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ABSTRACT 

 

 

As modern switches become increasingly more powerful, flexible, and programmable, 

network operators have an ever greater need to monitor their behavior. Many existing 

systems provide the ability to observe and analyze traffic that ​arrives​ at switches, but do 

not provide visibility into the experience of packets ​within​ the switch. To fill this gap, we 

present PacketScope, a network telemetry system that lets us peek inside network 

switches to ask a suite of useful queries about how switches modify, drop, delay, and 

forward packets. PacketScope gives network operators an intuitive and powerful 

Spark-like dataflow language to express these queries. To minimize the overhead of 

PacketScope on switch metadata, our compiler uses a “tag little, compute early” strategy 

that tags packets with metadata as they move through the switch pipeline, and computes 

query results as early as possible to free up pipeline resources for later processing. 

PacketScope also combines information from the ingress and egress pipelines to answer 

aggregate queries about packets dropped due to a full queue. 
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PacketScope: Monitoring the Packet Lifecycle Inside a Switch

Ross Teixeira

1 INTRODUCTION

Network monitoring is crucial to ensuring high availability and

performance in modern networks. At the core of these networks

lies a set of switches, which are responsible for delivering data

packets and enforcing network policies such as load balancing, ac-

cess control, and attack detection. Switches themselves are complex

devices consisting of multiple pipelines for processing packets, di-

verse memory for storing different kinds of state, multiple queues

for buffering and forwarding packets, and complex logic for im-

plementing network policies. However, today’s network operators

have limited visibility into the data planes of these switches.

When application performance issues arise, the network and,

more specifically, the switches are often to blame [7, 8]. For example,

a switch might have incorrect forwarding rules that cause packets

to never reach their intended destination. If a switch’s buffers be-

come congested, flows will start to experience latency, which can

severely impact latency-sensitive applications such as video stream-

ing or gaming. Finally, attacks on network devices can get past

switches that are not filtering packets properly; network attacks

like a DDoS can completely fill switch buffers and significantly

disrupt the network.

A new generation of switches [5] with a protocol independent

switch architecture (PISA) allow network operators to write cus-

tom packet-processing code in languages like P4 [4]. These pro-

grammable switches give network operators much greater flexibil-

ity over packet processing, which can lead to more efficient network

design and greater insight into network performance. However,

this advancement in switch design comes with the risk of introduc-

ing bugs in a switch’s processing, either due to programmer error

or compilers that contain bugs. As the adoption of programmable

switches rises, it becomes increasingly important to monitor the

processing that occurs within the switches to ensure that they are

free from incorrect programs, compiler bugs, and hardware errors.

In addition to these new error conditions unique to programmable

switches, network operators must still monitor their networks for

traditional network events such as congestion, failure, or cyberat-

tack. For all of these events, examining how the switch internally

processes individual packets significantly aids in their detection.

For example, to detect incorrect forwarding behavior such as a black

hole, one could query for the counts of packets being forwarded out

each output port to observe whether any ports are not sending out

any packets. To determine when a switch is experiencing conges-

tion, a network operator could ask about the size of the queue when

a packet enters or leaves the queue. To detect attacks that target

an end host’s software, such as an SSH exploit, network operators

can ask whether packets which should have been dropped by an

access control list (ACL) rule (such as inbound SSH connections)

were instead forwarded out.

Recent telemetry systems for programmable switches support

queries written in a dataflow programming model [6], a powerful

and familiar language for expressing computation on a stream of

incoming packets [9, 15]. However, these systems only operate

Figure 1: PacketScope’s PISA pipeline model and locations

where the values of query fields become known.

on the packets as they enter the switch, and they ignore packet

processing done by the switch itself. They are useful for detecting

network-level attacks, but their limited expressiveness does not

allow operators to analyze a switch’s internal processing.

