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Abstract

Automation tools like machine learning are a necessity in our big data world.

Thanks to the Internet and advancements in all facets of computer and storage tech-

nology, almost everyone has a voice in the Internet connected world. However, there

are still very real physical limits in our physical world. This dichotomy—the seemingly

limitless nature of technology enabled data colliding with the physical limits of the

real world—has made automation tools a necessity, and predictive models powered

by machine learning algorithms are one such tool.

The promise of machine learning to accurately predict future human behavior

and human preferences has lead practitioners and researchers alike to apply machine

learning automation tools to tasks such as product recommendations and specula-

tory activities such as long term job applicant success. However, due to the mercurial

nature of humans, developing mathematical intermediaries to attempt to model and

predict human behavior is challenging and not a straight-forward task. One way

of harnessing the power of machine-learning backed automation to help reduce the

scale of many real-world applications in more challenging domain settings is by hav-

ing humans and machines collaborating in non-trivial ways. In this dissertation, we

delineate the various ways in which humans and machines collaborate in challenging

real-world applications. Moreover, we highlight three specific ways in which we can

use human-machine collaboration to keep or increase utility and reduce real-world

harm when using these systems in the wild: (i) humans enabling computers with

domain specific knowledge, (ii) computers providing humans with algorithmic expla-

nations, (iii) humans and computers working together in decision making.
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Chapter 1

Introduction

Automation tools like machine learning are a necessity in our big data world. Thanks

to the Internet and advancements in all facets of computer and storage technology,

almost everyone has a voice in the Internet connected world. This near global ac-

cessibility to technology means instead of hundreds of applications for a job, there

are thousands, instead of thousands of artists and musicians uploading content there

are millions, instead of having a handful of participants filling out surveys there are

thousands or diverse participants. However, there are still very real physical limits

in our physical world. There are still only a finite number of hours in a day, a fixed

number of dorm room beds available at a university, fixed screen real estate on a

phone or laptop, and a limited number of qualified personnel to review insurance

claim applications. This dichotomy—the seemingly limitless nature of technology en-

abled data colliding with the physical limits of the real world—has made automation

tools a necessity, and predictive models powered by machine learning algorithms are

one such tool.

Machine learning automation has been applied to a wide array of domains with

varying levels of success. Machine learning automation has been applied very success-

fully in areas such as computer vision, robotics, and algorithmic help desk assistants,
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for example. The promise of machine learning to accurately predict future human

behavior and human preferences has also lead practitioners and researchers alike to

apply machine learning automation tools to tasks such as product recommendations

and speculatory activities such as long term job applicant success. However, due to

the mercurial nature of humans, developing mathematical intermediaries to attempt

to model and predict human behavior is challenging and not a straight-forward task.

One way of harnessing the power of machine-learning backed automation to help re-

duce the scale of many real-world applications in more challenging domain settings

is by having humans and machines collaborating in non-trivial ways. In this dis-

sertation, we delineate the various ways in which humans and machines collaborate

in challenging real-world applications. Moreover, we highlight three specific ways in

which we can use human-machine collaboration to keep or increase utility and reduce

real-world harm when using these systems in the wild: (i) humans enabling computers

with domain specific knowledge, (ii) computers providing humans with algorithmic

explanations, (iii) humans and computers working together in decision making.

This dissertation is structured as follows:

Chapter 2: This chapter shows how the first mode of human-machine

collaboration—humans enabling computers with domain specific knowledge—

increases utility of machine learning models in the task of grade point average (GPA)

prediction.

The Fragile Families Challenge is a mass collaboration social science data chal-

lenge whose aim is to learn how various early childhood variables predict the long-

term outcomes of children. We describe our two-step approach to the Fragile Families

Challenge. In step 1, we use a variety of fully automated approaches to predict child

academic achievement. We fit 124 models, which involve most possible combinations

of 8 model types, 2 imputation strategies, 2 standardization approaches, and 2 auto-

matic variable selection techniques using 2 different thresholds. Then, in step 2, we

2



attempt to improve on the results from step 1 with manual variable selection based

on a detailed review of the codebooks. We manually selected 3,694 variables believed

to be predictive of academic achievement, using a comprehensive review of student

success literature to guide the decision-making process. The best models from step

1 were re-estimated using the manually selected variables. We show that manual

variable selection improved the majority of the top 10 models in step 1, but did not

improve the best of the top 10. Results indicate that variable selection inspired by

social science methodologies can, in most cases, significantly improve models trained

completely automatically.

Chapter 3: This chapter shows how the second mode of human-machine

collaboration—computers providing humans with algorithmic explanations—can

improve utility and reduce harm of machine learning models in the task of movie

recommendations.

We evaluate two popular local explainability techniques, LIME and SHAP, on a

movie recommendation task. We discover that the two methods behave very differ-

ently depending on the sparsity of the data set. LIME does better than SHAP in dense

segments of the data set and SHAP does better in sparse segments. We trace this

difference to the differing bias-variance characteristics of the underlying estimators

of LIME and SHAP. We find that SHAP exhibits lower variance in sparse segments

of the data compared to LIME. We attribute this lower variance to the completeness

constraint property inherent in SHAP and missing in LIME. This constraint acts as

a regularizer and therefore increases the bias of the SHAP estimator but decreases

its variance, leading to a favorable bias-variance trade-off especially in high sparsity

data settings. With this insight, we introduce the same constraint into LIME and for-

mulate a novel local explainabilty framework called Completeness-Constrained LIME

(CLIMB) that is superior to LIME and much faster than SHAP.
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Chapter 4: This chapter shows a second example of the second mode of human-

machine collaboration—computers providing humans with algorithmic explanations.

When generating local explanations of an opaque machine learning model by a

variety of methods, we run into the problem of evaluating the explanations and deter-

mining the best one. We argue that evaluating an explanation of a model prediction

has two components, faithfulness of the explanation to the opaque model and ease

of human understanding of the explanation. In this work, we aim to develop quan-

titative ways to evaluate the faithfulness of the local explanations when explaining

state-of-the-art movie recommendation models. We propose the quantitative evalua-

tion of faithfulness in terms of an approximation error between the local explanation

and the opaque model. We show that this approximation error can be minimized to

obtain a new local explanation technique. The proposed approximation error is an

intuitive way to reason about the behavior of local explanation methods compared

to the axiomatic approach adopted in the local explainability research. Therefore

we use the proposed approximation error to compare widely used local explanation

methods in terms of their faithfulness/fidelity to the opaque model. Finally for the

ease of human understanding component, we describe different ways to present results

of an explanation model in terms of simplified feature inputs by optimizing the same

approximation error in the transformed feature space.

Chapter 5: This chapter shows how the third mode of human-machine

collaboration—humans and computers working together in decision making—

maintains utility while reducing harm of machine learning models in the task of

image personalization.

Personalization is an integral part of most web-service applications and determines

which experience to display to each member. A popular algorithmic framework used

in industrial personalization systems are contextual bandits, which seek to learn a per-

sonalized treatment assignment policy in the presence of treatment effects that vary

4



with the observed contextual features of the members. In order to keep the optimiza-

tion task tractable, such systems can myopically make independent personalization

decisions that can conspire to create a suboptimal experience in the aggregate of the

member’s interaction with the web-service. We design a new family of online learning

algorithms that benefit from personalization while optimizing the aggregate impact

of the many independent decisions. Our approach selectively interpolates between

any contextual bandit algorithm and any context-free multi-armed bandit algorithm

and leverages the contextual information for a treatment decision only if this infor-

mation promises significant gains over a decision that does not take it into account.

Apart from helping users of personalization systems feel less targeted, simplifying the

treatment assignment policy by making it selectively reliant on the context can help

improve the rate of learning. We evaluate our approach on several datasets including

a video subscription web-service and show the benefits of such a hybrid policy.

Chapter 6: In this chapter, we delineate the various ways in which humans and

machines collaborate in the challenging real-world applications of the Fragile Families

Challenge and recommender systems.

In this thesis, we cover three specific modes of human-machine collaboration in

the aforementioned two contexts. However, upon doing a literature review of the full

set of 17 research papers submitted to the Fragile Families Challenge and a literature

review of existing recommender system research papers, we are able to draw a more

complete picture of the various ways in which humans and machines collaborate in

these settings.

Chapter 7: I conclude in this chapter. Why are humans so keen to collaborate

with machines in the automatic machine-learning backed processing of real-world

big data? Because their ultimate goal is to be able to read the minds of other

humans. If companies and governments can read the minds of the people, then they

can accurately predict their behavior and preferences in the future.
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Chapter 2

Humans Enabling Computers with

Domain Specific Knowledge1

This chapter is based on “Friend Request Pending: A Comparative Assessment of

Engineering and Social Science Inspired Approaches to Analyzing Complex Birth

Cohort Survey Data.” It shows how the first mode of human-machine collaboration—

humans enabling computers with domain specific knowledge—increases utility of ma-

chine learning models in the task of grade point average (GPA) prediction.

The Fragile Families Challenge is a mass collaboration social science data chal-

lenge whose aim is to learn how various early childhood variables predict the long-

term outcomes of children. We describe our two-step approach to the Fragile Families

Challenge. In step 1, we use a variety of fully automated approaches to predict child

academic achievement. We fit 124 models, which involve most possible combinations

of 8 model types, 2 imputation strategies, 2 standardization approaches, and 2 auto-

matic variable selection techniques using 2 different thresholds. Then, in step 2, we

attempt to improve on the results from step 1 with manual variable selection based
1This chapter was originally published with the following citation: Claudia V. Roberts. “Friend

Request Pending: A Comparative Assessment of Engineering and Social Science Inspired Approaches
to Analyzing Complex Birth Cohort Survey Data.” In Socius: Sociological Research for a Dynamic
World. 2019.
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on a detailed review of the codebooks. We manually selected 3,694 variables believed

to be predictive of academic achievement, using a comprehensive review of student

success literature to guide the decision-making process. The best models from step

1 were re-estimated using the manually selected variables. We show that manual

variable selection improved the majority of the top 10 models in step 1, but did not

improve the best of the top 10. Results indicate that variable selection inspired by

social science methodologies can, in most cases, significantly improve models trained

completely automatically.

2.1 Overview

The Fragile Families and Child Wellbeing Study (FFCWS) is a longitudinal, birth

cohort study run by researchers at Princeton University and Columbia University

[95]. The Study follows a group of nearly 5,000 American children born between 1998

and 2000 and includes a large oversample of children born to unmarried parents [76].

The aim of the study is to characterize the relationships and conditions of unmarried

parents and to study the cognitive development, mental and physical health, and

social relationships of children born into such families.

The Fragile Families Challenge (FFC) is a mass collaboration social science data

challenge designed to harness the predictive power of the FFCWS dataset [83]. The

FFC invites community members to use the data to build models that best predict

six key outcomes: grade point average (GPA), grit, material hardship, eviction, job

loss, and job-training. In this paper, we focus on predicting GPAs only. It is our

personal belief that a child’s GPA is very important as it sets the tone for the rest

of a child’s life and influences the range of opportunities afforded to the child (e.g.,

college acceptances, scholarships, admittance into competitive summer enrichment

programs).
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Out-of-the-box machine learning libraries such as SciKitLearn and access to open

datasets hosted on popular platforms such as Kaggle enable users from across the

globe to create sophisticated predictive models with sometimes impressive predictive

accuracy without ever needing to understand the underlying data [71][1]. This is

in stark contrast to traditional methods of predictive modeling and data analysis

undertaken by researchers in non-engineering fields, specifically the social sciences.

In survey research, a popular measurement technique used in applied social research,

the data is oftentimes very complex [3]. They can span over many years, in the case

of longitudinal studies, and are susceptible to various sources of error: coverage error,

sampling error, non-response error, and measurement error [105]. Thus, best practices

in survey research call researchers to spend substantial time with the data–to “make

friends with their data”–and to refrain from “throwing their data into a computer and

trying to analyze it in minutes” [108]. Failure to do so could lead to spurious results

and misleading conclusions, and researchers run the risk of misidentifying associations

as statistically significant [46].

McFarland and colleagues argue that while sociologists are driven by theory and

the desire to explain the patterns observed in the data, engineers are focused on

creating algorithmic tools to increase the predictive accuracy of their models, without

placing much importance on the explanation [63]. But what if the only metric of

success is predictive accuracy? To what extent would an engineer be rewarded for

“befriending” the data? Using the Fragile Families Challenge (FFC) as our backdrop,

we seek to answer whether engineers get better predictive results when they spend a

little time learning the domain they are working in, and if so, how much better are

these results.

In this paper, we will use the term “variables” to refer to survey questions in the

codebook. The cookbook survey questions are our independent variables. We use

the term “outcome” to refer to the dependent variable we are attempting to predict,
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which in this case is GPA. “Fitting” or “estimating a model” is the process by which

we learn a mathematical relationship between a set of variables x and the dependent

variable y. The term “sample” refers to a single observation or data point in the

dataset, which in this case is a child.

We divided the project into 2 steps. In step 1, we used a completely automatic

approach that does not consider the data (the norm in data mining) to fit 124 models

for GPA prediction. In step 2, we attempt to improve upon our results. We use a

strategy that combines engineering-centric statistical analysis techniques with clas-

sical, more manual social science methodologies: we examined each variable in the

codebook, manually selecting the ones believed to be predictive of academic achieve-

ment based on a non-expert reading of domain-specific research. Results indicate

that it in most cases, it pays off for engineers to “make friends” with the FFCWS

codebooks. We were able to improve the predictive accuracy of 6 of the 10 top step 1

models, of which 4 saw significant improvements. However, manual variable selection

did not improve the predictive ability of the 2 most accurate models from step 1.

In Section 2.2, we describe the procedures used to create the initial set of 124

models. Section 2.3 describes the process of creating the 15 manually curated variable

sets. Section 2.4 is a presentation of the results; we show that we were able to

improve the predictive ability of almost all the models and demonstrate the effect of

each variable subset on the models. In Section 2.5, we look at the variables that most

predict GPA as identified by the two most accurate models from this project. Finally,

we end the discussion with closing remarks in Section 2.6. Additional supporting

materials can be found at the supporting online appendix.
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2.2 Step 1: Automatic Variable Selection

The goal of step 1 was to fit a model that could predict year-15 GPAs as accurately

as possible using a purely automated approach.

2.2.1 Data Preprocessing

With 2,121 samples and 12,942 variables, the FFC dataset is a high-dimensional

dataset. In settings where the number of variables far exceeds the number of samples,

overfitting becomes a problem, and the learned model loses its ability to generalize

[41]. Thus, it’s important to preprocess the data to not only reduce the number of

variables but to also handle missing values and standardize the data.

We tried many different approaches to data pre-processing. We tried almost all

combinations of 4 different decisions: 2 types of automatic variable selection (F-test

and mutual information) using 2 thresholds (10% and 20%), 2 types of imputation

strategies (median and mode), and 2 standardization approaches (no standardization

and standardization). Detailed information of the pre-processing steps can be found

at the supporting online appendix.

2.2.2 Model Selection

We used the following 8 model types to fit a total of 124 models. This includes

all possible combinations of 8 different model types, 2 types of automatic variable

selection (F-test and mutual information) using 2 thresholds (10% and 20%), 2 types

of imputation strategies (median and mode), and 2 standardization approaches (no

standardization and standardization).

1. Ordinary least squares linear regression (OLS) 2

2In the case where there were more variables than cases, SciKitLearn finds the minimum ℓ2 norm
solution via singular value decomposition [71].
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2. Least-angle regression* (LARS) [30]

3. Ridge regression* (Ridge) [98]

4. Elastic Net* (EN) [116]

5. Orthogonal Matching Pursuit (OMP) [17]

6. Lasso regression* (Lasso) [97]

7. Decision Tree regression (DTR) [72]

8. ε-Support Vector Regression with linear kernel* (SVR) [26]

The observant reader will notice that 8× 2× 2× 2× 2 = 128 while we fit only 124.

We fit Decision Tree models using only some type of automatic variable selection.

We did not fit these models using the full variable set because decision trees are very

susceptible to overfitting in high-dimensional settings such as this one, where the

number of variables greatly outnumbers the number of samples [71]. This accounts

for the missing 4 combinations 3.

2.2.3 Results

We used FFC holdout test set mean squared error (MSE) scores (FFC-HO-MSE) to

evaluate the accuracy of the models. We chose the MSE metric because it is the

metric used to rank and evaluate the predictive validity of the submissions made

through the FFC web portal [83]. Results from step 1 are summarized in Table 2.1.
3The results for all 124 models can be found at the supporting online appendix.
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2.3 Step 2: Manual Variable Selection

The goal of step 2 was to improve the predictive accuracy of the models generated in

step 1 by combining the previous automatic approaches with manual ones inspired

by survey research best practices.

2.3.1 Manual Variable Selection

Our first step in this second phase of the project was to get friendly with the code-

books. We went through each of the 12,942 variables, manually selecting the ones

believed to be predictive of future academic achievement. To inform the decision-

making process, we turned to a comprehensive review of student success literature,

“What Matters to Student Success,” a report commissioned for the National Postsec-

ondary Education Cooperative (NPEC) in 2006 [47]. Specifically, we relied on the

first section of the report, which discusses the effects of pre-college experiences on

student success, such as family and peer support, academic preparation, motivation

to learn, socioeconomic status, and demographics [47]. While the report is targeted

at student success in college, research has shown that high school grades are also

highly correlated with socioeconomic factors such as family income and educational

attainment [118]. From the NPEC report, we collated a list of 57 pre-college factors

that have been shown by social scientists to affect student success 4.

