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Abstract
Read-only transactions are critical for consistently reading
data spread across a distributed storage system but have
worse performance than simple, non-transactional reads. We
identify three properties of simple reads that are necessary
for read-only transactions to be performance-optimal, i.e.,
come as close as possible to simple reads. We demonstrate
a fundamental tradeoff in the design of read-only transac-
tions by proving that performance optimality is impossible to
achieve with strict serializability, the strongest consistency.

Guided by this result, we present PORT, a performance-
optimal design with the strongest consistency to date. Cen-
tral to PORT are version clocks, a specialized logical clock
that concisely captures the necessary ordering constraints.
We show the generality of PORT with two applications.
Scylla-PORT provides process-ordered serializability with
simple writes and shows performance comparable to its non-
transactional base system. Eiger-PORT provides causal con-
sistency with write transactions and significantly improves
the performance of its transactional base system.

1 Introduction
Large-scale web services are built on distributed storage sys-
tems. Sharding data across machines enables distributed
storage systems to scale capacity and throughput. Sharding,
however, complicates building correct applications because
read requests sent to different shards may arrive at different
times and thus return an inconsistent view of the data.

Consistently interacting with data in a distributed storage
system thus requires transactional isolation, which unifies
the view of data across shards. While general transactions
provide isolation for reading and writing across shards, this
paper focuses on read-only transactions that only read data.
Read-only transactions are prevalent: they are used in sys-
tems without general transactions [5, 15, 36, 37, 39] and,
even for systems with general transactions, they are often
implemented with a specialized algorithm [11, 12, 39, 43,
44, 45, 57]. Read-only transactions are practically important
because reads dominate real-world workloads: Facebook re-
ported 99.8% reads for TAO [9] and Google reported three
orders of magnitude more reads than general transactions

*This technical report is an extended version of the paper under the
same title that appeared in OSDI 2020 [40].

for the ads workload (F1) that runs on Spanner [11]. They
are also theoretically important because they provide a lower
bound for other classes of transactions: anything impossible
for read-only transactions is also impossible for any class of
transactions that includes reads.

The dominance of reads in real-world workloads makes
their performance the primary determinant of end-user
latency and overall system throughput. Unfortunately,
read-only transactions perform worse than simple, non-
transactional reads due to the coordination required to
present a consistent view across shards. Whether a view is
consistent is determined by a system’s consistency model:
stronger consistency provides an abstraction closer to a
single-threaded environment, greatly simplifying application
code [38]. Thus, ideal read-only transactions would provide
the strongest consistency and have optimal performance.

What is the “optimal” performance? Although recent
work has studied optimality through the lens of latency [39],
it did not consider throughput, which adds a fundamentally
new dimension to this question. In this paper, we formalize
the notion of optimality for read-only transactions and use
it to explore the tradeoff between their consistency and per-
formance. We posit that optimality should be defined by the
algorithmic properties of simple reads that comprise a read-
only transaction. Simple reads do not provide transactional
isolation and thus capture the minimum work required to
read data in a distributed storage system: One round of Non-
blocking communication with a Constant amount of meta-
data. As we elaborate in §3, these algorithmic properties (N,
O, and C) precisely capture the additional coordination in-
curred by read-only transactions to present a consistent view.
Thus, we define performance-optimal read-only transactions
to be those with the same NOC properties as simple reads.

Our main theoretical result is that performance optimality
is impossible in a system that provides Strict serializability—
the strongest type of consistency. Specifically, our NOCS
Theorem states that no read-only transaction algorithm can
be performance optimal and provide strict serializability.
This result holds even in systems that only support non-
transactional writes, and thus applies to systems with and
without more general types of transactions. It shows there
is a fundamental choice in the design of distributed storage
systems: they can either provide the strongest consistency or
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the best performance for read-only transactions, not both.
Guided by our impossibility result, we present the PORT

design, which enables performance-optimal read-only trans-
actions with the strongest consistency to date: process-
ordered serializability. Previous performance-optimal trans-
actions only provided relatively weak consistency (§5.1).
PORT provides performance-optimal read-only transactions
without harming either the latency or throughput of writes.
The main mechanism enabling our design is a new special-
ized logical clock, called version clocks, that concisely cap-
ture the ordering constraints imposed by process-ordered se-
rializability on read and write operations. PORT uses version
clocks to tightly co-design its components. Version clock
values index its multi-versioning framework, control what
read-only transactions see, and control where writes are ap-
plied. They also enable optimizations that avoid the work of
applying some concurrent writes (write omission) and limit
the staleness of reads (data freshness).

We use the PORT design with the write omission
and data freshness optimizations to build a new stor-
age system, Scylla-PORT, that adds performance-optimal
read-only transactions to ScyllaDB [53] while providing
process-ordered serializability. As a single-versioned, non-
transactional system, ScyllaDB provides a clean slate for im-
plementing PORT and allows us to quantify the overhead
of our performance-optimal read-only transactions relative
to simple reads. ScyllaDB’s simple reads are a challeng-
ing baseline as the system is aggressively engineered for
high performance, including core-level sharding and custom
lock-free data structures. Our evaluation shows that PORT’s
read-only transactions introduce low overhead, achieving
throughput and latency within 3% of ScyllaDB on most of
the workloads we test, and within 8% in the worst case. Our
evaluation also compares PORT to a variant of OCC that
is optimized for read-only transactions. PORT significantly
outperforms OCC with at least double the throughput and at
most half the latency because Scylla-PORT always finishes
in one round while OCC’s best case is two rounds.

We also applied PORT with data freshness optimizations
to Eiger [37] to make its read-only transactions performance
optimal while preserving the system’s causal consistency and
write transactions. Eiger is a challenging baseline because it
can complete read-only transactions in a single round. Our
evaluation shows that Eiger-PORT significantly improves
performance with throughput up to 3× higher and latency
up to 60% lower than Eiger. These improvements do come
with some staleness relative to strongly consistent systems,
but our data freshness optimizations keep the staleness low.

In summary, this work makes the following contributions:

• A fundamental understanding of the tradeoff between per-
formance and consistency for read-only transactions. This
includes a precise definition of performance optimality
(§3) and the NOCS Theorem that proves optimality is im-
possible with strict serializability (§4).

• The PORT design that achieves performance-optimal read-
only transactions with the strongest consistency to date by
leveraging version clocks, a new type of logical clock that
concisely captures the necessary ordering constraints (§6).

• The implementation and evaluation of two new systems
based on the PORT design. Scylla-PORT is a clean-slate
application of PORT to a non-transactional system, Scyl-
laDB (§7). Eiger-PORT makes the read-only transaction
algorithm of Eiger performance optimal (§8, §9).

2 Background
Web service architecture. Web services are typically built
using two tiers of machines: a stateless frontend tier and a
stateful storage tier. The frontends handle end user requests
by executing application logic that generates sub-requests to
read or write data in the storage tier. We refer to the frontends
as clients and the storage machines as servers, as is common.
Web services are often replicated across multiple datacen-
ters. For simplicity, we focus on a single datacenter setting,
but our results also apply to multi-datacenter settings.
Read-only transactions. Read-only transactions provide a
consistent, unified view of data spread across servers in a
storage tier. They consist of one or more logical rounds of
simple read requests issued in parallel to the servers, which
collectively return a view satisfying the consistency model
of the system. One-shot transactions [27] know the data
locations of all reads prior to the transaction start. In con-
trast, multi-shot transactions may include key dependencies,
where the data read in one shot determines what data to read
in later shots. We study one-shot transactions for simplicity,
because they are common, and because what is impossible
for them is also necessarily impossible for multi-shot trans-
actions. The NOCS Theorem thus also applies to multi-shot
transactions. The PORT design for read-only transactions
can be easily extended to support multi-shot transactions.

3 Performance-Optimal Read Transactions
This section explains the challenges of reasoning about per-
formance, the rationale of our approach, and the set of algo-
rithmic properties that define optimal performance.

3.1 Reasoning About Performance
The key challenges to reasoning about performance are iden-
tifying the fundamental overhead of read-only transactions
and modeling it in a way that connects with practical designs.
Capturing the fundamental overhead. As a layer built
upon simple reads, the performance of a read-only transac-
tion is impacted by both the engineering factors in executing
simple reads and the algorithmic properties of coordinating
simple reads to find a consistent view. Engineering factors,
such as load balancing, batching, and networking, equally
affect simple reads and the read-only transactions built on
them. In contrast, the algorithmic properties, such as rounds
of communication, only affect read-only transactions. For
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instance, a read-only transaction protocol that requires mul-
tiple round trips incurs overhead due to those extra rounds
of messages, while the read requests in each round are engi-
neered the same as simple reads.

Thus, this work focuses on the algorithmic properties that
capture the fundamental overhead of read-only transactions.
These properties capture the additional overhead to coordi-
nate a consistent view and are orthogonal to underlying en-
gineering factors. More specifically, we answer the question,
“given a system, how low can we make the performance
overhead of read-only transactions relative to the system’s
simple reads?”
Being useful in practice. Our goal is to model optimal per-
formance in a way that is both theoretically insightful and
practically useful. Theoretical insights help clarify funda-
mental tradeoffs between performance and guarantees. Prac-
tically useful guidance helps us design better systems. Our
NOCS Theorem (§4.1) and properties yield theoretical in-
sights that lead to a better design, PORT (§6), that achieves
better performance in practice. This shows that our modeling
is practically useful (§5).

3.2 Approach Overview
To reason about optimal performance in a practically use-
ful way, we examine the mechanisms used in existing sys-
tems to coordinate a consistent view across shards. These
coordination mechanisms include blocking, extra messages,
and metadata. Some systems block read operations until a
consistent view is ready—e.g., systems that use two-phase
locking. Almost all systems use extra messages to deter-
mine a consistent view, such as multiple round trips on the
critical path of reads—e.g., OCC [28]—or approaches that
asynchronously coordinate a consistent view—e.g., COPS-
SNOW [39], GentleRain [16], Cure [4]. Finally, all systems
we are aware of use metadata to help compute a consistent
view for read-only transactions to return—e.g., timestamps,
transaction ids. Figure 11 in Section 10 shows representative
systems that use these mechanisms.

These coordination mechanisms cause read-only transac-
tions to have worse performance than simple reads, as they
consume additional system resources. Therefore, we define
performance-optimal read-only transactions to be those that
require the least amount of each coordination mechanism,
making their performance closest to that of simple reads.

3.3 NOC: Optimal Performance
We now explain the NOC properties, which we use to define
optimal performance for read-only transactions.
N: Non-blocking. A read-only transaction algorithm is non-
blocking if servers process each read request without waiting
for any external event, such as a lock to become available, a
message to arrive, or a timer to expire.

Blocking for a read request increases the latency of the
read-only transaction: the more time spent blocking, the

longer the transaction takes to complete. It also decreases
throughput due to the overhead of context switches. In prac-
tice, blocking can incur more serious performance issues,
e.g., CPU underutilization and deadlocks, which are increas-
ingly pronounced in modern services [50, 58].

O: One-round communication. A read-only transaction al-
gorithm has one-round communication if it uses exactly one
parallel round of on-path messages and does not have any
off-path messages. This matches the messages of simple
reads: the client sends a single request to each server holding
relevant data, and each server sends a single response back.
It excludes algorithms that use extra messages, such as those
that require multiple rounds of on-path communication, e.g.,
to abort/retry. It also disallows coordinating through off-path
messages, i.e., messages that are necessary for the read-only
transactions but lie off the critical path of reads.

A message is an off-path message for read-only transac-
tions if its removal affects only the correctness of read-only
transactions. For example, COPS-SNOW [39] adds extra
messages to writes. These messages are used for read-only
transactions to find a consistent snapshot and are not neces-
sary for processing writes. Because only the correctness of
read-only transactions is affected if these messages are re-
moved, they are off-path messages.

Additional rounds of on-path messages increase the la-
tency of read-only transactions. Both extra on-path and off-
path messages decrease system throughput because trans-
mitting and processing them consume network and CPU re-
sources that could otherwise be used to service requests.

C: Constant metadata. Metadata is the information re-
quired by a read-only transaction algorithm to coordinate
consistent values. It is information a server needs to find
the specific version of the data that will produce a consistent
cross-shard view across reads in the same transaction. Ex-
amples of metadata include timestamps [2, 11], transaction
ids [39, 47], and identifiers of participating servers [6].

A read-only transaction algorithm has constant metadata
if the amount of metadata required to process each of its read
requests is constant, i.e., it does not increase with the size
of the system, the size of the transaction, or the number of
concurrent operations. An example of constant metadata is
one timestamp per read request for snapshot reads in Span-
ner [11]. An example of non-constant metadata is COPS-
SNOW [39], which requires information about many con-
current read-only transactions to process each read request.

