
Concurrent Permission Machine for

modular proofs of optimizing compilers

with shared memory concurrency.

Santiago Cuellar

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Computer Science

Adviser: Andrew Appel

April 2020

c© Copyright by Santiago Cuellar, April 2020 copyright.

All rights reserved.

Abstract

Optimizing compilers change a program based on a formal analysis of its code, and

modern processors further rearrange the program order. It is hard to reason about

such transformations, which makes them a source of bugs, particularly for concur-

rent shared-memory programs where the order of execution is critical. On the other

hand, programmers should reason about their program in the source language, which

abstracts such low level details.

We present the Concurrent Permission Machine (CPM), a semantic model for

shared-memory concurrent programs, which is: (1) sound for higerh-order Concur-

rent Separation Logic, (2) convenient to reason about compiler correctness, and (3)

useful for proving reduction theorems on weak memory models. The key feature of

the CPM is that it exploits the fact that correct shared-memory programs are permis-

sion coherent: threads have (at any given time) noncompeting permission to access

memory, and their load/store operations respect those permissions.

Compilers are often written with sequential code in mind, and proving the cor-

rectness of those compilers is hard enough without concurrency. Indeed, the machine-

checked proof of correctness for the CompCert C compiler was a major advance in the

field. Using the CPM to conveniently distinguish sequential execution from concur-

rent interactions, I show how to reuse the (sequential) CompCert proof, without major

changes, to guarantee a stronger concurrent-permission-aware notion of correctness.

iii

To my family.

iv

Contents

Abstract . iii

Acknowledgements . iv

List of Tables . ix

List of Figures . x

1 Introduction 1

2 Related Work 7

2.1 Compiler specification . 7

2.2 Compiler models supporting concurrency 13

3 Top to Bottom structure 19

3.1 Main theorem . 21

3.1.1 Formal definitions . 22

3.1.2 Coq definitions . 25

3.2 The concurrent permission machine 26

3.2.1 Overview . 26

3.2.2 Formal definition of the CPM 29

3.2.3 Generality of the CPM . 37

4 MOIST simulations and semantics of CompCert 40

4.1 Memory model and memory injections 45

v

4.2 Passing arguments to main. 49

4.2.1 The prestack and the initial memory 51

4.2.2 The entry-point: a more permissive starting state 52

4.3 Memory events. 56

4.4 MOIST Semantics . 59

4.5 Definitions for MOIST simulations 62

4.5.1 Simulations for traces without deterministic relations. 67

4.5.2 Simulation diagrams for builtins. 70

4.5.3 Full injections . 73

5 Compiler Correctness 75

5.1 Compiler Specification . 75

5.2 Compiling One At a Time (COAT) 79

5.2.1 The Hybrid Machine . 80

5.2.2 COAT proof of compiler correctness 81

5.2.3 Separate compilation . 86

5.3 Self simulations . 87

5.4 Simulations for administrative steps 88

5.5 Simulations for synchronizations . 91

5.5.1 Simulation of the Spawn step 91

5.5.2 Simulation of the Acquire step 93

6 CSL soundness proof 98

6.1 Concurrent Separation Logic . 99

6.1.1 Impredicativity and the spawn Rule 100

6.1.2 Ghost State . 100

6.1.3 Mechanization . 102

6.2 Juicy Sequential semantics . 103

vi

6.2.1 Review of VST semantic model 103

6.2.2 New result: Concurrent Separation Logic is sound 107

6.3 The juicy concurrent machine . 108

6.4 CPM simulates the Juicy Concurrent Machine 112

7 Instruction interleaving and well synchronization 113

7.1 Instruction interleaving . 114

7.2 Well synchronized programs . 118

7.3 Erasing the permissions, at last . 120

8 Conclusion 122

8.1 Future Work . 123

8.1.1 Short-term work . 123

8.1.2 Long-term work . 124

A Implementation Details 126

A.1 Obtaining and compiling the Coq code 126

A.2 Useful definitions . 127

A.3 The concurrent permission machine 128

A.3.1 Formal definition of the CPM 128

A.4 MOIST simulations and semantics of CompCert 130

A.4.1 Definitions for MOIST simulations 130

A.5 Compiler correctness . 133

A.5.1 COAT proof of compiler correctness 133

A.5.2 Simulations for synchronizations 136

Bibliography 138

vii

List of Tables

2.1 Changes to CompCert for CompComp 9

4.1 Measures of changes to CompCert. 44

viii

List of Figures

3.1 Coq definition of our main theorem theorem 3.1.1. 23

3.2 Concurrent Permission Machine, synchronization steps. 30

3.3 Concurrent Permission Machine: administrative and internal steps. . 31

4.1 Code example: remember and incr . 40

4.2 initial-state predicate for C . 41

4.3 Events in CompCert . 42

4.4 CompCert memory model. 46

4.5 Memory transformations of CompCert 48

4.6 Value and permission injections . 48

4.7 Entry simulation diagrams . 50

4.8 Prestacks examples for X86-32 architecture 52

4.9 The entry-point predicate in Clight 54

4.10 Abstractions of stack frames through compilation 55

4.11 entry-point predicate in Mach . 56

4.12 Code examples: passing output though a buffer. 58

4.13 New events in CompCert . 58

4.14 More injection relations . 60

4.15 at-external definition for Clight . 61

4.16 Step simulation diagrams . 63

4.17 At external step diagram . 65

ix

4.18 New entry point diagram . 66

4.19 Double diagram simulation . 67

4.20 Strong simulation for external steps 69

4.21 External step simulation diagram definition 70

5.1 CPM step diagrams . 77

5.2 Hybrid Machine semantics . 80

5.3 CPM administrative step diagrams 90

5.4 Match relation for Blocked . 96

5.5 MOIST simulation of acquire steps 97

6.1 Concurrent Separation Logic . 99

6.2 The increment example . 101

6.3 CSL rules for ghost state. 102

6.4 Juicy Sequential machine . 104

6.5 Juicy Concurrent machine . 109

x

Chapter 1

Introduction

Write a shared-memory concurrent C program using Pthreads primitives such as

mutexes or general semaphores. Now, reason about your program: is it correct?

Once the optimizing C compiler transforms it, is it still correct? Once the multicore

computer with weakly consistent memory executes it, is it still correct? Can you

verify all that, with machine checked proofs?

When writing and compiling your C program, pay attention to the difference

between atomic loads/stores and nonatomic loads/stores. Nonatomic memory oper-

ations are the “ordinary” ones that compilers (and hardware instruction-execution

pipelines) should optimize: eliminate redundant loads, eliminate redundant stores,

insert redundant loads (if that reduces register pressure), hoist loads above stores (if

the addresses are different). Atomic memory operations are used for synchronization;

the benign races. In a typical program, one expects that most memory operations are

“ordinary” nonatomic accesses, amenable to optimization (and easier reasoning about

source programs). In an ideal world, the bulk of program and compiler verification

are done on on “ordinary” memory access, as if the program were sequential. Atomic

memory operations, where synchronization magic happens, should be modularly sep-

arated to make reasoning easier.

1

This thesis is part of a larger effort to reason about such programs, prove them

correct in the source code, compile them correctly and have them execute correctly

in a realistic machine, what we call the top-to-bottom correctness. All of this, with

modular proofs, connected in an entirely machine-checked proof.

The backbone of this work is a formalization of the execution model of C and

assembly language programs that expresses, with great generality, what programs

should be allowed to do (but not more); that allows modular reasoning about source

programs, source-level program logics, source-level static analyses, compiler optimiza-

tions, and execution on relaxed memory models. Our semantic model, called the

Concurrent Permission Machine (or CPM for short), carefully separates nonatomic

operations from synchronizations. It is sufficiently detailed that we have a formal

instantiation of it (in Coq) for the CompCert Clight language (and embed the Comp-

Cert Clight sequential operational semantics), and a formal instantiation of CompCert

assembly languages such as x86 (in both 32 and 64-bit modes).

Contributions of this thesis.

1. We formalize the Concurrent Permission Machine, an operational model of

execution of C, of assembly language, or any language in the CompCert chain of

intermediate languages. The CPM abstraction is designed to capture the intent

of the C11 standard with respect to lock-based concurrency; and be friendly

to reasoning about the correctness of optimizing compilers. It has cooperative

concurrency, and virtual “permissions” that enforce noninterference between

threads. Each thread’s execution can be reasoned about while largely ignoring

the existence of other threads.

2. We show how the CPM model enables modular specification of concurrent com-

piler correctness that transports safety and partial correctness of multithreaded

C programs to assembly code using the model of cooperative concurrency. The

2

CPM separates sequential semantics from concurrent semantics, so reasoning

about the semantics of concurrent programs can be kept separate from cor-

rectness proofs of compiler optimizations. In particular, this modular approach

allows us to reuse existing proofs of compiler correctness for sequential code.

3. We apply our framework to CompCert, a proven correct compiler for sequential

code. With minimal modifications of the CompCert code, we lift its specifica-

tions and proofs into CPMCompCert, a proven correct compiler that supports

concurrency. The semantic model of CPMCompCert is the CPM, and is com-

patible with the other parts of the top-to-bottom proof (in Coq).

Other contributions of the top-to-bottom correctness work. My proof of

compiler correctness for the CPM is strongly motivated by the work of my colleagues

showing that, at the source level, Concurrent Separation Logic is sound with respect

to the CPM; and at the machine-language level, the CPM is correct on multicore

machines. The entire work has been made public in our tech report [10]

(a) The Clight-instantiated CPM model is sufficiently expressive to capture user-

level reasoning principles, by giving (in Coq) a soundness proof for a mod-

ern concurrent separation logic (CSL) that supports first-class (dynamically

creatable) threads and locks and “ghost state” that can express concurrency-

interaction protocols. The CSL logic and its semantic model build on those of

the Verified Software Toolchain (VST) [3], a framework for proving correctness

of C programs in Coq, and it is demonstrated that users can apply the CSL

to their programs using VST’s existing proof automation system. The proof of

CSL-to-CPM was done by Jean-Marie Madiot, William Mansky, and Andrew

W. Appel, inspired by earlier work by Hobor, Zappa Nardelli, and Appel [17,18]

(b) Safety and correctness of a assembly-language CPM execution entails similar

properties for fine-grained interleaving, and any instruction-level interleaved

3

execution of the program is well synchronized. Therefore, all executions of

the program on a machine with relaxed memory semantics will have the same

behavior as in the CPM. This proof (in Coq) was primarily developed by Nick

Giannarakis with assistance from Lennart Beringer.

The idea behind the Concurrent Permission Machine is to lift the single-processor

operational semantics into a multiprocessor operational semantics, with multiple local

thread-states sharing a single memory. Our innovation is to add a per-thread permis-

sion map—a mapping from address to permissions—such that no two threads have

competing permissions at the same address. A thread is stuck if it tries to read address

a without read permission, or write without write permission—so races are impos-

sible in nonstuck executions. Acquiring a lock increases the thread’s permissions at

some set of addresses; releasing a lock decreases permissions. Which permissions are

increased or decreased? Intuitively, the lock controls access to some shared data; it is

those addresses. And finally, these permission maps have no physical manifestation

in the execution of a machine-language program—at the end we prove an erasure

theorem.

CPM versus race-freedom. It is conventional to ask, “is this execution data-race-

free?” As this property refers to the whole execution trace of a program we believe

that it is an overly complex invariant to propagate through a compiler-correctness

proof. Our Concurrent Permission Machine establishes a simpler property: permis-

sion coherence. From this, we prove that executions in the CPM are well synchro-

nized—nonatomic accesses are regulated by locks and the lock operations are used

properly. Owens [31, Theorem 2] and Batty [5, pg. 178, Theorem 13] have notions

of well synchronized programs for the TSO and C11 memory models respectively.

They prove that any behavior observed in a weakly consistent execution (of a well

synchronized program) can be observed in some sequentially consistent one.

4

Concurrency primitives. We demonstrate proofs for programs with semaphores.

These are more general than “locks” because they permit “daring concurrency” [30]

in which thread 1 may acquire lock A, pass the “hold” of A to thread 2 by releasing

lock B ; then after thread 2 acquires B it may release A. For example, our system

supports this “handshake” protocol:

while (1) { while (1) {

acquire(A); acquire(B); p is a shared array,

p[0]=x; y=p[0]; x and y are local variables

release(B); release(A);

} }
In conventional terminology, “semaphores” permit daring concurrency, but the thread

that releases a “lock” must be the same thread that acquired it. We will use the terms

interchangeably, to mean a semaphore that permits daring concurrency.

In this work we support: thread spawn, lock creation/destruction, lock acquire,

and lock release. We do not currently address lock-free concurrency, such as C11

atomic load and store operations; but our separation logic extends to atomic opera-

tions [29] and we expect that the CPM extends as well; see section 8.1.

Rich and usable specifications. Top-to-bottom correctness could be viewed as

three separate, or modular, results: CSL soundness, compiler correctness, and weak

memory correctness. A significant contribution of this thesis is, nonetheless, the

achievement of compatibility among the three results, rendering the specification of

each both strong enough to be useful and weak enough to be practical to prove. This

dichotomy is particularly relevant for the compiler specification that must support

the other two parts. At various points through development, we found the working

specification of the compiler making assumptions that were either too strong to be

established by the CSL, or too loose to support our results about weak-memory con-

sistency. For example, a bug in the definition of permission coherence (section 3.2.2)

5

made it impossible to commute pointer comparisons through the instruction inter-

leaving (section 7.1). Together, the CPM and the notion of coherence are major steps

in reaching this balance.

Why not use CSL directly? Why is it useful to define the Concurrent Permis-

sion Machine abstraction? Could we not use separation logic directly in reasoning

about compiler correctness, or in proving well-synchronization of executions? The

problem with that approach is that modern CSLs are quite complex: to represent

higher-order features such as function-passing and dynamic lock creation, they have

step-indexed models that manifest (in the logic) as modal operators and bifunctors;

to model resource invariants that specify protocol-correctness (and not just safety)

they have “ghost resources” in arbitrary partial commutative monoids. Step-indexed

models and ghost resources would unnecessarily complicate reasoning about compiler

optimizations (which may change the number of execution steps, and shouldn’t inter-

act with ghosts); and don’t seem helpful in proving well-synchronization properties.

The CPM abstracts all the higher-order separation logic into a first-order notion of

permission coherence, directly useful in lower-level proofs.

6

Chapter 2

Related Work

In this section we review related work, paying special attention to the developments

that bear technical similarities to ours.

Boehm wrote “Threads cannot be implemented as a library,” [7] explaining that

many compilers did optimizations that were unsafe for concurrency. He argued that

better language specifications were needed. This motivated our work. Our new result

shows that CompCert’s specification (with our improvements relating to permissions

and events) does permit threads to be implemented “as a library”, in the sense that

it decouples the compiler-correctness proof from the thread-library correctness proof.

2.1 Compiler specification

The Next 700 Compiler Correctness Theorems

Patterson and Ahmed [11] have laid out a comprehensive framework for compiler

correctness and compiler compositionally. They focus only on separate compilation,

but we can use their framework as a reference for the compositionally of our compiler

proof with concurrency.

7

Horizontal compositionally. The horizontal compositionally in concurrent pro-

grams comes from the parallel composition of threads, instead of linking modules. We

cannot express such compositionally syntactically, as the authors do with compilation

units (i.e., es ./ e′s), because threads are dynamic semantic objects instead of static

syntactic units. However, one of our innovations is to show that our concurrent seman-

tics (the Concurrent Permission Machine, section 3.2) supports language-independent

compositionally (the Hybrid Machine section 5.2.1).

Vertical compositionally. We introduce two types of simulation relations: for

thread local semantics MOIST simulations (section 4.5), which stands for Memory-

explicit, Observable, Injectable, Startable, Trace, simluations; and for full program

semantics CPM simulations (section 5.1). Both simulations compose transitively in

the vertical sense but the Patterson and Ahmed would not consider them “truly

vertically compositional”, because they expose the memory reorderings produced by

the compiler. We also require that, for all intermediate languages, a CompCert-style

memory can be produced from each state, even if the state is can have an abstract

representation of memory, or an enriched version of the memory. This approach is

slightly more compositional than similar compiler theorems that require all languages

to use the same memory model [24,35].

Interaction semantics and Logical Simulation Relations

Originally, CompCert-compiled programs could not share memory (especially pointer-

containing memory) with their contexts (such as system-calls to the O.S. or a hypo-

thetical concurrency library)—the CompCert correctness specification/proof was too

weak. To improve the compiler’s specification, Beringer et al. introduced Interaction

Semantics [6], reformulating CompCert’s operational semantics to permit shared-

8

CompCert 2.1 CompComp Added CompCert 3.2 Our work Added
Cminorgen 2796 5018 52% 2261 2431 7%

RTLgen 1475 4883 156% 1593 1690 6%
Tailcall 628 1769 125% 608 705 16%
Stacking 2906 6657 130% 2907 2964 2%

Table 2.1: Comparing lines of code for selected compiler passes in CompCert, Comp-
Comp and our work.

memory interaction. This was powerful enough to characterize system calls that read

or write the process’s memory, and was a step towards shared-memory concurrency.

Interaction Semantics was also a step towards separate compilation for CompCert,

and the ability to link with assembly language programs. To achieve fully modular

separate compilation and linking, Compositional CompCert (CompComp) [35] ex-

tended Interaction Semantics, strengthening CompCert’s compiler correctness theo-

rem with Logical Simulation Relations and structured injections that make the right

“contract” between separately compiled modules. Unfortunately, this stronger theo-

rem required substantial changes to the CompCert 2.1 correctness proof (table 2.1),

so the CompCert maintainers declined to merge it into the master branch. In our

current work, where we focus on concurrency rather than separate compilation, we

have found a lightweight modification to CompCert’s correctness specification, that

will be easy to integrate into the trunk and to maintain. Our new MOIST semantics

and simulations, which stands for Memory-explicit, Observable, Injectable, Startable,

Trace, are closely related to Interaction Semantics and Logical Simulation Relations

as we describe below.

Memory. Every intermediate language of CompCert uses states that contain a

memory of the same type mem; this homogeneity is useful to reason about the changes

in memory produced by compilation. Compositional CompCert (CompComp) makes

that decision explicit, by requiring all Core semantics, to act on pairs of cores (i.e.,

state without the memory) and memories. To develop CompComp’s we changed all

9

type signatures in CompCert, to match this design decision: while the step relation in

CompCert has type genv → state → trace → state →P in Compositional CompCert

it has type genv → core →mem → trace → core →mem →P .

Our MOIST semantics only require that a state can be mapped to a pair of core

and memory. Namely, every intermediate language only has to provide a function

get-mem: state →mem, to extract the memory from the state. In all current languages

of CompCert, this function is trivial. First, this approach minimizes the changes to

CompCert’s existing proofs since we don’t have to adapt the type of all semantics.

Second, our approach allows intermediate languages with richer notions of memory

such as the juicy memory [3] or other kinds of abstract state in [16], as long as they

can produce a get-mem.

Observable. By design, Core semantics [35] don’t take a step when they call an

external function; there is a function at-external that describes such states and an-

other after-external that reestablishes the state after the external function is executed

(e.g. writes the result in the right place), but there is no step between the two. In

essence, core semantics are precisely the small steps taken by the module/thread/core

executing; the other steps are introduced after semantic linking.

We believe that this semantics is very useful for semantic linking (and we use

core semantics to build our concurrent machine), but it is not the best model for

compilation. To adapt compiler correctness to the core semantics, Stewart et al. [35]

define logical simulation relations which are quite complicated for the at-external and

after-external cases. These relations form a rely-guarantee between callers and callees

which become pretty complex when both are being compiled. Our MOIST simulations

and semantics, together with our technique to Compile One At a Time (COAT,

section 5.2), avoid that complexity.

10

Like Core semantics, MOIST semantics makes states that call external functions

observable, as described by a function at-external; however, MOIST semantics still

step from those states (where Core semantics prohibits a thread’s state from stepping

at an external call). Our semantics can take one single ’big step’ representing the

entire execution of the external call, just like CompCert. In essence, MOIST semantics

represent the thread/module local view of an execution, where internal steps are taken

as small steps and external steps as big-step. This view is consistent with CompCert’s

semantics.

An important feature of MOIST semantics is that it requires no changes to the

step relation of each intermediate language of CompCert; we only need to define

at-external to observe the external calls and their arguments. In addition, we can

derive a core semantics from a MOIST semantics, but not the other way around. We

use this transformation to derive core semantics for Clight and Assembly, which is

what we use to build our concurrent machine.

Moreover, MOIST simulations avoid having the complex relations for at-external

and after-external; instead, we only need two clauses that say that (1) the compiler

doesn’t remove external function calls from executions and (2) the compiler can’t

change the number of steps taken by an external function call. This simplicity is

enabled by the COAT technique (section 5.2), which allows us to model the context

as external function calls, instead of parts of the program that are also compiling.

Startable. The MOIST semantics’ entry-point predicates are very similar to Com-

positional CompCert’s initial-core, with two main difference. First, Compositional

CompCert doesn’t really pass arguments on the stack (which means that calls to

main(argc,argv) on x86-32 and other stack-based architectures are not modelled accu-

rately). Interaction semantics [6] is designed to link any module of any language and,

because different languages treat arguments differently, the authors decided to unify

11

all semantics with an abstract calling convention. We avoid that idealization and

provide concrete semantics for argument-passing, including passing arguments on the

stack when calling external functions. Second, thanks to our COAT technique, the

simulation diagram for initial states in MOIST simulations, is much simpler than the

one in Logical Simulation Relations (as explained in section 4.5)

Lightweight separate compilation of CompCert

SepCompCert [24] is another enhancement of CompCert that supports syntactic link-

ing of modules compiled with the same compiler (i.e., CompCert). The SepCompCert

framework does not use any notion of semantic linking and, in particular, does not

have semantics for linking modules in different languages. However, the development

of SepCompCert is significantly simpler than that of Compositional CompCert and

has since been adopted by the developers of CompCert in the trunk. SepCompCert

does not address concurrency; but its success in finding a solution to separate compi-

lation with such lightweight changes to CompCert itself inspired us to find a solution

to concurrency with lightweight changes to CompCert.

External modules as internal steps. Compositional CompComp and SepCom-

pCert have very different semantics for separately compiled modules. As we described

above, the former uses interaction semantics for each module such that other modules

are treated as external functions. Only the linker gives a whole-program semantics.

The latter only supports syntactic linking, so the only semantics is that of the whole

program. In this case, functions defined in other modules execute normally as inter-

nal steps and there is no need for interaction semantics. The upside of the second

approach is that it allows to reuse most of CompCert’s proofs. On the other hand,

SepCompCert can’t reason about modules compiled with other compilers, especially

if the module is not written in C.

12

The present work is not about separately compiled modules but about synchro-

nization libraries and threads running in parallel. However, we believe our MOIST

semantics strikes a balance between the two approaches described above. We treat

the execution of the context as external functions, but we use CompCert’s existing

machinery for those. More precisely, MOIST semantics are thread-local views of the

execution of the whole program, executing the context with “big-step” semantics,

just like CompCert treats external functions. This approach allows us to reuse most

proofs in CompCert. On the other hand, we can also derive an interaction semantics

from a MOIST one and we can “link” them together in the Concurrent Permission

Machine, to give precise small-step semantics for the whole program.

Optimizations in RTL. SepCompCert supports the linking of modules that have

been compiled with different levels of optimization. Without a notion of semantic

linking, the authors can only hope to achieve that if every ”optional” optimization

is from an intermediate language to the same intermediate language, and no new

optimizations are added that introduce new intermediate languages. Fortunately, all

optional optimizations in CompCert are done in the RTL language, but any future

optimizations that break this rule will not be supported by SepCompCert.

We are working with threads and not separately compiled modules, however our

COAT technique models compilation as if each thread were being compiled separately.

Part of the process is to define Concurrent Permission Machines with threads in

different languages (Hybrid Machines, section 5.2). Thanks to this multi-language

semantics, we don’t need to make any assumptions about optional optimizations.

2.2 Compiler models supporting concurrency

Podkopaev et al. [32] have proven a compiler correct with respect to the promising

semantics of Kang et al. [23], which features a high-level relaxed model of memory.

13

They compile down to ARMv8-POP and later to POWER, ARMv7 and ARMv8 [33].

Their work focuses on the complexity of relaxed memory models, but does not reuse

existing sequential compilers and has not been yet connected to a full optimizing

compiler. We would be interested to explore a combination of our work, to leverage

the existing CompCert compiler, and their work, to include other synchronization

atomics.