Next, we manually examined each variable in the codebook and made judgement

calls to determine whether or not it was directly related to any one of the 57 factors.

It should be noted that we did not calculate intercoder reliability [60]. Calculating

and reporting the intercoder reliability of this manual process is an area for future

work. The aftermath of this process was a custom set of 3,694 variables 5.
4The full list of 57 factors can be found at the supporting online appendix.
5The complete list of 3,694 variable labels can be found at the supporting online appendix.

12



In an effort to identify the particular groups of variables most predictive of aca-

demic achievement, we created 14 additional, more granular subsets from the man-

ually selected set of 3,694 variables. For example, we created a variable set that

contained only wave 3 variables and a different subset that contained only wave 5

variables.

We used a total of 16 variable sets in this project 6: 1) the original set of 12,942

variables; 2) our manually curated set of 3,694 variables; and 3) 14 additional variable

sets, each of which is a subset of the manually selected set of the 3,694 variables (wave

3 only, wave 5 only, etc.). Table 2.2 summarizes each of these 16 variable sets, and

provides a shorthand label for each. We will use these shorthand labels to reference

the various variable sets for the remainder of this paper.

2.3.2 Method

We re-estimated the 10 most accurate models from step 1 on each of the 15 manually

created variable subsets to produce a total of 150 models in this second step of the

project. We used the same data preprocessing procedures and imputation strategies

used in step 1. As before, categorical variables were not identified and were not

treated differently from the continuous ones. After data imputation, our manually

curated variable set was reduced from 3,694 to 3,423 variables. The FFC submission

pipeline remained the same.

2.4 Results

Manual variable selection indeed improved, and in some cases dramatically improved,

the accuracy of the predictive models trained previously using purely automatic tech-

niques. Table 2.3 shows that 8 of the 10 most accurate models were trained on the
6This count does not include the variable subsets created using SciKitLearn’s automated univari-

ate feature selection routine.
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manually created variable sets. Figure 2.4 shows how substantially manual variable

selection improved the FFC-HO-MSE values of the 3rd, 6th, 9th, and 10th most

accurate models from step 1. After re-estimating model 6 on the ‘w5’ variable set,

the model rose to become the second most accurate model across both phases of

the project, according to FFC-HO-MSE. The accuracies of models 4, 5, and 7 were

also improved, but the change in FFC-HO-MSE was more tempered. The two most

accurate models from step 1 saw no improvement.

2.4.1 Effect of Specific Variable Groups on Model Accuracy

A secondary goal was to understand how the various variable groups affected the

predictive accuracy of the models trained in step 2 (e.g., do wave 5 variables yield

better results than wave 3 variables?). Figure 2.5 is a 16×10 heatmap of FFC-HO-

MSE scores from the 10 most accurate step 1 models trained on each of the 16 variable

sets from the project, including the full set of 12,942 variables (labeled ‘All’). The

lower the MSE value and the darker the color, the better.

Variable sets ‘w1’, ‘w2’, and ‘w3’ appear to contain the weakest signal across

almost all models, and variable set ‘w5’ appears to contain the strongest signal, closely

followed by ‘w1_5’ and ‘w1_5_t_kind’. From ‘w1’ through ‘w5’ we see a gradual

strengthening of color across several rows. This pattern and the previous observations

suggest that later waves are more predictive of high school GPA than earlier waves.

However, not all wave 5 data are created equally. Variable set ‘k’ contains variables

asked of only the child in wave 5 and ‘t_k’ contains variables asked of the child and

the child’s teacher in wave 5 [83]. Looking across both columns, we can visually

see how FFC-HO-MSE values improved across more than half of the models when

input from the teacher was removed. We see a similar phenomenon when comparing

the ‘t_kind’ and ‘t_kind_k’ columns. The majority of the models seem to improve

with added input from the child. It appears that no matter how attentive a parent,

14



teacher, or caretaker may (or may not) be, only the child really knows what he or she

is feeling and experiencing on a day-to-day basis. And many of questions asked of

the child in wave 5 attempt to tease out precisely this, questions such as “Frequency

kids picked on you or said mean things to you”, “I often feel lonely”, “Frequency kids

take your things, like your money or lunch,” and “Amount of time on a weekday you

watch TV and movies.”

2.5 Variables That Most Predict GPA

An important goal of the FFC is to gain insight into the specific variables that most

predict the 6 outcomes of interest–GPA, grit, material hardship, eviction, layoff, and

job training. The hope being, that such insights may one day improve the lives of

American children born into these “fragile families” [83]. Table 2.6 lists the variables

that most predict year-15 GPAs according to the two most accurate models from this

project based on FFC-HO-MSE scores. The most accurate model used Lasso, and

the second most accurate model used Elastic Net. Coefficients are in parenthesis, and

variables are listed in order of decreasing absolute coefficient value. Since the data

were standardized, we were able to compare variable coefficients according to their

relative significance to the prediction task. That is, the higher the absolute value

of the coefficient, the higher the level of importance of that particular variable in

predicting the desired outcome, which in this case is GPA. In prediction tasks such

as these where we are predicting a real-valued outcome in a setting with multiple

independent variables, coefficients can be interpreted as the following: holding all

other variables fixed, the predicted outcomes increase (if the sign of the coefficient

is positive) or decrease (if the sign of the coefficient is negative) by a factor of β1

units for every one unit increase in x1, where β1 is the coefficient associated with the

variable x1 [22].
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It is worth highlighting that while these two best models have almost equal pre-

dictive performance on the holdout data, 0.348 and 0.349 respectively, they exhibit

very little overlap in the variables each model deems to be of most significance. We

saw two different sets of variables returned by two different models of almost equal

predictive accuracy, giving us two different pictures of which variables most predict

year-15 GPAs. In his analysis of the two cultures of statistical modeling, Breiman

argues that in a situation where “different models, all of them equally good...give

different pictures of the relation between the predictor and response variables...the

question of which one most accurately reflects the data is difficult to resolve” [15].

As engineers, these difficulties are further compounded by a lack of domain knowl-

edge in the social sciences. Thus, we leave intuitive explanation of these results for

future work and collaborations with social scientists. Furthermore, further research

is required to calculate confidence intervals for the coefficients listed in this section

and to begin interpreting the magnitude of the values and features returned.

2.6 Summary

Using a two-step approach to the FFC, we were able to significantly improve the pre-

dictive accuracy of the majority of the models evaluated by using a combined approach

of automatic and manual variable selection motivated by social science knowledge.

We showed that such an approach, even though based on a non-expert reading of

domain-specific research, can improve the accuracy of models trained automatically.

We demonstrated that if one is not careful choosing their algorithms in such a data

setting, then it pays to take a look at the codebooks. But there is still room for

improvement, as our strategy was unable to improve the accuracy of the two most

accurate models from step 1; this is an area for future work.
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Figure 2.1: Evaluation results for the 10 most accurate models from step 1. Models
are numerically labeled and ordered by increasing FFC-HO-MSE. The lower the MSE
the better.

Figure 2.2: Descriptions of each of the 16 variable sets used in this project. This
count does not include the variable subsets created using SciKitLearn’s automated
univariate feature selection routine. Includes the number of variables in each before
imputation and the shorthand label used to reference each of the variable sets. These
16 variable sets include the original set of 12,942 variables, our manually curated set
of 3,694 variables, and 14 additional variable sets, each of which is a subset of the
manually selected set of 3,694 variables (wave 3 only, wave 5 only, etc.).
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Figure 2.3: Evaluation results from the 10 most accurate models across the entire
project, i.e., steps 1 and 2 combined. Models are listed in order of increasing FFC-
HO-MSE scores. The lower the MSE the better. The column ‘Variable Set’ contains
the label name of the variable set used to train that particular model. Refer to Table
2.2 for a description of each variable set.

Figure 2.4: Effect of manual variable selection on the predictive ability of the 10 most
accurate step 1 models. For the step 1 series, where the full set of 12,942 variables was
used to fit the models, the MSE value is plotted for each model. Recall that in step
2, we re-estimated the top 10 step 1 models using each of the 15 manually created
variable subsets (the full set of 3,694 manually curated variables plus 14 additional
subsets taken from this set of 3,694 variables), giving us 15 MSE scores per model.
Thus, for the step 2 series, for each model, we plot the holdout result based on the
result with the best leaderboard score.
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Figure 2.5: Heatmap of FFC-HO-MSE scores for the 10 most accurate step 1 models
trained on each of the 16 variable sets from the project. The lower the MSE value and
the darker the color the better. The lowest FFC-HO-MSE value, 0.348, is represented
by the color red (Model 1, dataset ‘All’). The highest FFC-HO-MSE value, 0.546, is
represented by the color white (Model 10, dataset ‘w3’). A baseline model that takes
the mean of each outcome in the training data and predicts that mean value for all
observations acheives an MSE value of 0.425 on the holdout data for GPA [83]. Refer
to Table 2.2 for a description of each variable set.
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Figure 2.6: Variables that most predict GPA within the two most accurate models
from the project. With a FFC-HO-MSE value of 0.348, the most accurate model used
Lasso, median imputation, standardized variables, no additional univariate feature
selection, and was trained on the full FFC feature set (variable set labeled ‘All’).
The second most accurate model, FFC-HO-MSE score of 0.349, used Elastic Net,
median imputation, standardized variables, univariate feature selection (20%) using
the mutual information scoring function, and was trained on the wave 5 (‘w5’) manual
feature subset. Since there is some disagreement about how to produce confidence
intervals around estimates that come from regularized models, we chose not to include
them.
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Chapter 3

Part 1: Computers Providing

Humans with Algorithmic

Explanations1

This chapter is based on “CLIME: Completeness-Constrained LIME.” It shows how

the second mode of human-machine collaboration, computers providing humans with

algorithmic explanations, can improve utility and reduce harm of machine learning

models in the task of movie recommendations.

We evaluate two popular local explainability techniques, LIME and SHAP, on

a movie recommendation task. We discover that the two methods behave very dif-

ferently depending on the sparsity of the data set, where sparsity is defined by the

amount of historical viewing data available to explain a movie recommendation for

a particular data instance. We find that LIME does better than SHAP in dense

segments of the data set and SHAP does better in sparse segments. We trace this

difference to the differing bias-variance characteristics of the underlying estimators

of LIME and SHAP. We find that SHAP exhibits lower variance in sparse segments
1This chapter was originally submitted with the following citation: Claudia V. Roberts, Ehtsham

Elahi, and Ashok Chandrashekar. “CLIME: Completeness-Constrained LIME.”
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of the data compared to LIME. We attribute this lower variance to the completeness

constraint property inherent in SHAP and missing in LIME. This constraint acts as

a regularizer and therefore increases the bias of the SHAP estimator but decreases

its variance, leading to a favorable bias-variance trade-off especially in high sparsity

data settings. With this insight, we introduce the same constraint into LIME and for-

mulate a novel local explainabilty framework called Completeness-Constrained LIME

(CLIME) that is superior to LIME and much faster than SHAP.

3.1 Overview

Recommendation systems mediate our various online interactions on a daily basis

by limiting and influencing our possible choices. Recommender system use cases

include product recommendations, search engines, social media browsing, music and

video streaming, online advertising, news dissemination, job candidate matching, and

real estate recommendations. The recommendation system problem setting is a high

sparsity problem. Because the user only has prior information on a tiny subset of the

total number of items at her disposable, the system has very little interaction data

for the vast majority of the available items. This makes the recommendation setting

an important and challenging problem domain (see Section 3.2).

In the recommender domain, explanations can be an integral part of the user

product experience and depending on the recommendation task, critical to the task

description itself. Explanatory models provide explanations for why the underlying

recommendation system model made the item selection, item position ranking, or

point prediction estimate that it did. In this paper, we focus on local explanations,

that is, explanations for a single prediction instance. Two popular, general purpose

explanation frameworks whose aim is to faithfully explain the local predictions of ma-

chine learning models are Local Interpretable Model-agnostic Explanations (LIME)
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and SHapley Additive exPlanations (SHAP) (discussed in Section 3.3). LIME is very

easy to use, computationally fast, and works on tabular data, images, and text [67].

While SHAP is computationally much slower than LIME depending on the underlying

prediction model, it has some important theoretical guarantees such as guaranteeing

the fair distribution of the prediction across the features [61, 67].

The first research question we sought to answer was how do SHAP and LIME

perform in the high sparsity recommendation system setting. We adapted LIME and

SHAP to the task of explaining movie recommendations and evaluated the explana-

tions using the delta-rank metric (described in Section 3.5). We observed that while

SHAP outperforms LIME on aggregate, the two methods behave very differently

depending on the sparsity of the data, where sparsity is defined by the amount of

historical viewing data available to explain a movie recommendation for a particular

data instance. LIME does better than SHAP in dense segments of the data set, and

conversely, SHAP outperforms LIME in the sparse regions of the data set. Dense seg-

ments of the data set include data instances with plentiful historical interaction and

viewing data while the sparse regions include data instances with very little historical

viewing data. We performed a bias-variance analysis and traced this difference in

performance to the differing bias and variance characteristics of the underlying esti-

mators of LIME and SHAP (see Section 3.4.1. We show that SHAP exhibits lower

variance and higher bias compared to LIME and we postulate that this is the reason

why SHAP outperforms LIME in high sparsity data settings where the bias-variance

trade-off is especially favorable.

We hypothesize that the reason for SHAP’s lower variance is due to Shapley values

satisfying the efficiency property or what other papers call the completeness axiom

[91], the conservation property [13], or summation-to-delta property [87] (for the du-

ration of this paper we will refer to this property as the completeness constraint).

Under the completeness constraint, SHAP’s explanatory model is said to have a fair
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attribution of feature importance as it captures the contribution of each feature in

the underlying model’s prediction at data instance in question. We argue that this

completeness constraint acts as a regularizer and therefore increases the bias and

decreases the variance of the SHAP estimator. With these collective insights sup-

ported by our analysis, we introduce this constraint into LIME; we call this new local

explainability technique Completeness-Constrained LIME (CLIME) (formulated in

Section 3.4). Our experiments show that CLIME indeed lowers the variance of the

LIME estimator and improves its performance in sparse data settings (results pre-

sented in Section 3.5). CLIME allows users to enjoy some of the theoretical guarantees

of SHAP and maintain the off-the-shelf ease of LIME whilst being computationally

faster than LIME and improving performance in high sparsity data settings, common

in recommendation tasks.

Our contributions are summarized as follows:

• A comparison between SHAP and LIME in a movie recommendation setting,

specifically analyzing their performance in sparse and dense regions of a publicly

available data set

• A bias-variance analysis of SHAP and LIME in the sparse and dense data regions

in a movie recommendation setting

• Formulation of a new model-agnostic, faithful, local explanation method called

CLIME that includes one of the powerful properties of SHAP while being as

fast as LIME and maintaining some of the desirable qualities of LIME

• Analysis connecting bias and variance to the completeness constraint
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3.2 Problem Motivation

When determining what items to present to a user, these systems necessarily pare

down the complete set of possible items from the millions to a small handful. The

recommendation system problem setting is a high sparsity problem where the recom-

mending system has very little interaction data between all the available users and all

the available items [48, 42, 81, 8, 20]. Recommendation systems can also suffer from

the long-tail phenomenon—there is an outsized amount of user interaction data for

a tiny subset of the available item set and an extremely large number of items which

effectively have no interaction data [52]. Further contributing to the high sparsity

nature of online recommenders is the highly dynamic and in some cases transitory na-

ture of the data. Users and product items are constantly coming and going, whether

physically or in terms of relevancy, and user tastes are ever evolving.

An important aspect of recommendation systems is their corresponding explana-

tory models. This tight coupling of recommendation system models and explanation

models is unique to the recommendation system setting. In the computer vision do-

main, explanations might come in the form of a visual saliency map that indicates the

specific pixels that most contributed to the prediction of “cat” in an image classifica-

tion task, for example. In the natural language processing task of sentiment analysis,

an explanation model might highlight the particular words in a social media comment

that most contributed to the comment being flagged as inappropriate by the model.

In both of these cases, explanations serve largely as sanity checks to ensure that the

learned mathematical model is picking up on the right features. Explanations in these

artificial intelligence domains help build confidence that the trained machine learning

models are doing the right thing for the right reasons and not picking up on spurious

features.

The goals for providing explanations in recommendation systems and for some-

times explicitly exposing them to the user as a product feature are numerous and as
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follows: transparency, validation, trust building, persuasion, effectiveness, efficiency,

satisfaction, communicating relevancy, comprehensibility, educating [99]. Previous

studies have shown that accompanying recommendations with their explanations lead

to higher user acceptance of recommendations though care must be taken because

poorly designed explanations can be less performant than the base case of no expla-

nations at all [39, 35, 100]. In the computer vision example of image classification

(and other mundane automation tasks), if the user of the system is 100% confident

that the system is correct 100% of the time then there is no need for explanations—a

cat is a cat, is a cat yesterday, today, and tomorrow. In the highly dynamic world

of item recommendation where there are competing incentives, explanations can be

used to surprise and delight users as well as build trust amongst multiple stakehold-

ers. Today, a user might hate horror movies but tomorrow, that same user might be

delighted to be recommended a particular horror movie because it is top trending in

the country and he wants to be part of that moment, part of the cultural zeitgeist.