Transmitting and/or processing extra metadata consumes
more resources, increasing latency and decreasing through-
put. Its negative impact on performance has been reported in
recent work [14, 15, 16]. We use Big-O notation, i.e., “con-
stant,” to capture the algorithmic complexity of metadata re-
quired for coordination. In practice, system designers should
aim for as low a constant as possible. We realize this in our
PORT design, which uses a single integer per read request.
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Performance optimality. We deem an algorithm perfor-
mance optimal if it satisfies the N+O+C properties because
they capture the least coordination overhead and thus enable
performance as close as possible to simple reads.

4 The NOCS Theorem
An ideal system would have performance-optimal read-only
transactions that provide the strongest consistency. Our
NOCS Theorem proves this ideal is impossible.
S: Strict serializability. Strict serializability is the strongest
form of consistency, equivalent to linearizability [26] with
the addition of transactional isolation. It requires that there
exists a legal total order of transactions that respects the real-
time order between transactions [48]. A legal total order en-
sures that the results of transactions are equivalent to a single
entity processing them one by one. The real-time order en-
sures that if transaction T2 starts after transaction T1 ends,
then T1 must appear before T2 in the total order. If T1 and T2
have overlapping lifetimes, then they are concurrent and can
be placed in either order. Strict serializability gives applica-
tion programmers the powerful abstraction of programming
in a single-threaded, transactionally isolated environment.

4.1 NOCS is Impossible
Our main result is that performance-optimal read-only trans-
actions (N+O+C) cannot provide strict serializability (S).
This section present a condensed version of the proof. The
full proof appears in Appendix A.

The NOCS Theorem. No read-only transaction algorithm
satisfies all NOCS properties.

System model. We model a distributed system as a set of
processes that communicate by sending and receiving mes-
sages. This model is similar to that used in FLP [18]. A set
of client processes (clients) issue requests to server processes
(servers) that store the data. Processes are modeled as deter-
ministic automata: in each atomic step, they may receive a
message, perform deterministic local computation, and send
one or more messages to other processes.

A transaction (operation) starts when a client sends the re-
quest messages to servers and ends when the client receives
the last necessary server response. Two transactions (oper-
ations) are concurrent if their lifetimes overlap, i.e., neither
begins after the other ends. If concurrent transactions (oper-
ations) access the same data item, then they conflict.
Assumptions. We make the following assumptions:

(A-0) There are ≥ 2 servers and ≥ 2 clients. Otherwise,
optimal performance and strict serializability are trivial. All
reads and writes eventually complete.

(A-1) The network and processors are reliable. Every
message is eventually delivered and processed by the des-
tination process. Processes are correct and never crash. By
proving our impossibility result under these favorable condi-
tions, it will necessarily hold when the system can fail.

(A-2) The network is either asynchronous [21], i.e.,
messages can be arbitrarily delayed, or partially syn-
chronous [17], i.e., physical clocks ensure bounded delays.
Proof intuition. Due to network asynchrony, it is always
possible for a read-only transaction to conflict with write op-
erations and other concurrent read-only transactions. These
requests occupy an unstable region in the system’s history,
where conflicts are possible and a total order has not yet
been established. In contrast, the stable region is the part
of history that precedes the unstable region, where all writes
have committed and system states are finalized. Reading in
the stable region is easy as there are no conflicting writes.
However, we show that the real-time order requirement of S
requires read-only transactions that are N+O to interact with
the most recent writes in the unstable region (Lemma 1). Do-
ing this while ensuring a legal total order requires transfer-
ring metadata between the servers (Lemma 2), either proac-
tively through read requests or through the write protocol.
By extending this construction, we show that processing a set
of read-only transactions requires metadata that is asymptot-
ically larger than the total size of the transactions, regardless
of how the metadata is transferred (Lemma 3). This violates
C, proving the theorem.
Proof. Suppose the system has two servers, S1 and S2, and
multiple clients. Let ALG be any read-only transaction algo-
rithm that satisfies N+O+S. Let R = {r1,r2} be a read-only
transaction that executes ALG, issued by client CR. Let w1 and
w2 be simple write requests issued by client Cw 6=CR, where
w1 → w2 in real-time, i.e., w2 is sent after the response for
w1 is received. We place no restrictions on the write protocol
(beyond assumption A-0). Consider the execution e1:
S1 : r1,w1
S2 : w2,r2

Suppose there is no metadata in the system, i.e., no infor-
mation for coordinating consistent values between requests.

Lemma 1. Without metadata, a read-only transaction that is
N+O+S must observe any write that precedes it at a server.
Proof Summary. Without metadata, S2 cannot distinguish be-
tween an execution where w2 and R are concurrent and one
with w2→R in real-time. The latter requires r2∈R to observe
w2 to satisfy S’s real-time order. �

Lemma 2. Processing e1 while satisfying N+O+S requires
dependency R→ w1 to be transferred from S1 to S2.
Proof Summary. Lemma 1 states that, without metadata, r2
must observe w2, implying w2 → R. But r1 must be pro-
cessed before w1 to satisfy N+O, implying R→ w1. Since
w1 → w2 by construction, this creates a cycle, violating the
legal total order of S. Using basic two-party communication
complexity, we show that legalizing the total order requires
transferring R→ w1 from S1 to S2. �

We now extend e1 with more read-only transactions,
servers, and write requests, and apply the structure above to
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force more dependency metadata to transfer between servers.
We then quantify this metadata and show that it violates C.

Proof of the NOCS Theorem. Suppose the system has
M2 + 1 servers S1,S2, . . . ,SM2+1. Let R1,R2, . . . ,RN be N
read-only transactions that execute ALG, where each Ri sends
a read request to S1 and M−1 other servers, such that every
server other than S1 receives N/M read requests. (In practice
M2� N, but our construction works for any N,M ≥ 1.) The
specific mapping of read requests to servers is unimportant;
we lay them out sequentially by transaction index below. Let
ri, j be a read request of Ri assigned to S j. We assign one
read request from each of R1 to RN/M to S2, one read request
from each of RN/M+1 to R2N/M to S3, and so on, restarting at
R1 after reaching RN . Let w1,w2, . . . ,wM2+1 be M2 +1 sim-
ple writes issued to each server by a distinct client Cw that
does not issue any read-only transactions. Suppose w1 pre-
cedes all other writes, i.e., w1 → w j for j = 2, . . . ,M2 + 1,
and all read-only transactions are concurrent with all writes.
Consider the execution e∗:
S1 : r1,1, . . . ,rN,1,w1
S2 : w2,r1,2, . . . ,rN/M,2
S3 : w3,rN/M+1,3, . . . ,r2N/M,3
...
SM+1 : wM+1,rN−N/M+1,M+1, . . . ,rN,M+1
SM+2 : wM+2,r1,M+2, . . . ,rN/M,M+1
...
SM2+1 : wM2+1,rN−N/M+1,M2+1, . . . ,rN,M2+1

By decomposing this execution into layers, we can induc-
tively quantify the metadata required to process it. Let e1 be
the execution fragment containing all write requests and only
the read requests of R1. Let ei contain the requests of ei−1
plus all read requests of Ri, for i = 2, . . . ,N. Thus eN = e∗.
Lemma 3. Processing ek while satisfying N+O+S requires
Ω(kM2) metadata, for k = 1, . . . ,N.
Proof Summary. The proof is by induction. For the base
case of e1, Lemma 2 requires us to transfer R1 → w1 from
S1 to all M− 1 servers targeted by R1. We show that the
write protocol cannot efficiently transfer this metadata, since
it does not know which servers R1 targets, and hence must
send R1 → w1 to all M2 servers, or Ω(M2) metadata. Al-
ternatively, r1,1 can convey the list of target servers, but
due to asynchrony, a different execution could cause a dif-
ferent target server S j to play the role of S1, making it
impossible to know which r1, j will appear before a write.
Thus, every r1, j must include the list of M servers, requir-
ing Ω(M ∗M) = Ω(M2) metadata. In the inductive step, we
show that ek cannot rely on previous metadata transferred in
ek−1, and thus requires an additional Ω(M2) metadata. �

Completion of the proof. By Lemma 3, e∗ = eN requires
Ω(NM2) metadata. Since R1, . . . ,RN issue NM read requests

total, the amortized metadata required per read request is
Ω(NM2

NM ) = Ω(M), which is not constant, violating C. �

4.2 The Broad Scope of NOCS
We prove NOCS is impossible in the specific setting of one-
shot read-only transactions in failure-free systems. When
it comes to an impossibility result, the more restricted the
setting it is proved in, the stronger the result, because any
setting that is more general is also subject to the impossibility
result (the general setting includes the restricted setting as a
special case). Thus, the NOCS Theorem also applies to more
general settings, such as those with read-write transactions,
multi-shot transactions, and/or failures.

4.3 NOCS Is Tight
While all properties are impossible to achieve together, we
find that NOCS is “tight” in the sense that any combina-
tion of three properties is possible. Spanner’s [11] read-only
transactions are one-round, use constant metadata, but block
reads in order to return strictly serializable results (O+C+S).
Many systems use multiple non-blocking round trips to coor-
dinate strongly consistent results (N+C+S), e.g., DrTM [55],
RIFL [34]. To the best of our knowledge, no existing system
provides strict serializability in one round of non-blocking
communication (N+O+S). We present the design of such a
system, PORT-SEQ, and a proof of its correctness in Ap-
pendix D. The design uses a centralized write sequencer to
totally order writes, and requires a linear amount of metadata
for read-only transactions. We are aware of two systems that
have performance-optimal read-only transactions (N+O+C):
MySQL Cluster [45] and the snapshot read API of Span-
ner. These systems provide weak consistency, however, as
we discuss below.

5 NOCS Connects Theory with Practice
This section discusses the value of the NOCS Theorem in un-
derstanding the design space and in guiding system designs.

5.1 Theoretical Insights
Proving the impossible. NOCS is philosophically similar
to other impossibility results like CAP and SNOW, in that it
helps system designers avoid attempting the impossible and
instead identifies a fundamental choice they must make: their
system can either have performance-optimal read-only trans-
actions or provide strict serializability, but not both.
Identifying the possible. The crux of NOCS’s impossibil-
ity is that the real-time requirement of strict serializability
forces read-only transactions to confront conflicting requests
(Lemma 1). This suggests optimal performance could be
possible with even slightly relaxed consistency models that
do not require real-time ordering, and thus can avoid the
unstable region. In particular, the second strongest consis-
tency model we are aware of—process-ordered serializabil-
ity [39]—does not require real-time ordering.
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Yet, there is a large gap in the current design space. The
only two existing systems whose read-only transactions are
performance optimal provide weak consistency. MySQL
Cluster’s read-committed consistency does not isolate trans-
actions. Spanner’s snapshot read API can be used to get
performance optimality, but it does not ensure clients see
their own recent writes when used in this way (§10). Be-
tween these weak guarantees and strict serializability are
many stronger consistency models, such as read-atomic [6],
causal consistency [36], and process-ordered serializabil-
ity [39]. We bridge this gap by presenting the PORT de-
sign that provides performance-optimal read-only transac-
tions and the strongest consistency to date: PORT provides
process-ordered serializability in systems with only simple
writes (§6), and it provides causal consistency in systems
with write transactions (§8). (We conjecture causal consis-
tency is the upper bound for performance-optimal read-only
transactions when transactional writes are present.)

PORT implies that performance-optimal read-only trans-
actions are possible with any consistency model equal to
or weaker than what PORT provides. Recent work con-
current to ours presented a conflicting theorem that implies
performance-optimal read-only transactions are impossible
with causal consistency in systems with simple writes [14].
Appendix E discusses the claim and its relation to our results.

5.2 Guiding System Designs
NOCS is also useful in guiding system designs. First,
to make a design performance-optimal, it must satisfy the
NOC properties: each transaction must succeed using a sin-
gle round of non-blocking messages with constant meta-
data. Therefore, the NOC properties indicate we must avoid
validation-based and stabilization-based techniques to sat-
isfy O, avoid techniques based on distributed lock manage-
ment to satisfy N, and ensure the complexity of processing
a read does not depend on the level of contention—i.e., the
number of conflicting reads and/or writes—to satisfy C. Sec-
ond, the NOCS Theorem suggests a path towards designing
NOC protocols by avoiding how it derives its impossibil-
ity: read-only transactions should always execute on system
states outside the unstable region. These implications of the
NOC properties and the NOCS proof significantly reduced
the design space of algorithm we needed to explore and led
us to two high-level techniques for PORT: explicit ordering
control and multi-versioning.
Explicit ordering control. There are two methods for en-
suring reads avoid the unstable region by explicitly control-
ling the ordering of concurrent operations. First, reads can
request versions of the data that lie before the unstable region
begins, which orders a read-only transaction before ongoing
writes. Second, servers can reorder operations when a read
requests data in the unstable region.

