beginning of any iteration the desired restriction is
fulfilled, then there exists a sequence of states from the beginning to the end of
that iteration, and the desired restriction is fulfilled at the end of that iteration
as well. Recent symbolic techniques [15] to handle quantifier alternation enabled
us to prove non-termination of a large class of programs for which a reduction
to safety verification is not effective.

These three algorithms are independent of each other, but they all rely on
a generator of constraints that are further applied in different contexts. This
distinguishes our work from most of the related approaches [7,18,20,23,30,32,
36,39,40]. The key insight, adapted from [14,16], is that the syntactical struc-
tures that appear in the program give rise to a formal grammar, from which
many candidates could be sampled. Because the grammar is composed from a
finite number of numeric constants, operators, and variable combinations, the
number of sampled constraints is always finite. Furthermore, since our samples
are syntactically close to the actual constructs which appear in the code, they
often provide a practical guidance towards the proof of the task. Thus in the
majority of cases, the algorithms converge with the successful result.

We have implemented our algorithms in a tool called FreqTerm, which
utilizes solvers for Satisfiability Modulo Theory (SMT) [11,15] and satisfiability
of constrained Horn clauses [16,24,26]. These automatic provers become more
robust and powerful every day, which affects performance of FreqTerm only
positively. We have evaluated FreqTerm on a range of terminating and non-
terminating programs taken from SVCOMP1 and on large-scale benchmarks

1 Software Verification Competition, http://sv-comp.sosy-lab.org/.

https://sv-comp.sosy-lab.org/

126 G. Fedyukovich et al.

arising from Event-Condition-Action systems2 (ECA). Compared to state-of-
the-art termination analyzers [18,22,30], FreqTerm exhibits a competitive run-
time, and achieves several orders of magnitude performance improvement while
proving non-termination of ECAs.

In the rest of the paper, we give background on automated verification
(Sect. 2) and on SyGuS (Sect. 3); then we describe the application of SyGuS
for proving termination (Sect. 4) and non-termination (Sect. 5). Finally, after
reporting experimental results (Sect. 6), we overview related work (Sect. 7) and
conclude the paper (Sect. 8).

2 Background and Notation

In this work, we formulate tasks arising in automated program analysis by encod-
ing them to instances of the SMT problem [12]: for a given first-order formula ϕ
and a background theory to decide whether there is an assignment m of values
from the theory to variables in ϕ that makes ϕ true (denoted m |= ϕ). If every
assignment to ϕ is also an assignment to some formula ψ, we write ϕ =⇒ ψ.

Definition 1. A transition system P is a tuple 〈V ∪ V ′, Init ,Tr〉, where V is
a vector of variables; V ′ is its primed copy; formulas Init and Tr encode the
initial states and the transition relation respectively.

We view programs as transition systems and throughout the paper use both
terms interchangeably. An assignment s of values to all variables in V (or any
copy of V such as V ′) is called a state. A trace is a (possibly infinite) sequence
of states s, s′, . . . , such that (1) s |= Init , and (2) for each i, s(i), s(i+1) |= Tr .

We assume, without loss of generality, that the transition-relation formula
Tr(V ,V ′) is in Conjunctive Normal Form, and we split Tr(V ,V ′) to a con-
junction Guard(V) ∧ Body(V ,V ′), where Guard(V) is the maximal subset of
conjuncts of Tr expressed over variables just from V , and every conjunct of
Body(V ,V ′) can have appearances of variables from V and V ′.

Intuitively, formula Guard(V) encodes a loop guard of the program, whose
loop body is encoded in Body(V ,V ′). For example, for a program shown in
Fig. 1a, V = {x, y,K}, the Guard = y < K ∨ y > K, and the entire encoding of
the transition relation is shown in Fig. 1b.

Definition 2. If each program trace contains a state s, such that s |= ¬Guard,
then the program is called terminating (otherwise, it is called non-terminating).

Tasks of proving termination and non-termination are often reduced to tasks
of proving program safety. A safety verification task is a pair 〈P,Err〉, where
P = 〈V ∪V ′, Init ,Tr〉 is a program, and Err is an encoding of the error states.
It has a solution if there exists a formula, called a safe inductive invariant, that
implies Init , is closed under Tr , and is inconsistent with Err .

2 Provided at http://rers-challenge.org/2012/index.php?page=problems.

https://rers-challenge.org/2012/index.php?page=problems

Syntax-Guided Termination Analysis 127

Fig. 1. (a): C-code; (b): transition relation Tr (in the framebox – Guard); (c): formulas
S extracted from Tr and normalized; (d): grammar that generalizes S.

Definition 3. Let P = 〈V ∪ V ′, Init ,Tr〉; a formula Inv is a safe inductive
invariant if the following conditions hold: (1) Init(V) =⇒ Inv(V), (2) Inv(V)∧
Tr(V ,V ′) =⇒ Inv(V ′), and (3) Inv(V) ∧ Err(V) =⇒ ⊥.

If there exists a trace c (called a counterexample) that contains a state s,
such that s |= Err , then the safety verification task does not have a solution.

3 Exploiting Program Syntax

The key driver of our termination and non-termination provers is a generator
of constraints which help to analyze the given program in different ways. The
source code often gives useful information, e.g., of occurrences of variables, con-
stants, arithmetic and comparison operators, that could bootstrap the formula
generator. We rely on the SyGuS-based algorithm [16] introduced for verifying
program safety. It automatically constructs the grammar G based on the fixed
set of formulas S obtained by traversing parse trees of Init , Tr , and Err . In our
case, Err is not given, so G is based only on Init and Tr .