Evaluating the explanations of a single model prediction instance is separated into

two components 1) faithfulness of the explanation 2) ease of human understanding

[77, 94, 25]. An explanatory model is said to be locally faithful if the predictive

behavior of the explanatory model in the vicinity of the single instance of interest

is consistent with the predictive behavior of the underlying recommender model in

the same vicinity. An explanatory model is said to be intelligible or interpretable

if the explanation for a single recommendation instance is readily understood by

a human. Evaluating the ease of human understanding of a local explanation is

highly subjective and task dependent and not the focus of this paper. Studying the

faithfulness of an explanation model is important because a low-fidelity explanation,

an explanation that does not closely approximate the behavior of the underlying

model, means that the explanation model is not accurately or honestly describing the

underlying recommender model’s decision making process [40, 59].
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3.3 Mathematical Desiderata

Two of the most popular model-agnostic local explanation methods are LIME and

SHAP. LIME learns a separate interpretable model trained on a new data set of ran-

dom permutations of the original data instance we are seeking to explain [77]. SHAP

explains the prediction of an individual data instance by computing Shapley values

[61]. Shapley values is a game theoretic technique that estimates the contribution of

each feature to the prediction also by perturbing the original input data instance [86].

In this section, we lay down the mathematical foundation and build up the theo-

retical scaffolding necessary for understanding our ensuing contributions.

3.3.1 LIME

Local Interpretable Model-agnostic Explanations (LIME) is a framework for train-

ing a secondadry interpretable model, or surrogate model, to explain the individual

predictions coming from any opaque classifier [77]. The LIME algorithm for training

a surrogate model works as following. First, select some data instance x ∈ Rd for

which you want an explanation, i.e. you want an explanation for why an opaque

recommender model f predicted that user feature vector x would play/not play a

movie with probability f(x). LIME requires that in order for the explanation to

be understandable to humans, the data should be transformed into an interpretable

representation such as a binary vector x′ ∈ {0, 1}d
′

denoting the presence/absence

of interpretable components, e.g. user watched/did not watch movie A in the past.

Next, generate a new data set Z of perturbed samples z′ ∈ {0, 1}d
′
by drawing nonzero

elements of x′ uniformly at random. Now that we have a new set of data instances Z

in the neighborhood of x′, we need labels for them. To obtain the labels needed for

our new explanatory model, we transform the perturbed samples z′ back into their

original representation z ∈ Rd and interrogate the opaque model for each instance
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f(z). Because we randomly generated the perturbed samples z′ we would like to

capture the fact that some samples z might be closer or farther to the original data

instance of interest x and thus should be weighted accordingly. This weighting scheme

is captured by the proximity measure πx(z), which measures the proximity between

an instance x to z.

Finally, using this new weighted data set Z and ground truth labels generated by

obtaining f(Z) we train a new model g ∈ G where G is a class of interpretable models

such as decision trees, linear models, etc. This new model g is our interpretable,

explanatory surrogate model ξ(x) for explaining f(x):

ξ(x) = argmin
g∈G

L(f, g, πx) + Ω(g) (3.1)

L is any loss function of your choice which measures how unfaithful g is at approxi-

mating the behavior of f in the local neighborhood of x. We want to minimize this

loss function so that the behavior of g mimics the behavior of f as closely as possible

in the locality defined by πx. Ω(g) is a complexity term of the model—we want this

to be low, e.g. we prefer fewer features in the case of linear models. In the original

LIME paper, the authors use the square loss function L with ℓ2 penalty. Typically,

g(z′) is chosen to be a linear function i.e. g(z′) = ΦT z′ + ϕ0 which makes the above

a weighted linear regression problem to solve for Φ and intercept ϕ0.

L(f,Φ, ϕ0, πx) =
∑

z,z′∈Z

πx(z)(f(z)− (ϕ0 + ΦT z′))2 (3.2)

Some of the advantages of LIME include 1) off-the-shelf easy to use implemen-

tation available 2) relatively fast computationally 3) works with tabular data, text,

and images 4) opaque model can change without needing to change the explanation

model implementation [67]. Some of the previously reported disadvantages of LIME

include 1) many hyperparameters to set whose choices heavily influence the resulting
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explanation and leads to many scientific degrees of freedom (perturbation sampling

strategy, neighborhood definition, selection of g) 2) instability of explanation output

as mentioned in Section 3.6 3) no theoretical guarantees [68, 67]. To the best of our

knowledge, we are the first to shine a light on LIME’s decreased performance in high

sparsity data regions as well as highlight its comparatively good performance in dense

data regions as compared to SHAP in a recommender setting.

3.3.2 SHAP

Like LIME, SHapley Additive exPlanations is an attribution method, that is, a

method that describes the prediction of a single data instance as the sum of the effects

each feature had on the prediction [67]. Shapley values is an explanation framework

that explains the prediction of an individual data instance by computing Shapley

values [61, 86, 67]. We choose the model-agnostic Kernel Shap formulation (denoted

as SHAP in the rest of the paper) which describes the local explanation as a weighted

linear regression similar to LIME as shown in equation [1] with g(z′) = ΦT z′ + ϕ0.

The regression loss function and the weights are given by:

L(f,Φ, ϕ0, πx) =
∑

z,z′∈Z

πx(z)(f(z)− (ϕ0 + ΦT z′))2

π′
x(z

′) =
d′ − 1

(d′ choose |z′|)|z′|(d′ − |z′|)

(3.3)

where d′ is the dimensionality of x′ and |z′| is the number of non-zero elements

in z′. In contrast to LIME, generation of the data set Z is very different in SHAP.

In SHAP, Z is defined as the power set of all non-zero indices in x′. Hence, Z has

a size of 2d
′ if we exhaustively enumerate all possible subsets. (Typical software

implementations do allow putting an upper limit on the number of samples in Z).

Therefore, one of the computational complexities of SHAP is generating this data
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set Z. Another (minor) difference from LIME is that the regularization parameter in

Shapley values regression Ω(g) = 0.

SHAP’s Completeness Constraint Property

As shown in [61], this choice of weighting function π′
x(z

′) = ∞ when |z′| ∈ {0, d′}.

This means for z′ = 0 =⇒ z = ∅ (a null or baseline feature vector) and ϕ0 = f(∅)

and z′ = x′ =⇒ ϕ0 +
∑d′

i=1 ϕi = f(x) (since all zeroes can be dropped from x′ as

missing/zero features have no contribution, therefore x′ is simply a vector of all ones

and ΦTx′ =
∑d′

i=1 ϕi). This is the so-called completeness constraint. SHAP calls this

the local accuracy property [61], Shapley values calls it the efficiency property [86]

and yet other papers call it the completeness axiom [91], the conservation property

[13], or the summation-to-delta property [87]. For the duration of this paper we will

refer to this property as the completeness constraint.

The completeness constraint f(x) = f(∅) +
∑d′

i=1 ϕi has two immediate computa-

tional implications:

• The intercept of the regression function is set to f(∅) and is no longer a free

parameter and thus, does not need to be estimated.

• Φ has d′ − 1 degrees of freedom. For example, the d′-th element of Φ can be

written as ϕd′ = f(x)− f(b)−
∑d′−1

i=1 ϕi.

We would like to comment that z′ = 0 does not need to correspond to a literal

zero/empty feature vector and can be chosen to be any feature vector b as long as

f(x) ̸= f(b). We do however use a zero feature vector as the null/baseline feature

vector in this paper (more details to come in Section 3.5) and use ∅ to denote it for

the remainder of this paper. Qualitatively, the completeness property has a number

of implications:
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• Under the completeness constraint, the Φ is said to have a fair attribution

of feature importance as it captures the contribution of each feature in the

underlying model’s prediction at data instance x. LIME is simply a best-fit line

and the learned linear function may not be equal to f at the data instance x.

• If the data instance x and the baseline b is different in only one feature, then

the differing feature is given a non-zero attribution under the completeness

constraint (since f(x) ̸= f(b)∀x ̸= b). To see how we might end up with zero

attribution for features without this constraint we reference the example given

in [91]. Consider a function f(x) = 1− ReLU(1− x)) and say we want a local

explanation at x = 2. This function changes from 0 to 1 at x = 1 and after

that it becomes flat. A local explainability method like LIME may result in

a regression line with 0 slope due to the local flatness of the function. But

choosing b = 0 where f(0) = 0 would force Shapley values to learn a regression

model with a non-zero slope. Therefore, for highly non-linear recommendation

models that may have many such flat regions, the completeness constraint helps

generate accurate explanations in such “zero-gradient” sub-regions in the feature

landscape.

Some of the advantages of SHAP include 1) the prediction of a single instance is

fairly distributed among the feature values 2) game theoretic guarantees afforded to

it by Shapley values [67]. Some of the previously reported disadvantages of SHAP

include 1) slow computation due to high computational complexity 2) like LIME,

SHAP is also vulnerable to adversarial attacks and has issues with explanation insta-

bility [67]. To the best of our knowledge, we are the first to show SHAP’s decreased

performance in dense regions of the data set its superior performance in sparse regions

of the data set as compared to LIME in a recommender setting. Furthermore, we are

the first to trace this difference in performance to SHAP’s lower variance in high spar-
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sity data settings, which we show is a result from SHAP satisfying the completeness

constraint.

3.4 CLIME: Completeness-Constrained LIME

3.4.1 Experimental Results Motivating CLIME

In this section, we briefly summarize our initial experimental findings on a movie

recommender explanation task that served as the catalyst for the resultant body

of research. Full implementation details along with a detailed description of the

evaluation metric we used can be found in Section 3.5.

Knowing how important explanations can be to the product experience of recom-

mendation systems and knowing that these systems suffer greatly from having either

no previous interaction data (the cold-start problem) or very little historical interac-

tion data (in comparison to the available item set), we wanted to evaluate how well

SHAP and LIME perform in varying data sparsity settings. Sparsity is defined by

the amount of historical interaction data available to explain a recommendation for a

particular data instance. In our first experiment, shown in Figure 3.2, we iteratively

removed the top−k most important features from the data instance of interest x. We

observed that as we increased the number of features that we removed from x, the gap

in performance between SHAP and LIME widened, with SHAP outperforming LIME.

In a second experiment, shown in Figure 3.3, we divided our movie recommendation

data set into eight equal sized groups based on sparsity, i.e. based on the amount of

interaction data each data instance had. We observed that SHAP significantly out-

performed LIME in the sparsest groups and that LIME outperformed SHAP in the

densest groups. Dense segments of the data set include data instances with plentiful

historical viewing data while the sparse regions include data instances with very little

historical viewing data. This interesting reversal of performance based on the sparsity
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of the data has been observed previously in machine learning research [14] and has

been found to be closely related to the bias-variance characteristics of models.

Both SHAP and LIME attempt to predict the behavior of an underlying model

in the neighborhood of the given data instance x. Their ability to provide the correct

explanations is therefore tied to their generalization ability in the local neighborhood

around x. We can decompose the generalization capability in terms of their bias and

variance. To be precise, since both SHAP and LIME are regression models, their

generalization error can be measured in terms of the following mean-squared error.

MSE(x; Φ) = E[(f(x)− Φ̂(x))2]

= (f(x)− E[Φ̂(x)])2 + E[(Φ̂(x)− E(Φ̂(x))2]

= Bias2 + Variance

(3.4)

where Φ̂ is an estimator of Φ. (Note: if the underlying model is non-stochastic, there

is no residual error term).

Bootstrapping is one straightforward way to compute the bias and variance of

any model. For the explanation models, the bootstrapping procedure proceeds by

generating P local perturbations of x by randomly zeroing out features. For the p-th

perturbed vector, we solve the explanation model to get Φ̂p. So the empirical average

E[Φ̂(x)] ≈
∑P

p=1 Φ̂p(x)

P
can be plugged-in to estimate the bias and variance in the above

equation. Note that this bias and variance is meant to capture the behavior of the

explanation model in the neighborhood of x.

With these analysis tools, we conducted a bias-variance analysis of SHAP and

LIME (results shown in Figure 3.5) on the same eight sparsity groups from the pre-

vious evaluation experiment. We observed that in all segments of the dataset, SHAP

exhibited higher bias and lower variance. In the sparsest segments, there was a big

variance reduction with a small increase in bias resulting in a favorable bias-variance

trade-off. This favorable bias-variance trade-off leads to SHAP improving upon LIME
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significantly in the sparsest regions of the dataset. In the denser regions, there is a

small variance reduction with a large increase in the bias resulting in SHAP’s poor

performance compared to LIME. This analysis provides strong evidence that the be-

havior of SHAP and LIME with respect to data sparsity can be easily explained in

terms of their bias-variance characteristics. We hypothesize that this bias-variance

difference arises due to the completeness constraint (present in SHAP and missing in

LIME) which we discuss in the next section.

3.4.2 The Bias-Variance and Completeness Constraint Con-

nection

Our findings showed that SHAP and LIME perform differently depending on the

density or sparsity of the data instance whose prediction we seek an explanation for.

We showed that this difference is statistically significant. After conducting a bias-

variance analysis of SHAP and LIME, we observed that SHAP exhibits lower variance

than LIME in high sparsity data regions. As we stated in Section 3.2, high sparsity

data regions are common in recommendation systems and thus, it is important that

these explanation frameworks perform well in high sparsity settings. We posit that

the completeness constraint property, inherent in SHAP and missing in LIME, is

an important reason for why SHAP outperforms LIME in sparse data settings. In

this section, we reason how the completeness constraint is tied to the observable bias-

variance characteristics of SHAP, thus foreshadowing the motivation behind our novel

completeness-constrained explanation model.

Given that SHAP enjoys the same game theoretic grounding as Shapley values,

including the completeness constraint, we asked ourselves the following research ques-

tion, “How is the completeness constraint connected to the bias-variance behavior ex-

hibited by SHAP in sparse data regions?” The completeness constraint was originally

motivated by the desire for attribution methods to fairly distribute the prediction

34



among the features and served as a solution to the gradient saturation problem men-

tioned in Section 3.3.2. However, given our interest in explanations for recommender

systems, we take an entirely different approach to analyzing its role in the performance

of SHAP vs. LIME in sparse data settings.

Since the completeness constraint limits the flexibility of the explanation model,

by eliminating both the intercept and one degree of freedom from Φ, we argue that

it plays the same role as a regularizer. In other words, the limited flexibility prevents

the explanation model’s regression function from fully fitting the behavior of the un-

derlying model in the neighborhood of the data instance x, thus resulting in increased

bias. But this reduced flexibility would also reduce variance of the explanation model.

As long as this bias-variance trade-off is favorable (for example in sparse settings),

we expect to see improved accuracy in predicting the behavior of f from explanation

models with the completeness constraint. Studying the bias-variance trade-off of the

completeness constraint is a novel approach and forms the basis of our work.

3.4.3 Formulation of CLIME

As mentioned in Section 3.3, LIME has highly desirable qualities such as off-the-shelf

ease of use that makes it an attractive choice over the computationally slower but

theoretically more sound SHAP. We propose introducing the completeness constraint

into LIME to take advantage of the favorable bias-variance characteristics of SHAP.

Additionally, adding this constraint into LIME would provide the fair attribution

property found in SHAP and help protect against generating erroneous/zero expla-

nations in locally flat sub-regions. We now introduce our straightforward formulation

of Completeness-Constrained LIME (CLIME).

We set up CLIME identically to LIME. We have the data instance x ∈ Rd and

its interpretable binary representation x′ ∈ {0, 1}d
′
, a new data set Z comprised of

perturbed data samples z′ (z in the original feature space) and their corresponding
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labels f(z), and the proximity weighting function πx(z), all identical to LIME. In

order to introduce the completeness constraint into LIME, we borrow the concept of

a baseline feature vector b ∈ Rd from SHAP. Like SHAP, the choice of b is problem

dependent. We explain our choice of b for the recommendation model we use in

Section 3.5.

CLIME is the solution to the following constraint least squares problem,

min
Φ

∑
z,z′∈Z

πx(z)(f(z)− (f(x) + ΦT (z′ − x′)))2

s.t. ΦTx′ = f(x)− f(b)

(3.5)

Note that the intercept of the above regression function is f(b) like SHAP. The

solution Φ ∈ Rd′ is a vector of coefficients and is interpreted in the same way as the

solution for LIME and SHAP. Fortunately, we do not have to solve the above con-

straint optimization directly since that would make CLIME computationally slower

than LIME. The completeness constraint is a linear constraint, and we can eliminate

the constraint by the following substitution. First, note that ΦTx′ =
∑d′

j=1 ϕj. There-

fore, we can substitute out ϕd′ = f(x0)− f(b)−
∑d′−1

j=1 ϕj in the above equation. Let

c = f(b)+x′
d′(f(x)−f(b)) and r(z′) = (z′1:d′−1− z′d′), then the first d′−1 components

of Φ (denoted below as Φ1:d′−1) are obtained by the following unconstrained least

squares minimization

min
Φ1:d′−1

∑
z,z′∈Z

πx(z)(f(z)− (c+ r(z′)TΦ1:d′−1))
2 (3.6)

The last component of Φ (denoted as Φd′ above) is obtained by back substituting in

the linear constraint. This way of solving for Φ results in an algorithm that should

be as fast as LIME as the problem dimension is reduced to having one less degree of

freedom compared to LIME and there is no intercept to estimate.
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3.5 Experiments

3.5.1 Experimental Setup

Model

We use a Multinomial Variational Autoencoder (Mult-VAE) [57] trained on the Movie-

Lens 20M data set [38] as the recommendation model whose predictions we want to

explain. MovieLens is a data set of users that interacted with movies on the Movie-

Lens website. For the Mult-VAE model, each user is a represented as a bag-of-words

of movies that they interacted with. Therefore, the feature vector xu for a user u can

be represented as k-hot binary vector of size 20,108 (total number of movies in the

data set) with 1′s for the interacted movies and 0′s for the rest. For any user repre-

sented as this k-hot encoded vector, Mult-VAE model can score the entire collection

of 20,108 movies. Typically, these scores are then used to rank the entire collection

of movies (in descending order) to generate personalized recommendations/rankings.