Dodds et al. [13] developed an automatic checker for compiler optimizations that

supports relaxed memory models. Our trace-preservation simulations mirror their

denotation-preserving relation. However, they consider observations for all possible

contexts while we only consider permission-coherent ones (subsection 3.2.2). In this

way we can verify transformations of code that manipulates shared memory that they

cannot.1

CompCertTSO [34] is a verified optimizing C compiler for programs that use

atomic memory operations on x86 TSO. These atomics can be used to write high

performance lock-free algorithms. But their semantics bakes TSO atomics into a

fork of CompCert 1.5. We see no path forward for extending it to more relaxed

memory architectures such as Power. In addition, it’s a substantial modification to

standard CompCert2 that is incompatible with the CompCert’s correctness proof for

sequential programs and thus impractical for the CompCert team to adopt. Our ap-

proach generalizes to many architectures, and is much more compatible with standard

CompCert.

1For example, their tool cannot verify l := load (x); store (x,l) l := load (x).
2The paper [34] reports 86K lines of Coq, compared with 55K lines for the base CompCert

1.5 sequential-language compiler. The paper does not report how many lines were left unchanged;
supposing it were 40K, then the ratio of new-or-modified lines (46K) to old lines (55K) would be
over 80%.

14

Certified concurrent abstraction layers

CCAL [16] is a toolkit to support concurrency in the Certified Abstraction Layers

framework [15]. The approach is general purpose but the design is driven for verifi-

cation of small operating system kernels and thus has some limitations, as explained

below.

CPUs and threads. CCAL makes an explicit distinction between threads in the

same CPU and threads in different CPUs, potentially supporting optimizations that

exploit these facts. We consider that a commendable achievement. However, we

consider that such distinctions are only useful in system design, where the “user”

wants to have tight control over the contents of cache. General software programmers

shouldn’t need to worry about what threads are sharing a CPU and, in reasoning

about the correctness of concurrent programs, it can be appropriate to abstract this.

Our system abstracts all threads in such a way that it doesn’t matter on what CPU

they are running.

Shared memory. In CCAL, shared memory concurrency can only be achieved

through external function calls. That is, reading or modifying shared memory can

only be done through shared primitive calls which are specified in Coq and represent

the behavior of some external modules that handle shared memory access. In that

way, different threads in CCAL can interact with “shared memory”, through function

calls, but one cannot write code that directly manipulates shared memory. Our Con-

current Permission Machine also uses primitive functions to represent synchronization

operations, but on only those functions that would normally be part of a concurrency

library (such as pthread-mutex-lock or pthread-mutex-unlock in pthreads). Between

the primitive calls to acquire and release, our programs are allowed to manipulate

shared memory freely.

15

Sharing stack-allocated variables. The Certified Abstraction Layers framework

does not support creating pointers to stack-allocated variables. In particular, threads

cannot share stack-allocated variables. We don’t impose such a restriction.

CASCompCert

Jiang et al. [20] have presented a framework for reasoning about compilers supporting

concurrency. The authors apply their framework in CASCompCert, another extension

of CompCert that supports race-free concurrent Clight programs. We find it encour-

aging that we have independently developed several concepts that closely resemble

those in CASCompComp. However the two systems differ in significant ways:

Footprints. One of the main contributions of CASCompCert is to define footprints

for every language, showing the locations accessed during execution, and to provide

simulations that preserve these footprints. This notion of footprint is closely related

to the effects introduced by Stewart et al. [35], except that footprints also include

read accesses to memory. We completely avoid using footprints or effects by leverag-

ing the power of memory permissions, which are already defined in CompCert and

proven to be preserved by the compiler. In fact, for well defined languages (defined

below), the permissions of a thread are a superset of its footprint. As we discuss in

subsection 3.2.2, we prefer to reason about permission coherence instead of data race

freedom and we can derive DRF preservation from permission-coherence preservation.

Sharing stack-allocated variables. The Coq development of CASCompCert does

not support cross-module escape of pointers to stack-allocated variables. The authors

describe how they would support it, which largely follows the approach of CompComp

[35]—that is, using heavyweight structured injections. Our framework supports cross-

thread/cross-module escape of pointers to stack-allocated data structures, without the

need of structured simulations or extra infrastructure.

16

Well defined languages. CASCompCert requires that languages are well defined,

which means their execution respects the memory footprint; in other words, the pro-

gram only reads locations in the readable set and modifies locations in the writable

set. We independently developed a similar notion which we call, more explicitly,

memory semantics. Thankfully, because of our COAT technique, we only require

that the source and target languages (Clight and assembly) are a memory semantics.

This simplification has two benefits: first, it simplifies the proofs required of the inter-

mediate languages and, second, it allows intermediate languages that are not memory

semantics/well defined (as long as the compiler eventually removes all behavior that

does not respect the memory interface).

Memory model. The CompCert memory model assumes that consecutive alloca-

tions along an execution produce consecutive blocks of memory. The CASCompCert

framework departs from this allocation model since changing allocations in one thread

will change the execution of other threads. The authors provide a new memory model

and present a bijection between the two models to reuse some of the the existing

proofs in CompCert. Our COAT technique ensures that a compiler can reason about

a thread as if the context (i.e. other threads) is not changing. In this way we can

directly use the allocation order of CompCert and we can use the existing memory

model; however, our concurrency semantics (CPM, section 3.2) could support either

model.

Synchronization primitives. Just like CASCompCert, we support benign races,

such as lock acquire and lock release, as external modules that threads, written

in the sequential languages, can call as functions. We go further to support syn-

chronization primitives to create new threads (i.e., pthread-create), and to convert

regular memory locations into semaphores and back (i.e. pthread-mutex-init and

pthread-mutex-destroy).

17

Reasoning about correctness. The design of our Concurrent Permission Machine

is driven by its connection to a practical separation logic that can prove programs

correct and permission coherent in our semantics. In contrast, the semantic model

of CASCompCert is very reasonable but not known to be practical for verification of

programs.

Weak cache consistency. Another motivation for our design is to connect, at the

assembly level, to a reduction theorem (Theorem 7.2.3 and Theorem 7.2.6). That is,

a proof that a correct program in our assembly semantics (which is, by definition,

permission coherent) will run correctly in a machine with weak cache consistency,

such as TSO. The CASCompCert compiler presents a notion of data race freedom

and safety for assembly programs, but no real connection to realistic memory model.

Modifications to CompCert. CASCompCert, together with the modifications

necessary to support stack-allocated variables, are just as heavyweight as CompCom-

pCert, and therefore are impractical. We have produced a practical way of doing

concurrent compiler correctness, with little modification to CompCert.

Separate compilation. In section 5.2.3 we describe how to extend our techniques

to separate compilation and we believe that our framework can support concurrency

and separate compilation. CASCompCert, has already produced a machine checked

proof for concurrency and compilation.

18

Chapter 3

Top to Bottom structure

The goal of this work is to connect the proofs of correctness of a source language,

all the way to its correct execution in a real machine. We do this for a rich logic

(CSL) to reason about a real language (C, via its high-level intermediate language

Clight), through a realistic optimizing compiler (CompCert) and executing on a real

weak-cache-consistent multicore processor (X86). Each of these parts has its own

intricacies, so we aim to make our work modular.

The programmer shouldn’t have to know anything about the compiler or the

computer architecture. She wants to use the Dijkstra model of semaphores controlling

access to shared data, perhaps using Hoare-style monitors, or using other patterns

not limited to a simple mutex. A mutex is a semaphore that is always unlocked by the

same thread that locked it; we also support more general synchronization patterns

in which one thread acquires a semaphore that some other thread then releases.

The programmer also wants to program as if in cooperative concurrency: a thread

executes until it performs an explicit synchronization operation (such as semaphore

acquire or release), and then some other thread might execute. She should not need

to reason about interleavings of instructions. Not only are interleavings difficult to

19

think about, but they are unsound: interleavings connote sequential consistency, and

today’s machines are not sequentially consistent.

The compiler designer shouldn’t have to know anything about the concurrency

libraries. She would like to pretend that there’s only a single thread, and would like

to ignore the nasty problem of weak cache consistency. Similarly, the compiler writer

shouldn’t need to know the details of the logic used to prove programs correct. He

only needs to know a concrete semantics for the compiling languages.

The Concurrent Permission Machine is the connecting thread of this top-to-

bottom concurrency result; it provides the semantic interface to modularly compose

the three main components of the framework. We model a concurrent program as

a list of threads, each with a local-variable (or register-bank) state, each with a

permission-map (partial function from address to read/write permission), all sharing

a single memory. The machine is equipped with a schedule determining the order of

thread execution.

The structure of the entire project is as follows:

(top) Any C program, proven correct in Concurrent Separation

Logic, runs correctly in the CPM. (Work by Madiot, Mansky,

Appel)

(Compiler) The CompCert compiler preserves correctness of compiled pro-

grams with respect to the CPM semantics. (The contribution

of this thesis)

(bottom) Safe executions of the CPM, in the compiled program, run cor-

rectly on X86 machines. (Work by Giannarakis and Beringer)

Putting it all together, our main theorem is a top-to-bottom preservation of cor-

rectness,

20

Theorem 3.0.1 (Informal Main Theorem). A correct C program, compiled by Comp-

Cert, runs safely in an X86 machine.

In the result we present here, we go down as far as assembly language, not ma-

chine language; this is because no one has formalized the assembly-to-machine level

of CompCert. The preservation of safety we prove includes: no execution of unde-

fined instructions or loading from inaccessible memory; no violations of the spinlock

well-synchronized property. Owens [31] proved that a spinlock-well-synchronized ex-

ecution behaves correctly on a TSO (total-store-order) weakly consistent multipro-

cessor; Giannarakis has generalized Owens’s definition of spinlock-well-synchronized

to a stronger property that ensures correct execution on other weakly consistent ar-

chitecture (see section 7.2).

In addition, we believe our results can be extended to correctness, meaning that

any finite prefix of the trace of input-output communications satisfies a specification;

the compiler is shown to preserve this traces (up to memory rearrangements by the

compiler, section 4.1). In subsection 3.1.1 we formalize how this preservation of traces

translates to correctness, but this has not yet been implemented in Coq.

In the rest of this chapter, we will present the details of the main theorem and

describe the CPM formally. In chapters 7 and 6, we describe the parts of the top-to-

bottom proof that are not developed in this thesis. The entire work has been made

public in our tech report [10] and authors who wish to cite the results described in

chapters 7 and 6 should cite that report rather than this thesis.

3.1 Main theorem

In this subsection we will describe the main theorem of the top-to-bottom work. We

present two top-to-bottom theorems for preservation of safety and preservation of

correctness; the former is mechanized in Coq and the second is formally proven in the

21

following subsection, but has not been mechanized as part of this thesis. We state the

theorems in two parts in the first part we state the theorems and the proofs; in the

second part, we describe the Coq implementations of the theorem and the technical

details of the definitions.

3.1.1 Formal definitions

Safety

The notion of safety we preserve means no execution of undefined instructions or

loading from inaccessible memory and no violations of the spinlock well-synchronized

property.

Theorem 3.1.1 (Main Theorem, formal version of Theorem 3.0.1). Given a source

program P satisfying a CSL specification S, and an x86 assembly language program

Q obtained by CompCert compilation of P: Any execution of Q is safe (no undefined

behavior) and well synchronized.

Proof of Main Theorem. The full proof has been mechanized and can be found in the

accompanying Coq code. The rest of the thesis expands on the different parts of the

proof. The Coq statement of the theorem is presented in fig. 3.1 �

Correctness

Each part of the top-to-bottom proof (i.e., CSL soundness, compiler correctness and

well-synchronization proof) is stronger than preservation of safety and, as we show

here, can be composed to show a preservation of correctness. The proof presented

below is not mechanized as part of this thesis and is left as future work.

Threads communicate by releasing and acquiring locks that control access to data

regions. In terms of Concurrent Separation Logic, we say a program is correct if

22

1 Theorem top2bottom-correctness:
2 (∗ C program is proven to be safe in CSL∗)
3 ∀ (main:AST.ident), CSL-correct C-program main →
4
5 (∗ C program compiles to some assembly program∗)
6 CompCert-compiler C-program = Some Asm-program →
7
8 (∗ Statically checkable properties of ASM program ∗)
9 ∀ (STATIC: static-validation Asm-program main),

10
11 (∗ For all schedules, ∗)
12 ∀U : schedule,
13
14 (∗The asm program can be initialized with a memory and CPM state∗)
15 ∃ (m : mem) (cpm : CPM),
16 initial-state Asm-program STATIC cpm m ∧
17
18 (∗ The assembly language program
19 is correct and well-synchronized ∗)
20 spinlock-safe U cpm m.

Figure 3.1: Coq definition of our main theorem theorem 3.1.1.

the data in such regions always satisfies an appropriate predicate—the resource in-

variant—when the corresponding locks are released. Therefore, any observer of the

program—a thread who communicates with it by acquiring and releasing locks—will

see only output that satisfies this correctness specification. Because our CSL has the

appropriate partial-commutative-monoid ghost variables [21], resource invariants can

specify general protocol-correctness properties.1

To model correctnes and not just safety we characterize the multithreaded pro-

gram programs by its interaction with its context or an observer. We assume that it

will interact with its context by acquiring and releasing a distinguished set of locks

controlling some resources in the program. We assume these locks already exist at

the moment main starts, and the program is allowed to synchronize with them.

1Resource invariants in the original Concurrent Separation Logic [30] each individual lock release
satisfies locally a resource invariant, but modern ghostly CSLs [21, 29] can connect together the
entire history of interactions.

23

We summarize a program’s output by monitoring the data controlled by locks

as they are released, and a program’s input via data controlled by locks acquired.

The event trace of locks acquired/released, and the contents of memory transferred

by those locks, we preserve all the way from the top level (CSL) to the bottom

level (assembly) so that we can state correctness properties of the assembly-language

execution.

Theorem 3.1.2 (Correctness preservation). Let P,S and Q be given as in theo-

rem 3.1.1. For any trace prefix TQ of an execution of Q, there is an execution of P

with trace TP , which is equal up to some injection (TP
j
↪→ TQ). In particular, any

integer values transferred by releasing locks are equal in both programs.

Moreover, for every lock l , defined in the precondition of main (in S) with some

invariant R, every time l is realeased (in TP and TQ), the transferred resources satisfy

R.

Proof. We look at how every part of the top-to-bottom work preserves traces (up to

injection).

The instruction interleaving proof in section 7.1 constructs a new coarse-grain

schedule and a new execution but preserves all synchronization operation in the same

order. The transferred resources of each synchronization oparation are also the same

up to some reordering of memory.

The CPM simulations definition 5.1.1, given by the the compile correctness spec-

ification, preserve synchronization operation in the same order and the transferred

resources are equal up to the injection given by compilation.

The CSL proof, that P satisfies S , includes proving that every lock release satisfies

the invariant of the lock. For any lock defined in the precondition of main that

invariant is exactly the one in S . �

24

3.1.2 Coq definitions

Figure 3.1 shows the Coq statement of our main theorem 3.1.1. We show how the

code implements the theorem and explain the code below:

In what follows we explain how the code in fig. 3.1 implements theorem 3.1.1.

• “Given a source program P satisfying a CSL specification S ...” (lines 2-3):

CSL-correct C-program: States that the program has been proven correct in CSL

for some specification written in concurrent separation logic. This definition

corresponds to the judgment Γ `CSL Ψ : Γ′ as described in section 6.1. We use

CompCert’s definition of program.

• “... and an x86 assembly language program Q obtained by CompCert compila-

tion of P ...” (lines 5-9)

– CompCert-compiler: States that the CompCert compiler translates

C-program into the assembly program Asm-program.

– static-validation: We validate the translation by statically checking a couple

properties of the translated program Asm-program. All of them are known

to be preserved by the compiler, but the fact that CompCert preserves

them has not yet been proven in Coq. We leave removing these conditions

as future work. These properties are:

∗ limited-builtins: The program only uses the builtins we currently sup-

port: memcopy, mem-alloc, mem-free. These are the only builtins that

CompCert inserts during compilation.

∗ valid-mem: The initial memory has no dangling pointers.

∗ ge-wd: The global environment is allocated in the initial memory.

∗ main-ident-correct: The assembly program has an entry function

named main.

25

• “...Any execution of Q is safe (no undefined behavior), well synchronized and

correct.” (lines 11-20)

– initial-state: The program can be initialized with the initial memory m and

the initial CPM cpm.

– spinlock-safe: For all executions (and for all schedules, quantified in line

11), the initial state is safe and well synchronized, as defined in section 7.2.

3.2 The concurrent permission machine

The Concurrent Permission Machine is a language-agnostic operational semantics

for concurrent programs. We use the CPM as our interface, at the C source level,

between proofs of source program properties and the operational semantics of the pro-

gramming language; we use it as the operational model that allows modular reasoning

about compiler proofs ; and we use it as our interface, at the x86 assembly language

level, between permission safety (derived from those proofs) and the well-synchronized

property.

3.2.1 Overview

The main idea of a Concurrent Permission Machine is a simple one: annotate the

small-step operational semantics–of C, of assembly language, or of any intermediate

language–with per-thread permissions at every address. A thread is stuck if it tries

to read address a without read permission, or write without write permission. No

two threads ever have conflicting permissions to the same address, so races are impos-

sible. Acquiring a lock increases the thread’s permissions at some set of addresses;

releasing a lock decreases permissions. Which permissions are increased or decreased?

Intuitively, the semaphore controls access to some shared data; it is those addresses.

Of course, these permissions have no physical manifestation in the execution of a

26

machine-language program, so we prove an erasure theorem. But we must wait until

the very bottom level (of our proof) before erasing them, so as to be able to prove

the kind of race freedom necessary on a weak-cache-consistent multicore processor.

We model a concurrent program as a list of threads, each with a local-variable (or

register-bank) state, each with a permission-map (partial function from address to

read/write permission), all sharing a single memory. The program is equipped with

a schedule determining the order of thread execution.

To enable instantiations to C and assembly (or other languages), CPMs are built

parametrically on top of interaction semantics [6], a common abstraction for lan-

guages operating over shared CompCert memories, each with its own code repre-

sentation, thread-local state, and operational relation for internal steps (To support

our proofs, we further developed Beringer et al.’s interaction semantics into MOIST

semantics; see chapter 4). For CompCert′s languages (i.e., C and Asm), we use

Ψ `CompCert 〈σ,m〉
ε
7→ 〈σ′,m′〉 to refer to this small-step relation, where Ψ is the

program, σ and σ′ are thread-local states (a thread-local variable store in case of C,

a register bank in case of assembly), m,m′ are CompCert memories, and ε is a (pos-

sibly empty) trace of events that denote the nonatomic memory accesses performed.

We use it to state theorems about the absence of races between nonatomic accesses.

Thread-local execution proceeds ad infinitum, reaches a Halted state, or reaches an ex-

ternal function call. In the latter case—marked at external—the CPM takes control,

for example by executing a concurrency primitive (see below), and scheduling other

threads. Internal execution is resumed by the primitive after external, decorated by

the (optional) return value.

The CPM supports external function calls for dynamic creation of threads and

locks; thus we have a subset of C11 concurrency. A program can make these external

function calls:

struct lock;

27

void spawn (void ∗func, void ∗arg); /∗ spawn a thread ∗/

void makelock(struct lock ∗p); /∗ initialize a lock ∗/

void freelock(struct lock ∗p); /∗ decommission a lock ∗/

void acquire (struct lock ∗p); /∗ acquire a lock ∗/

void release (struct lock ∗p); /∗ release a lock ∗/

To specify the gain or loss in access rights that a thread experiences when mak-

ing such external calls, CompCert and CPMs mark locations with permissions—

instrumentation values that may take (in increasing order of permissiveness) levels

None < Nonempty < Readable < Writable < Freeable [27]. In fact, CompCert’s mem-

ory model associates permissions to each location that indicate the running thread’s

current access rights. A thread’s small-step relation is stuck whenever a memory op-

eration (such as load, store, free) is not supported by the thread’s permission at the

location in question. Thread-local execution does not alter existing permissions, with

the exception of lowering it to None during stack frame deallocation. In contrast,

external calls (and specifically, the concurrency primitives) may modify the permis-

sions arbitrarily (though not greater than the max permissions). The CPM regulates

permission transfers between different threads, maintaining permission coherence (in

particular: the absence of conflicting write permissions by different threads), but also

preserving safety of individual threads as these are compiled.

Example. Before moving on to the precise definitions of the CPM, let’s attempt a

first approximation of how the rule for Release should work. We review this example

in the next section and the correct rule is shown in fig. 3.3.

The multithreaded CPM is guided by a schedule f; we write i · f for a schedule

in which the ith thread is next to execute. If there are (so far) k spawned threads,

the machine maintains a list ®s of k thread-states (local-variable sets) and a list ®π

of k permission-maps; all threads share the memory m. To release a lock a, the

28

current thread i must be at-external, ready to call Release with argument a. The

machine must make sure that the lock is currently locked (m(a) = 0) and unlock it

(m[a 7→ 1] = m′).

at external si = Some(Release,a)

m(a) = 0 m[a 7→ 1] = m′

guess δ ®π[i 7→ δ/πi] = ®π′

Ψ `CPM〈i · f, (®s, ®π),m〉 7→ 〈f, (®s
′, ®π′),m′〉

(simplified release)

What permissions should the release transfer? Suppose a controls access to the linked

list rooted at address p. Release should give up all permissions to that linked list—

they are transferred to the lock. Unfortunately, different linked lists can be stored

at p, so the data protected by a can be different every time the lock is released. In

concurrent separation logic, we describe this with a resource invariant R; in any given

memory, only one set of addresses2 can satisfy R; this determines which addresses

to transfer. In the top-to-bottom proof an oracle is constructed from the CSL proof.

In the CPM the data is given by the oracle as a guess δ. The CPM updates the

permissions of the current thread, to contain the old permissions updated with the

permissions transfered δ/πi .

3.2.2 Formal definition of the CPM

The CPM operates over states of the form 〈f, (®s, ®π,L),m〉, where

f is a (cooperative) schedule, a finite sequence of natural numbers indicating

which thread to run next. We approximate infinite computations by quantifying

over all finite prefixes.

2In general we do not require precise resource invariants, but the linked-list predicate happens
to be precise.

29

si = Blocked(σ) at externalσ=Some(Acquire,a) m |π2i
(a) = 1

m[a 7→ 0] = m′ guess δ δ/πi = π′ πi ⊕ L(a) = π′

®s[i 7→ Resume(0, σ)] = ®s′ ®π[i 7→ π′] = ®π′

L[a 7→ Some ∅] = L′

Ψ `CPM 〈i · f, (®s, ®π,L),m〉
Acqia δ
7→ 〈f, (®s′, ®π′,L′),m′〉

(acquire)

si = Blocked(σ) at externalσ = Some(Acquire,a) m |π2i
(a) = 0

Ψ `CPM 〈i · f, (®s, ®π,L),m〉
AcFia
7→ 〈f, (®s, ®π,L),m〉

(acqfail)

si = Blocked(σ) at external σ = Some(Release,a) m |π2i
(a)=0

m[a 7→1]=m′ ®s[i 7→Resume(0, σ)]=®s′ L(a) = ∅
guess δ guess δL δL/∅ ⊕ δ/πi = πi
®π[i 7→ δ/πi] = ®π′ L[a 7→ Some(δL/∅)] = L′

Ψ `CPM〈i · f, (®s, ®π,L),m〉
Relia δ δL
7→ 〈f, (®s′, ®π′,L′),m′〉

(release)

si = Blocked(σ) at external σ = Some(mkLock,a) ®s[i 7→Resume(0, σ)]=®s′

πi [a 7→ (Nonempty,Writable)] = π′i ®π[i 7→ π′i] = ®π′

L(a) = ∅ L[a 7→ Some None] = L′ m |π2i
[a 7→ 0]=m′

Ψ `CPM〈i · f, (®s, ®π,L),m〉7→〈f, (®s
′, ®π′,L′),m′〉

(make lock)

si = Blocked(σ) at external σ = Some(freeLock,a) ®s[i 7→Resume(0, σ)]=®s′

guess p πi [a 7→ (p,None)] = π′i ®π[i 7→ π′i] = ®π′

L(a) = Some None L[a 7→ None] = L′

Ψ `CPM〈i · f, (®s, ®π,L),m〉7→〈f, (®s
′, ®π′,L′),m′〉

(free lock)

si =Blocked(σ) at externalσ = Some(Spawn(f,a)) |®s | = j
®s[i 7→Resume(0, σ), j 7→Start(f,a)] = ®s′

guess δ guess δ′ δ/π = π′

δ′ ⊕ π′ = π ®π[i 7→ π′, j 7→ δ′/{}] = ®π′

Ψ `CPM 〈i · f, (®s, ®π,L),m〉
Spaij
7→ 〈f, (®s′, ®π′,L),m〉

(spawn)

Figure 3.2: Concurrent Permission Machine, synchronization steps.