In this paper, we present PacketScope, a network telemetry sys-

tem capable of answering queries about internal switch processing

using recent advances in programmable switches. PacketScope pro-

vides dataflow constructs that allow network operators to reason

about how a switch modifies, drops, and delays. In particular, we:

• Enable monitoring of packets at both the ingress and egress

pipelines, and for collecting aggregate statistics about pack-

ets lost due to queue occupancy;

• Compile queries to PISA switches by tagging each packet

with relevant metadata about its journey through the switch

and computing statistics as early in packet processing as

possible to minimize overhead;

• Overcome limitations in switch programmability to moni-

tor queuing loss by introducing a hybrid switch-controller

solution that joins and synchronizes traffic counts from the

ingress and egress pipelines; and

• Develop an initial prototype as an extension to the Sonata

codebase [1] and evaluate an independent loss query imple-

mentation.

In Section 2, we describe the specific language extensions that en-

able monitoring queries over both the ingress and egress pipelines

of a switch. In Section 3, we describe how we compile those exten-

sions to PISA hardware and in Section 4, we evaluate our initial

prototype. Finally, we discuss future and related work in Section 5

and Section 6, respectively, and conclude in Section 7.

2 QUERYING THE FULL PACKET LIFE CYCLE

In this section, we first explain the declarative, dataflow program-

ming model for network telemetry queries. We then describe the
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extensions to the packet tuple abstraction that PacketScope intro-

duces to represent the packet’s experience within the switch. We

demonstrate example queries for monitoring modifications, ACL

drops, and queuing loss. Finally, we introduce a loss operator for

reasoning about queuing loss.

2.1 Telemetry as Dataflow Queries

Several PISA-based telemetry systems let network operators express

declarative queries that treat each packet as a tuple. Two such

systems, Sonata [9] and Marple [15], provide an abstraction similar

to the dataflow programming paradigm used by Apache Spark [20].

These languages operate on streams of incoming tuple data, where

each tuple represents a packet header vector. Queries can then

apply map, filter, groupby, and reduce operations to evaluate

expressions, filter, and aggregate data, respectively, on the set of

incoming tuples.

While dataflow programming is a generally expressive model

for common network telemetry queries, existing solutions have

limitations that prevent them from analyzing a packet’s experience

within the switch. Sonata’s tuples represent packets as they ap-

pear on arrival at the switch, and thus queries cannot reason about

header modifications, queuing delay, or packet loss. Marple tuples

include information about queuing, but cannot track modifications

or dropped/lost packets without monitoring at multiple switches

or sending copies of all packets to a central controller. With Pack-

etScope, we can avoid this network overhead by extending Sonata’s

tuple abstraction to account for the packet’s entire journey through

the switch, not just the ingress portion.

2.2 Extending the Tuple Abstraction

To support queries about the packet life cycle, we expand the tuple

abstraction to include fields that capture the packet’s experience at

various stages of processing. Figure 1 shows the full set of fields and

their locations.When the packet first enters the switch and is parsed,

the switch gets information about headers_in (the packet’s initial

header fields), port_in (the port the packet arrived at), and time_in

(the timestamp when the packet arrived). The packet then moves

through ingress processing, where its headers may be modified,

and it will either have its intended forwarding behavior set, or

be marked for drop because it matched an ACL rule. After ingress

processing finishes, headers_mid defines the packet’s headers after

any ingress modifications, while port_intent refers to the packet’s

intended forwarding behavior, which will either be (i) its output

port, (ii) a special value for behavior like mirroring or multicasting,

or (iii) a -1 value that indicates the packet is intended to be dropped.

Note, we define that a packet has łfinishedž processing in a

pipeline when (i) there is no more processing to do, or (ii) the

packet is marked for drop. Thus, for dropped packets, headers_mid

represents the packet’s headers at the time it was marked for drop.

If the packet is not marked for drop, it then attempts to enter the

queue. For nowwe assume the queue has space, so the packet enters

the queue, and eventually the packet is dequeued and enters egress

processing. At this point, the switch knows the packet’s experience

in the queue: queuing.time_in/out and queuing.len_in/out,

the times the packet entered and exited the queue and the size of

the queue at those times. The packet then enters egress processing,

where it may undergo more modifications or be marked for drop.