Data Preparation

Adapting LIME and SHAP for movie recommendation system explanations was a

non-trivial task. For our local explanability experiments, we use the validation split

of 10,000 users outside of the training set. For each validation user u, we generated

the personalized ranking from the Mult-VAE model and use the top-ranked movie

tu for local explanability. Therefore the data instance xu is the k-hot vector and

ftu(x) is the score of the Mult-VAE model for the top-ranked movie. Note that the

corresponding interpretable version of x is a vector x′ of size d′ of all ones where d′

is the number of non-zero entries in x. From this vector x, the data set Z can be

generated by sampling the non-zero indices and therefore are binary vectors of size d′.

This data set generation strategy is same for LIME and CLIME whereas it is different

for SHAP, as described in Section 3.3. We do control for the number of samples in Z
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and keep it fixed to 5,000 for the three explanation methods. Our evaluation metric

(described next) requires a ranking of non-zero movies in x, therefore we turn off

the ℓ1 penalty in SHAP and any feature selection heuristic in LIME so that we may

get explanation coefficients Φ for all non-zero movies in the data instance xu. We

keep the rest of the parameters fixed to their default values. For both SHAP and

CLIME, the choice of baseline is a zero feature vector meaning a null user without

any interaction history. The Mult-VAE model outputs an unpersonalized score for

each movie when this zero feature vector is used as input. The unpersonalized score

is proportional to the number of non-zero interactions for each movie in the training

data(typically called the training data popularities of movies in the recommendation

models literature).

Evaluation Metric

We quantitatively evaluate the explanation methods using the delta-prediction metric

(also seen in other papers as the “change in log-odds” [88, 87, 61, 85]) and adapt it

to the recommendation task and call it the delta-rank metric. Given a ranking of

non-zero movies in xu according to the explanation model coefficient ϕi, i = 1, ..., d′,

for each validation user u, take the top-k input movies according to the explanation

model coefficients and remove them from xu. This gives a modified data instance xum

which is the same as xu except for the missing movies that we removed. Compute

the output ranking from the Mult-VAE model with xum as the input. Calculate the

difference in the rank of the movie tu, which was the top ranked movie earlier. The

idea is that if the movies that were removed from xu were really important for the

Mult-VAE to rank tu at the top, we should expect to see a big drop in the ranking

of tu. We remove a large number of movies (for example up-to 30) by taking a few

of them at a time (for example 6 at a time) and plot the change in the rank (or

delta-rank) as we remove each batch of 6 movies. We expect the delta-rank to be
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Figure 3.1: Number of non-zero movie interactions in each sparsity segment

negative if important features are removed, and the magnitude of the drop to be

proportional to the importance of features removed (therefore lower the better). We

compute summary statistics of this delta-rank metric for all validation users.

Since we are interested in comparing the bias-variance and delta-rank performance

of SHAP, LIME and CLIME for different sparsity settings, we partition the 10,000

validation users in eight equal sized buckets according to the number of non-zero movie

interactions in feature vector xu. In the results below, we label the data set segment

with the highest sparsity as Sparsity Rank = 0 and the lowest sparsity segment as

Sparsity Rank = 7. Figure-3.1 describes the sparsity characteristics of each segment.

Our results can be fully reproduced using the the Jupyter Notebooks found in the

supplementary materials.
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3.5.2 Results

Delta-rank Comparison Among LIME, SHAP, CLIME

As shown in Figure-3.2, both CLIME and SHAP outperform LIME significantly

whereas the difference between CLIME and SHAP is insignificant up to top-20 fea-

tures. This validates our hypothesis that introducing the completeness constraint into

LIME does indeed result in improved local explanability. We also compare the three

methods according to sparsity using the eight segments described above (Figure-3.3).

We see the expected outcome—the overall delta-rank improvements come from the

sparse segments of the data set where CLIME and SHAP outperform LIME. We at-

tribute this improvement to an overall favorable bias-variance trade-off especially in

the sparse segments of the MovieLens data set.

Computational Analysis

As mentioned earlier, integrating the completeness constraint into LIME results in

an estimation problem of lower complexity and can be solved as fast as LIME. The

second figure in Figure-3.2 shows this result.

Bias-Variance Analysis of LIME, SHAP, CLIME

We use a validation set of size 1,000 for bias-variance computation (down from 10,000

to keep the computation time in check) and we solve LIME, SHAP and CLIME

estimation problems for 50 bootstrapped perturbation of each validation example.

Figure-3.4 shows that indeed CLIME and SHAP exhibit higher bias and lower vari-

ance as we hypothesized in the earlier section. Moreover, Figure-3.5 shows that

the variance reduction (compared to LIME) is directly proportional to the sparsity

whereas increase in bias (compared to LIME) is inversely proportional to the spar-

sity. These results show that we get the best bias-variance trade-off in the most sparse

40



Figure 3.2: Comparing CLIME, SHAP and LIME according to delta-rank and com-
putational speed
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Figure 3.3: Comparing CLIME, SHAP and LIME in decreasing order of sparsity.
Sparsity Rank = 0 is the data set segment with highest sparsity and Sparsity Rank
= 7 has the least sparsity
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segments of the data set. Our results also show the role the completeness constraint

plays as a regularization technique, therefore significantly improving the performance

of LIME by incorporating completeness constraint in it in the sparse segments of the

MovieLens dataset.

Qualitatively Examining Local Explanations

We find examples where the delta-rank metric for CLIME is far better than LIME

to build an intuition for how improvements in delta-rank affect the outward quality

of the resulting explanations. “Star Wars : Empire Strikes Back” and “Harry Potter

and The Goblet of Fire” are two such examples selected from the sparse region of the

MovieLens data set. Looking at the explanations visually, the results for both CLIME

and SHAP are identical and qualitatively much better than LIME (we highlight the

explanations in red that subjectively seem to make little sense). Looking at these

explanations and noting the improvements in the delta-rank metric, we conclude

that these explanations not only visually make sense but are in-agreement with the

underlying model. We note that the metric or a visual examination alone will not

allow us to make this claim. We also include one example from the dense region of

the data set, “Star Trek: The Wrath of Khan”, where the delta-rank metric for LIME

is superior to CLIME and SHAP. CLIME seems to include a number of seemingly

unrelated movies in its explanations. According to our analysis, the bias-variance

trade-off due to the completeness constraint is unfavorable in the dense regions and

this is reflected in the subjective quality of the explanations as well.

3.6 Discussion and Related Work

As we highlighted in Section 3.2, the recommender setting requires domain specific

consideration given the unique technical challenges it poses and the unique and var-
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Figure 3.4: Comparing the overall Bias and Variance of CLIME, SHAP and LIME
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Figure 3.5: Comparing the Change in Bias and Variance of CLIME and SHAP relative
to LIME with decreasing levels of sparsity
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Figure 3.6: Comparing explanations generated for two sparse and one dense queries

ious needs it has for explanations. To the best of our knowledge, we are the first to

evaluate SHAP and LIME based on their performance in different data sparsity set-

tings. More concretely, to the best of our knowledge, we are the first to evaluate these

explanation models based on how they perform when explaining a recommendation

for a data instance with very little historical interaction data versus when explaining

a recommendation for a data instance with plentiful historical interaction data. We

are also the first to connect this difference in data-sparsity-dependent performance

to the differing bias-variance characteristics of SHAP and LIME and subsequently,

the completeness constraint that is inherent in SHAP but missing in LIME. We then

go on to prove this hypothesis by formulating a novel explanation method called

Completeness-Constrained LIME (CLIME) that indeed improves the performance of

LIME in sparse data settings.
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Previous work comparing SHAP and LIME focuses on evaluating these explana-

tion methods based on their stability or reproducibility, that is, their ability to return

consistent explanations over numerous runs on the same input [115, 34, 104, 62, 102].

Other work evaluating explanation frameworks assesses their local fidelity or faithful-

ness to the original underlying model [66, 27, 21, 10, 102]. Additionally, a common

paradigm when evaluating and comparing SHAP, LIME, and other explanation meth-

ods is to introduce a new evaluation metric and evaluate the explanations against

this metric, e.g. effectiveness, efficiency, necessity, sufficiency, XAI Test, feature im-

portance similarity, feature importance consistency, impact score, impact coverage

[74, 69, 43, 49, 58, 31, 29]. Most recently, researchers evaluated the robustness of

LIME and SHAP and found them to be vulnerable to adversarial attacks where the

explanatory models can be manipulated to hide potentially harmful biases in the

original model [89, 106].

3.7 Summary

In this chapter, we (i) provided motivation for why explanations for recommender

systems require special consideration, (ii) showed the shortcomings LIME, a popular,

easy to use explanation method, had in addressing the needs of recommender systems,

which often operate in high sparsity data settings, (iii) traced the root of the issue

to an important property that is found in another popular but slower explanation

method, SHAP, (iv) incorporated this property into LIME to create a novel expla-

nation framework called CLIME, and finally, (v) showed that CLIME is superior to

LIME in high sparsity data settings, is as fast as LIME (much faster than SHAP),

and is as easy to use as LIME.
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Chapter 4

Part 2: Computers Providing

Humans with Algorithmic

Explanations1

This chapter is based on “COFFEE: Completeness-Constrained Faithful Explana-

tions.” It shows another example of the second mode of human-machine collaboration,

computers providing humans with algorithmic explanations.

When generating local explanations of an opaque machine learning model by a

variety of methods, we run into the problem of evaluating the explanations and deter-

mining the best one. We argue that evaluating an explanation of a model prediction

has two components, faithfulness of the explanation to the opaque model and ease

of human understanding of the explanation. In this work, we aim to develop quan-

titative ways to evaluate the faithfulness of the local explanations when explaining

state-of-the-art movie recommendation models. We propose the quantitative evalua-

tion of faithfulness in terms of an approximation error between the local explanation

and the opaque model. We show that this approximation error can be minimized to
1This chapter was originally presented with the following citation: Claudia V. Roberts, Ehtsham

Elahi, and Ashok Chandrashekar. “COFFEE: Completeness-Constrained Faithful Explanations.”
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obtain a new local explanation technique. The proposed approximation error is an

intuitive way to reason about the behavior of local explanation methods compared

to the axiomatic approach adopted in the local explainability research. Therefore

we use the proposed approximation error to compare widely used local explanation

methods in terms of their faithfulness/fidelity to the opaque model. Finally for the

ease of human understanding component, we describe different ways to present results

of an explanation model in terms of simplified feature inputs by optimizing the same

approximation error in the transformed feature space.

4.1 Overview

With an ever increasing role of machine learning (ML) models in decisions that di-

rectly affect our lives, the importance of understanding the inner workings of these

ML models is only increasing. Explainable ML or model explainability is an im-

portant area of research that deals with uncovering the inner working of complex

ML models. The classical examples used to motivate this line of research are ML

models used in high-stakes applications such as criminal justice and credit lending

[93]. However, even seemingly less critical applications like online recommendation

systems (e-commerce, travel, music and movies etc.) have become an important part

of our lives as these recommendation systems aim to help users in navigating very

large catalogs and selecting the right items for consumption. The stakeholders of

explainable ML research in recommender system applications include end-users (e.g.

customers of online services with recommendation systems) and product researchers

and engineers. For example, explaining product recommendations to users of an e-

commerce service may help them build trust in the recommendations and can provide

them answers to questions like, "why did you (the recommender system) recommend

this product to me?" For the machine learning researcher or engineer developing the
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model, explanations provide means to debug and detect any issues and build trust

on the robustness before deploying the model in the production system. In short, in

a world that is increasingly reliant on ML driven automated services, understanding

ML driven recommendations that help users make choices is very important [70].

There is generally a trade-off between the inherent interpretability of a model and

its accuracy. A very limited class of simpler machine learning models are easy to inter-

pret like linear models or decision trees. More complex machine learning models like

deep neural networks and gradient boosted decision trees are much more accurate but

are harder to interpret. In real world applications, these complex models are widely

used because of their accuracy. This motivates the development of post-hoc model

explanation techniques that are meant to provide insights into these complex models

without having to sacrifice accuracy. There are two types of post-hoc explanation

techniques. 1) Global explanation techniques which are concerned with understand-

ing the overall behavior of the model and 2) Local explanation techniques which are

meant to understand a model’s decision for a given instance of data (referred to as

the input query in this paper). The thrust of this work is on local explanations,

which in the context of explaining the decisions made by movie recommenders, would

amount to answering questions that an end-user might have (such as, "why did you

recommend me that?") or perhaps answering questions that a research engineer may

have about model’s behavior for a particular input query, whose motivation may be

to debug a model or make the model more robust.

Given the importance of post-hoc explainability, there are a large number of local

explanability techniques available [77], [61], [91], [87]. Given the variety of techniques

that are able to generate local explanations, the important question is how to evaluate

the generated explanations and choose the best one. This is a big challenge in model

explainability research. Traditionally explanations are evaluated using surveys sent

out to human evaluators/editors. Users are asked for their preference for explanations
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coming from different methods. This is a very difficult way to evaluate because of time

and cost needed to conduct these surveys. For a researcher developing novel model

explanation techniques, the slow feedback cycle of a survey may reduce speed of

innovation significantly. Moreover, it has been shown that interpreting survey results

in explanability research is very challenging [50] because of inherent noise in survey

responses. In this paper we propose to divide the evaluation of explanation into two

components and aim to provide quantitative evaluation for one of the components.

We would like to argue that there are two components in the evaluation of a local

explanation to an opaque model. a) Faithfulness of the explanation to the opaque

model and b) ease of human understanding of the explanation. We view the two

components as only loosely coupled and propose that we can make progress on each

of them independently.

• Faithfulness of explanation: Model explanations should be evaluated on the

basis of faithfulness to the underlying opaque model that we are trying to in-

terpret. What does it mean for local explanation to be faithful to the model

being explained? At a high level, it means that explanation is consistent with

the behavior of the opaque model. Many local explanations are provided as

scalar feature importance weights (also called feature attribution coefficients in

some papers) for each of the dimension of the input query. We can interpret

these feature importance weights to define a hyperplane in the feature space of

the opaque model (see fig-4.1). Different local explanations correspond to dif-

ferent hyperplanes. For an explanation that is faithful and consistent with the

opaque model, we would expect the corresponding hyperplane to form a good

linear approximation of the model behavior in the neighborhood of the input

query. This is the key insight in our development of quantitative evaluation for

faithfulness of local explanations. We argue that it is important to realize that

the explanations are meant to uncover an opaque model’s behavior therefore

51



we decouple the subjective human understanding aspect from the evaluation

of faithfulness of explanations. As an example, if one were to apply a faithful

local explanation method to a “bad” movie recommendation model, we may

get an explanation that may not make any sense to the humans. For example,

if the recommendation model treats horror movies as being similar to comedy

movies, the local explanation method may provide comedy movies as top expla-

nations for a horror movie recommendation. This is purely a reflection of the

inner workings of the recommendation model and the explanation is faithful to

the recommendation model although it is unlikely to be intuitive for a human

user. This paper is primarily focused on evaluating the faithfulness/fidelity of

explanations.

• Ease of human understanding of explanation:. While the focus of the

paper is not on this component, we will provide a brief commentary here. As

mentioned earlier, the stakeholders of model explanations are ultimately hu-

mans. Therefore it is important that they understand the provided explanation.

We pose this problem as finding the best way to present model explanations to

users and the task is similar to building a good user-interface (UI) design be-

tween the explanation and the end-user. A similar question has been explored

in [44]. For example, to explain a product recommendation system in terms of

the past purchases/interactions of the user, we get feature importance for each

item in the interaction history and one simple UI would be to rank the items

in terms of their importance. In our opinion, work on this UI design can be

done irrespective of which method is generating the explanation as long as it is

in the format that the UI anticipates (scalar feature importance weights for ex-

ample). Other examples of UI design may require to change the representation

of data as the explanations generated in the original features may still be too

complicated for humans to understand. For example in the case of movie rec-
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Figure 4.1: Different explanation models shown as lines along with the opaque model
f

ommendations, we may want to use an alternative representation of the movies

based on the natural language based tags. With this change in representation

for explanations, the UI can show a word-cloud style visualization of the meta-

data of the movies in the explanation. If the contract between the UI and the

explanation is clearly established, we can independently iterate on finding the

most faithful explanation while presenting the explanations in a way that the

UI design research finds most intuitive for the end-user.

In this paper we are primarily focused on evaluating the faithfulness of local ex-

planations using the geometrical perspective of local explanations as hyperplanes as

mentioned above. We are particularly interested in local explanation hyperplanes

that obey the completeness axiom [91] (also referred to as local accuracy axiom in

[61]) since the completeness axiom ensures that the explanation provides a fair at-

tribution to each feature in addition to protecting against the so-called "sensitivity"

problem of local explanations [91]. We propose to evaluate these hyperplanes using

an approximation error between the opaque model and the first-order Taylor approx-

imation based on the slope of the hyperplane. We show that this approximation error

can be minimized while imposing the completeness constraint. This leads to the de-

velopment of a new local explanation technique that follows the completeness axiom
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and provides the most faithful explanations as measured by the approximation error.

To summarize our contributions,

• We evaluate the faithfulness of local explanations by computing the approxi-

mation error between the opaque model and the hyperplanes representing the

local explanations (Section 4.2).

• We show that the proposed evaluation of faithfulness can be optimized under

the completeness constraint leading to a new local explanation technique. We

name this new technique as COFFEE (a playful acronym for Completeness-

Constrained Faithful Explanations) (Section 4.2).