For simplicity, we require formulas in S to have the form of inequalities
composed from a linear combination over either V or V ′ and a constant (e.g.,
x′ < y′ +1 is included, but x′ = x+1 is excluded). Then, if needed, variables are
deprimed (e.g., x′ < y′+1 is replaced by x < y+1), and formulas are normalized,
such that all terms are moved to the left side (e.g., x < y + 1 is replaced by
x− y − 1 < 0), the subtraction is rewritten as addition, < is rewritten as >, and
respectively ≤ as ≥ (e.g., x − y − 1 < 0 is replaced by (−1) · x + y + 1 > 0).

The entire process of creation of G is exemplified in Fig. 1. Production rules of
G are constructed as follows: (1) the production rule for normalized inequalities

128 G. Fedyukovich et al.

Fig. 2. (a): The worst-case dynamics of program from Fig. 1a; (b): the termination-
argument validity check (in the frameboxes – lower bounds {�j} for i).

(denoted ineq) consists of choices corresponding to distinct types of inequalities
in S, (2) the production rule for linear combinations (denoted sum) consists
of choices corresponding to distinct arities of inequalities in S, (3) production
rules for variables, coefficients, and constants (denoted respectively var, coef,
and const) consist of choices corresponding respectively to distinct variables,
coefficients, and constants that occur in inequalities in S. Note that the method
of creation of G naturally extends to considering disjunctions and nonlinear
arithmetic [16].

Choices in production rules of grammar G can be further assigned proba-
bilities based on frequencies of certain syntactic features (e.g., frequencies of
particular constants or combinations of variables) that belong to the program’s
symbolic encoding. In the interest of saving space, we do not discuss it here and
refer the reader to [16]. The generation of formulas from G is performed recur-
sively by sampling from probability distributions assigned to rules. Note that the
choice of distributions affects only the order in which formulas are sampled and
does not affect which formulas can or cannot be sampled in principle (because
the grammar is fixed). Thus, without loss of generality, it is sound to assume
that all distributions are uniform. In the context of termination analysis, we are
interested in formulas produced by rules ineq and sum.

4 Proving Termination

We start this section with a motivating example and then proceed to presenting
the general-purpose algorithms for proving program termination.

Example 1. The program shown in Fig. 1a terminates. It operates on three inte-
ger variables, x, y, and K: in each iteration y gets closer to x, and x gets closer

Syntax-Guided Termination Analysis 129

Algorithm 1. LinRank(P): proving termination with linear termination
argument
Input: P = 〈V ∪ V ′, Init ,Tr〉 where Tr = Guard ∧ Body
Output: res ∈ 〈terminates,unknown〉

1 V ← V ∪ {i}; V ′ ← V ′ ∪ {i′};
2 Tr ← Tr ∧ i′ = i − 1; Err ← Guard ∧ i < 0;
3 G ← getGrammarAndDistributions(Init ,Tr);
4 while canSample(G) do
5 cand ← sample(G, sum);
6 G ← adjust(G, cand);
7 if Init =⇒ i > cand then continue;
8 Init ← Init ∧ i > cand ;
9 if isSafe(Init ,Tr ,Err) then return terminates;

10 return unknown;

to K. Thus, the total number of values taken by y before it equals K is no
bigger than the maximal distance among x, y, and K (in the following, denoted
Max). The worst-case dynamics happens when initially x < y < K (shown in
Fig. 2a), in other cases the program terminates even faster. To formally prove
this, the program could be augmented by a so-called termination argument. For
this example, it is simply a fresh variable i which is initially assigned Max (or
any other value greater than Max) and which gets decremented by one in each
iteration. The goal now is to prove that i never gets negative. Fig. 2b shows the
encoding of this safety verification task (recall Definition 3). The existence of a
solution to this task guarantees the safety of the augmented program, and thus,
the termination of the original program. Most state-of-the-art Horn solvers are
able to find a solution immediately. �

The main challenge in preparing the termination-argument validity check is
the generation of lower bounds {�j} for i in Init (e.g., conjunctions of the form
i>�j in ① in Fig. 2b). We build on the insight that each �j could be constructed
independently from the others, and then an inequality i>�j could be conjoined
with Init , thus giving rise to a new safety verification task. For a generation
of candidate inequalities, we utilize the algorithm from Sect. 3: all {�j} can be
sampled from grammar G which is obtained in advance from Init and Tr .

For example, all six formulas in ① in Fig. 2b: x−K,K −x, y −K,K − y, x−
y, and y − x belong to the grammar shown in Fig. 1d. Note that for proving
termination it is not necessary to have the most precise lower bounds. Intuitively,
the larger the initial value of i, the more iterations it will stay positive. Thus, it
is sound to try formulas which are not even related to actual lower bounds at
all and keep them conjoined with Init .

130 G. Fedyukovich et al.

4.1 Synthesizing Linear Termination Arguments

Algorithm 1 shows an “enumerate-and-try” procedure to search for a linear ter-
mination argument that proves termination of a program P . To initialize this
search, the algorithm introduces an extra counter variable i and adds it to V
(respectively, its primed copy i′ gets added to V ′) (line 1).3 Then the transition-
relation formula Tr gets augmented by i′ = i−1, the decrement of the counter in
the loop body. To specify a set of error states, Algorithm1 introduces a formula
Err (line 2): whenever the loop guard is satisfied and the value of counter i is
negative. Algorithm 1 then starts searching for large enough lower bounds for i
(i.e., a set of constraints over V ∪ {i} to be added to Init), such that no error
state is ever reachable.

Before the main loop of our synthesis procedure starts, various formulas are
extracted from the symbolic encoding of P and generalized to a formal grammar
(line 3). The grammar is used for an iterative probabilistic sampling of candidate
formulas (line 5) that are further added to the validity check of the current
termination argument (line 8). In particular, each new constraint over i has the
form i>cand , where cand is produced by the sum production rule described in
Sect. 3. Once Init is strengthened by this constraint, a new safety verification
condition is compiled and checked (line 9) by an off-the-shelf Horn solver.