Explicitly controlling ordering is not compatible with
strict serializability because the real-time requirement forces

a specific ordering of operations (Lemma 1) that cannot be
communicated in a performance-optimal system (Lemma 3).
Consistency models without the real-time requirement, how-
ever, might be compatible with an explicitly controlled or-
dering while satisfying NOC. PORT confirms this, by using
versions clocks to capture this explicit ordering. PORT uses
both types of explicit control on top of multi-versioning to
provide its consistency guarantees and optimal performance.
Multi-versioning. Enabling reads to control what version
of data they request requires multi-versioning on servers.
Multi-versioning introduces storage overhead to temporarily
keep additional version around, but this overhead is minor as
storage is inexpensive and extra versions are not kept long.
It also introduces some processing overhead to look up the
correct version of data to return, reflected by our C property.

The need for multi-versioning to support efficient reads is
not new. The existing performance-optimal systems, Span-
ner and MySQL Cluster, are multi-versioned. In fact, all ex-
isting systems whose read-only transactions are guaranteed
to terminate—i.e., have a bounded number of retries and/or
bounded blocking—are multi-versioned (Table 11). On the
other hand, multi-versioning alone does not ensure optimal
performance: most MVCC protocols require either extra on-
path messages to query a timestamp oracle [7, 49], off-path
messages to compute stable snapshots [4, 16], or blocking
reads if the client-provided timestamp in MVTSO-based pro-
tocols points to the future [35, 51]. PORT’s novelty is in how
it uses version clocks to explicitly control ordering by manip-
ulating the multi-versioning framework in order to achieve
optimal performance.

6 PORT Design
PORT is a new system design that enables performance-
optimal read-only transactions with process-ordered serial-
izability, the strongest consistency to date.
Process-ordered serializability. Process-ordered serializ-
ability guarantees there exists a legal total order of transac-
tions that respects the ordering of transactions within each
process [39]. It is equivalent to sequential consistency [32]
with the addition of transactional isolation. It preserves all
the properties of strict serializability (§4) except for the real-
time order across processes (clients). That is, it preserves the
real-time order within each process, i.e., process order, and
a total order across processes, but a client may not see the
most recent updates of other clients. Process order ensures
that each client interacts with the system monotonically, e.g.,
sees her own recent writes. Total order ensures that concur-
rent transactions are observed by all clients in the same order.

6.1 Version Clocks
This section describes version clocks (§6.1), a new special-
ized logical clock that tightly couples all the components of
PORT (§6.2). Version clocks also allow us to avoid the work
of applying some writes (write omission, §6.3) and limit the
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1 Client Side
2 versionstamp = 0 # clock value
3 view[] # max known versionstamp per server
4

5 # Sending requests
6 function get_vs_read():
7 versionstamp = tick(min{view[]}) # stable frontier
8 return versionstamp
9

10 function get_vs_write():
11 versionstamp++
12 return versionstamp
13

14 # Receiving a response msg from server svr
15 function recv_response(maxVS):
16 view[svr] = max{view[svr], maxVS}
17 if msg.for_write is true
18 versionstamp = tick(maxVS)
19 return
20

21 function tick(vs):
22 return max{vs, versionstamp}
23

24 Server Side
25 maxVS = 0 # max seeen versionstamp
26 # ... return maxVS when sending response msg

Figure 1: Pseudocode for version clocks.

staleness of reads (data freshness, §6.4).
Version clocks are designed in the context of distributed

storage systems and have two features: they ensure pro-
cess order by concisely capturing the ordering constraints be-
tween requests and enable optimal performance by reading
at the most recent snapshot in the stable region.

Enforcing process order. Version clocks take advantage of
two observations. First, process order is a per-client order,
and thus can be explicitly controlled by clients. Second, read
and write requests have different semantics, i.e., writes mod-
ify system state while reads do not. Therefore, they should
be treated differently: it is unnecessary to enforce an order
among the read requests that observe the same system state.

Capturing the stable frontier. Version clocks follow the
practical guidance of the NOCS Theorem (§5.2) to avoid the
unstable region by capturing the stable frontier. The stable
frontier is the most recent snapshot in which all writes are
in the stable region. Each server tracks the final version-
stamp of its most recent write. A version clock tracks the
minimum of such versionstamps across all servers the client
has contacted, which is exactly the stable frontier the client
knows. Version clocks direct read messages to the stable
frontier when possible. PORT takes care of the cases when
reads have to confront conflicting requests beyond the stable
frontier. “Promotion” is used in systems with simple writes
to advance the stable frontier beyond the versionstamp of an
incoming read to ensure a total order. “Per-client ordering”
is used in systems with write transactions to logically move a
client’s own writes before the stable frontier so the client can
always safely read at the stable frontier (§8.3). Both tech-
niques enforce the necessary order between concurrent reads
and writes without blocking either reads or writes.

1 Client Side
2 function read_only_txn(<keys>):
3 vs = VersionClock.get_vs_read()
4 for k in keys # in parallel
5 vals[k], maxVS = read(k, vs)
6 VersionClock.recv_response(maxVS)
7 return vals # replies to end user
8

9 function write(key, val):
10 vs = VersionClock.get_vs_write()
11 maxVS = write(key, val, vs)
12 VersionClock.recv_response(maxVS)
13 return # replies to end user
14

15 Server Side
16 vers[keys][] # multi-versioned storage
17 function read(key, vs):
18 if vers[key][vs] exists
19 return vers[key][vs], VersionClock.maxVS
20 else # return nearest version to not block
21 near_vs = find_nearest_earlier(ver)
22 # ensure future writes have higher vs
23 vers[key].max_r_vs = max(vers[key].max_r_vs, vs)
24 return vers[key][near_vs], VersionClock.maxVS
25

26 function write(key, val, vs):
27 if vs <= vers[key].max_w_vs
28 return VersionClock.maxVS # omit write
29 if vers[key].max_r_vs >= vs
30 vs = max_r_vs + 1 # commit after promoted versions
31 vers[key][vs] = val
32 vers[key].max_w_vs = vs
33 if vs > VersionClock.maxVS
34 VersionClock.maxVS = vs
35 return VersionClock.maxVS

Figure 2: Pseudocode for PORT.

Clock structure. Figure 1 shows the pseudocode of version
clocks. versionstamp stores the current clock value (line 2),
which is embedded in every read/write message to explicitly
control their ordering. When versionstamps are the same for
two operations of the same type, the server orders them ar-
bitrarily. When versionstamps for a read and a write are the
same, the server orders the read after the write. A server re-
sponds with the highest versionstamp it has seen (line 26).
A client uses view to track the highest versionstamps of the
servers it has contacted (line 3) and uses them to find the sta-
ble frontier (line 7) before sending a read message (lines 6–
8). view is updated upon receiving a response (line 16). If the
response is for a write message, then the clock is advanced
so that future read messages will have greater versionstamps
than the write (lines 17–18), ensuring read-your-writes. Be-
cause versionstamps increase monotonically and reads have
non-smaller versionstamps than earlier writes, version clocks
preserve process ordering.

6.2 Basic PORT Design
The basic PORT design includes a multi-versioning frame-
work, a read-only transaction algorithm, and a write algo-
rithm. We co-design these components tightly by leveraging
version clocks. Figure 2 shows PORT’s pseudocode.
Client library. The read-only transaction and write algo-
rithms are executed by a client library. For each read-only
transaction or write, the client obtains a versionstamp from

7



its version clock and embeds it in the request message(s).
This per-client versionstamp decides which system version
on the servers the operation must read (or write) to ensure the
client’s process order (lines 3, 10). The server-side logic en-
sures a total order on top of the process order on each client
to guarantee process-ordered serializability.

Multi-versioning framework. Servers store written values
in a multi-versioning framework (line 16). Since PORT
uses version clocks to track the ordering between operations,
it is natural and efficient to index the historical values of
each data item with versionstamps. In this way, the multi-
versioning framework and transaction layer are nicely cou-
pled via versionstamps. We omit a detailed discussion of
garbage collection, which uses standard mechanisms similar
to those used to provide at-most-once semantics.

Read-only transactions. To process a read request, a server
executes it against the system version specified by its ver-
sionstamp. Executing a read is thus equivalent to returning
the value indexed at versionstamp. If the server has the re-
quested version, then the read is inside the stable region and
it returns the version directly (lines 18, 19). Otherwise, it
uses promotion to ensure a total order between the read and
any concurrent writes at the specified versionstamp, without
blocking either the read or write (lines 20–24).

Promotion logically copies the value of the nearest earlier
version to all empty positions between that version and the
one requested by versionstamp. Logical versions are used
as placeholders to ensure a total order: once a version has
been read by any client, no earlier versions can be modified
to ensure different clients observe them in the same order.
For example, if a read request has vs = 4 and the data item
has committed values at vs = 1,2, the version at vs = 2 is
the nearest earlier version and is promoted to positions 3,4.
A conflicting write at vs = 3,4 will be “bumped up” to vs =
5 when it arrives. We implement promotion with a single
variable (line 23) that marks earlier positions as immutable.

Writes. When receiving a write request, a server finds the
position specified by the write’s versionstamp in the multi-
versioning framework. If the position is empty, then the write
is applied at the versionstamp (line 31). If the position has
been marked immutable by read promotion, the server finds
the next available position to write the version at (lines 29–
31). The write protocol also includes a mechanism for safely
skipping concurrent writes (lines 27–28), discussed next.

6.3 Write Omission
Write omission is a special conflict resolution mechanism
that skips an incoming write if it is concurrent with an al-
ready applied write. Omitting a write is desirable because it
saves the computation needed to apply it, reduces the number
of stored versions, and saves the work of replicating it.

Write omission is safe. Consistency models in general, and
process-ordered serializability specifically, allow conflict-

ing writes to be ordered either way. For instance, if two
processes concurrently issue w1 : write(x = 1) and w2 :
write(x = 2), then they can be ordered as either (w1,w2)
or (w2,w1). Typically, systems apply writes in the order that
they arrive, e.g., w1 then w2. But if instead we use the oppo-
site order, then this is equivalent to omitting w2, as shown in
Figure 3: skipping the later write is equivalent to ordering it
before the earlier write and immediately overwriting it with
the latter. Write omission does not affect the total order re-
quirement: all clients observe concurrent writes in the same
order, because omitted writes are never seen by any client.

Knowing a write is concurrent. Version clocks enable
PORT to identify when writes are concurrent, allowing a
later concurrent write to be omitted. PORT omits an incom-
ing write if its versionstamp, vsomit , is less than or equal to
the highest committed versionstamp of the data item, vshighest
(lines 27–29). The write with the highest committed version-
stamp cannot have happened-before [31] the omitted write
because vshighest ≥ vsomit . More specifically, version clocks
guarantee the invariant: if write x happens-before write y,
then vsx < vsy. The omitted write cannot have happened-
before the write with the highest committed versionstamp
because it has not happened yet. Therefore, the two writes
are concurrent, and it is safe to omit the incoming write.

Omitting a write is equivalent to applying it immediately
before the write with the highest versionstamp. A client’s
future reads must observe the “higher” write if its own write
was overwritten in this way. Therefore, the server returns the
versionstamp of its highest applied write to the client (line
29), which uses it to update its versionstamp as normal.

6.4 Keeping Reads Fresh

To avoid the unstable region, we must sometimes return val-
ues staler than what strict serializability would return (§5.2).
PORT limits data staleness in two ways, neither of which
incurs extra messages, blocking, or non-constant metadata.
That is, they do not forfeit optimal performance (NOC).

Reducing staleness with version clocks. Instead of naively
returning versions far behind the stable frontier, version
clocks try to track the stable frontier precisely. They use view
to track the most recent versionstamp on each server a client
has contacted, so a client’s version clock never ticks slower
than the servers it is aware of. This significantly improves
the freshness of data requested by read-only transactions.

Reducing staleness via co-location. Many storage systems
co-locate “end users” on the same client machine [13, 19,
46], i.e., each client (machine) has many sessions (threads),
one per end user. We leverage co-location to help user ses-
sions keep each other fresh by sharing one version clock
among them on the same client, which ensures no user ses-
sion is staler than the freshest session it is co-located with.
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P1! P2!Sx!
0!
1!
2!

w1=1	

(a) orders www111 before www222 by arrival.