• We showcase our ideas by comparing popular local explanation techniques LIME

and SHAP with our proposed technique COFFEE on two state-of-the-art col-

laborative filtering models, EASE [90] and Multi-VAE [57]. We compare the

approximation error for each of the techniques and also visually display the

explanations generated (Section 4.3).

• Finally, we discuss ways to address the ease of human understanding aspect

by considering a modified form of COFFEE. We show that we can perform a

feature transformation to represent explanations in a more intuitive form and

still optimize approximation error to get explanations in the simplified feature

space (Section 4.4).

4.2 Approximation error for quantifying faithfulness

of local explanations

We take the additive linear feature attribution perspective introduced in [77] [61],

[91] and define the local explanation methods as models. To start, we assume there is
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an opaque model f : RN− > R that we want to explain at an input query x0 ∈ RN .

The local explanation for the input x0 is a linear model in the feature space x with

feature attribution ϕi for the ith-dimension of x.

g(x) = ϕ0 +
N∑
i=1

ϕixi (4.1)

Shapley values and many other local explanation schemes think of feature at-

tribution relative to some baseline counterfactual feature vector b. These methods

require the summation of feature attribution coefficients to equal to the difference

in the model prediction at the input query x and the baseline counterfactual b i.e.

ΦTx = f(x) − f(b). This is the completeness axiom of local explainability. In the

hyperplane interpretation, this implies forcing the intercept of the hyperplane to f(b).

Based on this formulation, the unknowns to find are the intercept of the local

explanation model ϕ0 and the feature attribution coefficients Φ ∈ RN . Many of the

existing local explanation techniques can be represented in this additive linear feature

attribution form and they are simply different parameterizations of this linear form. In

figure-4.1, we illustrate the opaque function f as well as different lines corresponding

to different local explanations.

With the formulation of local explanations as hyperplanes, we evaluate the faith-

fulness of the explanation as an approximation error between the first order Taylor

approximation based on the slope Φ of the hyperplane and the opaque model in a

neighborhood around the input query x.

Given an opaque model f , a set X consisting of M samples xi, i = 1, ...,M from

the neighborhood of input query x0 and a local explanation vector Φ, we define the

approximation error as the root mean squared error between the value of the opaque

model f in the neighborhood X and the first-order Taylor approximation at x0 based
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on the local explanation Φ

RMSE(Φ;X, f) =

√√√√ 1

m

m∑
i=1

(f(xi)− (f(x0) + ΦT (xi − x0)))2 (4.2)

If we have k local explanations Φ1, ...,Φk, we compute RMSE(Φ1;X, f) , ...,

RMSE(Φk;X, f). The local explanation that leads to the smallest value of the RMSE

is deemed the most faithful explanation of the opaque model as it provides the best

approximation to the model behavior in the neighborhood X.

How to select the neighborhood set X? The concept of neighborhood is already

used in many local explanation techniques (directly in LIME [77] and indirectly in

Shapley values [61] and Integrated Gradients [91] by considering paths from the input

query to the baseline counterfactual feature vector). We follow a similar approach to

LIME. The neighborhood set consists of all points xi such that |xi − x0| ≤ d i.e. it

contains all points in a ball of radius d around the input query x0. Given this neigh-

borhood set X, the above RMSE metric captures the accuracy of the first-order Taylor

approximation based on the local explanation hyperplane. Figure-4.2 illustrates this

point. In the language of local explainability, the neighborhood set X encompasses

the counterfactuals that we hope to answer through the explainability framework and

are no farther away from x0 than a distance d. In practice, we can randomly sample

M points from the neighborhood and use that for the computation of RMSE as shown

above. In the item recommendation systems application, the neighborhood set X we

use is a ball of radius 1 in the normalized Levenshtein (edit) distance consisting of

samples of points between the query x0 and zero vector (this distance is normalized so

that the max distance is 1). For the item recommendation application, this baseline

counterfactual represents an input without any past interaction with any of the items

in the recommendation dataset.
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Figure 4.2: Computing RMSE over different neighborhoods for two different expla-
nation models

The mean squared error defined above is a differentiable convex function in Φ and

therefore can be minimized. However, we don’t want to minimize it unconstrained as

the unconstrained solution may not follow the completeness axiom. Fortunately, the

completeness axiom is a linear constraint and we can easily enforce it to get a convex

optimization problem with a linear constraint.

min
Φ

m∑
i=1

(f(xi)− (f(x0) + ΦT (xi − x0)))
2

s.t. ΦTx0 = f(x0)− f(b)

(4.3)

Solving this optimization programs gives us what we refer to as Completeness-

Constrained Faithful Explanation (COFFEE).
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4.3 Baseline Local Explanation techniques

4.3.1 Model Gradients as local explanations

If we ignore the completeness constraint and minimize the above MSE in a vanish-

ingly small neighborhood around the input query, the solution Φ of the minimization

problem is exactly equal to the model gradient. The proof follows from the intuition

that the first-order Taylor approximation based on the gradient provides the best

linear approximation to the function in a vanishingly small neighborhood. It makes

intuitive sense to use gradients as local explanations because another way to look at

local explainability around a query is to perform sensitivity analysis i-e how much the

model’s prediction changes if the query feature vector is perturbed ( dy
dx

)? Therefore,

one of the popular ways to compute feature importance weights have been using the

gradient of the model [12] i-e

ϕi =
∂f(x)

∂xi

,∀i = 1, ..., N (4.4)

The challenge of finding the explanation model is reduced to computing the

gradient of the model at x0. Given the gradient, the intercept is simply ϕ0 =

f(x)−∇f(x)Tx (by using the first-order Taylor approximation of the function around

the input query x). ϕ0 therefore need not equal to f(b) for some baseline counter-

factual b. In other words, gradients do not obey the completeness axiom and that

is one of the main downsides of using gradients as local explanations. Despite this

limitation, it is still interesting to compare other local explanation techniques to gra-

dients in the context of the approximation error as the RMSE based on the gradient

defines a lower bound on the approximation error in a vanishingly small neighborhood

around the input query x and we can compare other approaches with that to see how

much they deviate from the local gradients.
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Many explainability frameworks use a simplified representation of the original

feature space [61] which is essentially a discretization of the input query x into a

binary vector. Many of the techniques we discuss depend on perturbing the input

query x. Using this binarized representation x makes these perturbations particularly

simple, we simple turn-off the "on" bits in the binary representation. The quantita-

tive evaluation presented in this paper is generally applicable to continuous valued

feature vectors too but we make use of this simplified representation where it offers

advantages. This is the same perspective as adopted by [61] and many others in the

explainability literature.

Finite difference method would be one of the simplest way to approximate the

gradient of the model. By perturbing the i-the dimension of the input x by a scalar

hi, the partial derivative of the model is approximated as

ϕi =
∂f(x)

∂xi

≈ f(x+ h)− f(x)

h
(4.5)

One of the challenges of using finite difference method for computing gradients is

the magnitude of perturbation h added to the i-th dimension. Fortunately, the use of

binarized representations of feature vectors makes it as simple as turning-off the i-th

feature (x \ {i}), we can write the finite difference as

ϕi =
∂f(x)

∂xi

≈ f(x)− f(x \ i) (4.6)

If gradients is the only available information about the model then that amounts

to linearizing the model behavior around x (essentially the first-order Taylor approx-

imation at x). ϕi therefore are interpreted as the local explanation coefficient for the

i-th feature in the input query x; a positive value for ϕi indicates that the output of

the model would increase if the value of the ith-feature is increased (and vice-versa

if ϕi is found to be negative). There are some limitations to the gradient based per-
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spective to local explainability. Describing those limitations are out-of-scope for this

paper (refer to [91]) but we do consider methods that are meant to address those

limitations (for e.g Shapley values). However, even with the simplicity of gradient

based approach to local explainability, it may be challenging to compute them. For

example,

• The model may not be available to us for computing the gradient. We generally

don’t assume that we have access to the inner details model. We only assume

that we can query the model to get the output of the model for any given input.

• Even if we may have access to the model, it’s possible that the model is non-

differentiable. Tree based models are examples of this.

Therefore we are interested in model-agnostic gradient estimation techniques. Be-

low we introduce three model-agnostic local explanation methods. Two of them are

among the most popular methods, LIME [77] and Shapley values [61] and the third

one is inspired from numerical gradient estimation literature that we present as a

simple baseline for local model explanations. With gradient based method already

used in model explainability research, we find it surprising that we have not been able

to find this baseline in existing explainability research literature.

4.3.2 LIME

LIME solves for the additive linear attribution model in equation-4.1 by solving a

weighted regression on a simulated dataset (X, y) where the input features X are

generated by perturbing the input query x0 and y is the response of the opaque

model f . Φ is then the best fit hyper-plane to the simulated dataset.

Φ = (XTWX)−1XWy (4.7)
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In this equation, W is the weight matrix that is a hyper-parameter in LIME. The

intercept ϕ0 can also be easily learned as part of the solution of the above linear system

or it can be set equal to f(b). However, LIME still wouldn’t follow the completeness

constraint as it is simply a best fit line and may not be equal to the value of f at x0

(ΦTx0 + ϕ0 ≈ f(x0)).

Later we show how our quantitative evaluation of LIME behaves when we try to

play with different types of weight matrices. Using a linear regression to approximate

the gradient is a well studied technique [91]. Moreover, [33] also notes that the the

explanation model learned by LIME is simply the local gradient of f at the query x.

4.3.3 Shapley Values

Shapley values computation is another popular way for computing local explanations

[61]. On first thought, it may not be very clear why it makes sense to compare Shapley

values using the same approximation error for their fidelity to the opaque model.

The way Shapley value computes the feature attribution vector Φ is by averaging

the gradient over all possible paths between x0 and b (the so-called path gradient

between x and b). Since we are working with a binarized representation x, the baseline

counterfactual b is typically chosen to be the empty set (same as the zero vector

discussed above). What is the notion of paths between x and the empty set? Paths

are the subsets and gradients are estimated as finite differences!

To make the connection clear, let’s look the Shapley value equation that we have

written in a slightly different way. In order to compute the feature attribution for

the i-th feature, let’s remove the i-th feature from the original feature vector x and

consider the power set of all subsets of x \ {i} of size s that we denote as Fs \ {i}.

Then the i-th feature attribution coefficient is

ϕi =
1

N

N−1∑
s=0

1(
N−1
s

) ∑
S⊆Fs\{i}

(fS∪i(S ∪ i)− fs(s)) (4.8)
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Lets try to understand this equation by looking at it from right side. First of all,

the subtraction in the inner summation fS∪i(S ∪ i)− fs(s) can be recognized as the

finite difference when the i-th feature is added to the feature vector represented by

the subset S. This finite difference is then computed over all possible subsets S of

size s (there are
(
N−1
s

)
of them) and then taken an average over. The final summation

is simply considering subsets of all sizes and then computing an average over them.

4.3.4 Discussion

We would like to compare COFFEE’s constrained optimization based approach with

the axiomatic approach used to motivate Shapley values [61]. Of the three axioms

that Shapley values fulfill, Consistency axiom is the key property that endows Shapley

values with characteristics of model interpretability and it is quite different from our

direct optimization of faithfulness (Other two axioms Completeness and Missingness

are fulfilled by both Shapley values and COFFEE). In simple terms, Consistency

axiom requires that the local explanation coefficient of a feature i for a model A should

be numerically no less than the local explanation coefficient for the same feature in

another model B if model A is more sensitive to that feature i-e fA(x)− fA(x \ i) >

fB(x)−fB(x\i). This is another way of saying that Shapley values behave as gradients

of the opaque model when small changes are introduced to its inputs. Moreover, this

property is required to hold for a neighborhood that contains all points between

the input query and the baseline counterfactual which implies the use of similar

neighborhood that we are considering in our approximation RMSE (the neighborhood

set in Shapley values contains combinatorial number of points, our neighborhood set

can be considered a down-sampled version). Our proposed approximation RMSE

addresses the faithfulness of local explanations directly. As we mentioned before,

without the completeness constraint, solution to the approximation RMSE tends to

the actual gradient in the limiting case of vanishingly small neighborhood around X.
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Therefore, it is much more intuitive to reason what COFFEE explanations are : In

the limiting case of small neighborhoods, COFFEE mimics the behavior of a gradient

[33] as much as it is permitted by the completeness constraint.

One of the primary criticisms on LIME is that it does not obey the completeness

axiom and therefore its explanations don’t provide fair attribution across all the

dimensions of the input query. We can view COFFEE as improving upon LIME by

imposing the completeness constraint on LIME. To see that, recall that the error term

in the MSE definition is f(x)−(f(x0)+ΦT (x−x0)) which reduces to f(x)−(ΦTx+f(b))

by replacing ΦTx0 = f(x0) − f(b) using the completeness constraint. This is simply

the error function of LIME (without the weight matrix) where have set the intercept

to f(b). LIME is a highly flexible framework and is very easy to use. Therefore,

for someone who prefers to use LIME, COFFEE maintains all of its advantages and

only serves as an improvement over it by making LIME explanations to have a fair

attribution across all features in the input query.

4.4 Experiments

We compute the approximation RMSE for local explanations of collaborative filtering

models trained on the MovieLens 20M dataset [38] which is a rich open-source dataset

containing a large number of user, movie interactions. We follow the same procedure

as [90], [57] to construct a train/validation/test split of this dataset and train the

collaborative filtering models on the train split and compute the approximation RMSE

on the validation split. Following the same procedure as in the existing literature [90]

and [57], we take an instance of the validation set (a movie interaction history) and

further split that in two parts. We treat the first part (a set of movies liked by the

user, represented as a k-hot encoded binary vector) as input feature to collaborative

filtering model. The local explanations are generated on these input features. We
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examine the output of the collaborative filtering model on the held-out movies in

the 2nd part of the validation instance split. For each validation data instance, we

generate a pair of movie interaction history list and a held-out movie to form a

separate query to the explanation model. Two such example query movies are shown

in figure-4.3. RMSE is computed for each such pair and then we summarize the

RMSE metrics computed on the validation dataset.

We implement COFFEE using Scipy’s optimization library using Sequential Least

Squares Programming (SQLSP). For LIME, we use the software written as part of

the original paper [77]. For Shapley values, we use the Kernel SHAP implementation

distributed as part of the original paper [61]. For both LIME and Kernel SHAP,

we turn off all feature selection and regularization so that we can compare Taylor

approximations based on the learned coefficient with each other easily. We implement

Finite difference for gradient estimation in native python. We share the notebooks

with all experiments along with the paper for complete reproducibility of results.

4.4.1 Local Explainability of EASE

EASE is a collaborative filtering model [90] that achieves state-of-the-art perfor-

mance on three widely used collaborative filtering datasets. As mentioned above,

we study the local explanability of EASE model trained on MovieLens 20-Million

dataset. EASE is an especially attractive model to start with because it is a linear

model and all local explanation methods provide the same explanation; the gradient

of the EASE model. Moreover, the gradient of the EASE model are readily avail-

able (it’s the matrix of parameters) and this gives a way to directly compare the

local explanations with the ground truth local explanations/gradients. To be precise,

EASE learns a matrix C ∈ RI×I where I is the number of items in the catalog. To

generate predictions for the j-th item, we pick the j-th column from the matrix C cj
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and perform dot product with the input feature vector x

fj(x) = cTj x

The gradient at x would be ∇xfj = cj. This local gradient is the global gradient too as

EASE is a linear model. We would now like to compute the explanations using the four

methods listed above. Fortunately, we can solve all the local explanation techniques

analytically for the EASE model. For EASE, all local explanation techniques follow

the completeness axiom too (shown below).

• COFFEE: The value of EASE model is f(b) = 0 for the baseline counterfactual

b = 0 which implies a constraint of ΦTx0 = f(x0). The error term (f(x)−ΦTx =

(cj − Φ)Tx) in the MSE gets to a minimum of 0 for Φ = cj which also satisfies

the completeness constraint.

• Finite difference method: Given that the input to the EASE model is already

a binary vector, we make use of the simplified finite difference formulation in

equation-4.5. The finite difference leaves out only the i-th component of the

vector bj with the respect canceled out. ϕi = f(x) − f(x \ {i}) = ci,j. ϕ0 = 0

according to the first-order Taylor approximation which is equal to f(b) for

b = 0

• LIME: Similar reasoning that applies to COFFEE also holds for LIME. The

solution of the LIME weighting regression function is also Φ = cj. ϕ0 = 0 too.

• Shapley values: For Shapley values, the finite difference in the inner summa-

tion is equal to ci,j for all S ⊆ Fs \ {i}. Therefore, both the inner and outer

summations are over a constant value ci,j resulting in ϕi = ci,j and the local

explanation Φ = cj. Since EASE model’s output for the baseline counterfactual
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(empty set) is zero therefore the intercept ϕ0 = 0 for Shapley values hyperplane

(same as COFFEE, LIME and Finite difference).

As for the approximation error RMSE, since all local explanation methods recover

the gradient of the model and the local gradient is a global gradient too; therefore

for any neighborhood around the input query, the first-order Taylor approximation

gives a full recovery of the EASE model and we observe zero RMSE. Given the trivial

result, we don’t plot the result. Applying the local explanation techniques on EASE

serves as a good sanity check (for both the techniques and software implementations)

and allows us to derive results analytically.

4.4.2 Local Explainability of Multi-VAE

Linear nature of EASE restricts from getting a lot of insights into the different local ex-

planation methods. Therefore, we apply COFFEE and the three baseline approaches

on another collaborative filtering model, Multi-VAE [57], that is a deep neural net-

work and is a non-linear model. We again choose b to be the zero input as before.