After the egress pipeline finishes processing, the header_out values

are known as well as port_out, the port the packet is sent out.

Similar to ingress processing, if the packet is marked for drop during

egress processing, port_out = -1 and headers_out represents

the packet’s headers at the time it was marked.

2.3 Querying Both Ingress and Egress Tuples

Each query in PacketScope must begin by defining a stream of

tuples for that query to operate on. To motivate the choice of tuple

streams provided by PacketScope, we first consider two alternative

approaches. We could provide a single tuple that contains all fields,

similar to prior work, but a single tuple does not allow queries

to specify whether they observe packets at the ingress or egress

pipeline, which is important when dealing with queuing loss. We

could provide four tuple types: start/end of ingress and start/end of

egress, but the start and end of each pipeline are redundant because

packets that start a pipeline always reach the end of that pipeline.

Thus, PacketScope provides two tuple streams that queries can

operate on: ingress() and egress(). Queries on the ingress()

stream operate on all packets that are seen by the switch, and their

tuples contain:

(headers_in, headers_mid,

port_in, port_intent,

time_in)

Queries on the egress() stream operate on all packets that reach

egress processing, and their tuples contain:

(headers_in, headers_mid, headers_out,

port_in, port_intent, port_out,

time_in, queuing.time_[in/out],

queuing.len_[in/out])

Note that while each tuple type defines a single pipeline, the

queries might be compiled to either the start or end of that pipeline,

depending on the fields used in each query and the resource con-

straints of the switch, as discussed in ğ4.1. With these streams of

tuples, PacketScope’s language enables four types of queries about

the life of packets in the switch: (i) packet modifications, (ii) access

control list drops, (iii) queuing delay, and (iv) queuing loss. Table 1

showcases example queries targeting each.

2.4 Aggregate Queries over Queuing Loss

We now handle the special case of queuing loss. Consider the straw-

man approach of introducing a third tuple type for łlostž packets,

that produces a tuple for each packet lost due to a full queue. Unlike

ACL drops, the switch does not provide a programmable hook for

analyzing a packet when it attempts to enter a full queue, as this

occurs outside the programmable pipelines. This means that to

detect queuing loss, we must somehow observe each packet that

appears at ingress processing, but never reaches egress processing

even after accounting for possible queuing delay.

An expensive option would be to forward each packet at ingress

and egress to a central controller for analysis. Alternatively, the

switch could keep state about each packet seen at ingress and at

egress, and later a central controller could compare the per-packet
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Figure 2: Packets assigned to epochs based on arrival time where epoch_ms == 5ms, where the vertical lines represent epoch

boundaries. A red ’X’ denotes a dropped packet.

Type Query

Mods

.egress()

.filter(ipv4.srcIP_in != ipv4.srcIP_out)

.map((ipv4.srcIP_in) => 1)

.reduce(keys=(ipv4.srcIP_in), func=sum)

ACL

drop

.ingress()

.filter(port_intent == -1)

.map((ipv4.srcIP_in) => 1)

.reduce(keys=(ipv4.srcIP_in), func=sum)

Delay

.egress()

.filter(queue.len_out > Th)

.map((ipv4.srcIP_in) => 1)

.reduce(keys=(ipv4.srcIP_in), func=sum)

Loss

.ingress()

.filter(tcp.dstPort_in == 80)

.lost([ipv4.srcIP_in], 20ms)

Table 1: Example PacketScope queries.

state. It would be too expensive to store state for every packet the

switch sees, but it is possible to keep aggregate countsÐfor example,

packet counts grouped by IP prefixesÐin both pipelines.

PacketScope provides a special operator for tracking packets lost

to the queue:

.lost(groupby_fields, epoch_ms)

which computes counts of lost packets grouped by the specified

fields. We place two restrictions on using .lost() in a query:

• Queries with lost() can only operate on ingress tuples,

as by definition, lost packets never enter egress processing.