As a result of each safety check, either a formula satisfying Definition 3 or a
counterexample cex witnessing reachability of an error state is generated. Exis-
tence of an inductive invariant guarantees that the conjunction of all synthesized
lower bounds for i is large enough to prove termination, and thus Algorithm1
converges. Otherwise, if grammar G still contains a formula that has not been
considered yet, the synthesis loop iterates.

For the progress of the algorithm, it must keep track of the strength of each new
candidate cand . That is, cand should add more restrictions on i in Init . Otherwise,
the outcome of the validity check (line 9) would be the same as in the previous iter-
ation. For this reason, Algorithm1 includes an important routine [16]: after each
sampled candidate cand , it adjusts the probability distributions associated with
the grammar, such that cand could not be sampled again in the future iterations
(line 6). Additionally, it checks (line 7) if a new constraint adds some value over
the already accepted constraints. Consequently, our algorithm does not require
explicit handing of counterexamples: if in each iteration Init gets only stronger
then current cex is invalidated. While in principle the algorithm could explicitly
store cex and check its consistency with each new cand , however in our experi-
ments it did not lead to significant performance gains.

Theorem 1. If Algorithm1 returns terminates for program P , then P termi-
nates.

Indeed, the verification condition, which is proven safe in the last iteration of
Algorithm 1, corresponds to some program P ′ that differs from P by the presence
of variable i. The set of traces of P has a one-to-one correspondence with the

3 Assume that initially set V does not contain i.

Syntax-Guided Termination Analysis 131

Algorithm 2. LexRank(P): proving termination with lexicographic ter-
mination argument
Input: P = 〈V ∪ V ′, Init ,Tr〉 where Tr = Guard ∧ Body
Output: res ∈ 〈terminates,unknown〉

1 V ← V ∪ {i, j}; V ′ ← V ′ ∪ {i′, j′};
2 Err ← Guard ∧ i < 0; jBounds ← ∅;

3 G, G′, G′′ ← getGrammarAndDistributions(Init ,Tr);

4 while canSample(G) or canSample(G′) or canSample(G′′) do

5 if nondet() then
6 cand ← sample(G, sum); G ← adjust(G, cand);
7 Init ← Init ∧ i > cand ;

8 if nondet() then
9 cand ← sample(G′, sum); G′ ← adjust(G′, cand);

10 Init ← Init ∧ j > cand ;

11 if nondet() then
12 cand ← sample(G′′, sum); G′′ ← adjust(G′′, cand);
13 jBounds ← jBounds ∪ {j > cand};

14 Tr ′ ← Tr ∧ ite(j > 0, i′ = i ∧ j′ = j − 1, i′ = i − 1 ∧ ∧

b∈jBounds

b);

15 if isSafe(Init ,Tr ′,Err) then return terminates;

16 return unknown;

set of traces of P ′, such that each state reachable in P could be extended by a
valuation of i to become a reachable state in P ′. That is, P terminates iff P ′

terminates, and P ′ terminates by construction: i is initially assigned a reasonably
large value, monotonically decreases at each iteration, and never goes negative.

We note that the loop in Algorithm1 always executes only a finite number of
iterations since G is constructed from the finite number of components, and in
each iteration it gets adjusted to avoid re-sampling of the same candidates. How-
ever, an off-the-shelf Horn solver that checks validity of each candidate might not
converge because the safety verification task is undecidable in general. To mit-
igate this obstacle, our implementation supports several state-of-the-art solvers
and provides a flexibility to specify one to use.

4.2 Synthesizing Lexicographic Termination Arguments

There is a wide class of terminating programs for which no linear termination
argument exists. A commonly used approach to handle them is via a search for
a so-called lexicographic termination argument that requires introducing two or
more extra counters. A SyGuS-based instantiation of such a procedure for two
counters is shown in Algorithm 2 (more counters could be handled similarly).
Algorithm 2 has a similar structure to Algorithm 1: the initial program gets aug-
mented by counters, formula Err is introduced, lower bounds for counters are

132 G. Fedyukovich et al.

iteratively sampled and added to Init and Tr , and the verification condition is
checked for safety.

The differences in Algorithm 2 are in how it handles two counters i and j,
between which an implicit order is fixed. In particular, Err is still expressed over i
only, but i gets decremented by one only when j equals zero (line 14). At the same
time, j gets updated in each iteration: if it was equal to zero, it gets assigned
a value satisfying the conjunction of constraints in an auxiliary set jBounds;
otherwise it gets decremented by one. Algorithm 2 synthesizes jBounds as well as
lower bounds for initial conditions over i and j. The sampling proceeds separately
from three different grammars (lines 6, 9, and 12), and the samples are used in
three different contexts (lines 7, 10, and 13 respectively). Optionally, Algorithm2
could be parametrized by a synthesis strategy that gives interpretations for each
of the nondet() calls (lines 5, 8, and 11 respectively). In the simplest case, each
nondet() call is replaced by �, which means that in each iteration Algorithm2
needs to sample from all three grammars. Alternatively, nondet() could be
replaced by a method to identify only one grammar per iteration to be sampled
from.

Theorem 2. If Algorithm2 returns terminates for program P , then P termi-
nates.

The proof sketch for Theorem2 is similar to the one for Theorem1: an aug-
mented program P ′ terminates by construction (due to a mapping of values of
〈i, j〉 into ordinals), and its set of traces has a one-to-one correspondence with
the set of traces of P .

5 Proving Non-termination

In this section, we aim at solving the opposite task to the one in Sect. 4, i.e.,
we wish to witness infinite program traces and thus, to prove program non-
termination. However, in contrast to a traditional search for a single infinite
trace, it is often easier to search for groups of infinite traces.

Lemma 1. Program P = 〈V ∪V ′, Init ,Tr〉 where Tr = Guard ∧Body does not
terminate if:

1. there exists a state s, such that s |= Init and s |= Guard,
2. for every state s, such that s |= Guard, there exists a state s′, such that

s, s′ |= Tr and s′ |= Guard.