Unlike EASE, Multi-VAE’s output is not 0 for baseline counterfactual b = 0 therefore

we use the version of LIME where we fix the intercept of the linear regression to f(b).

Finite difference method cannot incorporate this constraint on the intercept hence we

only use it as an analysis tool below. We first visually compare the local explanations

generated by COFFEE, LIME and Shapley Values. (We use [2] to get the box arts of

movies) Figure-4.3 shows the input queries to all the local explanation methods and

figure-4.4 and 4.5 show the top explanations from the explanation models. To the

authors of this paper, all the explanation look visually plausible although there are

some interesting differences between them. From these explanations, we can’t guess

which one is most faithful to the Multi-VAE model. This result clearly highlights the

difficulty of evaluating different explanation models by a human and is a good exam-
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(a) Action query to
explain

(b) Horror query to
explain

Figure 4.3: Two example queries for which we want to understand the prediction
coming from the underlying recommendation model. The user play history is a com-
bination of horror, comedy, action and kids movies (146 movies total). (box arts from
[2])

ple for our argument to separate the evaluating the faithfulness of the explanations

from the ease of human intepretability.

After motivating the use case of quantitatively measuring faithfulness using the

visual examples, we now present results that compare the faithfulness of local ex-

planations. As mentioned earlier, the results are computed on a held-out dataset as

mentioned. Computing the approximation RMSE on the entire validation dataset

let’s us compare the statistical significance of differences between the approaches.

The results are in the figure-4.6 (first from left). It is encouraging to see that local

explanations generated by COFFEE do turn out to be most faithful to the Multi-

VAE model compared to LIME and Shapley values validating the correctness of our

optimization procedure. Moreover, it is interesting to see that Shapley Value results

in more faithful explanations compared to LIME.

To address any concern regarding the computational cost of COFFEE, we com-

pare it with the Kernel SHAP implementation of Shapley values. Figure-4.6 (3rd

from left) We find that median computation time of COFFEE is almost 60% faster

than Shapley values computation which should make it easy to use in large scale

explanation generation use cases. This is a strong reason to use COFFEE over SHAP
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(a) Explanations from COFFEE

(b) Explanations from LIME

(c) Explanations from Shapley values

Figure 4.4: Comparing the visual ranking explanations from COFFEE, LIME and
Shapley values for query in fig-4.3a Star Wars: Return of the Jedi. IP man in LIME
explanations is difficult to reconcile. Lord of the rings (a fantasy) in COFFEE and
Aliens (Space Horror) in Shapley values are interesting picks. (box arts from [2])
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(a) Explanations from COFFEE

(b) Explanations from LIME

(c) Explanations from Shapley values

Figure 4.5: Comparing the visual ranking explanations from COFFEE, LIME and
Shapley values for query in fig-4.3b (Shaun of the Dead). It’s interesting that COF-
FEE picks Pans Labyrinth (a dark fantasy) and Star Trek as top explanations. Star
Trek stars Simon Pegg who is the main cast member in Shaun of the Dead, too. LIME
and Shapley contain some odd results like IP Man and Old Boy. (box arts from [2])
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Figure 4.6: Comparing COFFEE, SHAP and LIME. From left to right. First figure
compares the delta in RMSE for the three pairs of explanation models. Second figure
compares the RMSE of COFFEE with model gradients (estimated using finite differ-
ence) over neighborhood of decreasing sizes. Third figure compares the computational
speed of the three methods in wall clock time

as it satisfies completeness, is more faithful, visually comparable and computationally

faster than Shapley Values.

As mentioned earlier, approximation RMSE based on the gradient of the model in

vanishingly small neighborhoods provide a lower bound to the approximation RMSE.

To see this, in figure-4.6 (second from left) we compare the approximation RMSE of

COFFEE over neighborhoods of decreasing size with RMSE of gradients computed

using Finite difference method (finite difference is computed in the smallest neighbor-

hood that we constructed of normalized edit distance of 0.05). This result shows that

it behaves more similar to gradients in small neighborhoods compared to the larger

ones. Moreover, this result shows that Multi-VAE is a highly non-linear model. Al-

though it is a deep neural network and it is expected to be a non-linear model but

through over-regularization the model can behave like a linear model. Finite dif-

ference (as well as all local explanation methods) incur greater error in the wider

neighborhoods, this indicates that the gradients computed by Finite difference only

capture the model behavior locally in small neighborhoods around the input query.

This is in stark contrast to the EASE model where the local gradients were global

too and RMSE was zero no matter the size of the neighborhood.

70



4.4.3 Presenting explanations to stakeholders

The end-users of the output of explainability frameworks are humans. These end-users

can be machine learning scientists, engineers or customers of a business like movie

streaming that uses machine learning models to make recommendations. We began

our discussion by separating out the faithfulness of explanations from the ease of

human interpretation and the approximation RMSE captures the faithfulness aspect

only. Even with the most faithful explanation, we need to figure out a way to present

it to humans, the UI element of local explanability research as we referred to it in the

start.

The easiest way would be to rank-order the features according to their attribution

coefficients ϕi and display the features in the sorted order. That was the approach

we followed when we presented the explanations in the context of a movie recom-

mendation model (Multi-VAE) visually in the previous section. Using the ranking

of movies to understand the explanations would be a challenging task for a human

evaluator. It would not only be necessary for the user receiving the explanation to

understand each of the movies in the explanation to understand the results but also

there will be subjective judgement needed to make sense of the relative ordering of the

explanations (Is Star Trek: The First Generation more similar to Star Wars: Return

of the Jedi or Star Trek : First Contact?).

We now present a variant of COFFEE that can solve for the local explanations

in an alternative feature representation. One may want to transform the features

in an entirely new space (probably simpler and more interpretable feature space)

and solve the explanation problem in the new feature space. In the case of movie

recommendations, one such transformation is to represent the query video play history

in some kind of natural language tags and solve the explanation problem in the

natural language feature space. For a problem with I movies and T tags if we have

video-to-tags mapping matrix G (of size I ×T ), the transformation is a simple linear
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operator X ′ = XG. We can then use the same optimization program for COFFEE

to solve for the explanation in the new space. The resulting explanations would still

be constrained to follow the completeness axiom.

min
Φ

m∑
i=1

(f(xi)− (f(x) + ΦTG(xi − x0)))
2

s.t. ΦTGx0 = f(x0)− f(b)

(4.9)

Notice that this feature transformation is very different from feature mapping

approach that Shapley values or LIME propose (they require the feature mapping to

be reversable whereas G may not be). This implies that in the optimization program

opaque function still takes its original input, only the explanation vector operates on

the transformed representation.

Figure-4.7 shows two different natural language explanations for the same query

shown in figure-4.3 by solving the above optimization program in the transformed

feature space for two choices of metadata information available in the MovieLens

data, The Movie Database (TMDb) [2] and Tag-Genome [103]. It’s very interesting

to compare these natural language explanations with the explanations obtained in

the original movies space shown in figures-4.4 and 4.5 and guess which one an end-

user would prefer. Here we choose to use a word-cloud style presentation of the

explanations where the explanation coefficient ϕi determine the size of the word in

the word-cloud.

4.5 Related Work

There are two dimensions of this work. One is around evaluation of explanation mod-

els and the other is developing novel local explanation techniques. As we have previ-

ously mentioned, current evaluation of explanability methods almost always rely on

human-in-the-loop evaluation using survey data [44]. Our evaluation of the faithful-
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(a) Explanation for query in fig-4.3a

(b) Explanation for query in fig-4.3b

Figure 4.7: Natural language explanations for the queries in figure-4.3

ness falls under what is called as functionally-grounded evaluation in the explanability

literature. Functionally grounded evaluation is done without humans-in-the-loop and

with proxy metrics. On the particular technique of building neighborhoods around

the input query and comparing explanations and the opaque model in the neigh-

borhood, there is actually a closely related work that evaluates the robustness of the

explanations in neighborhoods that are also constructed in a very similar manner [10].

Similarly there have been other efforts to quantify the faithfulness of gradient based

explanability methods by performing sanity checks on the generated explanations [5].

This paper also argues that evaluating explanations purely on visual inspection can

be misleading.

We would also like to mention that the techniques we have considered in this

paper are known as feature-importance based approaches and Saliency Map based

techniques (essentially gradient based approaches popular in Computer Vision tasks).

LIME and Shapley values are traditionally considered in the feature importance based
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techniques but we have provided a gradient based perspective to them in this paper

connecting them with Saliency map based techniques. Other forms of local explana-

tion methods are Rule based, Prototypes/Examples based and Counterfactual based.

4.6 Summary

In this chapter, we divide the difficult task of evaluating explanations into two com-

ponents. Faithfulness to the opaque model, the first of the two components, admits

quantitative evaluation. We propose the quantitative evaluation in the form of an

approximation error between the local explanations and opaque model. We show

that the approximation RMSE can be optimized leading to a new explanation tech-

nique that we refer to as COFFEE. Using the same approximation error allows us to

compare the faithfulness of explanations from popular models like LIME and Shapley

values to explain two recent and highly accurate recommendation models. We find

that COFFEE provides the most faithful explanations to the opaque model followed

by Shapley values and then LIME. For the second component in evaluation of expla-

nations, ease of human understanding, we show that COFFEE can be used to obtain

explanations in alternative feature representations. In the future, we aim to special-

ize COFFEE for other applications besides recommendation models as the approach

is general and can be applied to all the areas where LIME and Shapley values are

currently being used.
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Chapter 5

Humans and Computers Working

Together in Decision Making1

This chapter is based on “Selectively Contextual Bandits.” It shows how the third

mode of human-machine collaboration, humans and computers working together in

decision making, maintains utility while reducing harm of machine learning models

in the task of image personalization.

Personalization is an integral part of most web-service applications and determines

which experience to display to each member. A popular algorithmic framework used

in industrial personalization systems are contextual bandits, which seek to learn a per-

sonalized treatment assignment policy in the presence of treatment effects that vary

with the observed contextual features of the members. In order to keep the optimiza-

tion task tractable, such systems can myopically make independent personalization

decisions that can conspire to create a suboptimal experience in the aggregate of the

member’s interaction with the web-service. We design a new family of online learning

algorithms that benefit from personalization while optimizing the aggregate impact
1This chapter was originally published to arXiv with the following citation: Claudia V. Roberts,

Maria Dimakopoulou, Qifeng Qiao, Ashok Chandrashekhar, and Tony Jebara. “Selectively Contex-
tual Bandits.”
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of the many independent decisions. Our approach selectively interpolates between

any contextual bandit algorithm and any context-free multi-armed bandit algorithm

and leverages the contextual information for a treatment decision only if this infor-

mation promises significant gains over a decision that does not take it into account.

Apart from helping users of personalization systems feel less targeted, simplifying the

treatment assignment policy by making it selectively reliant on the context can help

improve the rate of learning. We evaluate our approach on several datasets including

a video subscription web-service and show the benefits of such a hybrid policy.

5.1 Overview

In web services, users are often faced with a task of selecting an item from a large

catalog. Examples include listening to a song from a catalog of 11 million on a music

service or watching a video from 500 million user-uploaded videos on a video service.

Equally challenging is the decision faced by the web service, the one hosting and

presenting the choices to its users. Given limited screen real-estate, which of the 11

million songs or 500 million videos should it present to its users? Personalization

has served as the de facto solution to this problem. Web services use proactive and

reactive personalized recommendations to guide users to items that are relevant as

well as help them discover new items they will also enjoy. From a mix of implicitly

learned and explicitly collected features of each user and item, the services prune

the list of available options that they present to each user and provide a personalized

experience whilst doing so. While there are often competing objectives when deciding

the optimal item or set of items to present to a user, overall, the goal is to satisfy the

user in order to increase engagement with the service and retain the user over time.

Human preferences, however, are more complicated and nuanced than any one

model can capture perfectly. When there are only 10 choices available, for example,
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one is unable to provide a truly bespoke experience. The personalization algorithm in

this case is forced to generalize and put a user in one of, say, 10 buckets. Furthermore,

the personalization systems are operating on limited user information due to the

personalization privacy paradox [109, 107, 4, 11], the European Union’s General Data

Protection Regulation, and various privacy and data protection laws. Often times,

these systems operate on incomplete information such as impression data and past

behavior as proxies for personal taste preferences. Personalization systems are not

truly personalizing per se, they are simply attempting to learn a model for what a user

might find generally appealing based on information the user might have explicitly

provided via user questionnaires, past behavior, and the behavior of similar users. In

other words, at some point, these personalization systems must generalize in order to

make the problem more tractable, but in the process, they may conspire to create a

sub-optimal user experience for individuals and groups of users.

To illustrate the aforementioned point, imagine a context-aware event recom-

mender that recommends a user to attend an event where the only thing that person

has in common with any of the other attendees is their religious affiliation, causing

that user to feel one-dimensional and reducing the perceived utility of the event rec-

ommender service. Web services that provide personalized experiences aim to ensure

that they are honing in on meaningful features of their user base and not simple

generalizations of their users. This is especially important and challenging given the

growing awareness and concern about algorithmic bias and algorithms’ potential to

amplify harmful societal stereotypes via information retrieval systems [18, 110, 65, 45].

For this purpose, recommendation engines in industry rely on multi-armed bandit

algorithms to learn how to optimally recommend items to the users. In particular

contextual multi-armed bandits, which attempt to learn the optimal personalized rec-

ommendation for each user given user information, i.e., the context, are widely used

in practice. While personalization in web services makes the catalog more accessible
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to a user by reducing the burden of choice, it has the potential to isolate the user and

unintentionally create “filter bubbles”. This may happen even if the users are modeled

by the service only using implicit behavioral data, since the feedback loops of online

learning can cause an increased focus on narrower interests by the content publisher.

This has the potential of hindering a user from participating in social conversation

within their network on specific content, as the content that is served to different

individuals in the network may differ drastically.

Additionally, as the user context gets more detailed and higher-dimensional, the

model estimation of a contextual bandit becomes more challenging and the regret

bounds may take longer to converge. [23] have shown that all else equal, using assign-

ment policies that are simpler (in terms of how they vary with contextual variables)

in the early learning phases of the algorithm can improve the rate of learning and

decrease regret. Finally, simpler, unpersonalized assignment rules may have other

advantages as well; for example, [51] highlight the advantages of simplicity for in-

terpretability in health applications of contextual bandits. On the other hand, if all

users had an identical exposure to the catalog, then there is increased potential for

social engagement on common topics. However, given the typical sizes of the catalogs,

the user experience would be significantly worse as it would be harder to find content

that appeals to an individual user personally.

We design a new family of bandit algorithms that interpolate between unper-

sonalized and personalized recommendations. This new family of algorithms aims

to mitigate the aforementioned downsides of over-personalization. In particular, we

investigate a class of online algorithms known as contextual bandits and their appli-

cation to personalization. While the additional data from context is valuable, when

multiple decisions are being taken (sequentially or jointly) based on contextual ban-

dits, it is possible that sub-optimal model estimation may result in mis-calibrated

outputs, for instance, a homogeneous user experience. Furthermore, as context gets
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more detailed and higher-dimensional, some regret bounds take longer to converge.

However, in most problem domains, context is better than the lack thereof. This new

family of algorithms, called selectively contextual bandits (SCB), chooses between a

contextual bandit decision and a non-contextual bandit decision in every iteration.

The context is only used when the contextual decision yield a predicted reward lift

higher than a parameter δ. The δ parameter is annealed at a rate that depends on the

regret bound of the upper confidence bound (UCB) such that we optimize the regret

bound to remove dependence on the dimensionality of the context. Alternatively,

we can regularize the estimator of Lin-UCB towards a non-contextual setting. For

instance, if we can show that having a δ unpersonalized (non-contextual policy) can

incur at most O(1) regret per time step over an optimal contextual bandit. However,

if we set δ to shrink at a certain rate, for instance, δ = 1/t then we may still get a

logarithmic regret.

We evaluate our results on several contextual bandit data-sets such as classifica-

tion based public datasets as well as a large-scale proprietary dataset. In the industry

dataset setting, we show that it is possible to decrease the amount of personalization

without hurting regret style metrics and can sometimes even improve upon them. In

the classification setting, we show that it is possible to achieve regret bounds equiva-

lent to fully contextual baselines while reducing the number of contextual treatments

in favor of non-contextual treatments.

5.2 Preliminaries

5.2.1 Problem Formulation

The problem of image personalization can be formulated as a stochastic contextual

bandit problem. In the stochastic contextual bandit setting (see [16] for a survey),

there is a finite set of arms A = {1, . . . , K}. At time t, the environment produces
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(xt, rt(1), . . . , rt(K)) ∼ D, where x is a d-dimensional context and rt(a) is the reward

associated with each arm a ∈ A.

When the recommender policy selects arm at, the observables are (xt, at, rt(at)).

In particular, there is partial observability and only the reward rt(at) for the chosen

arm at is observed. At each time t, the optimal assignment is the arm with the

maximum expected reward and is denoted as a∗t = argmaxa∈A E[rt(a)|xt].

The goal of the policy is to find an assignment rule that sequentially assigns an

arm to minimize the cumulative expected regret over horizon T

Regret(T ) =
T∑
t=1

E[r(a∗t )− r(at)]

where the assignment rule is a function of the previous observations (xτ , aτ , rτ (aτ ))

for τ = 1, . . . , t− 1 and of the new context xt.

5.2.2 Exploration vs. Exploitation

Therefore, the decision-maker has to balance exploring arms for which there is limited

knowledge in order to learn and exploiting the accumulated knowledge in order to

attain higher rewards.