30

si =Start(f,a) ®s′=®s[i 7→Run(initialCore(f ,a))]

Ψ `CPM 〈i · f, (®s, ®π,L),m〉 7→ 〈i · f, (®s
′, ®π,L),m〉

(start)

si = Resume(v, σ) afterExternal(σ,v) = σ′ ®s′ = ®s[i 7→ Run(σ′)]

Ψ `CPM 〈i · f, (®s, ®π,L),m〉 7→ 〈i · f, (®s
′, ®π,L),m〉

(resume)

si = Run(σ) Ψ `CompCert

〈
σ,m |π1i

〉
ε
7→ 〈σ′,m′〉

®s′ = ®s[i 7→ Run(σ′)] ®π′ = ®π[i 7→ (Cur(m′), π2i)]

Ψ `CPM〈i · f, (®s, ®π,L),m〉
εi
7→ 〈i · f, (®s′, ®π′,L),m′〉

(core)

si = Run(σ) at external σ = Some(f , ®x) ®s′ = ®s[i 7→ Blocked(σ)]

Ψ `CPM 〈i · f, (®s, ®π,L),m〉 7→ 〈f, (®s
′, ®π,L),m〉

(suspend)

(si = Blocked(σ) ∧ at external σ = Some(Exit,)) ∨ ¬(0 ≤ i < |®s |)

Ψ `CPM 〈i · f, (®s, ®π,L),m〉 7→ 〈f, (®s, ®π,L),m〉
(stutter)

Ψ `CPM 〈nil, (®s, ®π,L),m〉 7→ 〈nil, (®s, ®π,L),m〉
(done)

Figure 3.3: Concurrent Permission Machine: administrative and internal steps.

®s is a list of marked local states of the CompCert language the CPM is instan-

tiated by; si ∈ {Start(f ,a),Run(σi),Blocked(σi),Resume(vi , σi)}, where σi is

the ith thread’s local state. Start(f ,a) denotes that the thread should start

by calling function f with arguments a; Run(σi) denotes that the thread is in

the middle of sequential execution; Blocked(σi) denotes that the thread has

called a synchronization primitive, and is waiting for the CPM to execute it;

Resume(v, σi) means that an external call has returned value v to be fed back

to the thread. A halted thread (one that has returned from its initially spawned

function) is recognized by a halted predicate.

31

®π is a list of permission map pairs, one pair for each thread (the components of

these pairs are described below).

L is a function from address to option(option(permission)), indicating the state of

each lock: L(a) = None means that a is not a lock. Some(None) means that a

is locked—permissions associated with the lock a are hence installed in the Cur

component of m. Some(Some π) means a is unlocked and π is the permission

that a thread would obtain by acquiring a.

m is the global memory, shared by all threads.

The CPM employs judgments Ψ `CPM 〈f, (®s, ®π,L),m〉
ε
7→ 〈f′, (®s′, ®π′,L′),m′〉, as

shown in fig. 3.2 and fig. 3.3.

Without ®π and L, it would be a rather conventional model of a cooperative-

concurrent machine, with threads ®s operating on a memory m. The type of thread-

states s contains local variables and control-stack. The initial state has a single thread

(at the beginning of the main function) and an empty lock pool.

Each thread si has its own pair πi of (finite) permission maps: for each address l ,

πi (l) contains a data permission π1i (l) and a lock permission π2i (l). When scheduled,

the thread’s data permissions are installed as the current permission in CompCert’s

memory (operation m |π1i
in rule core), thus regulating the dynamic access to shared

locations.3 In contrast, the thread’s lock permissions are never installed in the Comp-

Cert memory of a running thread, but employed by the CPM to decide whether a

thread’s lock requests can be granted; in this context, Readable permission grants

“permission to acquire/release” and Writable means “permission to decommission

(freelock) the lock back into ordinary data”. In the context of both data and lock

permissions, Readable can be thought of as “Shared” and Writable as “Exclusive”:

3The installation of permission maps happens at the granularity level of instructions / individ-
ual execution steps; this permits the reuse of the CPM framework in the setting of fine-grained
interleaving, as described in section 7.1.

32

data is read-only when shared and can be written when held exclusively, while locks

can be acquired and released when shared and can only be turned back into data

when held exclusively.

The lock pool L maps each address a to either None (not a lock), Some(∅) (when

the lock is locked) or Some(π) (when the lock is unlocked and holds a resource whose

permission map is π).

As in O’Hearn’s original CSL [30], resource invariants R specify the memory re-

gions (and assertions on them) regulated by locks. As in Gotsman et al. [14] and

Hobor et al. [18], locks are dynamically creatable at addresses in memory; as in Ho-

bor et al., resources are higher-order in that they may predicate over other locks and

their resource invariants, or even over this lock and its resource invariant. To support

higher-order impredicative resource invariants, we use a step-indexed model of CSL,

but we want to avoid putting step-indexed resource invariants into the CPM itself. To

avoid the use of higher-order resource invariants in the CPM, the CPM uses guesses

δ, partial permission maps that specify which new permissions should be installed for

every address in their domain. We write δ/π to mean a permission map in which δ

“overrides” π. Like π, each δ is a pair of data and lock permission, at each address.

To find δ without knowing R (in particular: concurrency operations operating

on the same lock may yield different permission transfers at different points in the

execution, as footprints are dynamic), the CPM uses angelic nondeterminism. A

program is safe if there exists any sequence of angelic guesses δ such that the program

does not get stuck. Chapter 6 describes how we prove that this sequence of guesses

must exist: in particular, any CSL proof entails a sequence of guesses for which the

CPM is nonstuck.

In two nonstuck executions of `CPM from the same start state but with different

guesses δ, the values loaded and stored (and passed as parameters to functions) are the

same. Guesses δ affect only the permissions of the memory. Insufficient permission

33

can cause a stuck state, but extra permissions do not change values loaded or stored.

Therefore the angelic nondeterminism does not affect any observable property of a

nonstuck execution.

The operator m |π1i
sets the current permissions of m to the data permission-map

of the ith thread; respectively, m |π2i
sets m to the lock permission-map.

We write π⊕ π′ = π′′ to indicate a kind of join on permission maps; it’s a relation,

not a function, because Readable⊕Readable could “add up” to Readable or Writable.

The annotation ε is an event trace, recording nonatomic memory operations, ac-

quires and releases of locks, creation and destruction of locks, and creation of threads.

Later, we’ll use this ordered sequence of operations to define well-synchronized exe-

cutions.

Example. Following up from the example in the previous section, we address the

changes in the release, from the simplified version presented before: the ith thread’s

state is Blocked(σ), which signals to the machine that the external function has not

been executed; when loading from m we adjust the current permissions of m to make

the lookup permissible according to the threads’ lock permissions (π2i); the CPM

signals that the release has been executed by setting the ith thread to Resume(0, σ);

we also have to guess δL representing the new resource held in the pool of unlocked

resources; we make sure that the new permissions in the lock pool (δL/∅) and in the

thread (δ/πi) ”add up” to the old permissions in the thread (πi); we require that the

guessed δ, δL have not caused competing permissions; we modify L at address a to

hold δL/∅.

One might think that δ must uniquely determine δL; why do we need both?

Remember that π ⊕ π′ = π′′ is notation for a relation, which is not deterministic (two

Readable permissions may add up to either a Readable or a Writable permission), so

34

we use δ, δL to cope with this bit of nondeterminism.

Permission coherence

We say coherent(®π,L,m) when πi and πj (or πi and L(l), etc.) do not give competing

permissions at any address, nor treat any address as both data and lock. For example,

π1i (a) = Writable means thread i can do nonatomic reads/writes to address a; this is

compatible with π1j (a) ≤ Nonempty (for i , j), meaning that thread j “knows that

a is allocated,” but not with π1j (a) = Readable, nor with π2j (a) , None. That is, if

thread i sees a as a data location, then thread j cannot see the same address as a

lock. Every execution of the CPM maintains coherence as an invariant.

Definition 3.2.1 (Competing permissions). Two permissions in the CompCert per-

mission lattice, compete iff:

1. one of them is Freeable and the other is Nonempty or higher; or

2. one of them is Writable and the other is Readable or higher.

Intuitively, Freeable means “no other thread even knows this data is allocated, so I

can free it.” Nonempty means “I know this data is allocated, even though I can’t read

or write it.” With Nonempty data permission one can at least do pointer-equality

tests; in C11, these are defined only on addresses of allocated data.

Definition 3.2.2 (Data-Lock coherent). Two permissions in the CompCert permis-

sion lattice, respect the data-lock invariant iff: The lock permission is not Freeable;

and if the lock permission is ≥Readable then the data permission ≤Nonempty.

A Readable data permission gives permission to read; a Readable lock permission

gives permission to (attempt to) acquire the lock. To perform makelock, which con-

verts a data block to a lock, one needs at least a data permission of Writable; the

35

makelock takes away the Writable data permission (leaving either None or Nonempty

data permission) and grants Writable lock permission. In turn, that lock permission

can be split into several Readable parts, to be granted to various threads that want to

contend for the lock. Eventually, these might be gathered together by a single thread

into a Writable lock permission, which is enough to perform freelock, which converts

a Writable lock permission to a Writable or Freeable data permission.

We lift definition 3.2.1 and definition 3.2.2 to permission-maps π. Recall that we

write π1i for thread i ’s data permission-map, and π2i for thread i ’s lock permission-

map. We write L(a)1 for the data permission-map of the unlocked lock at address

a, and L(a)2 for its lock permission-map. Locked locks have empty permission-maps,

since all their permissions have been (temporarily) added to the permission-map of

the thread that acquired the lock.

Definition 3.2.3 (Coherent4). We say that a state of the CPM machine is coherent,

written as coherent(®π,L,m) iff:

1. For all i , π1i ≤ Max(m) and π2i ≤ Max(m)

2. For all L(a), L(a)1 ≤ Max(m) and L(a)2 ≤ Max(m)

3. For all i, j , permission-maps π1i and π2j are data-lock coherent; and if i , j ,

then π1i and π1j do not compete and π2i and π2j do not compete.

4. For all L(a) and πi , L1(a) and π2i are data-lock coherent, π1i and L2(a) are data-

lock coherent, π1i and L1(a) do not compete, and L2(a) and π2i do not compete.

5. For all a,b, L1(a) and L2(b) are data-lock coherent; and if a , b then L1(a) and

L1(b) do not compete, and L2(a) and L2(b) do not compete.

4The Coq implementation details of this definition can be found in appendix A.3.1

36

Safety

We use two notions of safety. First the intuitive one is as follows

Definition 3.2.4 (Weak CPM Safety). A CPM state is safe for k steps, written

safe′k , when there exists a sequence of angelic guesses δ such that the machine does

not get stuck within k steps.

Using a schedulef is a useful fiction, however oftentimes we like to express that the

program safety does not depend on the schedule. It is not enough to quantify Weak

CPM Safety over all possible schedules, since we want our safety to be preserved

by execution. We need a slightly stronger notion of safety that quantifies over all

schedules after every step

Definition 3.2.5 (CPM Safety). A CPM state is safe for k steps, written safek , when

there exists a sequence of angelic guesses δ such that the machine does not get stuck

within k steps, even when it’s allowed to change the tail of its schedule.

Since a safe execution makes the “right angelic guesses”, we can prove the following

lemma

Lemma 3.2.6 (Safety implies coherence). If a program is safe for all k , then every

state in the execution is coherent.

3.2.3 Generality of the CPM

The C11 standard defining the behavior of concurrent C programs has the following

design principles:

• Memory locations can be classified as either nonatomic (accessed by normal op-

erations in a well-synchronized manner) or atomic (accessed by synchronization

operations, not necessarily well-synchronized).

37

• Compilers should optimize nonatomic operations.

• Ill-synchronized accesses to nonatomic locations (i.e., data races) lead to unde-

fined behavior.

• Between synchronization operations, code in a thread is executed as if it were

sequential.

• Correctly written code should execute correctly on any processor, regardless of

its relaxed memory model.

• Correctly written code should execute correctly on any processor, regardless of

its relaxed memory model.

The CPM gives an operational semantics for concurrent programs that obeys these

principles, making it well suited for modeling lock-based concurrent programs in C

and any other language that adheres to the same principles. The core rule of fig. 3.3

incorporates the sequential semantics of the language into the machine, and the re-

maining rules give semantics to the atomic operations. Because the CPM uses co-

operative scheduling, the behavior of a thread between synchronization operations is

exactly its sequential behavior, and compilers can optimize code in between synchro-

nizations as if it were sequential.

In chapter 6 we show that the CPM serves as an operational model for Concurrent

Separation Logic. But it models permission coherence more generally than just CSL.

For example, Gu et al. describe a refinement method for proving correctness of

shared-memory concurrent programs [16] with a “push/pull” model for releasing and

acquiring locks. The push and pull can be modeled as angelic permission transfers in

the CPM while it is unknown whether they can be modeled in concurrent separation

logic.

To demonstrate that our CPM is more general than our specific concurrent sepa-

ration logic, we show an example of a program that our CPM can model even though

38

our CSL front-end cannot model it. The logic presented in chapter 6, and many

others similar concurrent logics (e.g., [30], [18]), will fail to prove the correctness of

the following example:

(thread 1) (thread 2)

p[0]=x; if (?)

release (A); then acquire (A);

release (B); else acquire (B);

y=p[0];

Some CSLs fail to reason about this example because we don’t know whether the

resource p[0] is transferred through lock A or lock B . Some CSLs with ghost state

can prove the program correct: in fact, as Jung et al. [21] have shown, ghost state can

be used to incorporate general rely-guarantee reasoning into CSL, by creating a more

general notion of invariant that is not tied to atomic accesses to a specific location.

In this case, the release and acquire rules must be interpreted as a different kind

of atomic access, one that allows interaction with the global invariant. The above

example can also be proven correct in a rely-guarantee logics such as VCC [9] or

Iris [21]. Regardless of the means used to verify the program, it can still be executed

in the CPM: for each choice of lock, there exists a CPM execution that performs the

appropriate permission transfer.

The current presentation of the CPM is limited to Semaphores (coarse grain syn-

chronization); however, we believe that it can be extended to support other C11

atomic operations in modes such as SC and release/acquire

39

Chapter 4

MOIST simulations and semantics

of CompCert

The simple code in Figure 4.1 communicates with its environment in two main ways:

(1) it takes an address as input and (2) reads from and writes to this location to

increment the value stored there. We will see how the specification of CompCert

prevents us from reasoning about such programs, either as compilation units or as

external functions, and we will show how to extend the specification of a compiler to

lift these limitations.

First, CompCert can’t give any guarantees about compiling the code in Figure 4.1

because it is not a complete program. It is reasonable to expect that the function

1 int ∗buff;
2 void remember(int ∗p){
3 buff = p;
4 }
5 void incr(void){
6 ++(∗ buff);
7 }

Figure 4.1: The function remember records the address of some buffer, and incr incre-
ments it by one.

40

Inductive initial-state (p: program): state →P :=
| initial-state-intro: ∀b f m0,

let ge := Genv.globalenv p in
Genv.init-mem p = Some m0 →
Genv.find-symbol ge p.(prog-main) = Some b →
Genv.find-funct-ptr ge b = Some f →
type-of-fundef f = Tfunction Tnil type-int32s cc-default →
initial-state p (Callstate f nil Kstop m0).

Figure 4.2: The initial-state in C and Clight describes a call to main. It also enforces
that it takes no arguments (Tnil) and returns an integer (type-int32s).

remember runs safely, given some assumptions (e.g. ∗p is a valid address in memory).

Unfortunately, CompCert’s semantics assumes that a program starts executing with

a call to main() with no arguments. CompCert characterizes the initial state by a

predicate initial-state: state →P that takes no additional arguments. You can see an

instantiation of the predicate for Clight in Figure 4.2. So, even though CompCert

correctly compiles the code, its specification gives no guarantees of any execution

other than the one that starts by calling main with no arguments.

Second, imagine that the example in Figure 4.1 describes not the program being

compiled but the semantics of two system calls remember and incr. Suppose CompCert

compiles some program that calls incr(); then the compiler’s specification gives no

guarantee about the behavior of the compiled code. Indeed, CompCert’s semantics

allows calls to external functions that are assumed to be correct but, unfortunately,

that specification of correctness is too strict; it assumes that the function’s behavior

is fully determined by (1) the state of memory, (2) the function arguments and (3)

the events produced by the function.1 The behavior of incr also depends on the value

1Leroy [25] claims that “inputs given to the programs are uniquely determined by
their previous outputs”, but this is not exactly correct. A more accurate represen-
tation of CompCert’s specification would be to say “inputs given to the programs are
uniquely determined by their most recent outputs”. Indeed, the semantics of external calls
extcall-sem : Type := env → list val →mem → trace → val →mem →P are determined by the en-
vironment, the arguments to the call, the current memory and produce a trace, a return value and a
return memory. As we will see in section 4.5, it would be much stronger to determine inputs based
on all historic outputs.

41

Inductive event: Type :=
| Event-syscall:

string → list eventval →
eventval → event

| Event-vload:
memory-chunk → ident →
ptrofs → eventval → event

| Event-vstore:
memory-chunk → ident →
ptrofs → eventval → event

| Event-annot:
string → list eventval → event

Inductive eventval: Type :=
| EVint: int → eventval
| EVlong: int64 → eventval
| EVfloat: float → eventval
| EVsingle: float32 → eventval
| EVptr-global: ident → ptrofs → eventval.

Figure 4.3: The events in CompCert

in buff (which for system calls will not be in the program’s accessible memory), so it

is not correct, according to CompCert’s specification. Certainly, incr could expose the

pointer stored in buff as part of its trace but CompCert events, shown in Figure 4.3,

can only contain integers, floats or pointers to global variables.

Moreover, in the CompCert semantics, the entire behavior of each external func-

tion call is bundled into one big step. Looking at an execution, internal steps and

external function calls are uniform. This consistency is very useful when reasoning

about the compilation of the program, where we want to abstract external calls. Nev-

ertheless, when reasoning about a program in a context, it is more useful to replace

the big step external calls with their small step semantics. Regrettably, the specifica-

tion of CompCert does not even guarantee that the source and target programs call

the same external functions. In theory, CompCert could replace an external func-

tion call with internal steps as long as they had the same (possibly empty) trace. In

practice, obviously, CompCert does not do that, this guarantee is not exposed in its

specification.

Finally, the correctness of CompCert is stated as a semantic preservation theorem,

where the traces are the preserved behavior and the proof uses forward simulations2.

2Forward simulation and determinism of the target language implies bisimulation and thus preser-
vation of behavior.

42

At least two other works ([35], [20]) have proposed alternative CompCert specifica-

tions that make the simulations an exposed feature of the compiler’s specification. In

these papers, the authors view CompCert correctness modularly as a thread-local or

module-local simulation and recover a simulation of the global program later. More-

over, from the exposed simulations, they can recover the relation between memories

in source and target, another very useful feature in compositional compilers, which

seems to be a key feature in compositionally. Following this line of work, we pro-

pose to expose the simulation as the specification of the compiler, deriving semantic

preservation as a corollary.

Finally, in each CompCert intermediate language, every state of the small-step se-

mantics contains exactly one memory. To reason parametrically about how a thread

of execution evolves its memory, we need a uniform way to access the memory com-

ponent of the small-step state.

We move, then, to lift these limitations according to the following richer notion

of specification:

Definition 4.0.1 (MOIST simulations). We say that a compiler’s specification uses

Memory, Observable, Injectable and Startable Trace (MOIST) simulations if they

satisfy the following:

• Memory: All intermediate languages have a unified memory model mem, and

each language L1 has a function get-mem: state L-1 →mem, that exposes the

memory of a state. The simulation describes the relation between memories

before and after compilation.

• Observable: Similarly, all intermediate languages are outfitted with a function

at-external that identifies states about to make an external function call. For ev-

ery language L1, at-external: state L-1 → option (f-ext, args) returns the exter-

43

Percent change Number of lines changed
Arguments in main 1.6% 3660
Injectable Traces 0.5% 1141

MOIST Semantics 0.2% 466
MOIST Simulations 1.3% 2911

Total 3.6% 8178

Table 4.1: Measures of changes to CompCert: changes are calculated from the num-
ber of lines added as given by running git diff between our code and the commit of
CompCert we branched off from. For each feature, an estimated number of lines is
provided.

nal function being called and its arguments. The simulation preserves external

calls.

• Injectable: The execution trace supports events that can describe locations in

memory (i.e., pointers). Compilation may rearrange memory, which CompCert

describes as an injection, so the trace will be preserved up to these injections.

The simulation shows that the injection relating traces in source and target

executions is the same injection that relates their memory. We call these new

events memory events.

• Startable: The execution of a program can start in any of its public functions,

including main, taking arguments.

It is worth noting that, even though we require a unified memory model, in prac-

tice, a language can use a different memory model (or none at all) as long as it can

construct a memory from its state with get-mem. In practice all CompCert languages

use the same memory model, described in section 4.1, which we will refer to as mem

from now on. Nevertheless, a future language could use juicy memory as in [3] or

abstract state in [15] since a mem can be derived from them.

In the rest of the chapter, we describe how we develop MOIST specifications for

CompCert. We first describe how to generalize initial-state to make the simulations

Startable. Second we describe how to add memory events to CompCert. Then we

44

show how to extend the semantics for every language in CompCert to include get-mem

and at-external functions and, finally, we show how to put everything together in

MOIST simulations for CompCert, which proves the following theorem:

Theorem 4.0.2 (CompCert MOIST specification). Given a source program P and

an x86 assembly language program Q obtained by CompCert compilation of P, the

CPMs of the two programs are in a MOIST simulation relation.

The changes described here represent only a 3.6% change to CompCert, as mea-

sured by running git diff in CompCert before and after our changes. The amount

changed for every feature proposed is described in Table 4.1.3 Approximately 10% of

all new additions are specifications and the rest are proofs.

4.1 Memory model and memory injections

All intermediate languages in CompCert use the same memory model [28]. This is

a key feature of the CompCert’s proof of correctness, since it facilitates reasoning

about how the compiler lays out stack frames in memory. In this section we briefly

describe the memory model and the memory injections which describe the evolution

of the memories (particularly stack frames) through compilation.

CompCert’s memory is represented by a two dimensional array of bytes, indexed

by a block reference and an integer offset. Each single block is a one dimensional

array that can be used differently for each intermediate language; in Clight, every

stack-allocated variable is in a separate block while in Mach every stackframe sits in

a single block. The bytes in each location are represented by abstract values such as

integers, floats, pointers; or undefined, if its location has not been initialized.

3All these measurements are made with respect to a commit in CompCert from May 21
(f047fcb7852ff58c0c62f10d41f91f3f88552780)

45

block ::= N
Blocks b ::= block
Offsets ofs ::= Z
Values v ::= Vundef | Vint n | Vfloat n | Vptr b ofs

mem m ∈ N→ option(N ∗ Z)
perm p ::= None | Nonempty | Readable | Writable | Freeable

Max perm Max ∈ mem→ (block ∗ Z) → Perm
Cur perm Cur ∈ mem→ (block ∗ Z) → Perm
injection j ∈ block→ option(block ∗ Z)

Figure 4.4: CompCert memory model.

Every location in memory is also outfitted with permissions that regulate how a

program can interact with memory. These permissions are cumulative, so each one

grants the capabilities of all the permissions below:

Freeable: can free the location

Writable: can write to the location

Readable: can read to the location

Nonempty: can only compare pointers to the given location

None: Can’t interact with the location

For example, a program may only free a piece of memory if it has Freeable per-

mission of that location; but it can read any location where it has at least Readable

permission. It is intended that a thread may gain or lose permissions to a location

by doing synchronizations such as acquire and release; to keep track of this, there is

a Cur (current) permission at each address. But to prove the correctness of a certain

optimization (constant-folding the load of a global read-only variable), the seman-

tics also has a Max permission at each address, above which Cur can never go. For

example, all global variables have at most Writable Max permissions so they might

change, but they can’t be freed. Cur permissions represent local abilities of a module

or thread. For example, a thread will have no permissions for variables in the stack

of another thread, whose addresses are not taken. But no matter how much more Cur

46

permission a thread gains by acquiring a lock (etc.), it can never go above the Max

permission for the address.