The lemma distinguishes a class of programs, for which the following holds.
First, the loop guard is reachable from the set of initial states. Second, whenever
the loop guard is satisfied, there exists a transition to a state in which the loop
guard is satisfied again. Therefore, each initial state s, from which the loop guard
is reachable, gives rise to at least one infinite trace that starts with s.

Note that for programs with deterministic transition relations (like, e.g., in
Fig. 1a), the check of the second condition of Lemma 1 reduces to deciding the

Syntax-Guided Termination Analysis 133

Fig. 3. (a): A variant of program from Fig. 1a; (b): the valid ∀∃-formula for its non-
terminating refinement (in frameboxes – refined Guard-s); (c): an example of a non-
terminating dynamics, when value of x (and eventually, y) never gets changed.

satisfiability of a quantifier-free formula since each state can be transitioned to
exactly one state. But if the transition relation is non-deterministic, the check
reduces to deciding validity of a ∀∃-formula. Although handling quantifiers is in
general hard, some recent approaches [15] are particularly tailored to solve this
type of queries efficiently.

In practice, the conditions of Lemma 1 are too strict to be fulfilled for an arbi-
trary program. However, to prove non-termination, it is sufficient to constrain
the transition relation as long as it preserves at least one original transition and
only then to apply Lemma1.

Definition 4. Given programs P = 〈V ∪ V ′, Init ,Tr〉, and P ′ = 〈V ∪
V ′, Init ,Tr ′〉, we say that P ′ is a refinement of P if Tr ′ =⇒ Tr.

Intuitively, Definition 4 requires P and P ′ to operate over the same sets of
variables and to start from the same initial states. Furthermore, each transition
allowed by Tr ′ is also allowed by Tr . One way to refine P is to restrict Tr =
Guard ∧ Body by conjoining either Guard , or Body , or both with some extra
constraints (called refinement constraints). In this work, we propose to sample
them from our automatically constructed formal grammar (recall Sect. 3).

Example 2. Consider a program shown in Fig. 3a. It differs from the one shown
in Fig. 1a by a non-deterministic choice in the second ite-statement. That is, y
still moves towards x; but x moves towards K only when x > K, and otherwise
x may always keep the initial value. The formal grammar generated for this
program is the same as shown in Fig. 1d, and it contains constraints x < K
and y < K. Lemma 1 does not apply for the program as is, but it does after
refining Guard with those constraints. In particular, the ∀∃-formula in Fig. 3b is
valid, and a witness to its validity is depicted in Fig. 3c: eventually both x and

134 G. Fedyukovich et al.

Algorithm 3. NontermRef(P): proving non-termination
Input: P = 〈V ∪ V ′, Init ,Tr〉 where Tr = Guard ∧ Body
Output: res ∈ 〈terminates,does not terminate,unknown〉

1 if Init(V) ∧ Guard(V) =⇒ ⊥ then return terminates;

2 Tr ← Tr ∧ getInvs(Init ,Tr);
3 G ← getGrammarAndDistributions(Init ,Tr);
4 Refs ← ∅; Gramms ← ∅; Gramms.push(G);

5 while true do

6 if ∀V . Guard(V) ∧ ∧

r∈Refs

r(V) =⇒
∃V ′ . Body(V ,V ′) ∧ Guard(V ′) ∧ ∧

r∈Refs

r(V ′) then

7 return does not terminate;

8 cand ← �;
9 while Guard(V) ∧ ∧

r∈Refs

r(V) =⇒ cand(V) or

Init(V) ∧ Guard(V) ∧ cand(V) ∧ ∧

r∈Refs

r(V) =⇒ ⊥ do

10 if Refs = ∅ and ¬canSample(G) then return unknown;
11 if Refs = ∅ and ¬canSample(G) then
12 Refs.pop();
13 Gramms.pop();
14 cand ← �; G ← Gramms.top();
15 continue;

16 cand ← sample(G, ineq);
17 G ← adjust(G, cand);

18 Refs.push(cand);
19 Gramms.push(G);

y become equal and always remain smaller than K. Thus, the program does not
terminate. �

5.1 Synthesizing Non-terminating Refinements

The algorithm for proving program’s non-termination is shown in Algorithm3.
It starts with a simple satisfiability check (line 1) which filters out programs that
never reach the loop body (thus they immediately terminate). Then, the tran-
sition relation Tr gets strengthened by auxiliary inductive invariants obtained
with the help of the initial states Init (line 2). The algorithm does not impose any
specific requirements on the invariants (and it is sound even for a trivial invariant
�) and on a method that detects them. In many cases, auxiliary invariants make
the algorithm converge faster. Similar to Algorithms 1–2, Algorithm 3 splits Init
and Tr to a set of formulas and generalizes them to a grammar. The difference
lies in the type of formulas sampled from the grammar (ineq vs sum) and their

Syntax-Guided Termination Analysis 135

use in the synthesis loop: Algorithm 3 treats sampled candidates as refinement
constraints and attempts to apply Lemma 1 (line 6).

The algorithm maintains a stack of refinement constraints Refs . At the first
iteration, Refs is empty, and thus the algorithm tries to apply Lemma 1 to the
original program. For that application, a ∀∃-formula is constructed and checked
for validity. Intuitively the formula expresses the ability of Body to transition
each state which satisfies Guard to a state which satisfies Guard as well. If the
validity of ∀∃-formula is proven, the algorithm converges (line 7). Otherwise, a
refinement of P needs to be guessed. Thus, the algorithm samples a new formula
(line 16) using the production rule ineq, which is described in Sect. 3, pushes it
to Refs , and iterates. Note that G permits formulas over V only (i.e., to restrict
Guard), however, in principle it can be extended for sampling formulas over
V ∪ V ′ (thus, to restrict Body as well).