P1! P2!Sx!
0!
2!
1!

w2=2	

(b) orders www222 before www111 by arrival.

P1! P2!Sx!
0!
1!

w1=1	

(c) orders www222 before www111 by omission.

Figure 3: Space-time diagrams showing three executions of writes www111 and www222 that are concurrent and conflicting. The
value underneath Sx indicates the value stored by the server. Process-ordered serializability allows www111, www222 to be ordered
either way. This enables us to omit www222 in (c) because it is equivalent to the ordering in (b), i.e., (www222,www111).

6.5 Correctness and Generality
The only technique PORT relies on is version clocks, which
can easily be added to systems with existing physical/logical
clocks, or implemented from scratch. We demonstrate both
by applying PORT to a system without transactions (shown
by Scylla-PORT) and a system with existing sub-optimal
read-only transactions (shown by Eiger-PORT). We present
a proof of correctness for PORT in Appendix B.
Failures. PORT can tolerate server failures using typical
techniques such as state machine replication [52]. To tol-
erate client—i.e., frontend—failures, clients can send ver-
sionstamps back to end-user machines that then include the
versionstamp in subsequent requests to the application (e.g.,
via cookies). This ensures process ordering is maintained
even if an end user’s later requests go to a different frontend
due to load-balancing or frontend failure.

7 PORT Implementation and Evaluation
This section discusses Scylla-PORT, the implementation of
PORT on a clean slate base system.

7.1 Implementation
We build PORT on ScyllaDB [53], a clean slate, non-
transactional base system that supports only simple reads
and simple writes. ScyllaDB is a production system that
serves as a drop-in replacement for Cassandra [30] and pro-
vides an order-of-magnitude better performance. It is well-
engineered and aggressively-optimized for performance, in-
cluding a new implementation in C++14, core-level sharding
that avoids cross-core locking and context switches, and cus-
tomized lock-free data structures.
Rationale and takeaways. We chose to implement PORT
on ScyllaDB for three reasons. First, it stresses the effi-
ciency of PORT: as a highly efficient baseline system, it is
sensitive to any additional overheads, and thus amplifies any
performance cost introduced by PORT. Second, ScyllaDB
is single-versioned. The negligible performance overhead
shown in our evaluation includes the cost of making it multi-
versioned (§5.2), which shows the efficiency of co-designing
the multi-versioning framework and the transaction layer en-
abled by version clocks. Third, PORT is compatible with
all the customized engineering decisions of ScyllaDB, which

demonstrates the generality of the design of PORT.

7.2 Evaluation Overview
We evaluate Scylla-PORT against ScyllaDB (the clean slate,
non-transactional base system) and Scylla-OCC (an im-
plementation of OCC atop ScyllaDB). We compare their
throughput, latency, scalability, and quantify data staleness.
Scylla-OCC. We implemented a variant of OCC optimized
for read-only transactions, similar to Rococo’s read-only
transaction algorithm [43]. It includes an initial round of
optimistic reads and then a validation round. If the values
read in the optimistic round match the values in the valida-
tion round the transaction succeeds. If not, the read-only
transaction is aborted and retried. This variant has strictly
better performance than traditional distributed OCC because
it avoids the need for distributed commit: its best case is two
rounds compared to traditional distributed OCC’s best case
of three rounds (read, validate/prepare, commit).
Code. We implemented our server-side logic in ScyllaDB’s
codebase (release 2.1-RC3) in C++14 and our client-side
logic in the Java Thrift client of the YCSB benchmark (re-
lease 0.10.0) [10]. Version clocks are implemented on both
servers and clients. Scylla-PORT adds ~1,300 LOC.
Experimental setting. We run experiments on Emulab [56].
Each machine has two 2.4GHz 8-Core Xeon CPUs, 64GB
RAM, and a 10Gbps network interface. We use a single
datacenter setting. All experiments, except for scalability
tests, use 8 servers loaded by 8 client machines. The scal-
ability tests use up to 64 machines. Each client issues 10
million requests in each experiment, which takes 5–10 min-
utes to complete, sufficiently long to minimize warm-up and
cool-down effects and provide stable results. Experiments
are CPU-bound on servers.
Configuration and workloads. We use YCSB’s standard
workloads B (read-heavy, 95% reads) and C (read-only) with
customized read-to-write ratios of up to 25% writes. We use
YCSB’s default parameters: 1 million records, 10 fields per
record, 100 B values per field, and Zipf constant of 0.99.
Each request (a read-only transaction or a group of simple
writes) accesses 5 records and all fields in each record.
Results summary. Transactional overhead is generally evi-
dent with read-write conflicts and under skewed workloads,
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Figure 4: The performance of Scylla-PORT closely matches non-transactional ScyllaDB and is significantly better than
OCC, Scylla-PORT scales even better than ScyllaDB with skewed workloads, and half of its reads return fresh data.

so we focus our evaluation in such scenarios to amplify
Scylla-PORT’s cost. Our results show that Scylla-PORT can
almost match its performance to that of non-transactional
ScyllaDB: 1–3% overhead in throughput and latency in most
settings and less than 8% even in the worst case. Scylla-
PORT outperforms OCC by an order-of-magnitude in such
contended scenarios due to OCC’s retries, and outperforms
OCC under low contention (OCC’s best case) by at least two
times. Scylla-PORT scales as well as ScyllaDB and scales
better under contention. More than 40% of its reads return
fresh values.

7.3 Throughput and Latency
Figure 4a shows the overall performance of the systems as
we gradually increase the system load by using more closed-
loop client threads. Scylla-PORT has similar performance to
the baseline ScyllaDB. Their largest difference before Scyl-
laDB becomes overloaded is evident with 32 client threads:
5.6% in throughput and 5% in latency. All later experi-
ments report throughput and latency at this operating point,
i.e., with 32 client threads. OCC initially has latency that
is twice that of ScyllaDB and Scylla-PORT because it takes
at least two rounds to complete instead of one. As load in-
creases, OCC’s latency increases quickly and its throughput
decreases slightly because contention forces it to retry.

Varying write percentage. Figure 4b and 4c show the
throughput and latency as we vary the read-to-write ratio.
Scylla-PORT’s throughput is within 4% of ScyllaDB’s for
five of the experiments and within 7% for the remaining one.
Similarly, its latency is within 2% (20µs) of ScyllaDB’s
for two of the experiments and within 7% (107µs) for the
other four. As the write percentage increases, the overhead
disappears because of write omission: doing slightly more

work during reads is offset by doing less work during writes.
When there are only reads, Scylla-PORT has double the
throughput and half the latency of OCC because OCC’s read-
only transactions require at least two rounds. With writes,
OCC’s performance drops quickly due to retries.

7.4 Scalability
Figure 4d compares the scalability of the three systems
under a uniform workload as we increase the number of
servers while increasing the number of clients to keep the
servers CPU-bound. Scylla-PORT scales as well as Scyl-
laDB; the differences in throughput are negligible. Interest-
ingly, Scylla-PORT outperforms ScyllaDB under a skewed
workload, as shown in Figure 4e. ScyllaDB stops scaling
at 16 servers because the server holding the hottest keys be-
comes the bottleneck, and adding more servers does not help.
(We have confirmed this finding with ScyllaDB’s develop-
ers.) Scylla-PORT scales better than ScyllaDB under skewed
workloads because it can avoid the work of some writes to
the hottest keys due to write omission. Since write omis-
sion only applies to conflicting writes, this rarely occurs un-
der a uniform workload. OCC initially shows a similar scal-
ing pattern starting from its lower throughput. OCC’s scal-
ing stops, however, as more concurrent clients accessing the
same keys lead to higher contention and thus more retries.

7.5 Data Staleness
Figure 4f shows the staleness of Scylla-PORT under a
skewed workload with varying write percentages. Staleness
is measured relative to strict serializability, which always has
a staleness of 0: it is the amount of time since a newer version
has been committed. For example, if v0, v1 are consecutive
versions, v0 is returned at 0:05, and v1 committed at 0:00,
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Figure 5: Performance of ScyllaDB, Scylla-PORT, and OCC under uniform workloads. Scylla-PORT matches almost
exactly the performance of ScyllaDB and outperforms OCC by at least double the throughput and half the latency.

then the staleness of v0 is 5 seconds.

Scylla-PORT returns the most recent data ~40% of the
time, and 90% of reads return values no staler than 500 ms.
Scylla-PORT returns fresher data as the write percentage in-
creases because version clocks advance versionstamps more
frequently when there are more writes. Scylla-PORT lever-
ages version clocks to precisely capture the stable frontier,
but does not utilize client co-location. Sharing one clock
among co-located user sessions would further decrease stal-
eness, but also decreases the rate at which write omission can
be used. We leave investigating this tradeoff to future work.

7.6 Low Contention Evaluation

High contention workloads are where any differences be-
tween Scylla-PORT and ScyllaDB would appear. Scylla-
OCC did poorly under high contention as is expected be-
cause OCC is better suited to low contention settings. Fig-
ure 5 presents the evaluation results of comparing the three
systems under uniform workloads. These uniform workloads
have low contention and thus mostly keep OCC in its best
case. Figure 5a shows the throughput and latency of the
systems as we increase the system load. Scylla-PORT has
almost the same performance as ScyllaDB due to low con-
tention as we expect. OCC has worse performance because
it requires at least two round trips even under low contention,
and its performance drops, i.e., lower throughput and higher
latency, when there is more contention due to increased sys-
tem load with 5% writes.

Figure 5b and Figure 5c show the throughput and latency
when varying the read-to-write ratio. When there are only
reads, Scylla-PORT has twice the throughput and half the la-
tency compared to OCC due to the fact that read-only trans-
actions with OCC require at least two rounds: optimistic
reads and then validation, while Scylla-PORT can always
finish in one round. When there are more writes, OCC’s per-
formance starts degrading due to read-write conflicts, while
Scylla-PORT can always closely match its performance with
the non-transactional baseline.

8 Improving an Existing System
This section adapts PORT to improve Eiger, an existing sys-
tem that has both read-only and write transactions.

8.1 Eiger Overview and Rationale
Eiger is a geo-replicated, causally consistent system that
has read-only transactions and write transactions. Each ma-
chine implements a Lamport clock and attaches a Lamport
timestamp to each committed write that is guaranteed to be
larger than any earlier write it causally depends on. Eiger’s
write transaction protocol is a variant of two-phase com-
mit [24, 33] that always commits. Eiger’s read-only trans-
action protocol takes between one and three non-blocking
rounds of communication. If there are no concurrent write
transactions, it completes in a single round. Otherwise, it re-
quires a second round of messages to a subset of the servers,
followed by a third round if the concurrent write transactions
are still pending when the second-round requests arrive. In
the third round, each read request needs to query the states
of all write transactions it conflicts with, and thus the re-
quired metadata increases linearly with respect to the num-
ber of conflicting write transactions.
Rationale. We choose Eiger as a base system because of its
guarantees and the efficiency of its read-only transactions.
First, it provides causal consistency, not strict serializabil-
ity, so it may be possible to add performance-optimal read-
only transactions to it. Second, it includes write transactions,
which present a new challenge for the PORT design. Third,
it is the only system with write transactions and causal (or
stronger) consistency that completes read-only transactions
in a bounded number of non-blocking rounds of commu-
nication (Figure 11). Finally, its read-only transactions of-
ten complete in a single non-blocking round, making them a
more difficult baseline than other algorithms such as OCC.

8.2 Design Challenges
The main challenge in making Eiger’s read-only transactions
performance optimal, which did not exist in basic PORT, is
to ensure write isolation when a client has to read beyond the
stable frontier, e.g., to read her own recent writes. Figure 6
shows some challenging scenarios. There are two servers, SA
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Figure 6: Example executions that show the challenges in making read-only transactions performance-optimal in the
presence of write transactions. The challenges include ensuring read-your-writes, write isolation, and the process order.

and SB, and two clients c1 and c2. W1 is a write transaction
by c1. W2 is a single key write transaction by c2. R is a
read-only transaction by c2 reading two servers. The shadow
areas represent the part of system history beyond the stable
frontier, i.e., the unstable region.