The compiler must preserve the behavior of a compiling program, but it might

reorder and change its accesses to memory; an optimization might swap two consec-

utive memory allocations, or it might add new ones during spilling. Even so, the

memory can’t change too much, lest it change the observable behavior of the pro-

gram. In the CompCert memory model, the compiler can affect memory blocks by

reordering them, deleting them, changing their internal offsets or even merging two

of them. Leroy and Blazy [28] call these transformations memory injections and,

to prove memory-changing optimizations are correct, they show that the observable

behavior of a correct program is invariant under memory injections. We will describe

injections further below.

Most CompCert passes don’t change the memory behavior of the program. For

example, the phase Cshmgen simplifies control structures, but preserves all memory

accesses. In that way, the executions of the program before and after the pass display

the same memories at every point. These are equality passes. Some passes might

increase the size of a block by, for example, spilling variables to the stack, but won’t

reorder the blocks; we call these extension passes Figure 4.5(b). Finally there are

those that delete, reorder and merge blocks, such as the Csharpminor to Cminor pass

which merges all stack-allocated variables into single block (the stack block). These

are the injection passes Figure 4.5(a). All passes can be shown to be injections [35],

but it is much easier to treat equality and extension phases as special cases.

An injection is described by a mapping j : block → option (block ∗ Z), that de-

termines if a block is mapped and, if so, to which block and with what offset. For

example in the Csharpminor to Cminor pass, where local variables are coalesced into

one stack block, each variable will be offset such that it doesn’t overlap with the oth-

ers as shown in Figure 4.5(a). Beyond a permutation of memory, an injection induces

47

(a) Memory injection (b) Memory extension

Figure 4.5: Memory transformations of CompCert. [3]

Vint(n)
j
↪→→ Vint(n) Vfloat(n)

j
↪→→ Vfloat(n)

F (b1) = Some (b2, δ) i2 = i1 + δ

Vptr(b1, i1)
j
↪→→ Vptr(b2, i2)

v1
j
↪→→ v2

v1
j
↪→ v2 Vundef

j
↪→ v2

(a) Strong (↪→→) and simpl (↪→) value injections.

p
j
↪→ p None

j
↪→ Freeable

(b) Permission injections

Figure 4.6: Value and permission injections

relations between the source and target contents of memory and the permissions. We

abuse the notation
j
↪→ to denote all these relations induced by injections, including

several others we define in the following sections.

An injection imposes a relation between values before and after the compiler pass,

as described in Figure 4.6(a). In the stronger injection, constants are preserved and

pointers are renamed according to the injection. In the simpl injection, undefined

values are also allowed to map to any concrete value because, in compiler passes such

as register coalescing, uninitialized local variables, can map to initialized ones with

concrete values. Similarly, the injection imposes a relation between permissions as

shown in Figure 4.6(b).

48

Definition 4.1.1 (memory injection). 4 Two memories m1 and m2 are injected by

j (m1
j
↪→ m2) if, for all locations b1 mapped by j b1 = Some (b2,ofs) :

• Permissions are injected on all offsets x :

Max m1 (b1, x)
j
↪→ Max m2 (b2, x + ofs) and

Cur m1 (b1, x)
j
↪→ Cur m2(b2, x + ofs)

• Values are injected on all visible offsets x :

Cur m1 (b1, x) ≥ Readable→ m1 (b1, x)
j
↪→ m2 (b2, x + ofs)

• Only allocated blocks are mapped and the image of mapped blocks don’t overlap.

• mi-representable and mi-perm-inv [3]

4.2 Passing arguments to main.

CompCert can compile programs where main takes arguments, but its correctness the-

orem gives no guarantees about their translation. That is because its semantic model

assumes that main takes no arguments (See Figure 4.2); but real C programs can take

up to two arguments argc, the argument count, and argv, the argument vector. Also,

all executions in the semantics of CompCert start with a call to main(), even though

main is nothing but an agreed upon term for startup. We aim to generalize this to

any function, not just main(). In this section we define a new predicate entry-point,

generalizing initial-state (Figure 4.2), that characterizes starting states which includes

calls to main with arguments and calls to any other function.

4We omit a couple extra properties such as not overlapping and memory alignment.

49

s1 ∼ s2

initial state initial state

(a)

s1 ∼ s2

entry points

m0 f args

entry points

m0 f args

(b)

Figure 4.7: Entry simulation diagrams: (a) if s1 is an initial state for the source
program, then there exists some state s2 that is related to s1 and is an initial state for
the compiled program. (b) Just like the diagram for initial states, but it generalizes
and exposes the initial memory m0, the entry function f and the arguments args. The
entire simulation is parametric on the realation ∼.

Passing arguments to the entry-function is particularly important for our work

with concurrency because spawning new threads behaves much like starting a

program by calling main: The library function that spawns a new thread (e.g.

pthread-create(foo)) must create a new stack, push the arguments to stack and then

call foo just like a program initialization would do. Our new predicate entry-point is

general enough to capture both process-start and thread-start, as well any kind of

incoming function call that follows the appropriate calling convention.

It is worth pointing out how important it is to allow newly spawned functions to

take arguments. If we restricted our semantics to spawning threads with no argu-

ments, threads wouldn’t be able to share pointers (or would have to do it clumsily

through global variables) and thus they would all execute in disjoint pieces of memory

with no communication. That would be a much easier and less interesting result.

Once we define a new starting point for executions, we must prove that compilation

preserves the predicate entry-point (Figure 4.7(b)) in the same way that CompCert’s

simulation preserves initial-state (Figure 4.7(a)). The proof largely follows the sim-

ulation of internal function calls which is already proven in CompCert, so we omit

the details here. However, some interesting relevant details are presented later in

subsection 4.2.2.

50

4.2.1 The prestack and the initial memory

When execution starts, CompCert semantics assumes that the stack is empty and

the memory contains only the global variables. However, in reality, when main starts

executing, there is more content already pushed on the stack and in memory that is

particularly important to argument passing. Part of the entry-point predicate is to

describe this initial state of memory, as we explain below.

Let’s take, as an example, the moment main is called from the initialization func-

tion -libc-start-main. At this point the top of the stack will contain the return address

and the arguments to main (beyond the first K that are passed on registers; on some

RISC machines, K = 4, while on the x86-32, K = 0). We call prestack that tip of

the stack, depicted in Figure 4.8(a), which is relevant to the execution of main and

does not correspond to any function in the program. The rest of the memory, at

that point, also contains the NULL-terminated argument vector, all the global vari-

ables, and possibly stacks of other threads or other initialization functions such as

start. We call the entire memory at this point the initial memory. Our new predicate

entry-point, instead of an empty stack, describes how arguments are set up in the

prestack and, instead of an almost empty initial memory, allows memories to have

arbitrary things.

As mentioned before, spawning a thread behaves like executing main in many

ways. For instance, the stack of a thread, before the spawned function executes,

looks just like a prestack before calling main as shown in Figure 4.8(b). Indeed,

when pthread-create starts a new thread, it sets up the stack to pass arguments to

the spawned function. The initial memory, at this point, contains the stacks of other

threads and all other memory used by their executions. entry-point is general enough

to characterize this prestack and initial memory too.

If only we could pass all arguments on registers, we wouldn’t need to reason about

the prestack at all. Unfortunately, in architectures such as x86 in 32-bit mode, all

51

Stack frame
for main

return address

argc

argv

envp

esp

...

(a) Stack at the start of main.

Stack frame
for foo

return address

arg

esp

...

(b) Stack created by pthread-create() to
start a thread running foo.

Figure 4.8: Prestacks examples for X86-32 architecture: (a) Stack right before main
executes. (b) Stack right before a function foo is executed in a new thread. Notice
that in X86-64 (or ARM, etc.), the first K arguments will be passed in registers.

arguments are passed on the stack. As the comments in the CompCert code put it,

“Snif!” [26]. Even architectures that allow argument passing in registers, such as x86

in 64-bit mode, have a limited number of registers and will pass arguments on the

stack after those run out. Consequently, if we want describe argument passing for

entry functions in general, we must describe the prestack.

The characterization of the prestack is language-dependent, and it will be de-

scribed more in the next subsection.

4.2.2 The entry-point: a more permissive starting state

The predicate entry-point: mem → state → val → list val →P takes an initial memory

m0, an initial state s, a pointer to the entry function fun-ptr of type val, and a list of

arguments args. This predicate is language dependent, and is divided in three parts:

52

1. Checks that the global environment genv is allocated correctly. It also makes

sure that the pointer fun-ptr points to a function in genv.

2. Checks that memory m0 is well formed. That is, it contains no ill-formed

pointers to invalid addresses. CompCert generally maintains that well-formed

programs don’t create dangling pointers.5

3. Checks that arguments are well-formed. Among other things, they have the

right types for the function being called, they have no ill-formed pointers, they

fit in the stack and they correspond to the prestack.

In the rest of this section, we explore the definition of entry-points for different lan-

guages and, when interesting, we explain how we prove that different CompCert

passes preserve the predicate as in Figure 4.7(b).

C frontend

All of the C-like languages (Clight, Csharp, Csharpminor) have similar entry-point,

so we present here the one for Clight in Figure 4.9. Lines 4-6 ensure that the en-

vironment is allocated in memory and it contains the function f with the right type

signature. Line 7 states that the initial memory has no dangling pointers. Lines

8-11 say that the arguments have the right type and have no dangling pointers. The

predicate bounded-args, enforces that the arguments fit in the stack, which is archi-

tecture dependent (generally around 1 Gigabyte). Finally, the entry state, in line 13,

is defined as a call to f with an empty continuation.

In CompCert, continuations abstract the program’s call stack with each Kcall

describing a stackframe. Standard CompCert describes the “stop” continuation as

simply Kstop without an argument. This does not permit description of a prestack

5A well-formed program, should not compare, read or write to invalid pointers. Hence, dangling
pointers behave semantically as undefined values and could be modeled that way.

53

1 Inductive entry-point (ge:genv): mem → state → val → list val →P :=
2 | initi-core: ∀ f fb m0 args targs,
3 let sg:= signature-of-type targs type-int32s cc-default in
4 type-of-fundef (Internal f) = Tfunction targs type-int32s cc-default →
5 Genv.find-funct-ptr ge fb = Some (Internal f) →
6 globals-not-fresh ge m0 →
7 Mem.mem-wd m0 →
8 Val.has-type-list args (typlist-of-typelist targs) →
9 vars-have-type (fn-vars f) targs →

10 vals-have-type args targs →
11 Mem.arg-well-formed args m0 →
12 bounded-args sg →
13 entry-point ge m0 (Callstate (Internal f) args (Kstop targs) m0).

Figure 4.9: The entry-point predicate in Clight

frame containing arguments to main. Consequently, during later phases of compila-

tion, we cannot design a simulation relation that properly relates Kstop to the prestack

frame with arguments allocated in memory. It is precisely for this reason that we use

Kstop targs instead of Kstop; from the types of the arguments targs, we can deter-

mine the (architecture-dependent) shape of the prestack. In our model, when Kcall

gets translated to a predicate Stackframe that describes a stack frame, Kstop will be

translated to Prestack, a special kind of Stackframe, as depicted in Figure 4.10.

Register transfer languages

In the Cminorgen phase, CompCert coalesces all function variables into a stack frame.

Some functions might get empty stack frames (i.e., a zero-sized memory block), if

none of their variables has their address taken. These stack frames are important,

even the empty ones, because that is where spill variables will be written after register

allocation in the Allocation phase. We follow suit and create an empty stack frame for

-start(). The stack is empty because the compiler has not yet decided what arguments

will be passed in memory and which ones in registers; even for architectures that pass

all arguments in memory, this is not done until the Stacking pass. Hence, for languages

54

(a) Kcall −→ Stackframe −→

...

Stack frame

...

(b) Kstop −→ Prestack −→

...

prestack

Continuations in
C-like languages

Stack frame
descriptions in low

level languages

Stack frames in
memory for Mach

and Asm

Figure 4.10: Abstractions of stack frames become more concrete through compilation.
(a) Kcall is a high level abstractions of stackframes for C-like languages. It gets
translated to Stackframes, which are low level descriptions of stack frames. Finally
the stack is laid in memory. (b) Kstop, is a concise, high level, description of the
the prestack. It gets compiled to Prestack, which is a special type of Stackframe, and
finally laid in memory

between Cminorgen and Stacking (Cminor, CminorSel, RTL, LTL, Linear), there is

an extra line in entry-point to make sure that the empty stack frame is allocated:

Mem.alloc m0 0 0 = (m1, stk)

The rest of the predicate is almost identical to the one in Figure 4.9.

These languages have a list of stack frame descriptors (called Stackframe) , instead

of continuations; accordingly, the prestack is characterized by the predicate Prestack,

a frame descriptor with just enough information to know the size of the prestack and

where main should return. Prestack is generated from Kstop and, after the Stacking

pass, it is translated to an actual prestack as shown in Figure 4.10.

Machine languages

In the machine languages (Mach and Asm), a function expects a certain shape from

the stack frame of its caller. We replace the empty stack frame allocation with the

construction of the prestack as shown in Figure 4.11. The function stack-defs is an

architecture dependent function that calculates the layout of the stack and returns

the size stk-sz, the offset of the return address ret-ofs, and a back link to parent frame

55

1
...

2 let ’(stk-sz,ret-ofs,parent-ofs) := stack-defs (fn-sig f) in
3 Mem.alloc m0 0 stk-sz = (m1, spb) →
4 let sp:= Vptr spb Ptrofs.zero in
5 store-stack m1 sp Tptr parent-ofs Vnullptr = Some m2 →
6 store-stack m2 sp Tptr ret-ofs Vnullptr = Some m3 →
7 make-arguments (Regmap.init Vundef) m3 sp
8 (loc-arguments (funsig (Internal f))) args = Some (rs, m4) →

9
...

Figure 4.11: Part of the entry-point predicate in Mach

parent-ofs. The last two values are unused, but the stack must have space for them.

Line 3 allocates the stack of the correct size. Lines 5-8 store the return address, the

link to the parent and the arguments in the stack.

Summary: entry points

In summary, we have augmented the CompCert semantics to permit the entry point to

be a function of more than zero arguments; in a memory that can contain more than

just the extern initialized global variables. These changes also required augmenting

the Kstop continuation of the Clight language, to (abstractly) describe the initial

stack frame.

4.3 Memory events.

The observable behavior of the CompCert semantics (for all languages) is a trace of

events, as described in Figure 4.3. It records interactions with the outside world; for

example, the results of a read system call will record an Event-syscall together with

the name of the system call, its parameters, and its result. Lets consider a system call

putbuf(void ∗a) that takes a pointer to a buffer and reads from it. In Figure 4.12(a),

56

a points to the value 3 and putbuf then reads that value. What other contents x can

a program put in a and communicate to putbuf?

We already mentioned that x must not be a pointer in CompCert (other than a

global pointer), such as in Figure 4.12(b), “because these are not preserved literally

during compilation” [25]. In fact, for this reason, CompCert doesn’t have any event

that exposes memory state or pointer values. Unfortunately, this limitation rules

out several reasonable programs such as one calling incr (Figure 4.1) and the one in

Figure 4.12(b), moreover, these events are poorly suited to express any sort of shared

memory interactions, such as concurrency or separate compilation. For example, a call

to pthread-mutex-ulock(l) not only changes the state of the lock l, conceptually it gives

away control to the data in memory protected by l. The location and the content

of the data might expose memory state, so it cannot be expressed in CompCert

semantics.

Can x be an uninitialized value? The answer here is also no. It turns out that

uninitialized values also “reveal memory state” in a subtle way that we explain with

the example in Figure 4.12(c). In the source code x is not initialized so, in the

semantics of Clight, the content of a is Vundef. However, after register allocation x

and y might share a register, in which case the content of a will be 3. It is certainly

reasonable to require that programs must not communicate uninitialized variables

to the external world; it can be a security risk. But output is not always going to

the external world. If putbuf was a verified library, it would be acceptable to reveal

undefined values to it. For another example, consider the code in Figure 4.12(d).

In this case the code is part of a multithreaded program communicating through a

semaphore l. In this case, again, it would be acceptable to reveal undefined values.

It is worth pointing out that we could forbid undefined variables from the trace.

This would indeed make the compiler specification simpler and it’s verification easier.

We can also describe and verify those properties of our programs using VST [3].

57

x = 3;
∗a = x;
putbuf(a);

(a)

y = 3;
x = &y;
∗a = x;
putbuf(a);

(b)

y = 3;
z = y + 1;
∗a = x;
putbuf(a);

(c)

y = 3;
z = y + 1;
∗a = x;
pthread-mutex-ulock(l);

(d)

Figure 4.12: Four excerpts of code passing output through buffer a.

Inductive event: Type :=
· · ·

| Event-acq-rel:
list mem-effect →
delta-perm-map →
list mem-effect → event

| Event-spawn:
block →
delta-perm-map →
delta-perm-map → event.

Inductive mem-effect: Type :=
| Write : ∀ (b : block) (ofs : Z)

(bytes : list memval), mem-effect
| Alloc: ∀ (b : block)(lo hi:Z), mem-effect
| Free: ∀ (l: list (block ∗ Z ∗ Z)), mem-effect.

Figure 4.13: The new events in CompCert: mem-effect reflects changes to memory
and delta-perm-map represents transfer of Cur permissions.

However, doing so would rule out some reasonable programs that we would like to

verify (such as the one in Figure 4.12(b)) and it would add more complexity for the

user who has to prove source programs correct.

We propose to include 2 new types of events which we call memory events as

described in Figure 4.13. As their name suggests, they expose the state of memory

and they expose pointer values. The first one, Event-acq-rel, represents a generic

memory interaction where the external function performs some arbitrary changes to

memory, recorded by a list of mem-effects, and transfers some permissions recorded

by delta-perm-map. The second one, Event-spawn, represents the creation of a new

thread or a new module. It records the function being called, as a block number, and

the change in permissions by two delta-perm-maps, one representing the permissions

given and the other the starting permissions of a new thread/module. Notice that,

in the mem-effects, Write contains a list of memvals, which can be uninitialized (i.e.,

58

Undef). In the example Figure 4.12(d), the Event-acq-rel would have the mem-effect,

Write(&a,Undef).

The correctness of the CompCert compiler is formulated as a preservation of

traces. However, our new traces expose the state of memory, which is not identi-

cally preserved. Fortunately, we know that compilation preserves an injection of the

memories, so we can state the CompCert correctness as a preservation of traces, up to

some rearrangement by an injection. We define the injection relation for mem-effects

in Figure 4.14(d), from where the injection relation for traces can be derived. The

full simulation, with the injection-related traces, will be later explained in section 4.5.

The injection relation for values, defined by CompCert, is not deterministic (i.e.

it’s does not represent a function). As shown in Figure 4.6(a), the value Vundef can

be injected to any other value. Consequently, the injection relations for memories,

for mem-effects, for events and for traces are not deterministic. We do, however,

include in all of those definitions a stronger notion of injection relations named strong

injection, denoted by ↪→→, which is determinisitic.

We discuss simulations for traces with non deterministic relations in subsec-

tion 4.5.1.

4.4 MOIST Semantics

As described in the introduction, we need more expressive semantics to distinguish

the current memory, during program execution, and the points where external func-

tions are called. We call this expanded semantics MOIST semantics (just like our

simulations) and it extends CompCert semantics with the following:

• Memory: get-mem: The state of every language in CompCert can be interpreted

as a pair of a core and a memory [6] and get-mem is the projection that returns

the memory inside the state.

59

j b1 = Some (b2, δ) lo2 = lo1 + δ hi2 = hi1 + δ

(b1, lo1,hi1)
j
↪→ (b2, lo2,hi2)

(a) Injection of ranges.

nil
j
↪→→ nil

ls1
j
↪→→ ls2 x1

j
↪→→ x2

x1 :: ls1
j
↪→ x2 :: ls2

nil
j
↪→ nil

ls1
j
↪→ ls2 x1

j
↪→ x2

x1 :: ls1
j
↪→ x2 :: ls2

(b) Injection of lists (for any type that has an injection relation)

(b1, lo1,hi1)
j
↪→ (b2, lo2,hi2)

Alloc b1 lo1 hi1
j
↪→→ Alloc b2 lo2 hi2

j b1 = Some (b2, δ) locs1
j
↪→ locs2

Free b1 locs1
j
↪→→ Free b2 locs2

j b1 = Some (b2, δ) vals1
j
↪→→ vals2

Write b1 vals1
j
↪→→Write b2 vals2

(c) Strong injection of mem-effects

me1
j
↪→→ me2

me1
j
↪→ me2

j b1 = Some (b2, δ) vals1
j
↪→ vals2

Write b1 vals1
j
↪→Write b2 vals2

(d) Regular injection of mem-effects

Figure 4.14: More injection relations, including strong and regular injections for
mem-effects. Strong injections () can only map Vundef values to themselves, while
injections () can map.

60

Definition at-external (c: state) : option (external-function ∗ list val) :=
match c with
| Callstate fd args k -⇒

match fd with
| External ef targs tres cc ⇒ if ef-inline ef then None else Some (ef, args)
| -⇒ None
end

| -⇒ None
end.

Figure 4.15: at-external definition for Clight. The function checks that (1) the current
state is about to make a function call, (2) that the function is an External function
and, (3) that the external function cannot be inlined (The compiler is allowed to
inline specific functions such as memcpy and certain builtins).

• Observable: at-external : This function exposes when a program is about to

call an external function and it returns the function and the arguments being

passed. The instantiation for Clight is shown in Figure 4.15.

• Injectable: It uses the injectable traces described in section 4.3.

• Startable: entry-point: This is a generalization of initial-state, as described in

section 4.2.

Our semantics is very closely related to interaction semantics [35] with two main

differences. First, we don’t need to define after-external for every language. We only

define it for Clight and Assembly, the languages that show up in the specification.

In those languages, we prove that we can replace the one-step CompCert external

function calls with the small step execution of that function, using at-external and

after-external; therfore, there is no need for the compiler or the intermediate languages

to know about after-external. Second, we allow states that are at-external to take a

step in the CompCert semantics; namely, the execution will continue by calling the

external function. The CompCert semantics, in this case, represents the thread-local

61

view (or module-local) , where external functions, other threads and modules are

abstracted into oracles that execute in one step.6.

In fact, given a Startable factorable-state semantics semantics we can derive an in-

teraction semantics, if only we define after-external. The step relation is constructed

by removing steps from states that make external function calls, as described by

at-external. We use this feature to define interaction semantics for Clight and Assem-

bly, as shown in chapter 5.

4.5 Definitions for MOIST simulations

CompCert’s compiler specification is stated as the following semantic preservation

theorem:

Theorem 4.5.1 (CompCert semantic preservation). Let S be a source program and

C its compiled version. For all behaviors B that don’t go wrong, if S has behavior B,

then C also has behavior B. In short:

∀B <Wrong. S ⇓ B ⇒ C ⇓ B (4.1)

Here, a behavior is a a trace and a termination or divergence. If a specification spec

is a function of behavior, then it also holds that CompCert preserves specifications

in the sense that:

S |= spec ⇒ C |= spec (4.2)

Such specification fails to preserve richer notions of specification, such as the higher

order, separation logic specifications that can be proven on Clight programs by tools

like VST [8]. Moreover, the high level specification in eq. (4.1) is not well suited for

6In CompCert the oracle, called external-functions-sem, is passed as a parameter to the correctness
proof and gives the semantic of external functions.

62

s1 ∼ s2

s′1 ∼ s′2

t t ∗

(a)

s1
j
∼ s2

s′1
j ′
∼ s′2

t t ′ ∗ t
j ′

↪→→ t ′

j v j ′

(b)

Figure 4.16: Step simulation diagrams. (a) if s1 takes a step to s2 with trace t and
s1 is related to some s2, then s2 can take a number of steps with trace t ′ to a new
state s′2 related to s′1. (b) The new diagram exposes the memory injections j and j ′

and the traces t and t ′, are equivalent up to injection (inject-trace-strong j’ t t’).

modular reasoning to support shared memory concurrency or compositional compi-

lation [35].

The simulations that CompCert uses to prove eq. (4.1) are better suited for these

purposes. CompCert proves a forward simulation between its source and target exe-

cutions which, together with the determinism of the target language, imply eq. (4.1).

These simulations, encoded in the record fsim-properties, state that (1) public global

variables and functions are preserved, (2) initial-states are preserved (fig. 4.7), (3)

final-states are preserved and (4) execution is preserved (fig. 4.16(a)). The simula-

tions are parametric on a match relation, noted as ∼, as an invariant of related states

in source and target; the relation is established at initial states and preserved by the

step simulation.