For the progress of the algorithm, it must keep track of how each new can-
didate cand corresponds to constraints already belonging to Refs . That is, cand
should not be implied by Guard ∧ ∧

r∈Refs

r since otherwise the ∀∃-formula in the

next iteration would not change. Also, cand should not over-constrain the loop
guard, and thus it is important to check that after adding cand to constraints
from Guard and Refs , the loop guard is still reachable from the initial states.
Both these checks are performed before the sampling (line 9). After the sam-
pling, necessary adjustments on the probability distributions, assigned to the
production rules of the grammar [16], are applied to ensure the same refinement
candidates are not re-sampled again (line 17).

Because by construction G cannot generate conjunctions of constraints, the
algorithm handles conjunctions externally. It is useful in case when a single con-
straint is not enough for application of Lemma1, and it should be strengthened
by another constraint. On the other hand, it also might be needed to withdraw
some sampled candidates before converging. For this reason, Algorithm 3 main-
tains a stack Gramms of grammars and handles it synchronously with stack Refs
(lines 12–14 and 18–19). When all candidates from a grammar were considered
and were unsuccessful, the algorithm pops the latest candidate from Refs and
rolls back to the grammar used in the previous iteration. Additionally, a maxi-
mum size of Refs can be specified to avoid considering too deep refinements.

Theorem 3. If Algorithm3 returns does not terminate for program P , then
P does not terminate.

Indeed, constraints that belong to Refs in the last iteration of the algorithm
give rise to a refinement P ′ of P , such that P ′ = 〈V ∪ V ′, Init ,Tr ∧ ∧

r∈Refs

r〉.
The satisfiability check (line 9) and the validity check (line 6) passed, which
correspond to the conditions of Lemma1. Thus, P ′ does not terminate, and
consequently it has an infinite trace. Finally, since P ′ refines P then all traces
(including infinite ones) of P ′ belong to P , and P does not terminate as well.

136 G. Fedyukovich et al.

5.2 Integrating Algorithms Together

With a few exceptions [30,39], existing algorithms address either the task of
proving, or the task of disproving termination. The goal of this paper is to show
that both tasks benefit from syntax-guided techniques. While an algorithmic
integration of several orthogonal techniques is itself a challenging problem, it
is not the focus of our paper. Still, we use a straightforward idea here. Since
each presented algorithm has one big loop, an iteration of Algorithm1 could be
followed by an iteration of Algorithm2 and in turn, by an iteration of Algorithm3
(i.e., in a lockstep fashion). A positive result obtained by any algorithm forces
all remaining algorithms to terminate. Based on our experiments, provided in
detail in Sect. 6, the majority of benchmarks were proven either terminating or
non-terminating by one of the algorithms within seconds. This justifies why the
lockstep execution of all algorithms in practice would not bring a significant
overhead.

6 Evaluation

We have implemented algorithms for proving termination and non-termination
in a tool called FreqTerm

4. It is developed on top of FreqHorn [16], uses it
for Horn solving, and supports other Horn solvers, Spacer3 [26] and μZ [24],
as well. To solve ∀∃-formulas, FreqTerm uses the AE-VAL tool [15]. All the
symbolic reasoning in the end is performed by the Z3 SMT solver [11].

FreqTerm takes as input a program encoded as a system of linear con-
strained Horn clauses (CHC). It supports any programming language, as long
as a translator from it to CHCs exists. For encoding benchmarks to CHCs, we
used SeaHorn v.0.1.0-rc3. To the best of our knowledge, FreqTerm is the
only (non)-termination prover that supports a selection of Horn solvers in the
backend. This allows the prover to leverage advancements in Horn solving easily.

We have compared FreqTerm against AProVE rev. c181f40 [18], Ulti-

mate Automizer v.0.1.23 [22], and HipTNT+ v.1.0 [30]. The rest of the section
summarizes three sets of experiments. Sections 6.1 and 6.2 discuss the compari-
son on small but tricky programs, respectively terminating and non-terminating,
which shows that our approach is applicable to a wide range of conceptually chal-
lenging problems. In Sect. 6.3, we target several large-scale benchmarks and show
that FreqTerm is capable of significant pushing the boundaries of termination
and non-termination proving. In total, we considered 856 benchmarks of various
size and complexity. All experiments were conducted on a Linux SMP machine,
Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40 GHz, 56 CPUs, 377 GB RAM.

6.1 Performance on Terminating Benchmarks

We considered 171 terminating programs5 from the Termination category of
SVCOMP and programs crafted by ourselves. Altogether, four tools in our exper-
iment were able to prove termination of 168 of them within a timeout of 60 s and
4 The source code of the tool is publicly available at https://goo.gl/HecBWc.
5 These benchmarks are available at https://goo.gl/MPimXE.

https://goo.gl/HecBWc
https://goo.gl/MPimXE

Syntax-Guided Termination Analysis 137

100 101

100

101

100 101

100

101

100 101

100

101

(a) terminating examples (171)

100 101

100

101

100 101

100

101

100 101

100

101

(b) non-terminating examples (176)

Fig. 4. FreqTerm vs respectively Ultimate Automizer, AProVE, and HipTNT+.

left only three programs without a verdict. AProVE verified 76 benchmarks,
HipTNT+ 90 (including 3 that no other tool solved), Ultimate Automizer

105 (including 4 that no other tool solved). FreqTerm, implementing Algo-
rithms 1–2 and relying on different solvers verified in total 155 (including 30
that no other tool solved). In particular, Algorithm1 instantiated with Spacer3,
proved termination of 88 programs, with μZ 79, and with FreqHorn 80. Algo-
rithm2 instantiated with Spacer3, proved termination of 92 programs, with μZ
109, and with FreqHorn 74.