Figure 6a shows the case in which R must read beyond the
stable frontier, i.e., cannot use gst as the read timestamp, be-
cause otherwise c2 would not see her own recent write, W2.
Figure 6b shows that using rts as the read timestamp does
not work either, because it would violate write isolation of
W1, when w1B has committed but w1A has not (the commit
message from the coordinator is delayed). That is, R would
return a system state after w1B on SB, but a system state be-
fore w1A on SA. To avoid blocking and/or extra metadata,
our solution is to use rts as the read timestamp on SB, and
gst as the read timestamp on SA. This solution is equivalent
to ordering c2’s writes, e.g., W2, before all other conflicting
writes by other clients, e.g., W1. That is, c2 reads W2 and then
W1. Note that other clients would still see W1 and then W2,
but this is allowed by causal consistency because it does not
require a total order. By leveraging this flexibility, c2 effec-
tively “pulls” its recent write W2 to its gst, and thus avoids
reading in the unstable region. However, this solution yields
another challenge, as shown in Figure 6c. When the global
safe time gst moves forward and passes w2B, c2 should not
return w2B again in order to ensure process order, because c2
has already seen w2B before w1B.

8.3 Eiger-PORT
Eiger’s read-only transactions are non-blocking, require
up to three rounds of on-path communication, and use
linear-sized metadata in the third round. We make them
performance-optimal by making them always finish in one
round using only constant metadata. The major challenge
is to ensure write isolation, i.e., return a system state that is
either before all updates in a write transaction or after.

More specifically, when a read-only transaction must read
beyond the stable frontier, e.g., to ensure read-your-writes,
PORT reorders the read-only transaction and the conflicting
writes without blocking by using “promotion” (§6.2). How-
ever, promotion does not work for Eiger because it cannot

1 Client Side
2 lst_map[][] # maps server to its local safe time
3 gst # global safe time
4

5 function read_only_txn(<keys>):
6 gst = get_read_ts(min{lst_map.valueSet()})
7 for k in keys # messages in parallel
8 vals[k], lst = read(k, gst, cl_id)
9 lst_map[k.server] = lst # lst is monotonic

10 return vals
11

12 function write_txn(<keys, vals>):
13 for k, v in <keys, vals> # in parallel
14 if k.server is coord # the coordinator
15 lst = write_coord(k, v, cl_id, gst)
16 else # a cohort
17 lst = write_cohort(k, v, cl_id, gst)
18 lst_map[k.server] = lst # lst is monotonic
19 return
20

21 function get_read_ts(ts):
22 return max{ts, gst}

Figure 7: Client-side pseudocode for Eiger-PORT.

ensure that all writes in the same write transaction are pro-
moted at the same time since they can be on different servers.
Our solution, per-client ordering, enables clients to observe
conflicting writes in different orders, as allowed by causal
consistency. Specifically, it pulls back any of a client’s re-
cent writes that are beyond the stable frontier. This allows the
client to read at the stable frontier while also always seeing
their own writes. Figures 7, 8, and 9 show the pseudocode,
written in a way that favors clarity over efficiency.

Client-side logic. Figure 7 shows the client-side logic. Each
client maintains two variables (lines 2, 3). lst map tracks the
local safe time, lst, of each server. Global safe time, gst,
is the minimum lst across all servers (line 6) and advances
monotonically. gst is used as the read timestamp for each
read-only transaction. Both lst and gst are Lamport times-
tamps as used in Eiger. A client sends all read requests in a
read-only transaction in parallel. Each read request includes
the key, the read timestamp gst, and the unique identifier of
this client (line 8). The server responds with the requested
value and lst on that server. A client issues a write transac-
tion by sending the write requests in parallel (lines 12–19).
One server is randomly chosen as the coordinator (line 14)
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1 Server Side (Read-Only Txn)
2 lst # local safe time, updated upon writes
3

4 function read(k, rts, cl_id):
5 ver = DS[k].at(rts) # vers are sorted by commit_t
6 for v in DS[k].newer_than(ver.commit_t)
7 # ensure read-your-writes, from newer ver to old
8 if v.cl_id == cl_id and ver.commit_t <= v.gst <= rts
9 return v.val, lst

10 if ver.cl_id != cl_id
11 return ver.val, lst
12 else # ensure write isolation
13 v = find_isolated(ver)
14 return v.val, lst
15

16 function find_isolated(ver):
17 # iterate from newer version to old
18 while v in DS[k].newer_than(ver.gst)
19 and v in DS[k].older_than(ver.commit_t)
20 if v.cl_id != ver.cl_id
21 return v
22 else
23 return find_isolated(v)
24 return ver

Figure 8: Read-only transaction logic for Eiger-PORT.

for 2PC with the others as cohorts. Each write request con-
tains the key, the value, the client ID, and the client’s current
gst (lines 15, 17). gst specifies the stable frontier this write
transaction causally depends on. The client updates lst map
after each read/write request (lines 9, 18).

Write transactions. Figure 9 shows the server-side logic of
write transactions. When a server receives a write request,
it records the current Lamport time (line 29) and creates a
new pending version (lines 8, 19, 32, 33). pending wtxns
tracks ongoing write transactions by keeping an ordered list
of pending times. The running minimum of pending wtxns
is the lst on this server, i.e., no pending writes exist before
lst. Because Lamport clocks advance monotonically, inser-
tion, removal, and fetching the minimum of pending wtxns
have a cost of O(1). At the end of the “prepare” phase of
2PC, each cohort sends a yes-vote message to the coordina-
tor, which includes the prepared time of this pending write
transaction. prepared time is guaranteed to be greater than
pending time by clock ticking (line 31).

To commit a write transaction, the coordinator calcu-
lates the commit time by taking the maximum across all
prepared times (line 11) and then sends a commit message to
the cohorts and commits its local pending version (lines 13,
14). When a cohort receives the commit message, it com-
mits its local pending version (lines 25, 38) with the commit
time (lines 24, 37). It then removes this write transaction’s
pending time from pending wtxns and updates lst (lines 39–
43). The server returns its lst to the client upon commit.
Eiger-PORT made minimum changes to Eiger’s write trans-
actions, i.e., the management of pending wtxns.

Read-only transactions. The technique that makes Eiger-
PORT’s read-only transactions performance-optimal while
providing causal consistency is to allow each client to have
her own perceived ordering of committed writes on each

1 Server Side (Write Txn)
2 lst # local safe time
3 pending_wtxns # uncommitted write txns
4 DS[][] # multi-versioned k-v data store
5

6 function write_coord(k, v, cl_id, gst): # coordinator
7 # PREPARE
8 ver, prepared_t = prepare_write(k, v, cl_id, gst)
9 # ... get yes-vote-msgs from all cohorts

10 # COMMIT
11 commit_t = max{yes-vote-msgs.prepared_t, prepared_t}
12 commit-msg = {"commit", commit_t}
13 # ... send commit-msg to all cohorts
14 commit_write(ver, commit_t)
15 return lst
16

17 function write_cohort(k, v, cl_id, gst): # cohort
18 # PREPARE
19 ver, prepared_t = prepare_write(k, v, cl_id, gst)
20 yes-vote-msg = {"yes", prepared_t}
21 # ... send yes-vote-msg to coordinator
22 # ... wait for commit-msg
23 # COMMIT
24 commit_t = commit-msg.commit_t
25 commit_write(ver, commit_t)
26 return lst
27

28 function prepare_write(k, v, cl_id, gst):
29 pending_t = LamportClock.current()
30 pending_wtxns.append(pending_t)
31 LamportClock.advance()
32 ver = DS[k].create_new_ver(v, cl_id, gst, pending_t)
33 ver.is_pending = true
34 return ver, LamportClock.current()
35

36 function commit_write(ver, commit_t):
37 ver.commit_t = commit_t
38 ver.is_pending = false
39 pending_wtxns.remove(ver.pending_t)
40 if pending_wtxns is empty
41 lst = LamportClock.current()
42 else
43 lst = pending_wtxns.head() # min of pending_wtxns
44 return

Figure 9: Write transaction logic for Eiger-PORT.

data object, and reading in her own perceived ordering en-
ables optimal performance. More specifically, a client con-
structs her own perceived ordering on a data object as fol-
lows: ordering other clients’ writes by their commit times-
tamp, which gives a partial order O, and then inserting her
own writes into O by comparing their gst with the commit
timestamps of the writes in O.

Figure 8 shows the server-side logic of read-only transac-
tions. When a server receives a read request, it first finds
the version at the read timestamp, rts (line 5), i.e., ver is
the most recent version with commit t ≤ rts. Then, client-
perceived ordering is enabled by the server looking for a
more recent version v written by the same client such that
v’s gst is no less than ver’s commit t and is no greater than
rts (line 8).1 The server breaks a tie between two versions
with the same gst by their commit timestamp. If such a v
exists, then the server returns v instead of ver to ensure read-
your-writes (lines 6–9). If the version at rts was written by
the same client, then we need to ensure write isolation by

1The second half of line 8 is newly added after the OSDI version to make
client-perceived ordering more explicit.
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Figure 10: Throughput, latency, scalability, and staleness of Eiger-PORT: up to 3× throughput improvement and 60%
latency reduction compared to Eiger, better scalability, and low data staleness. All latencies are median latencies.

checking whether there exist any versions between the ver-
sion’s gst, which is the snapshot time the version depends
on, and the version’s commit t (lines 18, 19). If there exists
such a version written by a different client, then that version
is returned to satisfy write isolation (lines 20, 21). We need
to do this recursively, but our implementation uses a loop in-
stead for better performance. To ensure write isolation (lines
16–24), we go through the multi-versioned data store once,
which has the same cost as finding a particular version by
timestamp in other algorithms, e.g., MVCC.
Correctness. We show the correctness of Eiger-PORT by
proving that any execution in Eiger-PORT satisfies the causal
(“happened before”) relation [31] and write isolation for
write transactions. We present the full proof in Appendix C.

9 Eiger-PORT Evaluation
We evaluate Eiger-PORT against Eiger, showing its through-
put and latency improvement as well as its data staleness.
Implementation. We implemented Eiger-PORT as a modi-
fication to Eiger’s code base, which is built on top of Cassan-
dra [30] and written in Java. Eiger-PORT adds ~1000 LOC.
Experimental setting. We try to match Eiger’s original ex-
perimental setup. We run all experiments on Emulab [56],
similar to the now-decommissioned PRObE testbed [20]
Eiger used. Each machine has one 2.4GHz Quad-Core Xeon
CPU, 12GB RAM, and a 1Gbps network interface. We run
5 trials for each data point, each lasting 65 seconds, and re-
port the median. We exclude the first and last 15 seconds to
avoid artifacts due to warm-up, cool-down, and imperfectly
synchronized clients. All experiments are CPU-bound.
Configuration and workloads. We use the same setting
as Eiger: two logical datacenters co-located in the testbed.
Each datacenter has eight server machines, and uses eight

client machines to load the servers. The second datacenter
is used as a replica, which applies updates replicated from
the first datacenter. We use the dynamic workload generator
from Eiger with the same default values: 1 million keys, 128-
byte values, 5 columns per key, 5 keys per operation, and a
write percentage of 10% unless otherwise specified. We also
use a Zipf traffic generator with a default value of 0.8.

9.1 Performance Improvement
Results summary. Eiger-PORT significantly improves the
performance of Eiger under different workloads, without de-
grading write performance: 2× and 3× throughput improve-
ment under mild and high skew, respectively, and 20%–60%
latency reduction. The performance improvement comes
from Eiger-PORT’s fewer on-path messages and less meta-
data to process. The improvement is larger in contended
workloads because Eiger is more likely to require more than
one round and more metadata in the third round when there
are more conflicting write transactions.

Throughput improvement. Figure 10a shows the median
read latency and system throughput as we double the num-
ber of closed-loop client threads loading the system (from 2
to 512). It shows that Eiger-PORT performs strictly better
than Eiger: it achieves higher throughput with the same la-
tency and lower latency with the same throughput. We run all
other experiments in Figure 10 with 32 threads, representing
an operating point with reasonably low latency (< 20ms),
i.e., at line “O.P.” in Figure 10a. The improvements are
more profound at higher loads. Figure 10b shows normalized
throughput with different skew; the improvement stops in-
creasing after Zipf value 1.1, where a single server becomes
the bottleneck. Figure 10c shows Eiger-PORT scales better
than Eiger due to fewer messages in the system.
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Latency improvement. Figure 10d shows the normalized
median read latency as we vary skew. Eiger-PORT achieves
20% lower latency under uniform workloads and up to 60%
lower latency under contended workloads. Figure 10e shows
that Eiger-PORT achieves lower write latency even though
we did not intentionally improve writes. The lower latency
comes from less queuing delay for writes because reads are
faster and there are fewer messages in the system. This
demonstrates that PORT can make read-only transactions
performance-optimal without making writes more costly.