For all CompCert phases, the match state relation describes how the memory

changes after compilation. In some passes, memory doesn’t change at all (e.g. Cshm-

gen or Linearize) and sometimes the memory is extended by increasing the size of

existing memory blocks, with new values (e.g. Allocation, Tunneling). In other cases,

memory is reordered, memory blocks are coalesced, and some are unmapped. Comp-

Cert expresses this reordering with memory injections that map memory blocks, to

their new block with some offset. For example, in Cminorgen the compiler coalesces

all stack-allocate local variables of a function into a single stack block. We use this

63

same injection to describe how traces with memory events evolve through compilation

(fig. 4.16(b)).

We propose a more expressive simulation inject-sim that improves the CompCert

simulations. The full definition can be found in appendix A.4.1 and we describe the

key points below:

• The simulation exposes how the memory changes: We expose the memory in-

jection j that describes how memory changes after compilation. For simplicity

of the proofs, for compiler passes that preserve the memory or just extend it,

we also define the simpler simulations eq-sim and extend-sim respectively. These

simulations follow immediately from the ones already proven in CompCert. All

of the simulations we define compose to inject-sim as shown by the composition

lemmas 4.5.2, 4.5.3 and 4.5.4.

Lemma 4.5.2. For all semantics L1 and L2 if eq-sim L1 L2 then c L1 L2.

Lemma 4.5.3. For all semantics L1,L2,L3, if extend-sim L1 L2 and inject-sim

L2 L3, then inject-sim L1 L3.

Lemma 4.5.4. For all semantics L1,L2,L3, if inject-sim L1 L2 and inject-sim

L2 L3, then inject-sim L1 L3.

• The simulation admits traces with memory events and preserves the traces up

to memory injection. That is, the memory events in the trace are appropriately

renamed according to the permutations described in the memory injection.

• The simulation preserves external function calls: The original CompCert simu-

lation only preserves traces so, for example, a compiler could replace an external

function call with internal code that produces the same event. In fact the com-

piler does exactly that with some special external calls such as memcpy and

64

at-external s1 = Some (f,args)

∃t ′. t
j ′

↪→ t ′

∃j ′. j v j ′

s1
j
∼ s2

s′1
j ′
∼ s′2

t t ′

Figure 4.17: At external step diagram (simulation-atx). Exclusive for external function
calls, this diagram follows the simulation diagram in fig. 4.16, but enforces that the
compiled execution takes only one step. The entire code is presented at the end of
appendix A.4.1.

certain builtins. However the compiler does not do that with arbitrary exter-

nal functions (of course not!), but the simulation specification does not rule

it out. We add preserves-atx to the simulation, which says that if a source

state is at-external, then any target state it matches is also at-external with the

same functions and related arguments (i.e., equal up to memory injection). We

consider the simulations of built-ins in 4.5.2.

• The simulation preserves the number of steps taken by external functions: This

fact was already proven in the each CompCert phase but was hidden in the

less expressive simulation theorems exposed by each phase. We include a new

diagram (fig. 4.17, code in appendix A.4.1), simulation-atx which says that if a

source state that is at-external takes exactly one step then the matching target

state does the same (as opposed to any number of steps as in fig. 4.16), and the

two resulting states match.

We further expand the notion of simulation-atx at the end of this subsection.

• The simulation can start executions with functions that take arguments and are

not main. We replace the initial-state diagram with the diagram for entry-point

as described in fig. 4.7.

Our simulation diagrams for entry-points is strikingly simple compared to that of

other authors. In Compositional CompCert [35] and in CASCompCert [20], the initial

65

ms
j ′

↪→ mt

argss
j ′

↪→ argst

s1
j
∼ s2

entry points

ms f argss

entry points

mt f argst

Figure 4.18: Diagram for initial states with injected initial memories and arguments.
Given an entry point in the source, for any target memory mt and arguments argst ,
that are related to the source by an injection, there exists an entry point for the
targert with those arguments. The new source state is related to the target one by
the ∼ relation.

state simulation accepts arbitrary (but injected) memories which, in our notation,

would look like 4.18. That is, the initial state has to exist for any memory mt

and arguments argst , as long as they are injected. Such diagram makes the proof

of compiler passes harder and it unnecessarily complicates passes that don’t inject

memory7. For the simple task of compiling whole sequential programs with arguments

to main, our diagram is enough. We further show that our simpler diagram is enough

to achieve concurrency in chapter 5 and we conjecture that the diagram also is enough

for separate compilation, which we discuss in section 8.1.

Summary regarding inject-trace-strong.

CompCert is carefully designed so that internal steps are deterministic, to simplify

compiler-correctness proofs; but external steps can be nondeterministic (as long as

they manifest their nondeterministic choices in their events). We preserve this design

decision, but extend it.

In particular, when we allow Vundef values in traces, and we allow traces to be

injected, we want simultaneously,

7Stewart et al. [35] modify all passes to use injections. In other work [6] the authors propose using
nine different composition theorems to compose all possible memory relations pairs (i.e., equality,
extension and injection).

66

at externals1 = Some (f,args)

∃j ′, j v j ′ ∃t . t
j ′

↪→→ t ′

s1
j
∼ s2

s′1
j ′
∼ s′2

t t ′

(a)

∀t . t
j ′

↪→ t ′

s1
j
∼ s2

s′1
j ′
∼ s′2

t t ′

(b)

Figure 4.19: Two simulation diagrams needed to establish behavioral refinment for
non deterministic trace relations. (a) is exacctly the same as fig. 4.17. (b) adds a
simulationfor all other posible images of the inje‘elation.

1. CompCert correctness proofs can mostly behave as if trace-injection is deter-

ministic, so Vundef injects to Vundef;

2. Event-acqrel can inject from Vundef to defined values, which permits programs

where semaphores control shared access to uninitialized buffers.

lemma 4.5.5, along with the work in chapter 5, permits both off these to be true at

once. That is, compiler-correctness proofs are still reasonably simple, but external

events are more expressive.

4.5.1 Simulations for traces without deterministic relations.

Dockins [12] proved that forward simulations, with a deterministic target language

and a receptive source language, are enough to establish behavioral refinement. But

this is only true if the relation between traces is deterministic; in CompCert the

relation between traces is equality, which is deterministic. When the traces’ relation

is not deterministic, the simulation diagram (as in fig. 4.19(a)) relates the source

execution with only one of the possible target executions. As we saw in section 4.3,

the injection of traces is, unfortunately, not deterministic so, to establish a behavioral

67

refinement, we also need the diagram in fig. 4.19(b). It says that for all other images

of t (by the same injection j ′), the semantics can also take a step to a related state.

The full code for the double external call diagram is shown in fig. 4.20, where the

bolded code corresponds to the second diagram fig. 4.19(b).

Keep in mind that we could avoid needing the second diagram in fig. 4.19, if

we keep uninitialized variables out of the trace, just like CompCert does. We have

defined strong injections (the ↪→→ in fig. 4.14), which are really deterministic, and we

provide a simpler simulation diagram for external function calls that uses the strong

injection to relate source and target traces. This diagram is enough to handle all

external functions that don’t reveal uninitialized values in the trace.8 However, we

want (and can!) support functions that expose uninitialized variables. These function

calls are not input/output but a thread/module local view of the context (e.g. the

execution of other thread) so, once these external call have been replaced with their

small step execution, these events are not external to the program anymore and they

disappear from the trace. We can then establish the behavioral refinement just like

Dockins did.9

The double diagram might seem complex and harder to prove, but remember trace

events only appear at external calls. Therefore, the diagrams are easy to prove as

long as they hold for external calls. CompCert already requires that external calls

commute with injection; for external functions with memory events, the only way to

commute with injections is to satisfy the two diagrams in fig. 4.19.

We must wonder if there are reasonable functions that don’t satisfy both diagrams

in fig. 4.19. The answer is yes: imagine a function show-a interacting with the code

in fig. 4.12, that acquires lock l and then outputs the content in a. The trace of that

8The diagram with the strong injection, even supports some external functions with Vundef in
their code, as long as that value doesn’t change during compilation. In which case, we say that the
function’s semantics commutes with strong injections.

9We can go even further and support input/output events that revel uninitialized locations in
memory. Even in those cases, one can establish refinement using the double diagram simulations
and a strengthened version of Dockins’ theorem.

68

1 Definition simulation-atx-stronger {index:Type} {L1 L2: semantics}
2 (match-states: index →meminj → state L1 → state L2 →P) :=
3 ∀ s1 f args,
4 at-external L1 s1 = Some (f,args) →
5 ∀ t s1’ i f s2,
6 Step L1 s1 t s1’ →
7 match-states i f s1 s2 →
8 ∃ f’, Values.inject-incr f f’ ∧
9 (∃ i’ s2’ t’,

10 Step L2 s2 t’ s2’ ∧
11 match-states i’ f’ s1’ s2’ ∧
12 inject-trace-strong f’ t t’) ∧
13 (∀ t’, inject-trace f’ t t’ →
14 ∃ i’, ∃ s2’,
15 Step L2 s2 t’ s2’ ∧
16 match-states i’ f’ s1’ s2’) .

Figure 4.20: Stronger simulation for external steps, that universally quantifies over all
injected traces. Lines 8-11 describe the existentially quantified diagram as described
in fig. 4.19(a). Lines 12-15, in bold, describe the diagams for all other images of thee
trace injection relation as described in fig. 4.19(b). inject-trace is the predicate that
allows undefined values to be mapped to defined ones.

function will contain either Vundef or 3, but not any other value. Does this mean

that we can’t support, show-a and other similar functions? No. We can define a

behavior10, denoted show a, whose ouputs the value in a, unless it is uninitialized,

in which case it just outputs any value. The key observation is that, when the value

in a is undefined, the calling program can’t distinguish between show-a and show a.

That is because a safe program cannot compare an undefined value. Similarly, if the

compiler is correct for a program “calling” show a, which has more behaviors, then it

is correct for show-a. In summary, we should can always prove the compiler correct

with respect the those more liberal external functions to support all functions that

have undefined values in their trace.

10A behavior is not a C function, it’s just a Coq inductively defined predicate. Unlike C programs,
it can test if a variable is undefined.

69

1 Definition simulation-atx {index:Type} {L1 L2: semantics}
2 (match-states: index →meminj → state L1 → state L2 →P) :=
3 ∀ s1 f args,
4 at-external L1 s1 = Some (f,args) →
5 ∀ t s1’ i f s2,
6 Step L1 s1 t s1’ →
7 match-states i f s1 s2 →
8 ∃ f’, Values.inject-incr f f’ ∧
9 (∃ i’ s2’ t’,

10 Step L2 s2 t’ s2’ ∧
11 match-states i’ f’ s1’ s2’ ∧
12 inject-trace-strong f’ t t’) .

Figure 4.21: Coq definition for the external step simulation diagram as described in
fig. 4.17

Finally, we define two simulation, inject-sim and inject-sim-strong, with the ex-

ternal step diagrams simulation-atx (fig. 4.21) and simulation-atx-strong (fig. 4.20) re-

spectively. We prove that they compose, according to the lemma below, so we can

simplify most proofs by using the simpler inject-sim. As long as the last pass of the

compiler satisfies inject-sim-strong, we can show that the entire compiler does too.11

Lemma 4.5.5. For all semantics L1,L2,L3, if inject-sim L1 L2 and inject-sim-strong

L2 L3, then inject-sim-strong L1 L3.

4.5.2 Simulation diagrams for builtins.

Our simulations require that external function calls are preserved 1-to-1 by the com-

piler (fig. 4.21). That is, if the source is at-external, it takes exactly one step to cross

the external call; then the target is also at-external, and also takes exactly one step

to cross the external call. But CompCert’s compilation of Builtins (between Clight

through various ILs to RTL) does not have this property. The bigstep semantics of

11We can go one step further to simplify the passes of all compiler passes. If we prove that the
assembly language satisfies a self-simulation (section 5.3), then all compiler proofs can be specified
according to the simpler inject-sim, and we still get the stronger property for the entire compiler.

70

built-ins includes evaluating their arguments, which is language dependent and takes

a different number of steps in different languages. We have two proposals to solve

this problem: (1) a satisfying solution that we implemented for the purpose of this

work and (2) a long term solution that is more principled, but involves more changes

to the compiler and the proof.

Solution 1. Although the execution of builtins is not preserved 1-to-1, we can

still support built-ins that are not “external functions”. For example, a system call

like memcpy does not communicate with other threads and can be viewed as an

“internal function” for the purpose of concurrency. For this to work, we must separate

real “external functions” from those that are not. We assume that all builtins are

“inlinable” (ef-inline) in the sense that they can really be inlined in the code. All

other external functions should be called using the external function protocol. This is

what CompCert’s parser does. On the other hand, built-ins can be called as external

functions and the compiler inlines them as built-ins. We don’t consider these inlinable

built-ins as “external functions” (i.e. at-external returns None) and we enforce that

the semantics of calling built-ins is “stuck” if it tries to execute non-inlinable external

functions. For our concurrency application, we also require that all these inlined built-

ins respect the memory interface (respects permissions, etc.) but other applications

can relax this condition.

This solution permits truly internal built-ins such as memcpy that have no external

event trace, and it permits builtins that have event traces, such as volatile-variable

store to a device register that causes external output. But it does not permit built-ins

that have synchronizing effect such as lock-acquire and lock-release. In solution 1,

the C program must make a function-call to an assembly-language implementation

of acquire or release (or spawn). That is, our at-external predicate really means ”at a

synchronization/spawn/etc. call,” whereas I/O can be done through CompCert’s ex-

71

isting ”Event-trace” mechanism. We would eventually want to allow synchronization

operations to be implemented as inlineable builtins. For example, in the context of

concurrency, a built-in atomic store can be used as a semaphore. This will become

even more important if future extension of our concurrency research permits more

of the C11 atomic load/store operations. Our solution 1 does not permit inlineable

synchronizers. To support those we propose:

Solution 2. We know that in Clight, the evaluations of external calls and built-ins

are almost identical, except external functions execute in three steps (one to evaluate

arguments, one to execute the function and one to return) while built-ins do it in one

step. In fact, in the Selection pass, all inlinable external functions are translated to

Builtins and it is proven that such transformation preserves the program’s semantics.

This transformation reduces the number of steps taken by the program; however,

the following transformation, RTLgen, increases the number of steps used to execute

a built-in, to evaluate its arguments. This second trasformation violates the 1-to-1

requirement of simulation-atx.

We propose to delay the inlining of built-ins until after function arguments have

been evaluated. This can be easily done with a simple RTL to RTL compiler pass that

only inlines external functions and, since the arguments have already been evaluated,

it satisfies the diagram simulation-atx. In this proposal, the languages above RTL (C,

Clight, Cminor, etc.) would not even have an Sbuiltin command; builtins (even inline

assembly) would be expressed as if they were function calls; then rewritten as Ibuiltin

in the RTL. The semantics would end up identical, the generated code would end up

identical; and the CompCert compiler and proof would end up smaller than it is now.

Technical note: Our proposed pass does indeed transform three steps in the source

program into one in the target (just like Selection pass). However, this is proven in

three different diagrams: two diagrams that take one step in the source and none

72

in the target, and one diagram that takes one step in source and target, satisfying

simulation-atx.

4.5.3 Full injections

Most passes in CompCert preserve the contents in memory. Even injection passes,

such as Cminorgen, Stacking and Inlining, only reorder memory and coalesce blocks,

but don’t remove any content from memory. Only two passes currently remove con-

tents out of memory: SimplLocals, which pulls scalar variables whose address is not

taken into temporary variables; and Unusedglob, which removes unused static globals.

For those injection passes where memory content is preserved, we make it explicit by

adding a predicate full-injection, that states that an injection maps all valid blocks

in memory. In the remaining of this subsection, we explain the current limitations

of the way CompCert specifies unmapped parts of memory. In our version of Comp-

Cert, a compiler that skips SimplLocals and Unusedglob, can expose full-injection and

overcome those limitations. Certainly, requiring all memory to be mapped is also a

strong limitation. In what remains of this chapter, we will make the problem clear

and propose a solution (although the implementation is beyond the scope of this the-

sis). We further discuss solutions for this limitation in related work chapter 2 and in

our future work section 8.1 sections.

Consider the remember() and incr() functions from fig. 4.1. As we discussed before,

the execution of incr depends on the location in memory ∗buff. We already mentioned

that if external functions behave this way, they cannot satisfy the strict “correctness”

requirements of CompCert and we have corrected this problem with memory events.

The second problem with this simple function, however, is that it relies on the fact that

the compiler does not remove buff from memory. CompCert does, in fact, preserve

that piece of memory, since its address has escaped, but this fact is not part of the

compiler’s specification.

73

As a second example, consider shared memory concurrency. When two threads

are interacting through memory, each thread needs to know that the memory it gains

access to, is not unmapped. A thread can only use the locations it has permission over

(which is a superset of the locations it accesses). This approach allows us to ensure

that the memory doesn’t change when other threads execute. Unfortunately, if part

of the memory is unmapped (by a compiler phase, because the program contains no

accesses to it), we can’t ensure that the threads execute correctly. This problem is

surprisingly close to the inr() example, and many of the solutions for that problem

will also solve the problem for concurrency.

In his original paper about CompCert Leroy [25] claims that “inputs given to

the programs are uniquely determined by their previous outputs”. That seems to

suggest that functions like remember/incr would be safe but, in its implementation,

CompCert rather requires that “inputs given to the programs are uniquely determined

by their last outputs” (i.e. the arguments to the external function call). However, we

could implement the former, stronger, specification by allowing external functions to

depend on the entire args-hist. Moreover, one should be able to prove that args-hist

are not unmapped by SimplLocals or Unusedglob, since it only contains escaping

pointers. These changes are beyond the scope of this thesis, so we temporarily use

full-injection and we skip the two problematic passes. We discuss this solution further

in the section 8.1.

74

Chapter 5

Compiler Correctness

In this chapter we present the compiler specification that supports concurrent code,

and we show that CompCert satisfies this specification. Just as we did for MOIST

semantics, the specification of correctness for CPMs is given as a simulation relation.

As we explained in section 3.1.1 this a simulation is enough to derive safety and

correctness preservation. We start the proof by introducing our novel technique to

support threads as if we could Compile One At a Time and then we show how to

prove the simulation for the different steps in the CPM.

5.1 Compiler Specification

A compiler that correctly compiles a concurrent program, must preserve a simula-

tion between the source and compiled programs, as CPM semantics. The simulation

describes how executions relate on both program: it very explicitly shows that per-

missions transfers are preserved (up to injection) and that nonstuck programs compile

to nonstuck programs. These CPM simulations are similar to MOIST simulations ex-

cept, instead of differentiating external function calls, they differentiate steps executed

by the machine (i.e. synchronization operations).

75

We state that the CompCert compiler satisfies the specification of correctness

given here and we prove that fact, in later sections of this chapter.

Definition 5.1.1 (CPM simulation). Two concurrent permission machines, CPM1

and CPM2 are in a simulation relation CPM1 & CPM2 if there is a match relation

for states %1 and a well ordered measure such that

1. at each point of the execution, CPM1 and CPM2 have the same number of

threads,

2. at each point of the execution, CPM1 and CPM2 have the same running threads

(i.e. local states marked with Run),

3. If CPM1 halts (the schedule runs out), then so does CPM2.

4. The initial state in CPM1 has a matching initial state in CPM2, related by %.

5. Each core step in CPM1 is simulated by some number of core steps in CPM2,

preserving the match relation % (as depicted in fig. 5.1(a)). If CPM2 takes 0

steps, the measure decreases according to a well founded order.

6. Each administrative step (resume, suspend, stutter, done) in CPM1 is simulated

by an equivalent administrative step in CPM2, preserving the match relation %

(as depicted later in this chapter in fig. 5.3).

7. Each synchronization step (release, acquire, fail-acquire, spawn, make-lock,

free-lock) in CPM1 is simulated by an equivalent synchronization step in

CPM2, preserving the match relation % (as depicted in fig. 5.1(b)). The

produced events are equal, up to injection.

1We use the notation % for match relations of CPM states and ∼ for match relations of states in
MOIST semantics.

76

∃ Σ′2 j ′, j v j ′

Σ1 %j Σ2

Σ′1 %j ′ Σ′2

core core∗

(a) Core steps

∃ Σ′2 j ′δ2, j v j ′

Σ1 %j Σ2

Σ′1 %j ′ Σ′2

sync δ1 sync δ2

δ1
j ′

↪→→ δ2

(b) Synchronization steps

Figure 5.1: CPM internal and synchronization step diagrams. The new core transition
can be any number of steps but the synchronization steps happen in lock-step.

The last three items in the definition of CPM simulation are the most difficult to

prove, and we will spend significant portion of this chapter proving similar diagrams,

such as the one depicted in fig. 5.3. For that, we spell out the details of a CPM step

simulation diagram in the following definition.

Definition 5.1.2 (CPM step diagram). Let %j be a given match relation for CPM

states and let P describe some kind of CPM step, such as core, administrative or

synchronization steps. Also, let there be two CPM states in a match relation, Σ1 %j Σ2.

If Σ1 takes a P step to some Σ′1, then Σ2 takes some steps in P to some Σ′2 such that the

match relation can be reestablished for a larger injection Σ′1 %j ′ Σ
′
2.If the steps produce

events, these events are injected by j ′. If Σ2 takes 0 steps, the measure decreases

according to its well founded order.

We say the diagram is in lockstep if Σ2 is required to take exactly one step.

We will define a match relation % for CPMs in definition 5.2.4 (with defini-

tion 5.4.1), and we will use that relation for all the diagrams in this chapter.

Following the previous definitions, the last three items in a of CPM simulation

can be reworded as:

77

5’. The core steps of CPM1 and CPM2 form a simulation diagram.

6’. The administrative steps of CPM1 and CPM2 form a lockstep simulation dia-

gram.

7’. The synchronization steps of CPM1 and CPM2 form a lockstep simulation dia-

gram.

It is often important to prove that simulation relations, like the one in defini-

tion 5.1.1, are transitive, to achieve modularity. For example, the CompCert correct-

ness proof uses transitivity of the simulation relation, to verify every compiler pass

separately and then compose them into a full compiler simluation. Indeed, we can

establish transitivity of definition 5.1.1, but we exploit it in a novel way to get a new

type of modularity (Compile One At a Time, section 5.2) in our compiler correctness

proof.

Lemma 5.1.3. For all machines CPM1,CPM2 and CPM3, if CPM1 & CPM2 and

CPM2 & CPM3 then CPM1 & CPM3.

Armed with the definition of simulation for CPMs, we can state the specification of

the CompCert compiler. The rest of this chapter describes the proof of how CompCert

satisfies this specification.

Theorem 5.1.4 (Compiler Correctness). Given a source program P and an x86 as-

sembly language program Q obtained by CompCert compilation of P, the CPMs of the

two programs are in a simulation relation:

CPMClight(P) & CPMAsm(Q)

78

5.2 Compiling One At a Time (COAT)

Beringer et al. [6] explained how CompCert does not guarantee, for its modules, the

properties it requires from external functions. For example, CompCert requires that

external functions do not modify locations in memory that are not allocated in the

target program, while a CompCert function can modify a local variable that is never

used and is removed by the compiler. This problem appears with recursive modules, in

separate compilation, and with threads, modeled as external functions, in concurrent

programs. To solve this asymmetry, Beringer et al. developed Logical Simulation

Relations and later Stewart et al. [35] improved them with structured simulations.

Kang et al. [23] avoid the problem by using the same compiler for all modules, but

can’t support different compilers or concurrency.

We propose a completely different approach. We observed that the problem dis-

appears if external functions are not compiling at the same time that we compile

internal functions. But how can we support mutually recursive modules and concur-

rency (modeled as external functions) if the external functions can’t be compiled?

We can mathematically model a program where only one thread has been compiled

and prove a simulation between the source program and the “partially compiled” pro-

gram. We can then repeat the process with one thread at a time proving a simulation

at each step. Finally, we compose all the simulations to obtain a simulation between

the source program and the compiled one.

To model an execution where only some threads have been compiled, we con-

struct a Hybrid Machine, namely a CPM such that some threads execute assembly

code, from the compiled program, and some threads execute C code, from the source

program. The use of interaction semantics in the CPM ensures that the different

semantics compose properly in the Hybrid Machine.