Two established approaches for balancing the exploration vs. exploitation trade-off

in stochastic contextual bandits are the linear upper confidence bound (LinUCB) al-

gorithm [53] and the linear Thompson sampling (LinTS) algorithm [6] as well as their

generalized linear (particularly logistic) counterparts [19, 55]. These algorithms pos-

tulate that the expected reward of arm a conditional on the context x can be modeled

as a linear or a generalized linear function of the context with unknown parameters

wa. Then, at each time t, they use the historical observations {(xτ , aτ , rτ (aτ ))}t−1
τ=1

and regularized linear or logistic regression to form an upper confidence bound or

posterior (exact or approximate) on the unknown parameters θa of each arm a ∈ A.
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Finally, the upper confidence bound or the posterior is used to balance exploration

vs. exploitation when deciding the arm at for the new context xt.

A simple and popular heuristic for bandit problems is the ϵ-greedy exploration

strategy [92]. According to this strategy, at every time t the decision-maker com-

putes point estimates ŵa for each arm a ∈ A based on the historical observations

{(xτ , aτ , rτ (aτ ))}t−1
τ=1 and uses these point estimates to find the arm with the highest

predicted expected reward for context xt. Then, the decision-maker selects the best

predicted arm with probability 1 − ϵ and with probability ϵ selects an arm from A

uniformly at random.

Both Thompson sampling and UCB for contextual bandits have strong regret

bound guarantees, however Thompson sampling tends to perform much better in

practice [19, 80, 24]. On the other hand, ϵ-greedy has sub-optimal guarantees com-

pared to both Thompson sampling and UCB, but is popular in practice due to its

simplicity and generally good performance.

5.3 Related Work

We focus on algorithms for the stochastic contextual bandit problem with binary

rewards, but all the presented algorithms can be extended to real number rewards.

We first present two well-known baselines from the literature; a contextual bandit

algorithm that models the expected reward of each arm conditional on the context

as a logistic function and a non-contextual bandit algorithm that does not take into

account the context during the decision making. Subsequently, we present our ap-

proach, the selectively contextual bandit, which interpolates between the contextual

and the non-contextual bandit depending on the predicted benefit from taking the

contextual information into account in each time period. All three algorithms can be

paired with any of the exploration schemes outlined in Section 5.2.2. Due to space
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limitations, we present the Thompson sampling version of the algorithms, which can

be readily adapted to the UCB and ϵ-greedy versions.

5.3.1 K-Armed Bernoulli Bandit

In the non-contextual formulation, the decision-maker does not take into account the

context of every time period but rather tries to learn the unpersonalized, globally

optimal arm while balancing the exploration vs. exploitation trade-off. One straight-

forward approach is to model this problem as a K-armed Bernoulli bandit with in-

dependent arms A [96]. In this formulation, the reward of arm a follows a Bernoulli

distribution with mean θa. It is standard to model the mean reward of arm a using

a Beta distribution with parameters αa and βa, since it is the conjugate distribution

of the binomial distribution. At every time t, the agent draws a sample mean reward

θ̂a ∼ Beta (αa, βa) for each arm a ∈ A and selects arm at = argmaxa∈A θ̂a. Based on

the observed reward rt(at), the decision-maker updates the posterior distribution on

θa. Algorithm 1 presents the approach.

Algorithm 1 Non-Contextual K-Armed Bernoulli Bandit
Require: Initial αa and βa for all a ∈ A (default value: 1)
1: for t = 1, . . . , T do
2: for each arm a ∈ A do
3: Sample θ̂a ∼ Beta (αa, βa)
4: end for
5: Select arm at = argmaxa∈A θ̂a
6: Observe reward rt(at), where rt ∼ D(·|xt)
7: if rt(at) = 1 then
8: αat = αat + 1
9: else

10: βat = βat + 1
11: end if
12: end for
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5.3.2 Generalized Linear Bandit

Linear bandits [53, 6] and generalized linear bandits (particularly logistic) [19, 55]

are widely used in web services for the personalization of news recommendation,

advertising and search. Generalized linear bandits (logistic regression in particular)

have demonstrated stronger performance than linear bandits in many applications

where rewards are binary. In this section, we model the stochastic contextual bandit

problem as a generalized linear bandit, as in [19].

The decision-maker models the expected reward of arm a, µa = E[r(a)|x], as

a logistic function of context x with parameters θa ∈ Rd, µa = P(r(a) = 1|x) =

σ(θ⊤a x) where σ(z) ≡ 1
1+exp(−z)

is the sigmoid function. The posterior distribution on

the parameters θa of each arm a ∈ A is approximated by a multivariate Gaussian

distribution updated via the Laplace approximation. Specifically, the decision-maker

starts with a multivariate Gaussian prior each θa with mean µ0 = 0 ∈ Rℓm and

covariance matrix Σ0 = λ · Iℓm, where Iℓm is the ℓm× ℓm identity matrix and λ is a

regularization parameter.

Algorithm 2 Generalized Linear Bandit
Require: Parameters of weight prior µ0 and Σ0

1: Draw weight sample ŵ ∼ N (µ0,Σ0)
2: for t = 1, . . . , T do
3: for each arm a ∈ A do
4: Compute θ̂(a) = 1

1+exp(−ŵ⊤xa)

5: end for
6: Select arm at = argmaxa θ̂(a)
7: Observe reward rt ∼ D(r|at)
8: Update weight posterior parameters µt and Σt

9: Draw a new weight sample ŵ ∼ N (µt,Σt)
10: end for
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As in [19], the posterior updating at time t is as follows. Before the observation

at time t

log(P(w)) =− 1

2
k log(2π)− 1

2
log(Σt−1)−

− 1

2
(w − µt−1)

⊤Σ−1
t−1(w − µt−1).

The log-likelihood of the observations at time t is

log(P(rt|xst ,w))=rt log
(
σ(w⊤xst)

)
+(1−rt)log

(
1−σ(w⊤xst)

)
.

The log-posterior of w at time t is

log(P(w|xat , rt))∝−1

2
(w−µt−1)

⊤Σ−1
t−1(w−µt−1)+

+rt log
(
σ(w⊤xat)

)
+(1−rt) log

(
1−σ(w⊤xat)

)
The posterior mean of w is the maximum a posteriori estimate µt = wMAP =

argmaxw log(P(w|X, r)) and the posterior covariance matrix of w is Σ−1
t = Σ−1

t−1 +

σ(w⊤
MAPxat)(1−σ(w⊤

MAPxt))xatx⊤
at

. To choose the next arm, the agent draws a weight

sample ŵ ∼ N (µt,Σt) and forms an estimate of the expected reward θ̂(a) = σ(ŵ⊤xa)

of each arm a ∈ K based on this weight sample. Then, the agent plays arm at =

argmaxa θ̂(a). Algorithm 2 outlines the approach.

5.4 Selectively Contextual Bandit

Given the constituent policies - one contextual and the other non-contextual, we

now provide the details of a hybrid policy that selectively switches between the two

policies. At each time step, the two policies are used to determine their optimal

arm assignments. If the arms selected from the two policies are different, rewards
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for the two arms using the contextual policy are estimated. The estimated rewards

are then compared to determine if the predicted reward from the contextual policy

for the arm selected by the contextual policy is significantly better than the arm

selected by the non-contextual policy. If so, SCB selects the contextual winner, if not

the non-contextual winner is used. The policies are then updated with the observed

reward once the SCB makes its final selection. The overall algorithm is sketched out

in Algorithm 3.

Algorithm 3 Selectively contextual bandits
Require: π : Non-contextual policy, πc(x) : Contextual pol-
icy
1: for t = 1, . . . , T do
2: Select arm anc = π
3: Select arm ac = πc(x)
4: Predict reward rnc(anc) and rc(ac)
5: if δ(rc(ac), rnc(anc)) > λ then
6: ascb = ac
7: else
8: ascb = anc
9: end if

10: Update π and πc(x)
11: end for

In our scheme, we evaluate two different ways of calculating the non-contextual

winner: mean and beta-Bernoulli. Further, we also consider two different formulations

of the delta operation in the algorithm: ratio or relative difference (please find the

details in Section 5.5.1). Finally, we allow for shrinking or annealing the δ threshold by

a constant decay rate on a specified time schedule. This is implemented by shrinking

the δ threshold by a specified constant rate at specified epochs.

5.5 Experiments

We hypothesize that a fully personalized policy should always perform better in regret

analysis comparisons. But there exist real-world use cases where a hybrid policy may
85



be desired. For example, a hybrid policy may have benefits such as avoiding filter

bubbles and enabling users to participate in the zeitgeist or enabling greater overlap

in shared experiences in the ever increasing personalized web. No public datasets

exist to verify this claim, however. So we restrict our experiments to show that the

regret of a hybrid policy is comparable to a purely contextual one. We evaluate our

approach in a classification setting using public datasets, and we present and discuss

our results in this section.

5.5.1 Experiments on Public Datasets

Multiclass Classification with Multi-Armed Bandits. When experimenting

with and comparing different contextual bandit algorithms, it is common to trans-

form multiclass classification tasks into multi-armed bandit formulations [28]. We

make the assumption that the observations are sampled from a fixed distribution and

are independent and identically distributed. In both the non-contextual and contex-

tual bandit setting, the number of classes corresponds to the number of arms. In

the contextual setting, the features of each data sample correspond to that sample’s

context. Accompanying each data sample is the ground truth class label. In a mul-

ticlass classification problem, the task is to learn a model that correctly assigns the

correct class label to each data sample in a test set. Correspondingly, in the adap-

tation to a bandit problem, the goal is to learn an assignment policy that assigns

the optimal (correct) arm to each sample. In the multiclass classification setting, we

are attempting to learn a model that minimizes the classification error, which cor-

responds to the policy’s expected regret in the multi-armed bandit setting. In our

implementation of the various non-contextual bandits, the assignment policy opts not

to use the sample’s features (or context) during arm assignment or when updating

the posterior distribution of each arm. In each non-contextual bandit’s contextual

counterpart, we do leverage the additional information of the sample’s features to
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inform arm assignment and when updating the posterior distributions. In both the

non-contextual and contextual settings, after each time time-step t, an arm is as-

signed to sample xt. If the arm assignment is correct, the agent incurs a reward of

one. If the arm assignment is incorrect, then the agent incurs a regret of 1. When

comparing the performance of various contextual bandit algorithms in this multiclass

classification problem setting, it is common to perform regret analysis and visualize

the regret graphs over the history of observations using the normalized cumulative

regret.

Experimental Set-up. We use the Open Media Library (OpenML) [101] to collect

20 publicly available classification datasets. The datasets we use span various domains

such as healthcare, biology, ecology, and computer vision and vary with regards to

their attributes i.e., number of observations, classes, and features. As part of pre-

processing, the categorical feature columns are one-hot encoded. Before each run,

we randomly shuffle the dataset. We run our suite of bandit algorithms on each of

the 20 datasets for different model hyperparameters. For the SCB bandits, we vary

the various input parameters including the delta threshold value, the delta shrinkage

rate, and delta shrinkage schedule. These SCB input parameters control the amount

of non-contextual decisions that are made in favor of contextual ones, with the option

to anneal δ by a constant rate at various time-steps in the horizon.

SCB Input Parameter Selection. In this paragraph we offer a more in-depth

explanation on how we pick the initial delta rates as well as how we selected the sub-

sequent annealing rate and annealing schedule. But first, we provide some intuition

for why delta rate annealing may be desired or even necessary in some cases. In the

earlier timesteps of a contextual model that is learning the optimal arm assignment

policy for a particular dataset, the model has not yet learned a good policy because it

has not seen enough samples. Thus, we choose a higher δ value in this lower sample
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regime, making noncontextual decisions more frequently. As time goes on, the con-

textual bandit begins to learn a better arm assignment policy so we shrink the rate

accordingly to account for this higher degree of confidence. During our evaluation

of our SCB models on the OpenML datasets, we began by selecting an initial delta

rate of 1.0 for SCB models using ratios for expected reward comparisons and 0.0 for

SCB models using relative differences for expected reward comparisons. This was

for sanity checking that SCB policies with thresholds meant to select the contextual

winner every time matched the fully contextual baseline policy. We then chose rea-

sonably high thresholds, e.g. 1.5 for SCB policies based on ratio comparisons and 0.5

for those based on relative difference comparisons, without an annealing schedule to

observe the commutative regret over the horizon using a policy that selects a large

number of noncontextual decisions in favor of contextual ones. As expected, the fully

contextual bandit always performed better than our SCB models under these high

initial delta rates. We then steadily decreased this initial decay rate until finding a

starting rate that allowed our policy to roughly match the regret bounds of the fully

contextual policy. Having found this initial delta rate, we then applied a shrinkage

scheduler that was not aggressive, for doing so also decreases the number of noncon-

textual decisions that are made. Future work includes automatically finding the SCB

parameters that allow the maximal noncontextual decisions to be made while staying

on par or improving upon the fully contextual policy.

Compared Models

The following lists the multi-armed bandit algorithms we evaluated for performance

comparison. It includes different flavors of SCB bandits and baseline models. If the

model name ends in “Ratio,” the ratio of the contextual to noncontextual expected

reward is compared against the SCB delta threshold at each time-step t to decide

between differing arm assignments. If the model name ends in “Diff,” then the relative
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difference of the contextual and noncontextual expected reward is compared against

the SCB delta threshold. ϵ = .2 for all ϵ-greedy bandits evaluated.

• IndependentBernoulliArmsEGAgent[96] non-contextual beta-Bernoulli

bandit using ϵ-greedy as the explore/exploit strategy.

• LogisticRegressionEGAgent[19, 55] contextual bandit that models the ex-

pected reward of each arm as a logistic function using ϵ-greedy as the explore/-

exploit strategy.

• SCBEGAgent_Ratio SCB agent that interpolates between treatment de-

cisions made by IndependentBernoulliArmsEGAgent and LogisticRegressionE-

GAgent, using ratio of expected rewards for comparisons against SCB δ param-

eter.

• meanSCBEGAgent_Ratio SCB agent with LogisticRegressionEGAgent as

its base model, using ratio of expected rewards for comparisons against SCB δ

parameter. The noncontextual winning arm is determined to be the arm with

the maximum average expected reward taken across all contexts in the history.

• SCBEGAgent_Diff SCB agent that interpolates between treatment decisions

made by IndependentBernoulliArmsEGAgent and LogisticRegressionEGAgent,

using the relative difference of expected rewards for comparison against SCB δ

parameter.

• meanSCBEGAgent_Diff SCB agent with LogisticRegressionEGAgent as its

base model, using relative differences during comparisons against SCB δ pa-

rameter. The noncontextual winning arm is determined to be the arm with the

maximum average expected reward taken across all contexts in the history.

• IndependentBernoulliArmsTSAgent non-contextual beta-Bernoulli bandit

using Thompson Sampling as explore/exploit strategy.
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• LogisticRegressionTSAgent[6] contextual bandit that models the expected

reward of each arm as a logistic function using Thompson Sampling as the

explore/exploit strategy.

• SCBTSAgent_Ratio SCB agent that interpolates between treatment

decisions made by IndependentBernoulliArmsTSAgent and LogisticRegres-

sionTSAgent, using ratio of expected rewards for comparisons against SCB δ

parameter.

• meanSCBTSAgent_Ratio SCB agent with LogisticRegressionTSAgent as

its base model, using ratio of expected rewards for comparisons against SCB δ

parameter. The noncontextual winning arm is determined to be the arm with

the maximum average expected reward taken across all contexts in the history.

• SCBTSAgent_Diff SCB agent that interpolates between treatment decisions

made by IndependentBernoulliArmsTSAgent and LogisticRegressionTSAgent,

using the relative difference of expected rewards for comparison against SCB δ

parameter.

• meanSCBTSAgent_Diff SCB agent with LogisticRegressionTSAgent as its

base model, using the relative difference of expected rewards for comparison

against SCB δ parameter. The noncontextual winning arm is determined to be

the arm with the maximum average expected reward taken across all contexts

in the history.

• IndependentBernoulliArmsUCBAgent[53] non-contextual beta-Bernoulli

bandit using UCB as explore/exploit strategy.

• LogisticRegressionUCBAgent contextual bandit that models the expected

reward of each arm as a logistic function using UCB as the explore/exploit

strategy.
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• SCBUCBAgent SCB agent that interpolates between treatment deci-

sions made by IndependentBernoulliArmsUCBAgent and LogisticRegres-

sionUCBAgent, using the relative difference of expected rewards for comparison

against SCB δ parameter.

• meanSCBUCBAgent SCB agent with LogisticRegressionUCBAgent as its

base model, using the relative difference of expected rewards for comparison

against SCB δ parameter. The noncontextual winning arm is determined to be

the arm with the maximum average expected reward taken across all contexts

in the history.

Results

Figure 5.1 shows a regret analysis comparison between the various SCB and baseline

algorithms described in Section 5.5.1 on three different OpenML public multiclass

classification datasets. Due to space constraints, we have not included the full set of

graphs for each of the 20 datasets on each of the 16 models. The x coordinate is the

timestep and the y coordinate is the normalized cumulative regret 1
n

∑n
t=1(1−rt(at)).

t is the timestep, the arm selected by the bandit at time t is at ∈ {1, 2, ...K}, where

K is the number of arms or classes in the dataset with n observations and with

reward function rt(at) = 1{at = ct} where ct is the true class of context xt. The

lower the cumulative regret the better. We run each agent 20 times over each dataset

(the dataset is reshuffled at the beginning of each run). We set the horizon to 3000

observations, updating the prior distributions and the logistic models after every

batch of 100 timesteps.