9.2 Data Staleness
Figure 10f quantifies the read staleness in Eiger-PORT. Stal-
eness is measured relative to strict serializability as in Scylla-
PORT’s evaluation. Even with high skew, over 40% of Eiger-
PORT’s read-only transactions return up-to-date values, and
over 90% of reads experience less than 1s staleness. Eiger-
PORT tends to return staler data than Scylla-PORT because
the stable frontier moves more slowly in Eiger/Eiger-PORT:
write transactions take longer to commit than simple writes.

10 Related Work
This section examines existing read-only transactions with
the NOCS Theorem, reviews impossibility results, and dis-
cusses the move from latency to performance optimality.
Bridging the gap in the design space. We use the NOCS
Theorem as a lens to better understand existing systems and
show a set of representative systems in Figure 11. We find
a large gap in the design space. The only existing systems
that have performance-optimal read-only transactions pro-
vide weak consistency (§4.3). MySQL Cluster [45] provides
read-committed, which does not isolate transactions. Span-
ner’s snapshot reads API [11] cannot always guarantee non-
blocking read-your-writes. Suppose a client updates key k
in a read-write transaction with commit timestamp ts, and
then immediately performs a read-only transaction involving
a set S of keys that includes k. To ensure read-your-writes,
the client must use a timestamp greater than or equal to ts for
its read-only transaction. But doing so may block since other
keys in S may be involved in a read-write transaction that is
in the midst of two-phase-commit with a commit timestamp
less than ts. That is, Spanner must use its externally con-
sistent read-only transaction API, which may block reads in
such cases to ensure read-your-writes.

We bridge this gap in the design space with PORT, the first
design that provides performance-optimal read-only transac-
tions and the strongest consistency to date.
Other read-only transactions. Some systems choose to
trade one performance property for stronger guarantees [1,
11, 34, 55] but still reside on the “tight boundary” of the
NOCS Theorem. Many systems neither are performance-
optimal nor provide the strongest possible guarantees [4, 6,
14, 16, 36, 37, 39, 41], and thus could potentially be im-
proved by our PORT design.

System N O C S W
Performance-optimal

Scylla-PORT * X X X POS ×
Eiger-PORT * X X X Causal X
Spanner-Snap [11]* X X X SR X
MySQL Cluster [45]* X X X RC X

One fewer performance property for stronger guarantees

Spanner-RO [11]* × X X X X
DrTM [55]* X ≥ 1 X X X
RIFL [34] X ≥ 2 X X X
Sinfonia [1] X ≥ 2 X X X

Candidates for improvement in performance and/or guarantees

TAPIR [57]* × X X Ser X
Pileus-Strong [54] × 2 X X X
Rococo-SNOW [39]* × X Linear X X
COPS-SNOW [39]* X Off-path Linear Causal ×
COPS [36]* X ≤ 2 Linear Causal ×
RAMP-F|H [6]* X ≤ 2 Linear RA X
RAMP-S [6]* X 2 X RA X
Eiger [37]* X ≤ 3 Linear Causal X
Janus [44] × ≤ 2 Linear X X
Callinicos [47] × 2 Linear X X
Occult [41] X ≥ 1 X PC-PSI X
Rococo [43]* × ≥ 2 X X X
Contrarian [14]* X 2 X Causal ×
GentleRain [16]* × ≤ 2 + off-path X Causal ×
Cure [4] × Off-path X Causal X
MVTSO [35, 51] × X X Ser X

Figure 11: A review of existing systems through the lens
of NOCS. Asterisks denote specialized read-only transac-
tion algorithms. W denotes write transactions.

Impossibility results. Our NOCS Theorem is philosophi-
cally similar to other impossibility results, e.g., FLP [18],
CAP [8, 21], and SNOW [39], in that it saves system de-
signers’ effort from trying the impossible. The most relevant
result is the SNOW Theorem, which we discuss next.

The move from latency to performance. SNOW [39]
showed tradeoffs in the design space of read-only transac-
tions with a focus only on latency. It proved optimal latency
is impossible if the system is strictly serializable and has
write transactions. This work aims for a more complete un-
derstanding of the tradeoffs in the design of read-only trans-
actions by considering latency and throughput. The move
from latency to performance has two takeaways.

First, optimal latency neither translates to nor forfeits op-
timal throughput. The former is shown by the two systems
built with SNOW, which provided lower latency at the cost of
lowering throughput. The latter is shown by our new designs
that achieve both optimal latency and optimal throughput.
What really matters is a complete understanding of the trade-
off between performance and consistency and its insights for
designs—the major contributions of this work.

Second, higher demand for performance, e.g., the move
from latency only to both latency and throughput, suggests
higher difficulty in providing stronger guarantees. Optimal
latency is possible in strictly serializable systems without
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write transactions, but optimal performance is not.

11 Conclusion
Distributed storage systems rely on read-only transactions to
provide consistent views of sharded data. Our NOCS Theo-
rem proves that read-only transactions cannot have optimal
performance in strictly serializable systems. We presented
PORT, a performance-optimal read-only transaction design
that provides the strongest consistency to date. We ap-
plied PORT to design Scylla-PORT and Eiger-PORT. Scylla-
PORT has minimal performance overhead compared to its
non-transactional baseline. Eiger-PORT significantly im-
proves the performance of its transactional base system.
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A Proof of the NOCS Theorem

Note: This section is a complete version of §4, including full
proofs of all lemmas and the main theorem. A substantial
amount of text is repeated from §4 for completeness.

Our main result is that performance-optimal read-only trans-
actions (N+O+C) cannot provide strict serializability (S).

The NOCS Theorem. No read-only transaction algorithm
satisfies all NOCS properties.

System model. We model a distributed system as a set of
processes that communicate by sending and receiving mes-
sages. This model is similar to that used in FLP [18]. A
set of client processes (clients) issue requests to server pro-
cesses (servers) that store the data. Processes are modeled
as deterministic automata: in each atomic step, they may re-
ceive a message, perform (deterministic) local computation,
and send one or more messages to other processes.

A transaction (operation) starts when a client sends the re-
quest messages to servers and ends when the client receives
the last necessary server response. Two transactions (oper-
ations) are concurrent if their lifetimes overlap, i.e., neither
begins after the other ends. If concurrent transactions (oper-
ations) access the same data item, then they conflict.
Assumptions. We make the following assumptions:

(A-0) There are ≥ 2 servers and ≥ 2 clients. Otherwise,
optimal performance and strict serializability are trivial. All
reads and writes eventually complete.

(A-1) The network and processors are reliable. Every
message is eventually delivered and processed by the desti-
nation process. Processes are always correct and never crash.
By proving our result under these restrictive assumptions, it
will necessarily hold when system can fail.

(A-2) The network is either asynchronous [21], i.e.,
messages can be arbitrarily delayed, or partially syn-
chronous [17], i.e., physical clocks ensure bounded delays.
Proof intuition. Due to network asynchrony, it is always
possible for a read-only transaction to conflict with write op-
erations and other concurrent read-only transactions. These
requests occupy an “unstable” region in the system’s history,
where a total order has not yet been established. We show
that the real-time order requirement of S requires read-only
transactions that are N+O to return the most recently written
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values (Lemma 1). Doing this while ensuring a legal total
order, however, requires transferring metadata between the
servers (Lemma 2), either proactively through read requests
or through the write protocol. By extending this construc-
tion, we show that processing a set of read-only transactions
requires metadata that is asymptotically larger than the to-
tal size of the transactions, regardless of how the metadata is
transferred (Lemma 3). This violates C, proving the theorem.

Proof. Suppose the system has two servers, S1 and S2, and
multiple clients. Let ALG be any read-only transaction algo-
rithm that satisfies N+O+S. Let R = {r1,r2} be a read-only
transaction that executes ALG, issued by client CR. Let w1 and
w2 be simple write requests issued by client Cw 6=CR, where
w1 → w2 in real-time, i.e., w2 is sent after the response for
w1 is received. We place no restrictions on the write protocol
(beyond assumption A-0). Consider the execution e1:

S1 : r1,w1
S2 : w2,r2

Suppose there is no metadata in the system, i.e., no infor-
mation for coordinating consistent values between requests.

Lemma 1. Without metadata, a read-only transaction that is
N+O+S must observe any write that precedes it at a server.

Proof. Consider only w2 and r2 in e1 (ignore all other op-
erations). R satisfies N+O+S and is preceded by w2 at S2.
We ensure w2 is processed first by arbitrarily delaying r2’s
arrival (assumption A-2). Assume (to contradict) that R does
not observe w2 in e1. R and w2 are issued concurrently by
clients CR and Cw; assume w.l.o.g. that Cw issues w2 first at
time t. Consider an alternative execution e′1 that modifies e1
after t so that Cw receives the response for w2 just before CR
issues R, requiring w2→ R. Since w2 is issued before t, it is
identical in e′1 and e1. CR is unaware of w2’s response—any
communication related to it can be arbitrarily delayed—and
there is no metadata in r2. Thus r2 is also unchanged. No
further messages for R are received at S2 because R is N+O.
Since S2 is a deterministic automaton that receives identical
messages up to r2 in both e1 and e′1, its output is identical,
i.e., R does not observe w2 in e′1. But this means that R vio-
lates S (since w2→ R), giving our contradiction. �

Lemma 2. Processing e1 while satisfying N+O+S requires
dependency R→ w1 to be transferred from S1 to S2.

Proof. Since R satisfies N+O, r1 is processed before w1 at
S1, creating the dependency R→ w1. Assume (to contradict)
that no metadata is transferred to S2. Lemma 1 states that r2
must observe w2 at S2, implying w2 → R. Since w1 → w2
by construction, this creates a cycle, violating the legal total
order of S. Thus, metadata must be transferred to S2 to ensure
that r2 is executed prior to w2 in the total order.

S2 must therefore compute the function f (R→ w1,w1→
w2) = R→w2. Assume S2 has w1→w2 as input; this can be

conveyed by Cw through w2, for example. Dependency R→
w1 is only known by S1 initially because r1 and w1 are issued
concurrently, and thus their arrival order is only finalized at
S1. Since S2 computes f (x,y) with x=R→w1 as the input at
S1 and y=w1→w2 as its local input, a standard lower bound
from two-party communication complexity implies R→ w1
must be transferred to S2 [29]. �

Implication of Lemma 2. Since S1 and S2 are determinis-
tic automata, dependency information like R→ w1 must be
transferred through metadata in messages. We call metadata
that is unaware of the dependency a priori, and metadata that
is aware of it a posteriori. Since r1 and r2 are issued concur-
rently with w1, they are unaware of R→ w1 and hence can
only contain a priori metadata. (No further messages are pos-
sible for R because it is N+O.) In contrast, w1 is processed
after r1, establishing R→ w1, so any subsequent message in
the write protocol may contain a posteriori metadata.

We now extend e1 with more read-only transactions,
servers, and write requests, and apply the structure above
to force more dependency metadata to transfer between
the servers. We then show that neither type of metadata
transfer—a priori or a posteriori—can satisfy C.

Proof of the NOCS Theorem. Suppose the system has
M2 + 1 servers S1,S2, . . . ,SM2+1. Let R1,R2, . . . ,RN be N
read-only transactions that execute ALG, where each Ri sends
a read request to S1 and M−1 other servers, such that every
server other than S1 receives N/M read requests. (In practice
M2� N, but our construction works for any N,M ≥ 1.) The
specific mapping of read requests to servers is unimportant;
we lay them out sequentially by transaction index below. Let
ri, j be a read request of Ri assigned to S j. We assign one
read request from each of R1 to RN/M to S2, one read request
from each of RN/M+1 to R2N/M to S3, and so on, restarting at
R1 after reaching RN . Let w1,w2, . . . ,wM2+1 be M2 +1 sim-
ple writes issued to each server by a distinct client Cw that
does not issue any read-only transactions. Suppose w1 pre-
cedes all other writes, i.e., w1 → w j for j = 2, . . . ,M2 + 1,
and all read-only transactions are concurrent with all writes.
Consider the execution e∗:

S1 : r1,1, . . . ,rN,1,w1
S2 : w2,r1,2, . . . ,rN/M,2
S3 : w3,rN/M+1,3, . . . ,r2N/M,3
...
SM+1 : wM+1,rN−N/M+1,M+1, . . . ,rN,M+1
SM+2 : wM+2,r1,M+2, . . . ,rN/M,M+1
...
SM2+1 : wM2+1,rN−N/M+1,M2+1, . . . ,rN,M2+1

By decomposing this execution into layers, we can induc-
tively quantify the metadata required to process it. Let e1 be
the execution fragment containing all write requests and only
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the read requests of R1. Let ei contain the requests of ei−1
plus all read requests of Ri, for i = 2, . . . ,N. Thus eN = e∗.