79

hb ≤ i hi =Start(f,a)
®h′= ®h[i 7→Run(initialCoreClight(f ,a))]

Ψ,Φ `HMhb
〈i · f, (®h, ®π,L),m〉 7→ 〈i · f, (®h′, ®π,L),m〉

(start src)

i < hb hi =Start(f,a)
®h′= ®h[i 7→Run(initialCoreAsm(f ,a))]

Ψ,Φ `HMhb
〈i · f, (®h, ®π,L),m〉 7→ 〈i · f, (®h′, ®π,L),m〉

(start tgt)

hb ≤ i hi = Run(σ) Ψ `Clight 〈σ,m |π1i
〉

ε
7→ 〈σ′,m′〉

®h′ = ®h[i 7→ Run(σ′)] ®π′ = ®π[i 7→ (Cur(m′), π2i)]

Ψ,Φ `HMhb
〈i · f, (®h, ®π,L),m〉

εi
7→ 〈i · f, (®h′, ®π′,L),m′〉

(core src)

i < hb hi = Run(σ) Φ `Asm 〈σ,m |π1i
〉

ε
7→ 〈σ′,m′〉

®h′ = ®h[i 7→ Run(σ′)] ®π′ = ®π[i 7→ (Cur(m′), π2i)]

Ψ,Φ `HMhb
〈i · f, (®h, ®π,L),m〉

εi
7→ 〈i · f, (®h′, ®π′,L),m′〉

(core tgt)

Figure 5.2: Hybrid Machine semantics: internal steps and start thread.

5.2.1 The Hybrid Machine

The Hybrid machine is a two-language Concurrent Permission Machine, indexed by a

hybrid bound, hb ∈ N+∞. It operates over states of the form 〈f, (®h, ®π,L),m〉, where

f, ®π,L and m are the schedule, the list of permissions, the lock permissions and the

global memory, just like in the CPM. The hybrid list of states ®h contains marked

local states, such that the first hb states are in Assembly and the rest in Clight.

The semantics of the Hybrid Machine employs judgments similar to that of the

CPM, Ψ,Φ `HMhb
〈f, (®h, ®π,L),m〉

ε
7→ 〈f′, (®h′, ®π′,L′),m′〉, with some rules shown in

fig. 5.2. Ψ and Φ are the source and compiled programs, respectively. When a new

thread is spawned, if its index is above the hybrid bound hb, it will run the code in

the source program Ψ and will run the compiled code otherwise. The internal steps

80

will execute according to the index of the thread, above the hb it will use the Clight

semantics and below it executes with Assembly.

The hybrid machine presented here only contains two programs in two languages

and is indexed by a hybrid bound. This is the form we use in the proofs presented

in this work. However, the hybrid machine can be instantiated with an arbitrary

number of programs (or modules), each in a different language, and threads can be

spawned from any of the modules and execute in the corresponding language. For

example, in section 8.1.1, we propose a hybrid machine that keeps the first thread in

Clight to reason about transformations of the global environment. In section 5.2.3,

we propose a hybrid machine with arbitrary languages to tackle separate compilation.

Notice that the the hybrid machine with hb = 0 will never consult the compiled

program, and will always execute in the source language, just like CPM in Clight.

Similarly, the hybrid machine with hb = ∞ behaves just like the CPM in Assembly.

We can almost say the “CPM (P) = HM0 (P,Q)” and “CPM (Q) = HM∞ (P,Q)”,

except the types don’t match, but we can formalize it as follows:

Remark 5.2.1. For all programs Ψ and Φ, there is an isomorphism between CPM (Ψ)

and HM0 (Ψ,Φ) and another isomorphism between CPM (Φ) and HM0 (Ψ,Φ). The

isomorphisms map states and steps to identical states and steps, but change the types

appropriately. If an operating system has a bound n to the number of threads that

a program can spawn, then there is also an isomorphism between CPM (Φ) and

HMn (Ψ,Φ).

Moreover, the simulation relation in definition 5.1.1 extends naturally to hybrid

machines.

5.2.2 COAT proof of compiler correctness

Following remark 5.2.1, the proof of our compiler correctness theorem 5.1.4 can be

reduced to the following theorem

81

Theorem 5.2.2. Given a source program P and an x86 assembly language program

Q obtained by CompCert compilation of P, the source and target hybrid machines are

in a simulation relation:

HM0(P,Q) & HM∞(P,Q).

The proof proceeds in three steps, which we formalize in lemmas below: first

we show that “adjacent” hybrid machines are in a simulation relation; second, we

compose the simulations shown in the previous step to prove that the source machine

(HM0) simulates any of the finite machines (HMn); finally, we show that simulating

all “finite” hybrid machines, is enough to simulate the target machine (HM∞). For the

rest of this chapter, we assume that P and Q are the source and compiled programs

as defined in theorem 5.2.2.

Lemma 5.2.3 (Compile one thread). For all n ∈ N, HMn (P,Q) & HMn+1(P,Q).

The first step to proving the simulation in lemma 5.2.3, we must define a match

relation %j for CPM states. We do this below, with the Coq implementation details

in appendix A.5.

Definition 5.2.42. We say two CPM states are in a match relation (indexed by a

memory injection j), 〈f1, (®s1, ®π1,L1),m1〉 %j 〈f2, (®s2, ®π2,L2),m2〉, when they satisfy the

properties below:

(a) The schedules are equal f1 = f2.

(b) Both states have the same number of threads (|®s1 | = |®s2 |).

(c) Both states are coherent (definition 3.2.3).

(d) For every location mapped by the memory injection j , the permissions of each

thread for this location, is preserved.

2The coq implementation is presented in appendix A.5.1

82

(e) The memories restricted to the permissions of a thread are injected,

∀i,m1 |π11,i

j
↪→ m2 |π22,i

and ∀i,m1 |π21,i

j
↪→ m2 |π22,i

(f) Locks are preserved by the injection with the same state (locked or unlocked)

and their ressources are injected:

∀l1 z δ1, L1 (l1, z) = Some δ1 →

∃l2 d , j l1 = Some (l2,d) ∧

L2 (l2, z + d) = Some δ2 ∧

δ1
j
↪→ δ2

(g) Each thread i < n is in Assembly for both CPMs and the thread states are

related by an injection relation. The injection of Assembly states is given by the

self simulation of the assembly languge in lemma 5.3.2.

(h) Each thread i > n is in Clight for both CPMs and the thread states are related by

an injection relation. The injection of Clight states is given by the self simulation

of the Clight language in lemma 5.3.2.

(i) The nth thread in ®s1 is in Clight and in ®s2 is in Assembly. A Clight and an

Assembly state are in a match relation, as defined by the MOIST specification

of CompCert in theorem 4.0.2. We lift this match to marked states in defini-

tion 5.4.1.

Proof of lemma 5.2.3. This proof relies on several lemmas that will be detailed

through the rest of this chapter (sections 5.3 and 5.5). We use the match relation

defined in definition 5.2.4 and we consider, in order, each condition necessary to

establish a simulation (definition 5.1.1):

1, 2, 3. The first three properties follow directly from the match relation.

83

4. The initial state of a machine is a single thread with state Start(main,args) and

a global memory with the global environment allocated. As long as the target

program has a a main function (corresponding to the same identifier) and a

global environment that is injected from the source one, then the simulation of

initial states follows. Both those facts follow from the MOIST simulations in

theorem 4.0.2.

5. There are two kinds of internal steps: the steps from the thread that is compiling

(thread id = n) and and the steps from other threads (thread id , n). The

diagram for the compiling thread follows from the the internal diagram of the

MOIST simulation in theorem 4.0.2. The step diagram of the other threads is

proven with lemma 5.3.2.

6. The simulation diagram for synchronization steps is exactly lemma 5.4.2.

7. The simulation diagram for synchronization steps is exactly lemma 5.5.1. �

Lemma 5.2.5 (Compile many threads). For all n ∈ N, HM0(P,Q) & HMn (P,Q).

Proof. By induction on n, using the transitive composition from lemma 5.1.3 and the

stepwise simulation in lemma 5.2.3. �

For systems with hard bound on the number of threads, lemma 5.2.5 is enough

to derive a simulation between source and compiled CPMs. Most real systems have

a hard bounds on the number of threads that can be initialized; for example, the

number of threads created with pthread-create, in Linux, is bounded by the kernel

variable pid-max [1] which for linux in 32-bit platforms is bounded above by 215 (for

64-bit architectures the limit is 222) . However, we want to prove a simulation with

the full generality of theorem 5.2.2 (i.e., supporting infinitely many threads).

84

Proof of theorem 5.2.2. The key observation for this proof is that during execution

any process has only a finite number of threads. In fact, a process can only spawn

one thread per small step so, after n steps, the processes has at most n threads.

Moreover, with an execution of n steps it is impossible to distinguish between

the hybrid machines with hybrid bounds above n, { HMi | i ∈ N + ∞ , i > n }.

Consequently, we get that for every step of an execution HM∞ is undistinguishable

from infinitely many other machines (namely { HMi | i > n }) that are in simulation

relation with HM0.

Let %i be the match relation for states, given by the simulation HM0(P,Q) &

HMi (P,Q) (proven in lemma 5.2.5). Also let |Σ | be the number of threads in state

Σ. We define a match relation %∞, between states Σ0 and Σ∞ of HM0 and HM∞,

respectively, as follows:

Σ0 %∞ Σ∞ , ∀i > |Σ∞ |. Σ0 %i Σ∞
3

In other words, Σ∞ can be seen as state of infinitely many finite hybrid machines,

each which is in simulation relation with HM0(P,Q). Then, Σ∞ matches Σ0, if they

match for all those simulations4.

Premises 1, 2, 3 and 4 from definition 5.1.1 follow trivially from the definition

of %∞. The simulation diagrams (premises 5,6 and 7), follow from the simulation

diagrams of any the simulations HM0(P,Q) & HMi (P,Q), for i > |Σ∞ |.

Notice that if the diagram includes spawning a new thread, one of the machines

we are considering will take a step that does not match the rest (i.e., HM|Σ∞ |(P,Q)

spawns a thread in Clight). However, because the number of threads has grown, by

definition, we don’t have to track the machine HM|Σ∞ | anymore to establish %∞. �

3The expression Σ0 %i Σ∞ is not well typed; the state Σ∞ is part of the HM∞, while the right
hand side of %i expects a state of HMi . However, because Σ∞ has less than i threads, there is a
state of the right type that is identical to Σ∞.

4It turns out that, for all i > |Σ∞ |, all the relations %i are equivalent but with different types, so
it suffices to just check the smallest one, Σ0 % |Σ∞ | Σ∞.

85

Finally we can establish our proof of Compiler Correctness.

Proof of Compiler Correctness. This is a direct corollary of theorem 5.2.2. �

5.2.3 Separate compilation

We propose that the COAT technique can be exploited in separate compilation to

simplify the compiler proofs. In this section we present the structure of the proof,

but we leave the implementation detail as future work.

We will consider the linking semantics, from [35], and define a Hybrid Linker,

by analogy to our Hybrid Machine, also indexed by a hybrid bound, hb ∈ N + ∞.

Given a list of modules S0, S1, . . . Sn−1 and their compiled versions T0, T1, . . .Tn−1, a

hybrid linker is given by HL ((nS0o,nT0o), . . . (nSn−1o,nTn−1o). Just like the linking

semantics, the hybrid linker models the execution of the (“selectively compiled”)

linked program by maintaining as its own state a stack of the modules’ core states

(i.e. individual instantiations). It also has the following new properties

• It keeps a counter ec, for the number of external calls. Every time an external

function is called (and a new runtime invocation of a module is created), the

counter increases by 1. The counter never decreases.

• When an external function to module i is executed, if ec ≥ hb then an instance

of the funtion in Si is created, otherwise it uses Ti .

We use & to denote contextual refinement, as extended to hybrid linkers.

Following the same structure as in section 5.2.2, we present the three key results

to obtain separate compilation using COAT. In all the following lemmas, we assume

the hybrid linkers are all instantiated with the same modules, as described above,

and we omit them.

Conjecture 5.2.6 (Compile one core). For all n ∈ N, HLn & HLn+1.

86

The proof of conjecture 5.2.6, is beyond the scope of this thesis, but it should not

be harder than the proof of Compiler refinement in [35]. We expect the proof to be

easier and allow significant simplification of structured simulations.

Lemma 5.2.7 (Compile many cores). For all n ∈ N, n ∈ N, HL0 & HLn .

Proof. By induction on n, using the transitive composition of contextual refinement

(or structured simulations) and the stepwise simulation in conjecture 5.2.6. �

Theorem 5.2.8 (Compile all cores). HL0 & HL∞.

Proof. Notice that at any point in an execution, the hybrid linker has only instantiated

a finite number of new cores (as recored by the counter ec). Using ec in place of the

number of threads, the proof follows in direct analogy to the proof of theorem 5.2.2.

�

Corollary 5.2.9 (Separate compilation correctness). If PS = S0,S1, . . . ,SN−1 is a

multimodule program with N translation units compiled to PT = T0,T1, . . . ,TN−1

(possibly by different compilers) then there is a simulation relation L(S0,S1, . . . ,SN−1) &

L(S0,S1, . . . ,SN−1), between the linked source and compiled programs.

5.3 Self simulations

When one thread is compiling (using a COAT model), what happens to the other

threads? Their code is not changing but the context is, and that might change the

memory observable by the thread. For example, if a compiling thread allocates less

memory (or more), the other threads will see locations in memory change, even their

own allocations.5 We must prove that the behavior of threads that don’t compile

is preserved, under the compilation of other threads. This preservation of behavior

5CompCert’s memory model allocates blocks in order, so the block numbers are not preserved
by interference of other allocations. However, the memory structure is preserved up to the memory
injection.

87

can be even stronger than the one preserved by the compiler. For example, we can

expect that threads that don’t compile allocate the same number of blocks in the same

order (even if the block numbers change). We formalize this, strong preservation of

behavior under changes to the context as self simulation.

Definition 5.3.1. We say that a language L simulates itself if there is an injection

relation between its states and indexed by a memory injection, such that:

• States related by the injection relation take steps that have equivalent (up to

memory injection) effects on memory and preserve the injection relation,

• The injection relation preserves at-external, and

• The injection relation is monotonic on the memory injection.

We prove in Coq that Clight and Assembly self-simulate.

Lemma 5.3.2. Clight and x86 assembly self-simulate.

Proving self simulation for source and target languages is a necessary step of

the COAT technique. However, we only need to prove it twice (for source and tar-

get languages)—that is, we don’t need to prove it for each intermediate language of

CompCert. On the other hand, the COAT technique simplifies the simulation rela-

tions that we need to require from every pass of the compiler6, of which there are

more than 16. In general this makes the proof effort easier, and much easier to extend.

This precisely why we find the COAT technique so powerful.

5.4 Simulations for administrative steps

The administrative steps of a CPM (namely resume, suspend and stutter) are the

simplest ones. They don’t change the memory, the thread permissions, or the locks.

6When only one thread is compiling, we model other threads as the standard external calls that
CompCert supports; thus, we don’t need the complicated at-external and after-external of [35]. We
also simplify the simulation of initial states as explained in section 4.5.

88

They also leave the thread states mostly unchanged, only modifying the marker (e.g.,

changing Blocked to Run). The only difficulty, which we solve in this section, is that

the resume step has to turn the thread-local state from a call state, to a return state

by calling afterExternal(σ,v) = σ′ (as it is returning from a synchronization function

call).

First, why isn’t afterExternal called when the synchronization function is executed?

That’s because other threads interfere with the memory between the execution of the

synchronization function and the resume step and we want to model all of that

behavior as part of the external function. However, at the time the synchronization

function executes, we already know how to reestablish the state. Our strategy, de-

tailed in the proof of lemma 5.4.2, is to prove the diagram for the resume step when

the function is executed and record that fact in the match relation.

We start by presenting the match relation for marked states (i.e. with Blocked ·,

Run · and Resume ·). For Blocked states it records the interference of other threads,

and for Resume states it promises to reestablish the match relation after future in-

terference.

Definition 5.4.1. Let ∼ be a match relation between states of some languages L1 and

L2. We extend the relation to marked states as follows:

Init: For any function f and arguments a1 and a2 such that a1
j
↪→→ a2, then

Run (f , a1) ∼j Run (f , a2)

Run: If two states match, so do their running version σ1 % σ2 → Run σ1 % Run σ2

Resume: If two states match and some threads interfere with the memory, the blocked

states still match.

Resume: Two Resume states match if for every possible interference of other threads with

the memory, we can reestablish a match relation with the resulting states.

89

∃ Σ′2 j ′, j v j ′

Σ1 %j Σ2

Σ′1 %j ′ Σ′2

admin admin

Figure 5.3: CPM administrative step diagrams stated in lemma 5.4.2

Now the definition of match relation for Resume states bakes in the step simulation

relation, which now makes the lemma below easy to prove. The definition above

shifts the burden of proof to the execution of the synchronization functions (which

we consider in section 5.5).

Lemma 5.4.2. For two hybrid machines with consecutive hybrid bounds (hb2 =

hb1 + 1) the administrative steps form a simulation diagram in lockstep, as depicted

in fig. 5.3.

Proof. We look at each step individually

stutter This step is trivial and the simulation is trivial as well.

suspend This is trivial and the simulation is easily constructed. To reestablish the match

relation after changing the the states to Blocked ·, we provide an empty inter-

ference (case (b) in definition 5.4.1).

resume This simulation diagram follows directly from the match relation. After the

resume step, the new states are marked with Run, so the new simulation is

easy to establish (case (a) in definition 5.4.1).

It’s worth noting that for this step we are using the (c) case in definition 5.4.1,

which is established when the synchronization function is executed, as we show

in lemma 5.5.1. �

90

5.5 Simulations for synchronizations

The synchronization steps (acquire, acqfail, release, make-lock, free-lock and spawn),

are the most involved of the CPM steps, because they build in the functionality of

the synchronization operations. These steps can change the permission maps (®π), the

lock permissions and locations (L), the memory (m) and even extend the number of

threads (®s). In this section we describe the simulation diagrams for these steps; an

overview of the mechanized proof is outlined in appendix A.5.2 and the full proof can

be found in the Coq code.

Lemma 5.5.17. For two hybrid machines with consecutive hybrid bounds (hb2 =

hb1 + 1) the synchronization steps form a simulation diagram in lockstep.

Proof. We prove each step separately. The proof for spawn is detailed in lemma 5.5.2.

The proofs for steps acquire and release are almost identical and we explain the proof

for the former in lemma 5.5.3. The steps make-lock, free-lock and acqfail are relatively

simple and don’t present any difficulty that is not solved in the cases above, so we

omit their proof here. �

5.5.1 Simulation of the Spawn step

In this section we state and prove the simulation of the spawn step for Hybrid ma-

chines.

Lemma 5.5.2. For two hybrid machines with consecutive hybrid bounds (hb2 =

hb1 + 1) the spawn steps form a simulation diagram in lockstep.

Proof. Let Σ1 = 〈i · f, (®s1, ®π1,L1),m1〉 and Σ2 =
〈
i · f, (®s′2, ®π

′
2,L2),m2

〉
, such that

Ψ,Φ `HM 〈i · f, (®s1, ®π1,L1),m1〉
Spaij
7→

〈
f, (®s′1, ®π

′
1,L1),m1

〉
7The coq implementation is presented in appendix A.5.2

91

Then we know that, by the spawn rule in fig. 3.2,

1. s1[i]=Blocked(σ1),

2. at externalσ1 = Some(Spawn(f,a1)),

3. ®s′1 = ®s1[i 7→Resume(0, σ1), j 7→Start(f,a1)] and

4. ®π′1 = ®π1[i 7→ π′1, j 7→ δ′1/{}].

From the match relation Σ1 %j Σ2, defined in definition 5.2.4, we can infer:

5. s2[i]=Blocked(σ2),

6. at externalσ2 = Some(Spawn(f,a2)) such that a1
j
↪→→ a2 and

7. there exists π′2 and δ′2, such that π′1
j
↪→→ π′2, δ

′
1

j
↪→→ δ′2.

So we can construct

8. ®s′2 = ®s2[i 7→Resume(0, σ2), j 7→Start(f,a2)] and

9. ®π′2 = ®π2[i 7→ π′2, j 7→ δ′2/{}]

such that

Ψ,Φ `HM 〈i · f, (®s2, ®π2,L2),m2〉
Spaij
7→

〈
f, (®s′2, ®π

′
2,L2),m2

〉
.

Finally, we must establish
〈
f, (®s′1, ®π

′
1,L1),m1

〉
%j

〈
f, (®s′2, ®π

′
2,L2),m2

〉
, which we

do by considering all the requirements of the match relation for CPMs, defined in

definition 5.2.4:

(a), (b), (f) are trivial,

(c) Coherence follows by construction.

(d) The injection of permissions follows by construction too.

92

(e) The memory hasn’t changed, the only permissions that change were those in

threads j and i . By 7, above, the injection of the new permissions follows.

(g),(h),(i) The new thread has not been initialized, so the new thread j , is matched in

both machines by definition definition 5.4.1 and 6 above. The match relations

for all the other threads follow from the old relation Σ1 %j Σ2. �

5.5.2 Simulation of the Acquire step

In this section we state and prove the simulation of the acquire step for Hybrid ma-

chines.

Lemma 5.5.38. For two hybrid machines with consecutive hybrid bounds (hb2 =

hb1 + 1) the acquire steps form a simulation diagram in lockstep.

Proof. Let i be the thread that is executing the acquire step. We consider three cases

for this proof: (1) i = hb1, (2) i < hb1 and (3) i > hb1. In what follows we present

the proof for the first case, when the executing thread is the one compiling. The other

two cases follow the same structure, but without the complication of being compiled.

We split the proof of the diagram in two parts, first we construct Σ′2 and show that

Σ2 can take an acquire step to it and, second, we prove Σ′1
j
∼ Σ′2:

Construction of Σ′2 and the step Let Σ1 = 〈i · f, (®s1, ®π1,L1),m1〉 and Σ2 =〈
i · f, (®s′2, ®π

′
2,L2),m2

〉
, such that

Ψ,Φ `HM 〈i · f, (®s1, ®π1,L1),m1〉
Acqia1 δ
7→

〈
f, (®s′1, ®π

′
1,L1),m1

〉
Then we know that, by the acquire rule in fig. 3.2,

1. s1[i]=Blocked(σ1),

8The coq implementation is presented in appendix A.5.2

93

2. at externalσ1 = Some(Acquire(a1)),

3. m1 |π21[i]
(a1) = 1

4. m1[a1 7→ 0] = m′1

5. π1[i] ⊕ L1(a1) = π′1 where δ1/π1[i] = π′1

6. ®s1[i 7→ Resume(0, σ1)] = ®s′1, ®π1[i 7→ π′1] = ®π′1 and L1[a1 7→ Some ∅] = L′1

From the match relation Σ1 %j Σ2, defined in definition 5.2.4, we can infer:

7. s2[i]=Blocked(σ2),

8. at externalσ2 = Some(Acquire(a2)) such that a1
j
↪→→ a2

9. m2 |π22[i]
(a2) = 1

10. There exists π′2, such that π2[i] ⊕ L2(a2) = π′2.

So we can construct

11. δ2, such that δ2/π2[i] = π′2 and that δ1
j
↪→→ δ2

12. m′2 = m2[a2 7→ 0]

13. ®s′2 = ®s2[i 7→ Resume(0, σ2)],

14. ®π′2 = ®π2[i 7→ π′2]

15. L′2 = L2[a2 7→ Some ∅]

Notice that by (11), δ1
j
↪→→ δ2 and by the match relation Σ1 %j Σ2, we also know that

the content of memory protected by the lock (i.e. those locations where δi has at

least Readable permission) are injected. From all the above we can prove:

Ψ,Φ `HM 〈i · f, (®s2, ®π2,L2),m2〉
Acqia2 δ
7→

〈
f, (®s′2, ®π

′
2,L2),m2

〉
94

The match relation: We consider all the requirements of the match relation for

CPMs, defined in definition 5.2.4:

(a), (b) are trivial,

(c) The initial states are coherent. In the new states we have the same permissions,

albeit in different places, so the new states are also coherent.

(d), (e) The new permission maps (π′1 and π′2), have the same permission as before plus

the permissions that were in the lock. Both were injected by j , so their addition

is also injected by j . The permissions of other threads don’t change so, by the

old match relation, they are injected as well. The memory has only changed

in the lock locations (a1 and a2) which are injectable and, by the old match

relation, the rest of memory was already in an injection relation so the new

memories are as well.

(f) The only locks that change are the acquired ones. The new content of the blocks

is empty, which is trivially injected.

(g),(h) The threads that are not compiling are not changing so their match relations

still hold.

(i) We expand on the match relation for the compiling thread below.