A scatterplot with logarithmic scale on the axes in Fig. 4(a) shows compar-
isons of best running times of FreqTerm vs the running times of competing
tools. Each point in a plot represents a pair of the FreqTerm run (x-axis) and
the competing tool run (y-axis). Intuitively, green points represent cases when
FreqTerm outperforms the competitor. On average, for programs solved by
both FreqTerm and Ultimate Automizer, FreqTerm is 29 times faster
(speedup calculated as a ratio of geometric means of the corresponding runs).
In a similar setting, FreqTerm is 32 times faster than AProVE. However,
FreqTerm is 2 times slower than HipTNT+. The evaluation further revealed
(in Sect. 6.3) that the latter tool is efficient only on small programs (around 10
lines of code each), and for large-scale benchmarks it exceeds the timeout.

138 G. Fedyukovich et al.

6.2 Performance on Non-terminating Benchmarks

We considered 176 terminating programs6 from the Termination category of
SVCOMP and programs crafted by ourselves. Altogether, four tools proved
non-termination of 172 of them: AProVE 35, HipTNT+ 92, Ultimate

Automizer 123, and Algorithm 3 implemented in FreqTerm 152. Addition-
ally, we evaluated the effect of ∀∃-solving in FreqTerm. For that reason, we
implemented a version of Algorithm 3 in which non-termination is reduced to
safety, but the conceptual SyGuS-based refinement generator remained the same.
This implementation used Spacer3 for proving that the candidate refinement
can never exit the loop. Among 176 benchmarks, such routine solved only 105,
which is 30% fewer than Algorithm 3. However, it managed to verify 8 bench-
marks that Algorithm 3 could not verify (we believe, because Spacer3 was able
to add an auxiliary inductive invariant).

Logarithmic scatterplot in Fig. 4(b) shows comparisons of FreqTerm vs the
running times of competing tools. On average, FreqTerm is 41 times faster than
Ultimate Automizer, 73 times faster than AProVE, and exhibits roughly
similar runtimes to HipTNT+ (again, here we considered only programs solved
by both tools). Based on these experiments, we conclude that currently Freq-

Term is more effective and more efficient at synthesizing non-terminating pro-
gram refinements than at synthesizing terminating arguments.

6.3 Large-Scale Benchmarks

We considered some large-scale benchmarks for evaluation arising from Event-
Condition-Action (ECA) systems that describe reactive behavior [1]. We consid-
ered various modifications of five challenging ECAs7. Each ECA consists of one
large loop, where each iteration reads an input and modifies its internal state.
If an unexpected input is read, the ECA terminates.

In our first case study, we aimed to prove non-termination of the given ECAs,
i.e., that for any reachable internal state there exists an input value that would
keep the ECA alive. The main challenge appeared to be in the size of benchmarks
(up to 10000 lines of C code per loop) and reliance on an auxiliary inductive
invariant. With the extra support of Spacer3 to provide the invariant, Fre-
qTerm was able to prove non-termination of a wide range of programs. Among
all the competing tools, only Ultimate Automizer was able to handle these
benchmarks, but it verified only a small fraction of them within a 2 h timeout. In
contrast, FreqTerm solved 301 out of 302 tasks and outperformed Ultimate

Automizer by up to several orders of magnitude (i.e., from seconds to hours).
Table 1 contains a brief summary of our experimental evaluation.8

In our second case study, we instrumented the ECAs by adding extra condi-
tions to the loop guards, thus imposing an implicit upper bound on the number

6 These benchmarks are available at https://goo.gl/bZbuA2.
7 These benchmarks are available at https://goo.gl/7mc2Ww.
8 To calculate average timings, we excluded cases when the tool exceeded timeout.

https://goo.gl/bZbuA2
https://goo.gl/7mc2Ww

Syntax-Guided Termination Analysis 139

Table 1. FreqTerm vs Ultimate Automizer on non-terminating ECAs (302).

Benchmarks FreqTerm Ultimate Automizer

Class # of tasks Avg # of LoC # solved Avg time # solved Avg time

1 & 2 122 500 122 5 sec 3 27 min

3 60 1600 60 56 sec 0 ∞
4 60 4700 60 9 min 6 82 min

5 60 10000 59 52 min 0 ∞

Table 2. FreqTerm vs Ultimate Automizer on terminating ECAs (207).

Benchmarks FreqTerm Ultimate Automizer

Class # of tasks Avg # of LoC # solved Avg time # solved Avg time

1 & 2 97 500 97 8 sec 96 73 sec

3 40 1600 40 3 min 12 56 min

4 35 4700 35 10 min 27 19 min

5 35 10000 34 65 min 19 99 min

of loop iterations, and applied tools to prove termination9 (shown in Table 2).
Again, only Ultimate Automizer was able to compete with FreqTerm, and
interestingly it was more successful here than in the first case study. Encourag-
ingly, FreqTerm solved all but one instance and was consistently faster.

7 Related Work

Proving Termination. A wide range of state-of-the-art methods are based on iter-
ative reasoning driven by counterexamples [4,5,9,10,19,21,23,27,29,36] whose
goal is to show that transitions cannot be executed forever. These approaches
typically combine termination arguments, proven independently, but none of
them leverages the syntax of programs during the analysis.

A minor range of tools of termination analyzers are based on various types
of learning. In particular, [39] discovers a terminating argument from attempts
to prove that no program state is terminating; [34] exploits information derived
from tests, [37] guesses and checks transition invariants (over-approximations to
the reachable transitive closure of the transition relation) from libraries of tem-
plates. The closest to our approach, [31] guesses and checks transition invariants
using loop guards and branch conditions. In contrast, our algorithms guess lower
bounds for auxiliary program counters and extensively use all available source
code for guessing candidates.

9 The task of adding interesting guards appeared to be non-trivial, so we were able to
instrument only a part of all non-terminating benchmarks.