Lemma 3. Processing ek while satisfying N+O+S requires
Ω(kM2) metadata, for k = 1, . . . ,N.

Proof. The proof is by induction.

Base case. When k = 1, the only read requests in e1 are
those of R1. By independent applications of Lemma 2, de-
pendency R1→ w1 must be transferred from S1 to all M−1
servers targeted by R1, i.e., all other S j that receive r1, j ∈ R1.
By the implication of Lemma 2, R1→ w1 can be transferred
through (1) a priori metadata in r1, j or (2) a posteriori meta-
data in the write protocol. For (2), observe that all write
requests are issued concurrently with R1, and w1 is the only
write processed after a read request r1,1 ∈ R1. If r1,1 contains
no metadata, then the write protocol must (conservatively)
transfer R1 → w1 to every S j, j = 2, . . . ,M2 + 1. This re-
quires Ω(M2) metadata for these M2 servers.

Alternatively, r1,1 could convey the list of M servers tar-
geted by R1—this is a priori metadata—so that the write pro-
tocol need only send R1 → w1 to the servers targeted by R1
(as required by Lemma 2). However, consider the execution
e′1 that swaps the special role of S1 with a different server S j
targeted by R1. That is, S j becomes the server that receives
N read requests followed by a write, w j. Such an execution
is possible due to the asynchrony of the network (assump-
tion A-2). In e′1, w j becomes the only write processed after a
read request r1, j ∈ R1, so r1, j must convey the list of servers
targeted by R1. An analogous execution can be constructed
for each server S j targeted by R1. Since it is not known a
priori which execution will occur, and hence which r1, j will
arrive before the write w j, all r1, j must include the list of M
servers. This requires Ω(M ∗M) = Ω(M2) metadata.

Inductive step. Assume the lemma holds for ek−1; we show
it also holds for ek, which extends ek−1 with all read requests
in Rk. By Lemma 2, dependency Rk → w1 must be trans-
ferred from S1 to all M− 1 servers targeted by Rk, i.e., all
other S j that receive rk, j ∈ Rk. We show that this requires ad-
ditional metadata beyond that of ek−1. Consider the execu-
tion e′k where all read requests in S1 appear after w1, except
for rk,1. Since rk,1 is the only message that precedes w1, it
must either convey the list of M servers targeted by Rk, or the
write protocol must send Rk → w1 to all servers. By the ar-
gument above, both methods require Ω(M2) metadata. Thus
ek requires Ω((k−1)M2)+Ω(M2) = Ω(kM2) metadata. �

Completion of the proof. By Lemma 3, e∗ = eN requires
Ω(NM2) metadata. Since R1, . . . ,RN issue NM read requests
total, the amortized metadata required per read request is
Ω(NM2

NM ) = Ω(M), which is not constant, violating C. �

Extension to partial synchrony. A partially synchronous
network [17] assumes that each machine has a physical clock

that is approximately synchronized via some synchroniza-
tion protocol, e.g., NTP [42] or Google’s TrueTime [11], so
that messages have bounded delays. Our NOCS Theorem
still holds if the network is partially synchronous.

Under partial synchrony, Lemma 1 holds because the con-
struction of e′1 remains valid: the network can still deliver
the response of w2 faster than some time t, such that t is
within the message delay bound, which results in w2→ R in
real-time. Lemma 2 holds because the origin of dependency
R→ w1 and the need to transfer it are independent of net-
work models. Similarly, the main proof of the NOCS The-
orem also holds because its construction, e∗, relies on con-
current read and write operations which are valid in either
network model. Lemma 3 holds because the executions it
constructs are rearrangements of e∗ allowed by concurrency,
and its method of calculating the size of metadata is inde-
pendent of network models. Because all components of the
proof hold under a partially synchronous network, the NOCS
Theorem holds under partial synchrony.

B Proof of Correctness for PORT
We prove the correctness of PORT by proving that PORT is
performance-optimal and process-ordered serializable.

B.1 Performance Optimality
PORT’s read-only transactions are performance-optimal,
i.e., they have the N, O, and C properties. They complete
in a single round because clients specify the versionstamp
to read at, which represents a consistent view across servers.
They have no off-path messages. They avoid blocking for re-
quested versions to be ready by promoting existing versions.
They use only a constant amount of metadata, i.e., one inte-
ger (versionstamp) for a server to process a read.

B.2 Process-Ordered Serializability
According to the definition of process-ordered serializability
(§6), we prove that for any execution of PORT, there exists a
legal total order of requests, i.e., read-only transactions and
write operations, such that the total order respects the process
order of each client. More specifically, an algorithm π is
process-ordered serializable if and only if there exists a total
order in any execution of π , such that the total order satisfies
the following requirements:

P. If x, y are requests from the same client, and x happened
before y, then x appears before y in the total order.

Proof. For any execution of PORT, we construct a total order
of requests as follows. Let O1 be a total order of all commit-
ted write operations where all writes are ordered by their ver-
sionstamps, and then writes with the same versionstamp are
ordered lexicographically. Add omitted writes to O1 to get
O2, where omitted writes are placed right before the concur-
rent write operation that elided them. For the omitted writes
elided by the same concurrent write, we order them by their
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versionstamps, and then lexicographically for the ones with
the same versionstamp. Name the new order O3. Add read-
only transactions to O3 by placing each read-only transaction
directly after the last committed write with the same version-
stamp, and name it O4. Now, order the read-only transac-
tions with the same versionstamp from the same client by
the order in which they were issued; order other read-only
transactions with the same versionstamp arbitrarily, e.g., by
client identifier; and name the final order O.

O is legal because each read-only transaction request re-
turns the value of a preceding write, i.e., at an earlier position
in the order with no larger versionstamp. O is total because
it includes all requests in the system, e.g., committed writes,
omitted writes, and read-only transactions. O respects the
process order of each client, i.e., satisfies P. More specif-
ically, let x and y be arbitrary requests by the same client,
and x happened before y without loss of generality. Because
y happens later, tx ≤ ty, where tx and ty are versionstamps,
because versionstamps advance monotonically.

Case 1: tx < ty, then x appears before y in O due to the
versionstamp order.

Case 2: tx = ty, then y cannot be a write because version
clocks always tick on writes. If x is a write, then x appears
before y in O by the construction of O4. If both x and y
are read-only transactions, then x appears before y due to
the final step of the construction of O, i.e., the issuing order
that x happened before y by the same client. Therefore, x is
guaranteed to appear before y in O.

The existence of a total order O proves that PORT is
process-ordered serializable. �

B.3 Note on Write Omission
In §6.3, we state that PORT can omit an incoming write if its
versionstamp, vsomit , is less than or equal to the highest com-
mitted versionstamp of the data item, vshighest . This argument
relies on the fact that a write with versionstamp vshighest can-
not happen-before the omitted write since vshighest ≥ vsomit .
We justify this claim here.

Version clocks guarantee that if write x happens-before
write y, then vsx < vsy. If they are from the same client then
this is ensured by version clocks always ticking on writes. If
they are from different clients, then for x to happen-before y
there must be a chain of reads (of the previous write in the
chain) and writes (by the same client as the previous read in
the chain) connecting x and y. Because version clocks only
advance, reads only observe writes with versionstamps less
than or equal to their own, and each write in the chain ticks
its clock, this chain ensures that vsx < vsy.

C Proof of Correctness for Eiger-PORT
Read-only transactions in Eiger-PORT always finish with
one-round communication between client and server and do
not require any off-path messages. They never block since
reads always return an existing version. They use a constant

amount of metadata, e.g., a server needs only one read times-
tamp to find the version for a read request. Therefore, Eiger-
PORT is performance-optimal (N+O+C).

Now, we show the correctness of Eiger-PORT by prov-
ing that it is causally consistent and respects write isola-
tion. Causality (happened-before relation), denoted by →,
has three requirements [3, 31]:

C1. If x and y are requests by the same client (process), then
x→ y if the client did x before y.

C2. If x is a write request and y is a read request that returns
the value written by x, then x→ y.

C3. For requests x, y, and z, if x→ y and y→ z, then x→ z.

Write isolation, i.e., atomicity on writes [22, 23, 25], re-
quires that either all updates in a write transaction are po-
tentially visible to a read-only transaction or none of them
are. The write transaction cannot be observed (read) to be
in progress by another client. For instance, let W = {A =
new,B = new} be a write transaction that updates server A
and B from “old” values to “new” values; let R = {A,B} be
a read-only transaction that reads server A and B. To respect
write isolation, it is legal for R to return either {A = old,B =
old} or {A = new,B = new}. It would violate write isolation
if R returns {A = old,B = new} or {A = new,B = old}. The
following requirement captures write isolation:

IW . An algorithm, π , respects write isolation if and only if
for any read-only transaction R and write transaction
W , all read requests in R observe a system state either
before or after applying all write requests in W .

We prove that any execution of Eiger-PORT satisfies C1,
C2, C3, and IW . Our proof considers simple read/write opera-
tions as single-key transactions, and assumes each client has
at most one outstanding request at any time.

Lemma 4. Let w1, w2 be write requests, and tw1, tw2 be their
commit timestamps. If w1→ w2, then tw1 < tw2.

Proof. This lemma directly follows the fact that Eiger-PORT
is built on Eiger, a causally consistent system. More specif-
ically, Eiger runs Lamport clocks, and commits each write
request with a Lamport timestamp. Lamport clocks guaran-
tee that if two requests x→ y, then x’s Lamport timestamp is
less than y’s Lamport timestamp. �

Lemma 5. For any global safe time (gst), there do not exist
ongoing write transactions with pending time less than gst.

Proof. Suppose there exists an ongoing write transaction W
at global safe time gst and W arrives at an arbitrary server
S at time t, such that t < gst. That is, tp < gst, where tp is
W ’s pending time on S. Given that the global safe time is the
minimum local safe time across all servers, gst ≤ lst, where
lst is the local safe time on S at the time gst is computed.

21



Since tp < gst by our assumption and gst ≤ lst, tp < lst,
which contradicts the fact that the local safe time is the min-
imum pending time of all ongoing write transactions on the
server, i.e., lst ≤ tp. Therefore, our initial assumption is in-
valid, and thus the original lemma is true. �

Lemma 6. If a read-only transaction reads at the stable
frontier, then it returns the system state that includes the
write transaction, which wrote the returned values, and all
earlier write transactions the returned values depend on.

Proof. Let R be a read-only transaction and gst be its read
timestamp. R reads before the stable frontier. That is, R does
not read any keys the client has recently written with commit
time greater than gst. Let v be an arbitrary value returned
by R, and W be the write transaction that wrote v. Let tc
be W ’s commit time. Since R returns v, R observes the ef-
fect of W . Let W ′ be an arbitrary write transaction, such that
W ′→W . By Lemma 4, t ′c < tc, where t ′c is the commit time
of W ′. Therefore, R returns v at a timestamp greater than the
commit time of all write transactions W depends on. Given
that read-only transactions read the system states in a mono-
tonically increasing manner, i.e., the read timestamps (gst)
increase monotonically, the read-only transaction R returns
the system state after the system has applied W and all W ’s
dependent writes. That is, R observes the effect of W and all
earlier writes that W depends on. �

Lemma 7. If a read-only transaction reads beyond the sta-
ble frontier, then it returns the value of the most recent write
transaction by the same client.

Proof. Let R be a read-only transaction, which returns value
v written by write transaction W . Let tc be W ’s commit time
and gst be R’s read timestamp. This lemma directly follows
the algorithm (Figure 8 lines 7—9) since Eiger-PORT reads
beyond the stable frontier if and only if the same client has
a recent write transaction that committed with a timestamp
greater than the read timestamp, i.e., tc > gst, where R re-
turns the client’s own most recent write. �

Lemma 8 (C1). Any execution of Eiger-PORT preserves the
causal order required by C1.

Proof. Let c be an arbitrary client and x, y be its requests.
Without loss of generality, x happened before y, i.e., c re-
ceives x’s response and then issues y.

Case 1: x and y are both write transactions, then the way
Eiger-PORT executes x and y satisfies C1 by Lemma 4.