We have that Blocked(σ1)
j
∼ Blocked(σ2) and we need to prove Resume(0, σ1)

j
∼

Resume(0, σ2) using definition 5.4.1. What the former relation tells us is that, for

some previous memories m0
1 and m0

2 , the states matched (according to the MOIST

simulation of CompCert) and that, since then, other threads produced interference

intf01 and intf02 (which means changing locations in memory not visible by the thread)

to produce the current memory (as depicted in fig. 5.4(a)) and such that

intf01
j
↪→→ intf02. (5.1)

95

(σ1,m
0
1)

j
∼ (σ2,m

0
2)

(σ1,m1) (σ2,m2)

intf01 intf02
′

(a)

(σ1,m
0
1)

j
∼ (σ2,m

0
2)

(σ1,m1) (σ2,m2)

intf01 intf02
′

δ1 δ′2

intf1 intf′2

(b)

Figure 5.4: Match relation for Blocked

We now know that the acquire step produces injectable events

δ1
j
↪→→ δ2 (5.2)

and that, in the future, other threads will produce more interference intf1 and intf2

(as depicted in fig. 5.4(b)), such that

intf1
j
↪→→ intf2. (5.3)

Can we establish the match relation of the resulting future states, (σ1,m
′′
1)

j
∼

(σ2,m
′′
2)?

First, the entire execution from (σ1,m
0
1) to (σ1,m

′′
1) constitutes a single step in

the Clight MOIST semantics, executing the acquire step

Ψ `Clight (σ1,m
0
1)

Acq intf01 δ1 intf1
−−−−−−−−−−−−−−−→ (σ1,m

′′
1) (5.4)

and similarly

Φ `Asm (σ2,m
0
2)

Acq intf02 δ2 intf2
−−−−−−−−−−−−−−−→ (σ2,m

′′
2). (5.5)

96

(σ1,m
0
1)

j
∼ (σ2,m

0
2)

(σ1,m
′′
1)

j
∼ (σ2,m

′′
2)

Acq intf01 δ1 intf1 Acq intf02 δ2 intf2
′

(Acq intf01 δ1 intf1)
j
↪→→ (Acq intf02 δ2 intf2)

Figure 5.5: MOIST simulation of acquire steps

By the MOIST simulation of CompCert, we know that there are m′′2 , intf02, δ2 and

intf2, that complete the step diagram as in fig. 5.5. Since we have (σ1,m
′′
1)

j
∼

(σ2,m
′′
2), we only need to prove that m′′2 = m′′2 .

We know that (Acq intf01 δ1 intf1)
j
↪→→ (Acq intf02 δ2 intf2), which means that

intf01
j
↪→→ intf02 δ1

j
↪→→ δ2 and intf1

j
↪→→ intf2.

Because ↪→→ is deterministic and because of equations 5.1, 5.2, and 5.3, then

(Acq intf02 δ2 intf2) = (Acq intf02 δ2 intf2)

Because external functions in CompCert are deterministic, up to the event, then the

step in eq. (5.5) and the right step in fig. 5.5 are the same and thus m′′2 = m′′2 . �

97

Chapter 6

CSL soundness proof 1

This section describes how the Concurrent Permission Machine supports a rich logic

like Concurrent Separation Logic. A key idea in this process is to define the Juicy Con-

current Machine, which mirrors the CPM but with ”juicy” memories and resources

instead of CompCert memories and permission maps. We start with an overview of

CSL, then ”juicy” semantics for sequential code and concurrent code (Juicy Con-

current Machine). Finally we show that the CPM simulates the Juicy permission

Machine, by erasing the juicy resources into regular permission.

The work in sections 6.1, 6.2 and 6.3 where developed and written by Jean-Marie

Madiot and William Mansky with assistance from Andrew Appel. The erasure proof

in section 6.4 was done by the author of this thesis in collaboration with William

Mansky.

1It is unusual in a PhD thesis to have an entire chapter authored by someone else. In this case, my
own contribution—compiler correctness for concurrent CompCert based on the CPM—is motivated
by and is useful in the context of the ability to prove that a source program has a safe execution
in the CPM. These results, by Madiot, Mansky and Appel, have not yet been published elsewhere.
In order to demonstrate that my own results can integrate into a top-to-bottom verified system, I
include the work of those authors here, with their permission. In this chapter, only this footnote
and the last section (6.4) are my own work; everything else is by the authors mentioned above. This
chapter is taken from our tech report [10] and authors who wish to cite the results described in this
chapter should cite that report rather than this thesis.

98

writable share sh

{e ⇓ v ∧ v
sh
7→lock } makelock e {v

sh
� R}

writable share sh precise R positive R

{e ⇓ v ∧ v
sh
� R∗R}freelock e {v

sh
7→lock ∗ R}

readable share sh

{e ⇓ v ∧ v
sh
� R} acquire e {R ∗ v

sh
� R}

readable share sh precise R positive R

{e ⇓ v ∧ R ∗ v
sh
� R} release e {v

sh
� R}

EVAL = e1⇓ f ∧ e2⇓v

{EVAL ∧ f : {P }{F}∧P (v)}spawne1(e2){emp}

Figure 6.1: Concurrent Separation
Logic.
e ⇓ v means that e evaluates to v .

v
sh
7→τ w means that at address

v , the value w is laid out in
memory as a struct of type τ.
Share sh is in a lattice between ◦
(empty) and • (full); some shares
give enough permission for writing
(writable share sh), and those can
be split into readable shares that
give only read permission (or per-
mission to acquire a lock). f :
{P }{Q} says that address f is a
function with precondition P and
postcondition Q . To spawn f , the
precondition must be satisfied, and
the footprint of P (v) in the par-
ent’s precondition disappears into
the child. We require Q = False;
threads must explicitly call thread-
exit (but in this proof we omit
thread-exit).

6.1 Concurrent Separation Logic

Our CSL’s root judgment has the form, Γ `CSL Ψ : Γ′, where Γ is a list of function

specs and Ψ is a list of function bodies. It means, assuming all the functions satisfy

their specifications in Γ, then each function-body in Ψ does satisfy its specification in

Γ′. Then, one proves Γ `CSL Ψ : Γ to prove that a set of mutually recursive functions

satisfy all their specs. (This is not circular reasoning! [4, Equation 81].)

For each function body c one must prove ∆ `CSL {P }c{Q}, where ∆ incorporates

both the global Γ and this function’s local-variable declarations, P is a precondition,

and Q is a set of postconditions [3, Ch. 24,25].

The CSL rules for the concurrency operations are shown in Figure 6.1.

Makelock associates with its lock a resource invariant, a separation-logic predicate

that characterizes both the footprint (set of addresses controlled by the lock) and a

99

predicate the data at these addresses must satisfy whenever the lock is unlocked. The

footprint need not be static; for example, l � ∃q .p 7→ q ∗ q{0 says, “address l is a

lock controlling access to the linked list whose head-pointer q is stored at address p.”

If q is 0, the footprint is just {p}, but if q 7→ (1,q′) ∗ q′ 7→ (2,0) then the footprint is

{p,q .hd,q .tl,q′.hd,q′.tl}.

Suppose thread t1 creates a new linked-list data structure p and a new lock lp to

control it, so lp � ∃q .p 7→ q ∗ q{0. Now thread t1 wants to tell another thread t2

about this lock. Either t1 spawns function f as thread t2, passing lp as an argument;

or t1 stores lp into a shared data structure s controlled by lock ls and then releases ls

so that t2 can acquire ls . In either case, one separation-logic predicate describes the

binding of a lock-address to its resource invariant, another separation logic predicate.

Having one predicate operate on another can lead to paradox if not treated carefully,

so we use a step-indexed model of a modal separation logic [19].

6.1.1 Impredicativity and the spawn Rule

All of the CSL rules are impredicative—that is, they quantify over a CSL predicate,

the resource invariant associated with the lock. Impredicativity gives the power to

specify higher-order functions such as spawn: the spawn rule contains not just a

predicate but an assertion that a certain pre- and postcondition are associated with

its argument, the function to be spawned.

6.1.2 Ghost State

When proving correctness of complicated concurrent programs, we may want to keep

track of more information than just shares of memory locations. Concurrent separa-

tion logic becomes much more powerful with the addition of ghost state, structured

auxiliary state that can be introduced and manipulated as part of the CSL proof.

Ghost state is particularly useful for establishing protocols on the use of shared re-

100

sources, so that we can reason more precisely about concurrent interactions. For

instance, the program in Figure 6.2 (a C program proved in Coq, but here shown in

pseudocode rather than C) increments a lock-protected shared variable twice in par-

allel. In basic CSL, we can prove that the program executes safely according to a lock

invariant such as x ≥ 0, but not that x = 2 at the end of the program. Using ghost

state, we can record the contributions made by each thread to x in ghost variables

shared between the threads and the lock invariant, allowing us to deduce the precise

value of x at the end of the program.

x = 0;
acquire(l); acquire(l);

x++; x++;

release(l); release(l);

Figure 6.2: The increment example

The CSL of VST includes ghost state in the style of Iris [21], in which any partial

commutative monoid (PCM) can be used as ghost state, including posets, histories,

and state machines. VST’s logic is like Iris’s but builds on separation algebras instead

of resource algebras; in either case, these are PCMs with a few additional properties.

Definition 6.1.1. A ghost algebra is a separation algebra with a valid predicate, such

that

valid(a · b) ⇒ valid(a).

The CSL uses a separation logic assertion own(g,a) to assert that the current

thread owns ghost state a at name g . (Note that valid(a) is a mathematical propo-

sition, while own(g,a) is a spatial assertion.) This assertion is introduced and ma-

nipulated with the rules shown in Figure 6.3, using a view shift operator V in the

style of Iris. This operator subsumes logical implication, and allows us to make

frame-preserving updates to ghost state at any point in a proof.

With locks and ghost state, we can prove correctness of a wide range of concurrent

programs. The power of the CSL has been demonstrated in an application to a

101

P V P ′ {P ′}c{Q ′} Q ′ V Q

{P }c{Q}

valid(a)

emp V ∃g,own(g,a) own(g,a) V emp

own(g,a · b) = own(g,a) ∗ own(g,b) own(g,a) ⇒ valid(a)

a b

own(g,a) V own(g,b)

Figure 6.3: CSL rules for ghost state.

messaging system for shared-memory communication in autonomous vehicles [29].

This messaging system provides an API through which a writer can make values

available to a collection of readers efficiently, while protecting against interference

from potentially malicious readers and writers. The proof makes use of ghost variables

and histories to track the readers’ knowledge of the writer’s state and vice versa, using

this ghost state to define the protocol by which shares of data buffers are passed

between components. The program itself is 170 lines of C code, and the proof in VST

is 3600 lines of Coq, showing that readers that use the API correctly always receive

the most recently written value.

6.1.3 Mechanization

VST includes a proof automation system for interactively verifying C programs [8],

consisting of 1) derived Hoare rules restructured for easier automation and 2) Coq

tactics for symbolically executing program instructions and automatically proving

separation logic entailments. For the most part, this system can be used as is to verify

concurrent programs in our CSL: release, acquire, etc. are treated in the same way

as normal function calls, and can be proved with the existing forward call tactic. We

have added new tactics ghost alloc and viewshift SEP for introducing and manipulating

ghost state, and a forward spawn tactic for applying the spawn rule, bridging the gap

between the precondition of spawn and that of the spawned function. We used these

features to verify the C programs described above.

102

In the next two sections we prove that programs with a correctness proof in Con-

current Separation Logic are safe in the Concurrent Permission Machine.

6.2 Juicy Sequential semantics

The application programmer

says, “I am the center of the world.

My thread may call functions, even

external functions that acquire or re-

lease locks, but they return to me

just where I left off. Thus I can rea-

son sequentially using the Hoare logic

{P }c{Q}, where c may call external

functions.”

The thread-library author says,

“I am the center of the world. I per-

mit a thread to resume, and after

a time it comes back to me with a

synchronization request. Perhaps it

has pushed or popped its function-

call stack in the meantime; that is

not my concern; I have many other

threads to manage too.”

We reconcile these two views by presenting two operational semantics. In sec-

tion 6.2 we define the Juicy Sequential semantics, and prove a theorem about it; in

section 6.3 we define the Juicy Concurrent semantics, and prove a theorem; the com-

position of these theorems demonstrates that the CSL is sound with respect to CPM

executions.

6.2.1 Review of VST semantic model

Appel et al. [3] developed a semantic model of sequential separation logic with higher-

order features intended to support concurrent separation logic. In this section, we

review that logic and model; then we describe the new work that implements and

proves CSL.

To reason about concurrent-read/exclusive-write, the separation logic predicates

(Figure 6.1) use a share lattice: a write-share can be split into read-shares, which can

103

Ψ `CompCert 〈σ,m〉
ε
7→ 〈σ′,m′〉 φ

m,m ′

{ φ′

E,Ψ `JuicySeq 〈σ, 〈φ,m, µ〉〉 7→ 〈σ′, 〈φ′,m′, µ′〉〉
(core)

atExternal σ = Some(f ,x) E(f) = {P }{Q}
Pyx (jm) Qyr (jm′) afterExternal(σ, r) = σ′

E,Ψ `JuicySeq 〈σ, jm〉 7→ 〈σ
′, jm′〉

(external)

atExternal σ = Some(f ,x) E(f) = {P }{Q}
Pyx (jm) ¬∃r, jm′. Qyr (jm′)

E,Ψ `JuicySeq 〈σ, jm〉 7→ 〈σ, jm〉
(no-return)

Figure 6.4: Juicy Sequential machine, a thread-modular view of a concurrent execu-
tion. External specification E is instantiated with ECSL, the Hoare rules of Figure 6.1.

be further split into more read-shares [3, Chapters 11,41]. Also, our predicates permit

the description of how a lock address is associated with its resource invariant (which

is another predicate); this permits reasoning about programs that dynamically create

new locks [3, Chapter 30].

The semantic model of our predicates (and our Hoare triple) is with respect to

a C semantics with enriched states that keep track of shares, predicate bindings,

and ghost state; we call these juicy memories. The CompCert C semantics has a

simpler permission-lattice than our shares (see section 4.1), and has no notion at all

of “predicates in the heap.” At a lower level of our proof, an erasure theorem relates

our juicy C semantics to a CompCert C semantics.

We put shares, predicate-bindings, and ghost state into a state component φ

called a resource map, a mapping from address to resource. A resource specifies

a share; the resource type (ordinary value, callable function, lock); for value-type

resources, the CompCert value stored at that location; for functions, the specification

(pre/postcondition); for semaphores, the resource invariant. Each resource map also

contains a finite map of ghost elements: each ghost name is mapped to a dependent

pair of a ghost algebra and an element of that algebra. We can add new types of

104

ghost state (i.e., new ghost algebras) on the fly during execution by extending the

map. Our semantic model is step-indexed [19] to allow higher-order impredicative

quantification. Each resource map φ has an approximation level, level(φ), applied to

both invariants and ghost state. Higher levels carry more accuracy; as the program

small-steps, the levels of all the φ decrease in lockstep.

Resource maps form a separation algebra with a join operator φ1 ⊕ φ2 = φ, a

partial function corresponding to the separating conjunction: φ1 |= P1, φ2 |= P2,

φ |= P1 ∗ P2.

A CompCert memory is a map from addresses to values and permissions; we couple

a resource-map φ and a memory m as a juicy memory jm = 〈φ,m, µ〉 where µ is a

proof that the permission-shares and values claimed by φ at each address correspond

to the CompCert current permission and contents of m. The predicates ({P }{Q} for

functions and R for locks) have no analog in the “dry” memory m.

Our “juicy sequential small-step semantics” (Figure 6.4) steps Ψ `JuicySeq

〈σ, jm〉 7→ 〈σ′, jm′〉. The core rule is a restriction of the CompCert step (a juicy

state steps only if its internal CompCert state also steps). Thus, proving erasure

(from a core small-step in Juicy Sequential to a small-step in CompCert) is trivial.

But we need to reconstruct the new jm′ after a core step; hence this lemma is useful:

Lemma 6.2.1 (from Chapter 42 of [3], extended with ghost state). When µ proves

that φ corresponds with m (jm = 〈φ,m, µ〉) and then m evolves to m′ by allocating

some blocks, storing at some addresses, and deallocating some blocks, we can can find

φ′ and µ′ such that jm′ = 〈φ′,m′, µ′〉, and also φ
m,m ′

{ φ′ (that is, φ, φ′ agree on all

other addresses).

External calls. Stewart [36, page 119] shows how an interaction semantics small-

steps across an external function call f (x). There is no constructive semantics for such

steps; instead, we have a specification for external functions, in the form of a Hoare

105

triple: E(f) = {P }{Q}. P is a predicate on “ghost value” y , function parameter x ,

and juicy-memory jm. The idea is that if (for some y) Pyx (jm) holds as f (x) is called

in state jm, then (for that y) Qyr (jm′) will hold on the return value r in the after-call

state jm′. The y allows communication between precondition and postcondition.

We instantiate the external specification E with our ECSL that specifies Hoare

triples for the synchronization operations (acquire, release, makelock, etc.).

When the Juicy Sequential reaches an external call, it evaluates the external-

function address f and arguments ®x . Then it looks up the specification for f , and (non

constructively) finds y such that Pyx (jm) holds. Then it (angelically) finds r, jm′ such

that Qyr (jm′) holds. Finally, the afterExternal operation of our interaction-semantics

model folds the return value r back into the local state [6].

But perhaps the external function’s postcondition is false. In Hoare logic, that

means (essentially) that the function never returns; it is quite safe to call such a

function (provided you satisfy its precondition). Here we present this as a no-return

rule; our Coq proofs (and [36, pages 119–120]) present the definition of safety more

directly.

It may seem backwards to derive the small-step relation from the Hoare speci-

fication! Indeed, it is the job of the linking theorem to show that the appropriate

y, r,m′ will exist— that the external system E satisfies its Hoare-logic specification.

Stewart [36, Thm. 9] showed such a linking theorem for modular verification of sep-

arately compiled modules. Theorem 6.3.4 will be a different linking theorem, for

adding synchronization operators to our core-language Clight semantics. By this

axiomatic treatment of acquire and release, we avoid the need for Hobor’s oracular

semantics [18].

Step-indexes. A juicy memory jm = 〈φ,m, µ〉 contains a resource-map φ labeled

with a step-index level. The step-indexed predicates (resource invariants, function

106

preconditions) bound to addresses in φ are accurate only to that level. We define

level(jm) = level(φ).

Definition 6.2.2 (Sequential safety). A Juicy Sequential state 〈σ, jm〉 is safe, written

E,Ψ `JuicySeq safe 〈σ, jm〉, if it cannot reach a stuck state within k = level(jm) steps

in the `JuicySeq relation. [3, page 393]

To prove that a program is safe for k = 1099 steps, choose the program’s initial

φ to have level k . Quantification over the desired execution length k is done outside

any other quantification, so we can reason about any finite prefix of the execution of

program Ψ.

Our CSL judgments Γ `CSL Ψ : Γ′ and ∆ `CSL {P }c{Q} are not (deeply em-

bedded / syntactic) inductive predicates! They are (shallowly embedded) semantic

definitions. {P }c{Q} means by definition [3, Chapter 43] that in any state satisfying

P , it is safe to run c, and if c finishes, it will do so in a state satisfying Q .

Figure 6.1 does not show the separation logic rules for the sequential C language.

Appel et al. present those rules [3, Chapter 24] and prove them w.r.t. the semantic

model of the the Juicy Sequential semantics [3, Part VI]. That proof is entirely

parametric over E. So nothing changes when we now introduce concurrency into the

language and program logic: our CSL includes all the rules of sequential SL.

6.2.2 New result: Concurrent Separation Logic is sound

Subsection 6.2.1 described previous work, with the exception of the enhancement

of resource maps (and CSL predicates) to handle ghost state, which is new. This

subsection describes a new result.

We prove that if a C program is proved correct (to any specification) in concurrent

separation logic, and its initial thread starts in a state satisfying its precondition, then

its (pseudo)sequential execution (`JuicySeq) will be safe. Safety in `JuicySeq implies

107

partial correctness—not shown in Figure 6.4 is the rule [36, pages 119–120] that

checks the program’s postcondition when the program finishes.

Theorem 6.2.3 (Separation Logic Soundness). Suppose all the functions in program

Ψ satisfy their specifications in Γ, by a derivation of Γ `CSL Ψ : Γ. Suppose Γ(f) =

{P }{Q}, that is, calling f with argument x and ghost value y we have the Hoare triple

{Pyx } r := f (x) {Qyr }. Let σ be a local state in which the current command is the

function-call f (v). Let jm be a juicy memory such that (σ, jm) satisfies Pyv. Then

ECSL,Ψ `JuicySeq safe 〈σ, jm〉.

Proof. By unfolding the definition of our `CSL judgment. �

6.3 The juicy concurrent machine

By Theorem 6.2.3, the CSL is sound with respect to a predicate-annotated,

permission-annotated, (pseudo)sequential operational semantics, the Juicy Sequen-

tial Machine. The predicate annotations—resource invariants of CSL—specify

how permissions are transferred by synchronizations. Safety (correctness) in the

(pseudo)sequential semantics implies safety (correctness) in a predicate-annotated,

permission-annotated, operational semantics for cooperative concurrency, the Juicy

Concurrent Machine. At the end of this section, we show how to erase the predicates:

the Juicy Concurrent Machine is simulated by the CPM.

Figure 6.5 shows the Juicy Concurrent machine, which may be seen as a variant of

a CPM where CompCert permissions are replaced by the the more expressive notion

of resources and no angelic guessing is necessary. States take the form
〈
f, (®s, ®φ,L),m

〉
,

where f, ®s , and m are as before, and

®φ is a list of resource maps. Each φi is a thread’s own view of memory and ghost

state.

108

si = 〈Run, σ〉 φi
m |φi ,m

′

{ φ′ Ψ `CompCert

〈
σ,m |φi

〉 ε
7→ 〈σ′,m′〉

®s′ = ®s[i 7→ 〈Run, σ′〉] ®φ′ = ®φ[i 7→ φ′]

Ψ `JuicyConc

〈
i · f, (®s, ®φ,L),m

〉
7→

〈
i · f, (®s′, ®φ′,L),m′

〉
(core)

si = Blocked(σ) atExternal σ = Some(Acquire,a) φi (a) = Lock R
m |L̂(a) = 1 m |L̂[a 7→ 0] = m′ L(a) = Some(Some δ) φi ⊕ δ = φ′

®φ[i 7→ φ′] = ®φ′ ®s[i 7→Resume(0, σ)] = ®s′ L[a 7→Some(None)] = L′

Ψ `JuicyConc

〈
i · f, (®s, ®φ,L),m

〉
7→

〈
f, (®s′, ®φ′,L′),m′

〉
(acquire)

si = Blocked(σ) atExternal σ = Some(Acquire,a) φi (a) = Lock R m(a) = 0

Ψ `JuicyConc

〈
i · f, (®s, ®φ,L),m

〉
7→

〈
f, (®s, ®φ,L),m

〉
(acqfail)

si = Blocked(σ) atExternal σ = Some(Release,a) φi (a) = Lock R
m |L̂(a) = 0 m |L̂[a 7→ 1] = m′ L(a) = Some(None) δ |= R δ ⊕ φ′ = φi
®s[i 7→ Resume(0, σ)] = ®s′ ®φ[i 7→ φ′] = ®φ′ L[a 7→ Some(Some δ)] = L′

Ψ `JuicyConc

〈
i · f, (®s, ®φ,L),m

〉
7→

〈
f, (®s′, ®φ′,L′),m′

〉
(release)

si =Blocked(σ) atExternalσ=Some(Spawn(f ,a)) φi (f) = Func{P }{Q}
δ |= P (a) δ ⊕ φ′ = φi

®s[i 7→ Resume(0, σ)] · 〈Start(f ,a)〉 = ®s′ ®φ[i 7→ φ′] · δ = ®φ′

Ψ `JuicyConc

〈
i · f, (®s, ®φ,L),m

〉
7→

〈
f, (®s′, ®φ′,L′),m

〉
(spawn)

Figure 6.5: Juicy Concurrent machine. Rules for start, resume, suspend are not
shown here; they look identical to those of the CPM (Fig. 3.3) except that they use
φ (resource map) instead of π (permission). Rules for makelock, freelock are
omitted. Event traces ε are omitted; see the supplement (part A).

109

L is a function from address to option(option(resource-map)), indicating the state

of each lock: L(a) = None means that a is not a lock, Some(None) means that

a is locked. Some(Some φa) means a is unlocked and φa is the resource that a

thread would obtain by acquiring a.

m is the global memory, shared by all threads.