140 G. Fedyukovich et al.

Proving Non-termination. Traditional algorithms, e.g. [3,6,8,20,22], are based
on a search for lasso-shaped traces and a discovery of recurrence sets, i.e., states
that are visited infinitely often. For instance, [32] searches for a geometric series
in lasso-shaped traces. Our algorithm discovers existential recurrence sets and
does not deal with traces at all: it handles their abstraction via a ∀∃-formula.

A reduction to safety attracts significant attention here as well. In particu-
lar, [40] relies only on invariant generation to show that the loop guard is also
satisfied, [19] infers weakest preconditions over inputs, under which program is
non-terminating; and [7,28] iteratively eliminate terminating traces through a
loop by adding extra assumptions. In contrast, our approach does not reduce to
safety, and thus does not necessarily require invariants. However, we observed
that if provided, in practice they often accelerate our verification process.

Syntax-Guided Synthesis. SyGuS [2] is applied to various tasks related to pro-
gram synthesis, e.g., [13,17,25,33,35,41]. However, the formal grammar in those
applications is typically given or constructed from user-provided examples. To
the best of our knowledge, the only application of SyGuS to automatic pro-
gram analysis was proposed by [14,16], and it inspired our approach. Originally,
the formal grammar, constructed from the verification condition, was iteratively
used to guess and check only inductive invariants. In this paper, we showed that
a similar reasoning is practical and easily transferable across applications.

8 Conclusion

We have presented new algorithms for synthesis of termination arguments and
non-terminating program refinements. Driven by SyGuS, they iteratively gen-
erate candidate formulas which tend to follow syntactic patterns obtained from
the source code. By construction, the number of possible candidates is always
finite, thus the search space is always relatively small. The algorithms rely on
recent advances in constraint solving, they do not depend on a particular backend
engine, and thus performance of checking validity of a candidate can be improved
by advancements in solvers. Our implementation FreqTerm is evaluated on a
wide range of terminating and non-terminating benchmarks. It is competitive
with state-of-the-art and it significantly outperforms other tools when proving
non-termination of large-scale Event-Condition-Action systems.

In future work, it would be interesting to investigate synergetic ways of inte-
grating the proposed algorithms together, as well as exploiting strengths of dif-
ferent backend Horn solvers for different verification tasks.

References

1. Almeida, E.E., Luntz, J.E., Tilbury, D.M.: Event-condition-action systems for
reconfigurable logic control. IEEE Trans. Autom. Sci. Eng. 4(2), 167–181 (2007)

2. Alur, R., Bod́ık, R., Juniwal, G., Martin, M.M.K., Raghothaman, M., Seshia, S.A.,
Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis. In:
FMCAD, pp. 1–17. IEEE (2013)

Syntax-Guided Termination Analysis 141

3. Bakhirkin, A., Piterman, N.: Finding recurrent sets with backward analysis and
trace partitioning. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol.
9636, pp. 17–35. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49674-9 2

4. Balaban, I., Pnueli, A., Zuck, L.D.: Ranking abstraction as companion to predicate
abstraction. In: Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 1–12. Springer,
Heidelberg (2005). https://doi.org/10.1007/11562436 1

5. Brockschmidt, M., Cook, B., Fuhs, C.: Better termination proving through cooper-
ation. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 413–429.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 28

6. Brockschmidt, M., Ströder, T., Otto, C., Giesl, J.: Automated detection of non-
termination and NullPointerExceptions for Java Bytecode. In: Beckert, B., Dami-
ani, F., Gurov, D. (eds.) FoVeOOS 2011. LNCS, vol. 7421, pp. 123–141. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31762-0 9

7. Chen, H.-Y., Cook, B., Fuhs, C., Nimkar, K., O’Hearn, P.: Proving nontermination
via safety. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp.
156–171. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-
8 11

8. Cook, B., Fuhs, C., Nimkar, K., O’Hearn, P.W.: Disproving termination with over-
approximation. In: FMCAD, pp. 67–74. IEEE (2014)

9. Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code. In:
PLDI, pp. 415–426. ACM (2006)

10. Cook, B., See, A., Zuleger, F.: Ramsey vs. lexicographic termination proving.
In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 47–61.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7 4

11. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

12. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program check-
ing. J. ACM 52(3), 365–473 (2005)

13. Fedyukovich, G., Ahmad, M.B.S., Bod́ık, R.: Gradual synthesis for static paral-
lelization of single-pass array-processing programs. In: PLDI, pp. 572–585. ACM
(2017)

14. Fedyukovich, G., Bod́ık, R.: Accelerating syntax-guided invariant synthesis. In:
Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805, pp. 251–269.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89960-2 14

15. Fedyukovich, G., Gurfinkel, A., Sharygina, N.: Automated discovery of simulation
between programs. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.)
LPAR 2015. LNCS, vol. 9450, pp. 606–621. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-48899-7 42

16. Fedyukovich, G., Kaufman, S., Bod́ık, R.: Sampling invariants from frequency dis-
tributions. In: FMCAD, pp. 100–107. IEEE (2017)

17. Galenson, J., Reames, P., Bod́ık, R., Hartmann, B., Sen, K.: CodeHint: dynamic
and interactive synthesis of code snippets. In: ICSE, pp. 653–663. ACM (2014)

18. Giesl, J., et al.: Proving termination of programs automatically with AProVE. In:
Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562,
pp. 184–191. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08587-
6 13

19. Gulwani, S., Srivastava, S., Venkatesan, R.: Program analysis as constraint solving.
In: PLDI, pp. 281–292. ACM (2008)

https://doi.org/10.1007/978-3-662-49674-9_2
https://doi.org/10.1007/978-3-662-49674-9_2
https://doi.org/10.1007/11562436_1
https://doi.org/10.1007/978-3-642-39799-8_28
https://doi.org/10.1007/978-3-642-31762-0_9
https://doi.org/10.1007/978-3-642-54862-8_11
https://doi.org/10.1007/978-3-642-54862-8_11
https://doi.org/10.1007/978-3-642-36742-7_4
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-89960-2_14
https://doi.org/10.1007/978-3-662-48899-7_42
https://doi.org/10.1007/978-3-662-48899-7_42
https://doi.org/10.1007/978-3-319-08587-6_13
https://doi.org/10.1007/978-3-319-08587-6_13