• The aggregate operator .reduce is not allowed before .lost(),

but simple operators (.map, .filter) are allowed.

Next, we define the time windows that .lost() counts are aggre-

gated over. A simple strawman would be to read the counts at

ingress and egress in absolute time increments, but due to queuing

delay, the counts at ingress and egress at any instant would differ

by the number of packets currently in the queue. Instead, we use

the arrival time of packets as the epoch boundary. For example,

.lost([ipv4.srcIP_in], 20ms)

would report howmany packets experience queuing loss that arrive

in 20ms windows. Tuples returned by .lost() contain (epoch#,

count, groupby_fields). Figure 2 shows an example of epoch

timings. Note this means that the switch needs to store counts for

the previous and next epoch at any time, as discussed later in ğ3.3.

3 COMPILING PACKET LIFE CYCLE QUERIES

In this section, we describe the PacketScope compiler, and how we

overcome two challenges of compiling packet life cycle queries to

a switch: (i) where to place state and computation and (ii) how to

handle queuing loss.

3.1 The PacketScope Compiler

The PacketScope compiler takes as input (i) a set of queries that the

network operator writes and (ii) P4 code for the switch forwarding

logic. The compiler distributes the query operators to be executed

at different locations in the pipeline, depending on (i) the tuple type

used, (ii) the order of operators, and (iii) available switch resources.

For example, a .filter(port_in == 2) operator could be applied

at the start of ingress processing, even if applied to egress tuples.

The compiler then integrates the portion of the queries that can

be executed at the switch with the forwarding logic to produce a

single P4 program, which is loaded onto the switch.

3.2 Tag Little, Compute Early

The first challenge in compiling PacketScope queries is deciding

where to place the query logic in the pipeline. For example, take

the łModificationž query in Table 1, which operates on a stream

of egress() tuples and filters for packets whose source IP was

modified during switch processing. The query must be processed

at the egress pipeline by definition, but it also needs access to the

packet’s ipv4.srcIP_in when the packet arrived at the switch,

before any modifications. To solve this, we tag the packet with

metadata that includes its initial source IP when it arrives at the

switch. When the packet reaches the end of egress processing, the

switch compares its current source IP to the tagged metadata to

complete the filter operation.

However, excessive packet tagging uses up valuable state in the

Packet Header Vector (PHV), where headers and other metadata are

stored, that could be used by other queries or other switch function-

ality. Thus, we want to minimize the additional state added to the

PHV, and łfreež that state when it is no longer needed. Since PHV

state is pre-allocated by the P4 compiler, for our purposes, łfreeingž

state in the PHV means allowing future operators or switch pro-

cessing to reuse the space allocated to prior operators/processing

when that state is no longer needed.

To demonstrate our łtag little, compute earlyž strategy, consider

the following two queries. The first query counts the number of

packets whose destination IPs are modified during ingress process-

ing, by their destination IP at the start of ingress processing:

.ingress()

.filter(ipv4.dstIP_in != ipv4.dstIP_mid)

.reduce(keys=(ipv4.dstIP_in), func=sum)

.filter(count > T)
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The second query counts packets on which the switch sets an

Early Congestion Notification (ECN) bit during egress processing,

by their destination IP at the start of egress processing:

.egress()

.filter(ipv4.ecn_mid != 2 && ipv4.ecn_out == 2)

.reduce(keys=(ipv4.dstIP_mid), func=sum)

.filter(count > T)

The first query must store each packet’s initial destination IP in

the PHV, using 32 bits. The second query must store the packet’s

destination IP at the start of egress processing, as it must wait

until the end of egress processing to know whether the ECN bit is

eventually set. Naively, storing ipv4.dstIP_midwould use another

32 bits; however, because the first query’s initial IP is no longer

needed, the second query can reuse that space in the PHV.