Case 2: x is a write transaction and y is a read-only trans-
action. Let gst be the timestamp y reads at, and tc be x’s
commit time. If gst ≥ tc, then C1 is satisfied by Lemma 6
since y returns a value, v, at a Lamport timestamp that in-
cludes x and all earlier writes x depends on. If gst < tc and x,
y have common keys, then y reads beyond the stable frontier.
By Lemma 7, y returns the values by the client’s most recent

write, which is x, and thus satisfies C1. If gst < tc and x, y
have disjoint sets of keys, then C1 is satisfied by the fact that
gst increases monotonically. More specifically, it is guaran-
teed that gst ≥ tg where tg is the global safe time when x was
issued. That is, y is guaranteed to read a state no older than
the system state y depends on.

Case 3: x is a read-only transaction and y is a write trans-
action. Let gst be x’s read timestamp. Since gst ≤ lst ≤ ts,
where lst and ts are the local safe time and current Lamport
time respectively on the (arbitrary) server when x arrives at,
then x≤ ts. Because y is issued after x finishes, and the value
of a Lamport clock increases monotonically, ts < tc, where tc
is the commit time of y. Therefore, gst < tc.

Case 4: x and y are both read-only transactions. Let gstx
and gsty be the read timestamps of x and y respectively. Be-
cause gst is advanced monotonically, gstx ≤ gsty. That is, y
observes all the updates x has observed. More specifically,
the writes that have been applied by the system by the time
gsty is a super set of the applied writes by the time gstx.

By the above four cases, the lemma is true. �

Lemma 9 (C2). Any execution of Eiger-PORT preserves the
causal order required by C2.

Proof. Let W be a write transaction and R be a read-only
transaction, such that R returns the value written by W . Let
tc be W ’s commit time, and gst be R’s read timestamp. Sim-
ilar to Case 2 in Lemma 8, if gst ≥ tc, then by Lemma 6, R
observes the effect of W and all the write transactions W de-
pends on. If gst < tc, then R reads beyond the stable frontier
and returns what W wrote, which implies that R and W are
by the same client and access the same keys. Then the claim
is true by Lemma 7. �

Lemma 10 (C3). Any execution of Eiger-PORT preserves
the causal order required by C3.

Proof. This lemma directly follows the fact that the read
timestamps, gst, and the values of Lamport clocks (for com-
mit times of write transactions) are monotonically increas-
ing. More specifically, let x, y, and z be three transactions
and x→ y and y→ z. Consider the following cases.

Case 1: y and z are write transactions, then x, y, and z are
from the same client, and thus x→ z is ensured by applying
Lemma 8 on x→ y and then on y→ z.

Case 2: y and z are read-only transactions, then it implies
that y and z are from the same client, and thus x→ z is guar-
anteed by applying either Case 4 of Lemma 8 or Lemma 9
on x→ y depending on whether x is a read or a write, and
then applying Case 4 of Lemma 8 on y→ z.

Case 3: y is a write transaction and z is a read-only trans-
action, then it implies that x and y are from the same client,
and the order x→ z is preserved by applying Lemma 8 on
x→ y, and then applying either Lemma 8 or Lemma 9 on
y→ z depending on whether y and z are from the same client.
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Case 4: y is a read-only transaction and z is a write trans-
action, then y and z are from the same client, and the order
x→ z is guaranteed by applying either Lemma 8 or Lemma 9
on x→ y depending on whether x is a read or a write, and
then applying Lemma 8 on y→ z. �

Lemma 11 (IW ). Any execution of Eiger-PORT respects
write isolation, IW .

Proof. Let R be an arbitrary read-only transaction that returns
value, v. Let W be the write transaction that wrote v.

Case 1: R reads at the stable frontier, i.e., tc < gst, where
tc is W ’s commit time and gst is R’s read timestamp, then W
has committed by Lemma 5, i.e., all parts of W have finished
and have the same commit time tc by the write transaction
protocol (Figure 9 line 41). Therefore, R reflects a system
state after all parts of W are applied.

Case 2: R reads beyond the stable frontier, i.e., tc > gst.
By our algorithm, W and R are from the same client, and the
client reads its own most recent write. Given that each client
has at most one outstanding transaction at any time, W has
finished by the time R was issued. Therefore, R also reflects
a system state where all parts of W are applied. �

Proof of Eiger-PORT. We have proven that Eiger-PORT
provides causal consistency by Lemma 8, Lemma 9, and
Lemma 10, and respects write isolation by Lemma 11. �

D PORT-SEQ Design
This section presents PORT-SEQ, a novel design supporting
read-only transactions that are non-blocking (N), one-round
communication (O), and strictly serializable (S).

D.1 Design Insights
The design of PORT-SEQ is inspired by the NOCS Theorem.
In particular, the proof of Lemma 2 implies that if read-only
transactions satisfy N+O+S, then write messages must trans-
fer metadata to ensure that concurrent read-only transactions
are legally ordered with respect to any real-time dependen-
cies between the writes. This intuition drove us to leverage a
sequencer that totally orders the write operations.

D.2 PORT-SEQ Algorithm
Figure 12 shows the pseudocode of PORT-SEQ, which has
two components: the write protocol that handles simple
write operations and the read-only transaction algorithm that
is non-blocking and one-round communication. The write
protocol involves a standalone machine that serves as a se-
quencer that serializes write operations. PORT-SEQ imple-
ments Lamport clocks, i.e., each write operation is assigned
a Lamport timestamp upon commit.

The client uniquely identifies each read-only transaction
with a transaction identifier (line 3). The client sends the
read requests in a read-only transaction in parallel to rel-
evant servers that have the data together with the transac-
tion id (lines 4, 5). When the server receives a read request,

1 Client Side
2 function read_only_txn(<keys>):
3 txn_id = generate_uuid()
4 for k in keys # in parallel
5 vals[k] = read_txn(k, txn_id)
6 return vals
7

8 function write(key, val):
9 # send the request to the sequencer

10 SEQ::handle_write(key, val)
11 return
12

13 Server Side
14 function read_txn(key, txn_id):
15 if txn_id in rotxn_tracker_local
16 time = rotxn_tracker_local[txn_id]
17 return val = read_at_time(key, time)
18 rotxn_tracker_local.append(txn_id,
19 logical_time.now())
20 return read(key)
21

22 function write(key, val, rotxn_tracker):
23 write(key, val)
24 rotxn_tracker_tmp = rotxn_tracker_local
25 rotxn_tracker_local = rotxn_tracker
26 return rotxn_tracker_tmp
27

28 Write Sequencer (SEQ)
29 rotxn_tracker[][]
30 sync function handle_write(key, val):
31 # writes are serialized
32 id_time[][] = server::write(
33 key, val, rotxn_tracker)
34 for id in id_time
35 if rotxn_tracker[id] is null
36 rotxn_tracker.append(id, id_time[id])
37 return

Figure 12: Pseudocode for PORT-SEQ.

it checks with its local variable, rotxn tracker local, which
stores the information on which read-only transaction should
read at which local time. If the read-only transaction has a
corresponding entry in rotxn tracker local, then it returns
the value at the time specified in rotxn tracker local (lines
15—17), otherwise, it stores its id and time (lines 18, 19) and
returns the value at the current time (line 20).

The client sends the write requests to the sequencer (line
10), which processes the writes one by one in sequential or-
der, i.e., there is one and only one write being processed at
any given time in the system. The sequencer maintains a
local variable, rotxn tracker, which tracks concurrent read-
only transactions in the system. rotxn tracker is a map of
read-only transaction id to its read timestamp. The sequencer
imbeds rotxn tracker to the write request sent to the corre-
sponding server (line 33). When the server receives a write
operation, it updates the local storage (line 23), and replaces
its rotxn tracker local with rotxn tracker received from the
sequencer. Note that rotxn tracker has all the necessary in-
formation for processing future read-only transactions, and
the current rotxn tracker local includes the read-only trans-
actions that have been seen by the server but not by the se-
quencer, so the write response returns this information back
to the sequencer to update its rotxn tracker (lines 26, 34—
36). Because finished reads will not be received by the same
server again, it is safe to replace rotxn tracker local with
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rotxn tracker upon receiving a write (line 25).
The PORT-SEQ algorithm is not practical because write

operations are serialized. Moreover, the size of the informa-
tion kept by the sequencer increases linearly w.r.t. the num-
ber of concurrent read-only transactions, i.e., PORT-SEQ
does not have the C property.

D.3 Correctness
The writes in PORT-SEQ are serialized, and thus the write
operations themselves present a strictly serializable order.
The read-only transactions respect real-time order because if
a read-only transaction, R, is issued in real time after a write
operation, w, then all the read requests in the transaction ar-
rive at the servers after the write operation finishes. That is,
the earliest read request, r, that first arrives at the server will
not find its corresponding entry in rotxn tracker local at the
server since it is the first arrived request of R, and thus it will
return the value at the current time. Because R begins after
w finishes, then the current time of r is for sure after the end
time of w. Because r is the first arrived request, all other
reads in R will return values at the logical time no earlier
than that of r. Therefore, R returns at a logical time after w.

PORT-SEQ also satisfies the total order requirement of
strict serializability, because all its read-only transactions re-
spect the serial order of writes. For instance, for two write
operations w1 and w2, where w1 is processed by the se-
quencer before w2, then there is an ordering constraint be-
tween those two writes, i.e., w1→ w2. There are three pos-
sible outcomes for a read-only transaction concurrent with
w1 and w2: not see either w1 or w2, sees w1 but not w2, or
sees both w1 and w2. All these three cases respect the se-
rial total order of w1 → w2. PORT-SEQ’s read-only trans-
actions never end up seeing w2 but not w1, which would vi-
olate the total serial order w1 → w2 because the read-only
transaction will for sure find a corresponding entry of itself
in rotxn tracker local when it arrives at the same server as
w2, and thus returns the value at the time consistent with w1,
which is before w2. Because PORT-SEQ’s read-only transac-
tions guarantee a total order that respects the real-time order,
they are strictly serializable (S). Because they always finish
in one on-path round, do not incur off-path messages, and
never block, they satisfy N+O.

E A Discussion on Recent Work
Recent work concurrent with our own presented a theorem
that implies performance-optimal read-only transactions are
impossible in causally consistent systems that support simple
writes [14]. The apparent discrepancy between their results
and ours is rooted in the underlying assumptions.

The recent work requires that a transaction cannot return
an arbitrarily old value for a key it wants to read, even if
the arbitrarily old value would satisfy causal consistency.
This leads them to conclude that clients cannot specify the
timestamp for a transaction (a technique our protocols rely

on, in contrast). Although the logical connection between
these two statements may not immediately be apparent from
reading their paper, it becomes apparent if we consider a
worst-case scenario where every read-only transaction is is-
sued by a brand new (or inactive) user (client session) that
has no prior communication or state from the servers. Given
an asynchronous setting (where there is no bound on clock
skew), such a user would need at least one round of messages
to query what the recent values are on each server, in order to
avoid reading an arbitrarily old value. (The user cannot sim-
ply “guess” a timestamp to read at because there is no bound
on clock skew.) Only upon receiving these values can the
user determine a non-arbitrary timestamp (snapshot) across
all servers, and then the transaction reads the servers at this
snapshot time. This is essentially the two-round protocol de-
scribed in their work. Since this worst-case setting requires
at least two rounds of communication with the servers, it is
not performance optimal.

In contrast, our theorem assumes that multiple transac-
tions can be issued by the same user (client session) and that
multiple users (client sessions) can be co-located on the same
client machine, so transactions can leverage the information
stored on the client machine. This information is obtained by
previous transactions either from the same session or from
other co-located client sessions. This type of scenario is
widely deployed in practice: end users typically interact with
a web tier that proxies requests to a backend storage system;
the web tier machines act as “clients” to the storage system.
It is common for these machines to host client sessions that
issue a series of transactions, and to co-locate multiple client
sessions on the same machine. Therefore, storing and shar-
ing auxiliary information between transactions is possible.
This is why clients in our PORT protocols are able to read
fresh data using only one round of messages. (Figure 4f in
Section 7 shows PORT has minimal staleness.)

Alternatively, if we relax their assumption to a more
practical one that allows bounded clock skew, then we be-
lieve performance optimal read-only transactions are possi-
ble even in the worst-case scenario considered by the recent
work. This is because well-synchronized physical clocks,
e.g., the ones that run NTP, can be used to order transactions
and index data versions, allowing read-only transactions to
complete in one round. For instance, a read-only transac-
tion can use a timestamp no smaller than the current value of
the client’s physical clock (e.g., in Eiger-PORT we could use
physical clocks for the versionstamps). This avoids the first
round of messages they needed to query recent values, ef-
fectively replacing it with a “guess” that is guaranteed to not
be arbitrarily stale (staleness is bounded by the clock skew).
Well-synchronized physical clocks are commonly available
in distributed storage systems.

We have confirmed the above explanation with the authors
of the recent work.
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