142 G. Fedyukovich et al.

20. Gupta, A., Henzinger, T.A., Majumdar, R., Rybalchenko, A., Xu, R.: Proving
non-termination. In: POPL, pp. 147–158. ACM (2008)

21. Harris, W.R., Lal, A., Nori, A.V., Rajamani, S.K.: Alternation for termination. In:
Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 304–319. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15769-1 19

22. Heizmann, M., et al.: Ultimate automizer with an on-demand construction of
floyd-hoare automata. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol.
10206, pp. 394–398. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-
662-54580-5 30

23. Heizmann, M., Hoenicke, J., Podelski, A.: Termination analysis by learning termi-
nating programs. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp.
797–813. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9 53

24. Hoder, K., Bjørner, N.: Generalized property directed reachability. In: Cimatti, A.,
Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 157–171. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31612-8 13

25. Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided component-based
program synthesis. In: ICSE, pp. 215–224. ACM (2010)

26. Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recursive
programs. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 17–34.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9 2

27. Kroening, D., Sharygina, N., Tsitovich, A., Wintersteiger, C.M.: Termination anal-
ysis with compositional transition invariants. In: Touili, T., Cook, B., Jackson,
P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 89–103. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14295-6 9

28. Larraz, D., Nimkar, K., Oliveras, A., Rodŕıguez-Carbonell, E., Rubio, A.: Proving
non-termination using Max-SMT. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS,
vol. 8559, pp. 779–796. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
08867-9 52

29. Larraz, D., Oliveras, A., Rodŕıguez-Carbonell, E., Rubio, A.: Proving termination
of imperative programs using Max-SMT. In: FMCAD, pp. 218–225. IEEE (2013)

30. Le, T.C., Qin, S., Chin, W.: Termination and non-termination specification infer-
ence. In: PLDI, pp. 489–498. ACM (2015)

31. Lee, W., Wang, B.-Y., Yi, K.: Termination analysis with algorithmic learning.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 88–104.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-7 12

32. Leike, J., Heizmann, M.: Geometric nontermination arguments. In: Beyer, D., Huis-
man, M. (eds.) TACAS 2018. LNCS, vol. 10806, pp. 266–283. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-89963-3 16

33. Miltner, A., Fisher, K., Pierce, B.C., Walker, D., Zdancewic, S.: Synthesizing bijec-
tive lenses. PACMPL 2(POPL), 1:1–1:30 (2018)

34. Nori, A.V., Sharma, R.: Termination proofs from tests. In: ESEC/FSE, pp. 246–
256. ACM (2013)

35. Panchekha, P., Torlak, E.: Automated reasoning for web page layout. In: OOPSLA,
pp. 181–194. ACM (2016)

36. Podelski, A., Rybalchenko, A.: Transition invariants and transition predicate
abstraction for program termination. In: Abdulla, P.A., Leino, K.R.M. (eds.)
TACAS 2011. LNCS, vol. 6605, pp. 3–10. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-19835-9 2

37. Tsitovich, A., Sharygina, N., Wintersteiger, C.M., Kroening, D.: Loop summariza-
tion and termination analysis. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS

https://doi.org/10.1007/978-3-642-15769-1_19
https://doi.org/10.1007/978-3-662-54580-5_30
https://doi.org/10.1007/978-3-662-54580-5_30
https://doi.org/10.1007/978-3-319-08867-9_53
https://doi.org/10.1007/978-3-642-31612-8_13
https://doi.org/10.1007/978-3-319-08867-9_2
https://doi.org/10.1007/978-3-642-14295-6_9
https://doi.org/10.1007/978-3-319-08867-9_52
https://doi.org/10.1007/978-3-319-08867-9_52
https://doi.org/10.1007/978-3-642-31424-7_12
https://doi.org/10.1007/978-3-319-89963-3_16
https://doi.org/10.1007/978-3-642-19835-9_2
https://doi.org/10.1007/978-3-642-19835-9_2

Syntax-Guided Termination Analysis 143

2011. LNCS, vol. 6605, pp. 81–95. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-19835-9 9

38. Turing, A.M.: Checking a large routine. In: Report of a Conference on High Speed
Automatic Calculating Machines (1949)

39. Urban, C., Gurfinkel, A., Kahsai, T.: Synthesizing ranking functions from bits and
pieces. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp.
54–70. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9 4

40. Velroyen, H., Rümmer, P.: Non-termination checking for imperative programs. In:
Beckert, B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 154–170. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-79124-9 11

41. Wang, X., Dillig, I., Singh, R.: Program synthesis using abstraction refinement.
PACMPL 2, 63:1–63:30 (2018)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-19835-9_9
https://doi.org/10.1007/978-3-642-19835-9_9
https://doi.org/10.1007/978-3-662-49674-9_4
https://doi.org/10.1007/978-3-540-79124-9_11
https://creativecommons.org/licenses/by/4.0/

	Syntax-Guided Termination Analysis
	1 Introduction
	2 Background and Notation
	3 Exploiting Program Syntax
	4 Proving Termination
	4.1 Synthesizing Linear Termination Arguments
	4.2 Synthesizing Lexicographic Termination Arguments

	5 Proving Non-termination
	5.1 Synthesizing Non-terminating Refinements
	5.2 Integrating Algorithms Together

	6 Evaluation
	6.1 Performance on Terminating Benchmarks
	6.2 Performance on Non-terminating Benchmarks
	6.3 Large-Scale Benchmarks

	7 Related Work
	8 Conclusion
	References