In this case, the fields are the same size, but the strategy also

works when the PHV space being reused is larger than the fields

that demand it. For example, PHV space used for an IP address can

be reused by multiple other fields, such as a TTL value and a source

port. In this case, the compiler must keep track of the bit indices

within the original PHV space used by each new field.

Together, our łtag littlež and łcompute earlyž strategies reduce

the PHV overhead imposed by queries. The PacketScope compiler

tags packets with relevant query fields in their PHV when they

become available, and executes operators as early as possible so

their PHV space can be reused.

3.3 Monitoring Queuing Loss in Epochs

Our second major challenge is monitoring queuing loss. As dis-

cussed in ğ2.4, the switch may not provide a programmable hook

into packets that are dropped due to a full queue. This makes it dif-

ficult for PacketScope to track individual packets which experience

queuing loss. Fortunately, it is feasible to track aggregate counts

of packets lost due to queuing. Our solution stores these counts

in registers on both the ingress and egress pipelines for a central

controller to retrieve and compare later.

To compile .lost queries, we take inspiration from Sonata’s

ability to join the results of two queries together. The query on

queuing loss in Table 1 can be expressed as shown below:

ingress()

.map((ipv4.srcIP_in) => count=1)

.reduce(sum)

.join((egress()

.map((ipv4.srcIP_in) => count=1)

.reduce(sum)),

func=’diff’,

window=’arrival’, epoch_ms=5ms)

The queries track packet counts per source IP at the ingress and

egress pipelines, respectively, and .join computes their difference.

In order to handle epochs, PacketScope tags each packet with

an epoch number when it arrives at the switch, computed by

⌊
t ime_in
epoch_ms

⌋. For certain epochs (powers of 2), this is easy to com-

pute in the data plane using a bitshift. At each pipeline, the switch

then stores (epoch#, groupby_fields) -> (epoch#, count)

in a d-stage hash table for each IP it observes, and updates the

count if it has already been initialized. Our model assumes FIFO

processing with no reordering in the queuing phase (e.g., due to

priority queuing), so that when the first packet from epoch x is

dequeued, no other packets from epoch x − 1 will be seen by egress

processing. Thus, when the egress pipeline first observes a packet

from a new epoch, it can alert the central controller to pull results

from the switch. In case no packets arrive during an epoch, the cen-

tral controller can pull results from the switch after no additional

packets from the previous could be waiting in the queue: the start

time of the current epoch + the max ingress processing + queuing

delay. With our FIFO assumption and knowledge of the target ar-

chitecture’s clock speed and queue capacity, we can compute the

max ingress processing + queuing delay in advance.

To expire old data, we use the fact that we store the epoch number

of each register entry in addition to its contents. If the insertion for

a new packet collides with an entry that has an epoch number less

than the previous epoch, we assume that the central controller had

sufficient time to query the switch for those counts and the data

can be overwritten.

Finally, we handle the case of collisions in the d-stage hash

table by adding an additional stage to both the ingress and egress

pipelines. If a packet encounters a collision in all d stages of the

hash table, it adds a count in the d+1 stage to a register according

to its epoch in each pipeline. Instead of hashing into the register

according to the groupby_fields specified by the query, counts in

the d+1 stage are indexed by the packet’s epoch number. This allows

PacketScope to count the total packet losses on the switch even

when the switch’s available memory is insufficient to store all of the

counters without collision when indexed by the groupby_fields.

4 EVALUATION

We present an initial prototype for PacketScope by extending the

Sonata streaming network telemetry system [1], including the query

language, compiler, and emitter[9]. So far, we have modified or

added approximately 820 lines to the 16, 000 lines in the Sonata

codebase. This addition extends Sonata to support both ingress()

and egress() tuple streams and our łtag little, compute earlyž strat-

egy of compiling query functionality into a P4 packet processing

pipeline. We also include in our prototype a manually compiled

loss query for evaluation.