Figure 5.1a shows a comparison of the various Thompson Sampling bandits we

evaluated on OpenML dataset id 679, a dataset of sleep state measurements. We ob-

serve that all five bandits display the same regret curves. However, while the baseline

model, LogisticRegressionTSAgent, made contextual decisions at every timestep t,
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(a) (b)

(c) (d)

Figure 5.1: Regret analysis comparison between SCB and baseline algorithms on
OpenML public multiclass classification datasets.

the SCBTSAgent_Ratio bandit chose noncontextual decisions over contextual ones

7.2% of the time averaged across the 20 runs. Similarly, the meanSCBTSAgent_Ratio

bandit chose noncontextual decisions over contextual ones 10.4% of the time, SCBT-

SAgent_Diff 12.1% of the time, and meanSCBTSAgent_Diff 14.2% of the time. Fig-

ure 5.1b shows a comparison of the various UCB bandits we evaluated on the same

dataset. Again, we observe that all three bandits display the same regret curves. The

baseline model, LogisticRegression UCBAgent, made contextual decisions at every

timestep, SCBUCBAgent chose the noncontextual decision over the contextual deci-
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sion a mean percentage of 33.4% of the times, and meanSCBUCBAgent 14.7% of the

times.

Figure 5.1c shows a comparison of the various Thompson Sampling bandits we

evaluated on OpenML dataset id 1413, the Iris dataset. We observe that the four SCB

bandits outperform the baseline LogisticRegressionTSAgent. However, it is interest-

ing to note that the number of noncontextual decisions made in favor of contextual

ones was minimal. The SCBTSAgent_Ratio bandit chose noncontextual decisions

over contextual ones only .43% of the time averaged across the 20 runs. Similarly,

the meanSCBTSAgent_Ratio bandit chose noncontextual decisions over contextual

ones .43% of the time, SCBTSAgent_Diff made a few more noncontextual decisions

at 3.9%, and meanSCBTSAgent_Diff at 1.4%. Figure 5.1d shows a comparison of

the various UCB bandits we evaluated on the OpenML dataset id 1508, a user knowl-

edge dataset. Here we observe again all three models performing on par with each

other with the SCBUCBAgent choosing noncontextual decision over the contextual

decision a mean percentage of 9.6% and meanSCBUCBAgent 12.1%.

The results from the experiments run on publicly available multiclass classification

datasets showed us that in many cases, there exists a hybrid policy that reduces

dependence on context whilst achieving regret bounds that are on par with fully

contextual baseline algorithms. In a few cases, we found a policy that made it possible

to outperform a fully contextual policy. Likewise, we also observed a few cases where

we were unable to find a delta value that reduced the number of contextual decisions

without strictly hurting performance. Overall, we believe that SCB is an algorithm

that practitioners can employ if they wish to find policies that reduce the number of

the contextual decisions (or conversely, increase the number of common treatments

that are assigned) without significantly impacting performance.
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5.5.2 Experiments on proprietary Dataset

In an online video subscription setting, promotional title artwork has undergone a

paradigm shift. The burden has shifted from attempting to appeal to as many people

as possible with two or three posters to attempting to appeal to a single user in a

single online video viewing session. The goal is no longer solely about capturing public

joy but about capturing individual attention. Acknowledging that any given title may

cover a range of thematic themes with an ensemble of cast members that may each

appeal to a particular user in a different way, personalized artwork selection allows

online video services to hone in on the varying taste profiles of their member-base.

Artwork personalization via online learning with explore exploit and contextual multi-

armed bandits is important to the member experience in a video subscription service

with thousands of titles and shows available to watch. The image personalization

system algorithmically selects 1 of N possible images from the title image suite to

display to a user at a specific point in time or viewing session. The goal is to emphasize

different themes through various artwork according to some context (user viewing

history, country) in order to capture individual preferences for cast members, genres,

artistic themes, etc.

Evaluation Metrics. We define the Click through rate (CTR) of an item as the

fraction of users who engaged with an item after being presented with it. A con-

trolled randomized uniform exploration of the candidate items is done by a logging

policy which provides us with a dataset to evaluate the proposed SCB algorithm.

We compute off-policy replay metrics by following the method described in [54] to

evaluate and compare the unbiased offline performance of the various online learn-

ing policies we experimented with. This method allows us to answer counterfactual

questions based on the logged exploration data. In other words, we can compare
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offline what would have happened in historical sessions under different scenarios if

the recommender system used different algorithms in an unbiased way.

Experimental Set-up. We compared SCB against a multi-armed contextual ban-

dit policy and a non contextual multi-arm bandit policy. The contextual information

of a user is represented as a feature vector provided as input to the model for pre-

dicting the probability of reward for each item i. Features primarily encapsulate the

user’s past engagement behavior. We tested one class of SCB models, based on the

same underlying logistic regression model used in production and using the ratio of

expected rewards for comparisons against the SCB δ parameter. If the ratio of the

expected reward of the contextual selected arm (or personalized winning image) to

the expected reward of the noncontextual selected arm (or unpersonalized winning

image) is not above some threshold δ, then we show the unpersonalized winning im-

age. We calculate the policy level take-rate and repeat the experiment for various

SCB δ threshold values. As we sweep the delta from 1 to 10, we move from a fully

personalized image selection experience to a fully unpersonalized one, with all mem-

bers being impressed with the same images for the same titles. We do not anneal the

delta rate over the history of contexts, i.e. we keep the delta rate constant. We ran

experiments on different asset types and across data streams from different months

and days.

Compared Policies

We considered three different policies for selecting the noncontextual winning image.

• SCB Global Majority Vote The noncontextual selected image for title t is

calculated as the global majority vote image for t across all contexts. Within

the context of user u and title t, if the ratio between the expected reward

of the contextual selected image to the expected reward of the noncontextual
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selected image is not greater than SCB input parameter δ, then show user u the

global majority vote image for t. Otherwise, show the member the personalized

winning image.

• SCB Country-level Majority Vote The noncontextual selected image for

title t is calculated as the country-level majority vote image for t across all con-

texts with country location c. Within the context of member m with country

location c and title t, if the ratio between the expected reward of the contextual

selected image to the expected reward of the noncontextual selected image is

not greater than SCB input parameter δ, then show user u the country-level ma-

jority vote image for t. Otherwise, show the member the personalized winning

image.

• SCB Marketing Default The noncontextual selected image for title t is set to

the marketing default image. Within the context of user u and title t, if the ratio

between the expected reward of the contextual selected image to the expected

reward of the noncontextual selected image is not greater than SCB input pa-

rameter δ, then show user u the marketing default image for t. Otherwise, show

the member the personalized winning image.

Results

Figure 5.2 shows a comparison of the three different policies tested for selecting the

noncontextual arm (unpersonalized winning image) on the large-scale proprietary im-

age personalization dataset. Exact details and values are omitted to protect business-

sensitive intellectual property. The x coordinate is the SCB threshold value. As we

move from left to right, increasing the threshold, we go from a fully personalized

experience (threshold of 1) to a fully unpersonalized experienced. That is, we move

from a policy that selects the contextual decision every time to one that selects the
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Figure 5.2: Comparison of three different policies for selecting the noncontextual arm
in an industry image personalization system. A policy that fallbacks on the default
marketing image during non-contextual SCB decisions performs best until a certain
threshold.

noncontextual decision every time. The y coordinate is the offline policy take-rate.

The higher the value the better. Each of the three lines corresponds to each of the

three policies described in Section 5.5.2.

The first important observation is that with the SCB Marketing Default policy

in particular we are able to increase the number of users who are impressed with the

noncontextual decision (in this case, the default image) without a significant negative

impact on the overall take-rate. As the figure shows, we are able to show 20% of

the users the noncontextual decision, i.e. default image, instead of the contextual

decision, i.e. personalized image, while at the same time achieving a take-rate that is

on par with the production policy take-rate that always opts to go with the contextual

decision. The second important observation is that at a threshold value that converts

10% of the contextual decisions to noncontextual ones, we observe an SCB Marketing

Default policy take-rate that slightly outperforms the baseline take-rate (the fully
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contextual policy used in production). In this particular setting, we saw SCB perform

best when using the marketing default image as the noncontextual fallback decision.

Because as a we increased the SCB threshold value δ, the policy take-rate stayed

relatively flat before sharply decreasing. It is worth noting that a policy that shows

all users the default image does worse than a fully personalized experience and does

worse than a policy that shows all users the global majority vote or country-level

majority vote image. Intuitively, this aligns with original motivation to implement

image personalization. We conducted the same analysis for different image asset types

and across data streams from five different days and saw similar trends. Overall, our

offline empirical results on this industry dataset suggest that there exists an SCB

policy that reduces dependence on context that can achieve replay take-rates that are

on par with or even outperform those achieved by a fully contextual policy.

5.6 Summary

In this chapter we propose a new family of multi-armed contextual bandits called se-

lectively contextual bandits (SCB) that selectively interpolate between contextual and

non-contextual treatment decisions. Using publicly available datasets corresponding

to 20 different classification tasks, we have empirically demonstrated that it is possible

to increase the number of non-contextual decisions from the policy while achieving

similar regret metrics as a fully-contextual policy. In fact, we observe that in some

cases, it is possible to even slightly outperform a fully-contextual policy. Further,

we demonstrate that SCB is flexible, accommodating different explore/exploit algo-

rithms and allowing the ability to control the amount of contextual decisions that are

made using a scheduler to anneal the SCB threshold over the history of time-steps.

We hypothesize that an SCB policy is beneficial in creating rich personalized treat-
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ments while also increasing the number of shared experiences across users, potentially

leading to social participation through network effects.
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Chapter 6

Landscape of Human-Machine

Collaboration in the Fragile Families

Challenge and Recommender Systems

In this chapter, we delineate the various ways in which humans and machines collab-

orate in the challenging real-world applications of the Fragile Families Challenge and

recommender systems.

In this thesis, we cover three specific modes of human-machine collaboration in

the aforementioned two contexts. However, upon doing a literature review of the full

set of 17 research papers submitted to the Fragile Families Challenge and a literature

review of existing recommender system research papers, we are able to draw a more

complete picture of the various ways in which humans and machines collaborate in

these settings.
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6.1 But First, What Does Not Classify as Human-

Machine Collaboration?

So what doesn’t classify as human-machine collaboration? First, let’s not lose sight

that humans created machines and they created the algorithms that power machine

learning, so everything can be called human-human collaboration. However, we do not

want to get into the metaphorical philosophical weeds and we still want to develop

a framework that is useful for understanding the deeply complicated landscape of

machine learning and its uses in our world. Human-machine collaboration typically

does not occur in the early stages of the machine learning pipeline, e.g. data collection,

data preparation, data wrangling. While humans are indeed cleaning up the data,

labeling data, removing duplicates, imputing missing data, etc, it does not represent a

core collaboration between human and machines as we’ve described in this thesis. We

see examples of this type of non-human-machine collaboration in [9] and [37]. In these

examples, taken from the Special Collection of FFC, the authors use their intuition

and volunteers to manually impute missing data and to manually select additional

variables related to the ones automatically selected by machine learning models. Using

a car analogy, these types of steps are similar to tuning a car, changing its oil, filling

it with gas so that the car can do its basic job. Human-machine collaboration is like

changing out the tires to heavy-duty terrain tires because the human has the foresight

of knowing the type of rocky terrain and harsh elements the car will be heading into.

6.2 Modes of Collaboration Found in the Fragile

Families Challenge

17 research papers were accepted and published to the Socius open journal Special

Collection of the Fragile Families Challenge (FFC). Of these, seven (including the
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paper presented in Chapter 2) demonstrated humans and machines collaborating to

take on the important and challenging social science task of predicting child outcomes

(as described in Section 2.1). In this section, we look at the others modes of human-

machine collaboration employed in the FFC.

[84] describes the Fragile Families Challenge in depth. This paper describes how

social scientists created a scientific mass collaboration to measure and understand

how predictable child life trajectories are. This paper is noteworthy because it shows

how a large group of humans, most of whom were machine learning technologists of

varying expertise levels, came together to compete against each other to earn the

top prize in a prediction problem. This shows machines and humans collaborating

together at scale via a competition in order to make progress in a difficult prediction

task.

Like [79], there were several research papers that demonstrated humans and ma-

chines collaborating by humans sharing their varying levels of social science domain

expertise with the machines, most typically during the feature selection phase of the

machine learning pipeline. [7] showed humans and machines collaborating in this

way via a non-expert reading of prior social science empirical research in order to

do manual variable selection. [32] used a survey to gather domain expertise. The

authors surveyed a scholarly community of social scientists as well as an anonymous

community of laypeople to elicit their beliefs about which variables in the FFCWS

data set would best predict each of the six outcomes. The author of [64] is a social

science professor; he applied his expert knowledge of the six outcomes as the main

approach to selecting variables during feature selection. [73] demonstrated how a

group of social scientists read 25 papers on existing research using the FFCWS and

who used this knowledge to guide their manual variable selection. Finally, while [78]

employed a mostly automatic feature selection process, at one point the researchers

also manually added some features based on their reading of social science literature.
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Overall, two different modes of human-machine collaboration were seen in the

Special Collection of the FFC: (i) humans adding their domain knowledge during

the machine learning feature selection process and (ii) humans creating a large-scale

machine-learning competition to gain collective knowledge about the predictability of

social science life outcomes.

6.3 Modes of Collaboration Found in Recommender

Systems

As described at length in Chapter 3, Chapter 4, and Chapter 5, recommender or

personalization systems are vital in the modern big data era for providing relevant

content and products to users with limited time, attention, and screen real estate.

In Chapter 3 and Chapter 4 we saw examples of humans and machines collaborating

by computers providing explanations of their workings via algorithmic explanations.

In Chapter 5 we saw humans and machines collaborating but working in tandem

in decision making to provide a better personzalition experience for users. In this

section, we looking at existing recommender system literature to highlight other ways

in which humans and machines collaborate.

The cold-start problem in recommender systems describes the problem of provid-

ing a product recommendation to a new user to the system [56], [36]. It is challenging

to provide relevant content to a user with zero interaction history on the platform.

For this reason, we see humans and machines interacting typically explicitly during

the user’s first experience with a recommender platform with the machines eliciting

preference feedback from the users. [75] propose asking user’s initial interview ques-

tions to learn some of their preferences. [114] propose building upon this strategy by

constructing a decision tree of initial interview questions so that the recommender

adapts the questions based on how the user responded to the prior questions.
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During the course of a user’s interaction on a recommender system driven plat-

form, there are various opportunities for human-machine collaboration in order to

improve the utility of the recommender system. [113] describe a system where it

continuously collects and acts upon interactive feedback it receives from the user as

she engages with the recommended content. Conversational and question-based rec-

ommender systems as described in [117] and [112] are systems where humans and

machines are collaborating via machines asking humans automatically constructed

and algorithmically chosen questions in order to learn a user’s belief and preferences.

[111] go a step further by proposing a visual dialog augmented cascade model where

users are recommended items with visuals ans where users give their explicit feedback

by describing their desired preferences about the items using natural language. In

critiquing-based systems, another form of conversational recommender systems, users

give explicity feedback to recommendation in the format of “show me more like this

but ...” [82]. In these type of systems, users can either accept a product recommenda-

tion or provide constructive criticism by critiquing specific attributes of the product

in order to get more utile recommendations.

Overall, two different broad modes of human-machine collaboration were seen

in a literature review of existing research on recommender systems: (i) machines

querying users for feedback on active product recommendations and (ii) machines

querying users for preference and demographic data about themselves.

6.4 Characterizing the Topology of Human-Machine

Collaboration in FFC and RecSys

In this section, we characterize the attributes that describe the different modes of

human-machine collaboration we have seen and discussed in this dissertation. These

include:
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• (A) Humans providing domain knowledge and expertise to machines

• (B) Machines providing algorithmic explanations to humans

• (C) Humans and machines working together in predictive decision making

• (D) Humans and machines working at scale via mass collaboration

• (E) Machines requesting real-time feedback on recommendations

• (F) Machines conducting human data collection during cold start problems

The attributes that characterize these different modes of human-machine collab-

oration are:

• Stakeholder: Who are the stakeholders? This could be a machine learning

engineer, the end user, the platform, the content creator, domain expert

• Collaboration Beneficiary: The stakeholder is putting in their expertise but

who is getting utility? Who benefits from the human-machine collaboration?

• Stage of the Machine Learning Pipeline: Where in the machine-learning

pipeline does the human-machine collaboration take place? Stages include data

collection, data preparation, data segregation, model training, model evaluation,

model deployment, model scoring, performance monitoring.
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Table 6.1: Using these attributes defined, we can characterize the various modes of
human-machine collaboration by placing them in a matrix.

Collab
Mode

Stakeholder Beneficiary ML Stage Refs

A engineer/expert platform data segregation [79, 7, 32, 64, 73,
78]

B engineer engineer/end
user/content
creator

eval/deploy/perf [39, 35, 100, 99]

C engineer end user deploy/scoring [109, 107, 4, 11]
D engineer engineer all [84]
E end user end user/platfor-

m/engineer
deploy [113, 117, 112,

111, 82]
F end user end user/platfor-

m/engineer
deploy [56, 36, 75, 114]
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Chapter 7

Conclusion

To conclude, we ask ourselves, why are humans so keen to collaborate with machines

in the automatic machine-learning backed processing of real-world big data? Because

the ultimate goal is for the few to be able to read the minds of the many. If com-

panies and governments can read people’s minds, then these entities can accurately

predict people’s behavior and preferences in the future, thus reaching their ultimate

capitalistic and tyrannical dreams.

So, stay random my friends. Don’t let people get too comfortable thinking they

have you figured out. This might be our last defense in this world with no privacy.
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