4.1 Packet Loss Query

We implement the packet loss query in Table 1, which counts lost

HTTP packets by source IP. It follows the Sonata model, and is

written in 950 lines of P4 code and 240 lines of Python for the

emitter. We used a four-stage hash table implementation with a

fifth stage for resolving collisions per epoch on ingress and egress.

For our first experiment, we have 27 rows per stage and an epoch

size of 1 second. We ran this query on the BMv2 software switch

configured with a queue length of 100 packets and a dequeuing rate

of 100 packets/sec. The switch then processed a synthetic packet

trace designed to fill the queue, without drops, for a 30-second
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(a) Loss counts reported from a bursty flow. (b) Precision with epoch length fixed at 1 second. (c) Precision of epoch lengths with different # of
hash table entries per stagef.

Figure 3: PacketScope prototype evaluation.

period. We then injected an additional 500 packet/sec burst for a 6-

second period. Figure 3a shows that our query effectively detected

the lost packets that resulted from an overwhelmed queue.

4.2 Query Precision

We then evaluate the precision of our loss query. The precision of

a loss query is defined as
# groupby losses
# total losses , the fraction of unique

groupby keys (in this case, source IPs) seen by the switch whose

loss counts are maintained and reported at the end of each epoch,

compared to the total number of lost packets in that epoch. Precision

decreases when the hash tables fill, causing packets that experience

hash collisions to only be counted in the total number of lost packets

stored in the d+1 stage for that epoch. We then configured the

BMv2 switch with a 40 packet buffer and dequeuing rate of 1000

packets/sec, and replayed a CAIDA trace [2] through the switch

for 60 seconds at ~1700 packets/sec. Figures 3b and 3c show the

precision of our query as we vary (i) the number of rows in each

stage of the hash table and (ii) the duration of an epoch, respectively.

As expected, our precision increases as the number of rows in each

stage of the hash table increases (fewer collisions) and decreases as

the epoch duration increases (more collisions).

Because we are evaluating PacketScope on the slower BMv2

software switch, we focus on a smaller packet rate (thus, a small

number of flows) and larger epoch lengths. When compiling to a

hardware switch, this reverses: a much faster switch can support

much shorter epochs, and this would help achieve similar precision

with a much larger number of flows. In addition, loss queries that

group traffic by coarser keys (e.g., IP prefix, rather than IP address)

would reduce the memory requirements for maintaining state.

5 DISCUSSION AND FUTUREWORK

Integration of querieswith user P4 program: PacketScopemon-

itors a switch’s packet processing, so naturally it must integrate its

own queries with the user’s existing P4 code. There are three key

ways in which this occurs. First, the execution flow of a P4 program

is defined in a control code block, and PacketScope must augment

this block to insert its query processing before/after existing pro-

cessing. Second, the existing P4 code contains a custom parser that

defines the packet’s headers; by extracting this parser, PacketScope

can allow queries to use any custom headers defined by the user.

Finally, we have described the switch as łmarkingž a packet for

drop, but in reality, when a packet matches an ACL rule, a drop()

action is called that may immediately terminate processing and

drop the packet. To account for such targets, PacketScope modifies

the user program to override the drop() action to set a łmarkž bit

in the PHV, which is then read implicitly when a query checks if

port_intent/out == -1.

Query compilation with switch resource constraints: PISA

switches are limited in the number of stages per pipeline, the

number of instructions that can be executed per stage, the size

of the PHV, and the amount of register memory available in each

stage [5, 9]. Each of these constraints reduces the number of query

operators that can be executed on the switch, and fitting these

constraints becomes increasingly difficult when running multiple

queries simultaneously while integrating with existing switch pro-

cessing. Sonata uses these constraints as input to an integer linear

program (ILP) [9], and solves it to find an optimal partitioning of

queries into the data plane of the switch that minimizes commu-

nication with the central controller. PacketScope can also use this

ILP formulation, except the ILP must now include constraints on

the ingress and egress pipelines separately, and we would solve

for the optimal partitioning of queries based on their respective

pipelines, metadata requirements, and the division of the existing

switch processing among the ingress and egress pipelines.

Queries with multiple pipelines: Our current switch model

assumes FIFO processing with a single ingress and egress pipeline

shared among all ports. However, switches often contain multiple

distinct pipelines that each process packets for a subset of the

ports on the switch. For example, consider a query fragment that

generates a traffic matrix of in-out port pairs:

.egress()

.map((port_in, port_out) => 1)

.reduce(keys=(port_in, port_out), func=sum)

.filter(count > T)

In a single-pipeline switch, each in-out port pair has a single count

at the egress pipeline, and it is easy to detect when this count ex-

ceeds a threshold. But with multiple pipelines, detecting when the
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count exceeds the threshold becomes a distributed heavy-hitter

problem, in which multiple counts may individually fall below the

threshold, but whose sum exceeds it. This problem has attracted

research in a network-wide setting [11], and applying these tech-

niques within a switch is an interesting future direction.

Network-wide queries:Much of PacketScope’s query language

can be extended to support network-wide queries that abstract the

network as łone big switch.ž In this abstraction, the in-out ports of

the abstract switch are the edge switches of the network, and the

big-switch’s processing accounts for all of the switches within the

network. łTaggingž a packet means adding headers to the packet

as it traverses the network, rather than stripping the tags before

the packet leaves the switch. This design could be combined with

other network telemetry systems like Path Queries [16] to reason

about the paths packets take through the network.

6 RELATED WORK

Dataflow for Telemetry Queries: Several recent systems express

network telemetry queries in a dataflow language. Both Sonata [9]

and Marple [15] partition queries between a switch data plane and

a central processor, but they only observe packets when they arrive

at the switch. PacketScope enables queries about processing that

occurs within the switch by exposing both ingress and egress packet

streams, which were not available in either of the prior solutions.

While we have contributed a portion of PacketScope as an ex-

tension to the Sonata codebase, the techniques we propose that

enable queries about processing within the switch are novel and

not limited to implementation in Sonata. Since the prototype is de-

signed as an extension of the Sonata codebase, PacketScope shares

all of the features and limitations of Sonata, including the need to

recompile whenever the set of input queries changes. In addition,

PacketScope extends Sonata’s query language to enable queries

about the egress packet stream and packet loss.

Activemeasurement: Some tools use active probing tomonitor

and detect issues in the network [8, 18]. However, active measure-

ment systems only track synthetic probes, whereas we want to

monitor the modifications and drop/loss behavior that real network

traffic experiences within the switches themselves.

Passivemeasurement: Some passive systemswork by forward-

ing copies of all packets to a central server (or set of servers) [10, 13],

which introduces too muh overhead. Everflow [21] and dShark [19]

require operators to filter a limited set of IPs to monitor, whereas

PacketScope can support all traffic at line rate. Other systems re-

quire control of end hosts [3, 12, 17], while PacketScope does not.

Handling loss: Some systems deal specifically with detecting

lost packets, but they rely on coordination between multiple net-

work members. LossRadar [14] requires monitoring at multiple

switches in order to detect lost packets, and does not distinguish

between link failures and queuing losses, while we focus on de-

tecting queuing losses. 007 [3] also does not make this distinction,

and, in addition, it assumes that the operator has control of the end

hosts in the network (such as a datacenter) and requires end hosts

to participate in order to track losses, while PacketScope can track

losses at a switch independent of the surrounding network.

7 CONCLUSION

PacketScope fills an essential gap in network telemetry systems by

peeking insidemodern programmable switches. It offers rich insight

into the life cycle of packets inside a switch, where they could

experience packet modifications, ACL drops, and queuing delay

and loss. PacketScope compiles and integrates dataflow telemetry

queries with existing switch processing and employs a łtag little,

compute early" compilation strategy to minimize query overhead.

We also allow a switch to track the properties of packets lost to full

queues by monitoring at both the ingress and egress pipelines.
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