We say coherent(®φ,L,m) when the resource maps in ®φ and L join together to a φtot

that agrees with m on max permissions and the contents of memory cells. By the

nature of our join relation, that also means that the φi and the φa all have the same

step-index level and are all mutually noninterferent; at no address does φi grant write

permission and φj (j , i) grant read or write permission. (Not shown in Figure 6.5:

the acquire and release rules must “age” ®φ′ and L′ by one step-index.)

The operator m |φi constructs a memory like m but whose current permissions are

restricted to φi , so that
〈
φi ,m |φi , µ

〉
is a juicy memory (provided that φi and m agree

about the value at each address). The core rule of the JuicyConc semantics says that

the machine small-steps a thread ensuring that the core step (in Clight or assembly

language) does not interfere with other threads’ data (and with resources stashed in

unlocked locks). We write m |L̂ to set write-permission in m at those addresses that

L identifies as locks.

The core rule implements cooperative concurrency: it learns from the schedule

that the ith thread is to be stepped, and leaves i at the head of the schedule. When

the thread reaches atExternal (a suspend step), i will be consumed. This enforces

that at most one thread is marked Run.

Definition 6.3.1 (State Invariant). Given program specification Γ and JuicyConc

state

S =
〈
f, (®s, ®φ,L),m

〉
, we say StateInvarn (Γ,S) when,

110

• All the resource maps in ®φ and L join together to make a total resource map

φtot, whose step-index level is n; note that this implies coherent(®φ,L,m).

• At most one si is marked as Run, and (if so) i is at the head of f.

• The function specifications in φtot are exactly those of Γ.

• Whenever L(a) = Some(Some φa), then ∃R. φT(a) = Lock R with resource

invariant R and φa |= R. Otherwise, if L(a) = Some(None), then ∃R. φT(a) =

Lock R, and if L(a) = None then φT(a) is not of the form Lock R.

• Each thread is safe: the state
〈
σi ,

〈
φi ,m |φi , µ

〉〉
cannot get stuck in `JuicySeq

within n steps.

Lemma 6.3.2 (Safety induction). If Γ `CSL Ψ : Γ and StateInvarn (Γ,S) and n > 0,

then there

is a state S ′ and n − 1 ≤ n′ ≤ n such that Ψ `JuicyConc S 7→ S ′ and

StateInvarn ′(Γ,S
′).

Proof. See the supplement. �

Definition 6.3.3 (Safety). A JuicyConc state is safek , written

Ψ `JuicyConc safek

〈
f, (®s, ®φ,L),m

〉
, when either

• f = nil or k = 0,

• Ψ `JuicyConc
〈
f, (®s, ®φ,L),m

〉
7→

〈
f, (®s′, ®φ′,L′),m′

〉
and Ψ `JuicyConc safek−1

〈
f, (®s′, ®φ′,L′),m′

〉
, or

• f= i · f′ and Ψ `JuicyConc

〈
i · f′, (®s, ®φ,L),m

〉
7→

〈
f′, (®s′, ®φ′,L′),m′

〉
and ∀f′′. Ψ `JuicyConc safek−1

〈
f′′, (®s′, ®φ′,L′),m′

〉
.

This is almost a conventional inductive definition of safety, except that after con-

suming one step of schedule f, the remaining state must be safe for all possible

schedules.

111

Theorem 6.3.4 (Safety of the Juicy Concurrent machine). We wish to run Ψ for k

steps. Suppose Ψ satisfies its specification Γ, that is, Γ `CSL Ψ : Γ. Let m0 be the

initial memory for Ψ. Let σ0 be the initial state, calling main(). Let 〈φ0,m0, µ0〉 be a

juicy memory with level(φ) = k (one can always construct this). Let L0 = λa .None

be the (empty) initial lock pool. Let f be any schedule. Then the Juicy Concurrent

state 〈f, ([〈Run, σ0〉], [φ0],L0),m0〉 is safek .

Proof. StateInvar holds initially, since L is empty and ®φ has only one thread. Then

we apply Theorem 6.3.2. However, because of our stronger notion of safety, we also

use a lemma stating that StateInvar is preserved when changing the “remainder” of

the schedule. �

6.4 CPM simulates the Juicy Concurrent Machine

Definition 6.4.1 (Erasure from JuicyConc to CPM). Let S be a JuicyConc state.

We define Ŝ , the erasure of S , as the CPM state obtained by converting all resource

maps φ to permission maps π.

Theorem 6.4.2 (Erasure). For any juicy step Ψ `JuicyConc S 7→ S ′, there exists a

Concurrent Permission Machine step Ψ `CPM Ŝ
ε
7→ Ŝ ′.

Proof. Converting φ to π is easy. But we must demonstrate guesses δ such that

CPM execution is not stuck. These guesses come from the resource maps δ in the

acquire, release, and spawn rules of `JuicyConc. Traces ε are derived from the

other constraints of a CPM execution. �

Corollary 6.4.3 (CSL implies the CPM is safe). If a Clight program is proved correct

in Concurrent Separation Logic, then its execution in the Concurrent Permission

Machine is safe.

Proof. By theorems 6.3.4 and 6.4.2. �

112

Chapter 7

Instruction interleaving and well

synchronization 1

This section describes how the Concurrent Permission Machine relates to a realis-

tic weakly consistent memory model. There are three important results, first the

cooperative CPM can be simulated by a preemptive CPM (the interleaving proof,

section 7.1); second, safe CPM executions are well-synchronized and execute safely

on X86-32 (section 7.2); and third, the permission in the CPM don’t change the

behavior of a safe programs, so they can be erased (section 7.3).

1It is unusual in a PhD thesis to have an entire chapter authored by someone else. In this case, my
own contribution—compiler correctness for concurrent CompCert based on the CPM—is motivated
by and is useful in the context of the proof that safe assembly-language executions in the CPM
are correct on weakly consistent multiprocessors. These results, by Giannarakis and Beringer, have
not yet been published elsewhere. In order to demonstrate that my own results can integrate into
a top-to-bottom verified system, I include the work of those authors here, with their permission.
In this chapter, everything besides this footnote is written by the authors mentioned above. This
chapter is taken from our tech report [10] and authors who wish to cite the results described in this
chapter should cite that report rather than this thesis.

113

7.1 Instruction interleaving

From source code down to assembly language we reason about CPMs with cooperative

concurrency: each thread executes undisturbed until it explicitly calls a synchroniza-

tion function such as acquire or release.

Because the threads have noncompeting memory permissions, (preemptive)

instruction-level interleaving of the threads should execute with equivalent behavior.

We formalize this as a safety-preservation proof.

Definition 7.1.1. We define `FineConc, the fine-grained concurrent machine, just like

the Concurrent Permission Machine except that all rules “consume” the head of the

schedule. We illustrate for the core rule:

si = 〈Run, σ〉 Ψ `CompCert

〈
σ,m |π1i

〉
ε
7→ 〈σ′,m′〉 upmax(m′,m′′)

®s′ = ®s[i 7→ 〈Run, σ′〉] ®π′ = ®π[i 7→ (Cur(m′), π2i)]

Ψ `FineConc 〈i · f, (®s, ®π,L),m〉
εi
7→ 〈f, (®s′, ®π′,L),m′′〉

(core)

Compared to the CPM core rule: the schedule after the step is f here, ver-

sus i · f in CPM; and upmax increases maximum memory permissions. When the

CPM chooses thread i , it keeps choosing i until the thread reaches atExternal; but

FineConc consumes i from f, and the next step may run another thread. After each

step, m’s max-permissions increase to Freeable. Max-permissions were used to prove

CompCert’s optimizations correct, but are no longer useful after compilation; upmax

simplifies the proofs in the next stage. Any nonstuck execution without upmax will

produce the same sequence of memory operations with the increased permissions.

This upmax has no effect on Cur permissions: in the FineConc machine, the Cur

permissions of threads are still noncompeting, and threads are still stuck if they try

to load/store without Read/Write Cur permission.

114

Because threads’ memory permissions don’t compete, any two interleavings that

only change the order of execution of core steps should exhibit the same observable

behaviors and result in equivalent memories (and thread states).

What if a thread never reaches an external call (because it infinite-loops, or the

FineConc machine’s schedule is not long enough)? Removing this thread from the

schedule will not change the observable behavior of the execution—no other thread

can observe its writes, because it never releases a lock. Obviously, the thread states

of the two executions will no longer be related. This does not matter because only

external steps affect the observable behaviors of the machine—unless the thread gets

stuck while executing core steps, e.g., divides by zero. Hence it is only sound to

remove a thread from the schedule if it does not get stuck and does not reach an

external call.

How do we relate a FineConc execution to a CPM execution? When all the

FineConc threads are atExternal, it is simple to find a CPM schedule resulting in

equivalent thread/memory states. When some are not atExternal, our simulation

relation keeps track of how many (internal) steps each thread has made since the last

atExternal state.

Definition 7.1.2. 〈(®s, ®π,L),m〉
xs
∼

〈
(®s′, ®π′,L′),m′

〉
is a simulation relation between two

states, annotated with a list of thread identifiers xs (representing extra steps taken by

the FineConc machine), iff: For every thread i, there exists a state 〈(®s2, ®π2,L),m2〉

s.t.:

1. 〈xs |i , (®s, ®π,L),m〉 7→
∗ 〈nil, (®s2, ®π2,L2),m2〉

2. ®s′(i) = ®s2(i), ®π′(i) = ®π2(i), and at any address a where ®π′(i) gives read permis-

sion, m′(a) = m2(a).

(We write xs |i to mean the subsequence of xs elements that are equal to i .)

115

By establishing such a relation between the two machines we can prove that safety

of the CPM implies safety of the internal and administrative steps steps (start,

resume, core, suspend, stutter) of the FineConc machine.

Lemma 7.1.3. Suppose 〈(®sc, ®πc,Lc),mc〉
xs
∼ 〈(®sf, ®πf,Lf),mf〉, that is, CPM state Sc

simulates FineConc state Sf modulo some extra fine steps xs. Suppose Sc is safe for

all schedules:

∀fc, Ψ `CPM safe 〈fc, (®sc, ®πc,Lc),mc〉. Then for any thread i and schedule ff such

that ®sf (i) is at an internal step there exists a state
〈
(®s′
f
, ®π′

f
,L′

f
),m′

f

〉
such that:

1. 〈i · ff, (®sf, ®πf,Lf),mf〉 7→

〈
ff, (®s

′
f
, ®π′

f
,L′

f
),m′

f

〉
2. 〈(®sc, ®πc,Lc),mc〉

i ·xs
∼

〈
(®s′
f
, ®π′

f
,L′

f
),m′

f

〉
Proof. Instantiate the CPM schedule as fc=[i]; the conclusion follows from Theo-

rem 7.1.2 with determinism of internal steps. �

Theorem 7.1.3 demonstrates that in order to prove safety of internal steps for

the FineConc machine it suffices to only relate the state of individual threads with

the ones of an equivalent execution in the CPM machine. However, that is not

enough to prove safety of synchronization steps. Synchronization steps may consult

the lock pool; will lock pools be equivalent between CPM and FineConc executions?

Synchronization steps require guesses δ of what permissions to transfer; will the CPM

δ’s work in the FineConc machine?

Lock pools are equivalent between the two machines, since the extra FineConc

internal steps do not change the lock pool. The CPM δ’s do indeed work for FineConc,

but since internal steps may free blocks, we must prove that these δ’s still avoid

incoherence between thread permissions.

Definition 7.1.4. Let 〈(®sc, ®πc,Lc),mc〉 and 〈(®sf, ®πf,Lf),mf〉 be two states such that

〈(®sc, ®πc,Lc),mc〉
xs
∼ 〈(®sf, ®πf,Lf),mf〉 for some list of thread identifiers xs. The states are

weakly equivalent iff for every thread i, ®πc(i) ≥ ®πf (i).

116

The ®πc ≥ ®πf lets the extra FineConc steps free some blocks.

Theorem 7.1.5 (Interleaved safety, special case).

Let Ψ be an assembly-language program with no internal function calls, with

initial state 〈σ0,m0〉. Let π0 be the max permissions of m0. Assume ∀n,fc. Ψ `CPM

safen 〈fc, ([〈Run, σ0〉], [π0], {}),m0〉.

Then ∀ff . Ψ `FineConc safe|ff |
〈ff, ([〈Run, σ0〉], [π0], {}),m0〉.

Proof. We must prove that for any possible preemptive schedule, the FineConc ma-

chine is safe. How do we know that those extra internal steps are safe (e.g., don’t

access memory outside the thread’s current π footprint)?

〈sc,mc〉

〈
sf ,mf

〉 〈
s ′
f
,m ′

f

〉
Internal Step

i

xs
i · xs

〈sc,mc〉
〈
s ′c,m

′
c

〉
〈
sf ,mf

〉 〈
s ′
f
,m ′

f

〉
Suspend Step

i

i

xs xs − i

〈sc,mc〉
〈
s ′c,m

′
c

〉
〈
sf ,mf

〉 〈
s ′
f
,m ′

f

〉
External Step

i

i

i < xs xs

Each step on schedule ff is an internal, suspend, or external step. If internal, use

Theorem 7.1.3 to show that this step is safe and simulation is retained. If suspend,

then by the diagram both machines step and simulation is retained. If external, then

this thread is suspended by a previous suspend step and hence its thread id cannot

be in the list of extra steps, and the third diagram applies. �

Renaming stack frames. Now we remove the “no internal function calls” restric-

tion.

CompCert’s handling of “fresh” blocks makes the interleaving proof more com-

plicated. Whenever any CompCert language (Clight, x86) needs a fresh block for a

stack-allocated variable or an entire stack frame, it increments the nextblock compo-

nent of the memory m. When showing a relation between differently interleaved exe-

cutions (e.g., cooperative vs. preemptive), one must “α-convert” the block-numbers.

117

Fortunately, all the CompCert languages have semantics that are invariant under such

renaming; for example:

Lemma 7.1.6. Execution of x86 Asm is invariant under permutation of block-

numbers (between any computation steps).

Theorem 7.1.7 (Interleaved safety, general case). Let Ψ be an assembly-language

program, with initial state 〈σ0,m0〉. Let π0 be the max permissions of m0.

Assume that ∀n,fc. Ψ `CPM safen 〈fc, ([〈Run, σ0〉], [π0], {}),m0〉.

Then Ψ `FineConc safe|ff |
〈ff, ([〈Run, σ0〉], [π0], {}),m0〉.

Proof. The supplementary documents contain definitions of equivalence-modulo-

renaming that lead to this proof. It is like the proof of Theorem 7.1.5, but wherever

“equivalence” of memories or thread-states is used, use equivalence modulo renaming

of blocks. �

7.2 Well synchronized programs

Correctness of sequentially consistent executions does not normally guarantee cor-

rectness on actual processors due to weaker consistency guarantees. But it does so

for well-synchronized programs that make proper use of synchronization mechanisms

to ensure race-freedom between nonatomic accesses. For our instance of the CPM

with x86 semantics, we adopt a slight modification of Owens’s [31] notion of spin-

lock well-synchronized for TSO, which is the memory model actually used by x86

processors. In particular, Owens proved:

Definition 7.2.1 (memorySC). A program is memory sequentially consistent (mem-

orySC) iff for each of its possible executions on x86-TSO, there exists a memory

equivalent execution on x86-SC [31, Definition 4]. Two execution traces are memory

equivalent iff they have the same subsequence of writes to shared memory, and there

118

exists a bijection between the read events of each trace such that corresponding read

events read from the same write event. x86-TSO is the instruction set architecture

supported by Intel and AMD; x86-SC is a sequentially consistent architecture obtained

by removing all of the write buffers.

Definition 7.2.2 (spinlock well-synchronized). A program is spinlock well-

synchronized w.r.t. a particular spinlock implementation iff for every x86-SC

execution, and for every pair of competing events that are not on a spinlock, there is

a spinlock that is released and then acquired between them. [31, Definition 7]

Theorem 7.2.3 (Owens Theorem 2). If an x86 program is spinlock well-synchronized

and the locations of spinlocks are only accessed by the spinlock code, then it is mem-

orySC. [31, Theorem 2]

We generalize “spinlocks are only accessed by the spinlock code” to account for

Makelock and Freelock:

Definition 7.2.4 (Spinlock clean). An event trace ε is spinlock clean iff:

• for all i < j such that εi is Makelock(a) and there is no i < u < j such that εu is

Freelock(a), then εj is not Read(a) or Write(a). That is, between Makelock(a)

and Freelock(a) there are no (nonatomic) Reads or Writes to a.

• forall i such that εi is Acquire(a) or Release there is j < i such that εj =

Makelock(a) and there is no j < u < i such that εu = Freelock(a).

Conjecture 7.2.5. If an x86 program is spinlock well-synchronized and spinlock

clean, then it is memorySC.

This is a straightforward extension of Owens’s theorem.

119

Theorem 7.2.6 (FineConc is synchronized and clean).

Suppose Ψ `FineConc 〈ff, ([〈Run, σ0〉], [π0], {},m0〉
ε
7→ S, that is, an interleaved execu-

tion executes with event trace ε. Then ε is spinlock well-synchronized and spinlock

clean.

Proof. Proved in Coq, and in LATEX: see the supplement. �

Owens uses the x86 spinlock from Linux v2.6.24.7 [31, Fig. 2]. For “ticketed

spinlocks” Owens proves a result (his Theorem 3) that is weaker: it requires the

thread releasing a lock to be the same one that acquired it. Thus it prohibits daring

concurrency; we cannot use ticketed spinlocks to implement our model.

While Owens’s theorem only addresses x86-TSO, we expect that similar theorems

exist for all other major architectures: indeed, “race-free programs have sequen-

tially consistent behavior” is generally considered a necessary correctness condition

for weak-memory processors [2].

7.3 Erasing the permissions, at last

Our Concurrent Erased Machine is like our fully interleaved machine (`FineConc), but

without the thread permissions ®π, lock permissions L, or guesses δ. In the memories

m, all permissions are reset to > (Freeable) at each step. This imitates a conventional

sequentially consistent machine, but it can be conveniently formulated on top of

CompCert’s sequential semantics.

We can define an erasure from states S of FineConc to states Ŝ of the CEM, by

removing ®π and L.

Theorem 7.3.1 (Erasing the permissions).

Suppose a program executes, Ψ `FineConc 〈ff, ([〈Run, σ0〉], [π0], {},m0〉
ε
7→ S. Then

Ψ executes in the Concurrent Erased Machine with the same trace ε, Ψ `CEM

〈ff, ([〈Run, σ0〉], {},m0〉
ε
7→ Ŝ .

120

Proof. As usual in an erasure theorem, permissions π do not affect what results are

computed in FineConc, only whether the execution gets stuck. The trace ε records

what memory operations have taken place. �

Claim 7.3.2 (x86-SC). The Concurrent Erased Machine is exactly a model of what

Owens calls x86-SC.

Proof. Self-evident. To prove it, one must compare the CEM instantiated with Comp-

Cert’s definition of x86 assembly language, with Owens’s x86-SC model. �

121

Chapter 8

Conclusion

This thesis presents a powerful semantics for concurrent programs, the Concurrent

Permission Machine, that enables a top-to-bottom proof of correctness, from the

soundness of the Concurrent Separation Logic, through a proven correct optimizing

compiler, to an assembly program that runs correctly in a realistic model of a machine

with weakly consistent cashes; all of this is done with machine checked proofs in Coq.

The CPM uses the notions of permission, already existing in CompCert, and the

simple notion of coherence that has the same guarantees of data-race freedom, but

allows local reasoning.

We present the proof of correctness of a real optimizing compiler that supports

programs with concurrency. The proof leverages an existing proof of correctness that

only supports sequential programs and, with minimal changes, derives a proof that

supports concurrency. We compose this compiler correctness proof with the soundness

of the CSL, the interleaving proof and the synchronization proof, to produce a top-

to-bottom proof of correctness; the proof ensures the correct execution of a compiled

program, whose source has been proven correct, in a machine like x86.

122

8.1 Future Work

8.1.1 Short-term work

Removing statically checked properties. In subsection 3.1.2 we use statically

checked validation for some properties of the assembly language program. We know

that all the properties in static-validation can be derived from the CompCert compiler,

but we leave these proofs for future work.

Relaxing full injections. In subsection 4.5.3, we explain why the current work

assumes that simulations preserve full-injection. We propose to lift this restriction

and support the compiler passes that break this assumption.

We need to enhance CompCert’s specification of external functions, allowing them

to modify only locations reachable from all escaped addresses. All those escaped

locations, can be kept in a history of arguments to external functions args-hist. Then

we would prove that args-hist are not unmapped by SimplLocals or Unusedglob, since

it only contains escaping pointers and these passes delete variables that don’t escape

and unused global variables.

There is one more wrinkle to supporting Unusedglob, that we can easily address

in future work. The current Compile One At a Time (COAT) technique starts by

compiling the first thread. However the first thread is the one that allocates the global

variables, so if it deletes some of these global variables the self-simulation of other

threads won’t work. To solve this problem, we just have to observe that allocating

more global variables is supported by self-simulation; we propose to extend the COAT

technique to compile all threads beyond the second one and then compile the first

thread last. This way, when the first thread is compiled, none of the other threads

depend on the global variables that will be deleted. That should be enough to support

Unusedglob.

123

Simpler for separate compilation. We suggested a new approach to separate

compilation using our Compile One At a Time Technique, in section 5.2. We leave

the Coq implementation and the connection to the present development for future

work.

8.1.2 Long-term work

Support for fine-grained synchronizations. We intend to extend the work to

other synchronization models: atomic operations in the relaxed, release-acquire, and

SC modes of C11. We will model them as “external calls” in CompCert’s model

(even though the compiler may actually inline them at the very end). Because the

sequential compiled code treats these atomics as external, adding these operations

does not change the compiler in any way. To handle SC atomics alone, the CPM

could be extended with rules similar to those for locks, since an SC access to a

location can be modeled by acquiring a lock on the location, changing its value,

and then releasing the lock. Release-acquire and relaxed accesses will require storing

additional information, such as histories of accesses and associated permission maps

for each atomic location, using an approach analogous to Kaiser et al. [22] or Kang

et al. [23].

Support for other builtins and external functions. Our framework can easily

be extended to support silent external functions and builtins that don’t communicate

amongst threads. However, some system calls and external functions can be used

to synchronize executions (e.g., treating a system call read/write as a lock) or to

expose the order of execution (e.g., output that depends on the order of execution).

To avoid races, the use of shared resources should be properly synchronized (e.g.,

using locks). We can extend our permissions to cover non-memory resources (such

as external sensors) to avoid races. Such extension should be mirrored by a protocol

124

in the Concurrent Separation Logic, that proves the correctness of other external

functions and is sound with respect to this resource permissions.

Support for other source level logics. Our semantics is general enough the

we expect it to be compatible with other logics. We are particularly interested in

exploring a connection to logics that support more relaxed atomics such as the logics

of Kang et al. [23] or IRIS [21].

Support for other architectures. Our current development targets x86 TSO,

particularly relying on Giannarakis’s reduction theorem (section 7.2) for this archi-

tecture. We expect that similar reduction theorems exists for other architectures.

125

Appendix A

Implementation Details

This appendix contains the Coq implementation of a selected number of definitions,

lemmas and proofs. It is intended as a companion for both the thesis (to fill in

implementation details that are intersttin to the reader) and to the Coq code (to

have more complete explanation of the code, than what fits in code comments). The

pieces of code are organized by the chapters as they are defined in the thesis.

A.1 Obtaining and compiling the Coq code

To obtain the code. Clone https://github.com/PrincetonUniversity/VST

into a local folder /VST and switch to branch new stutter. If you want to follow along

with the code here, switch to commit b1d968be5e009af5fa95429f85e52de30634ff2f.

To compile the code. In the /VST directory, make a file named CONFIGURE

containing exactly the text:

COMPCERT=compcert-new

Then, navigate to the folder /VST, and run

make concurrency

or, if you have a multicore computer, make concurrency -j.

126

https://github.com/PrincetonUniversity/VST

A.2 Useful definitions

Contains Thread

We say that a CPM contains a thread i , if its number of threads is lower than the

thread index i . Using this predicate is particularly useful since it allows us to avoid

having option types, for every function that gets permission maps (i.e. ®π[i]), or states

(i.e. ®s[i]) from the CPM state. We use the notation i ∈ tp to say containsThread tp i.

We will use the notation

1 Definition containsThread (tp : cpm) (i : tid) : P := i < num-threads tp.

Mem compatible

We carry a notion of compatibility with memory ensuring that memories restricted

to some permission map (m |π) are well formed.

1 Record mem-compatible (tp : cpm) (m : mem) : P :=

Well formed memories must satisfy that the current permissions are at most the max

permissions. We require that the permission of each thread is lower than the max

permissions in the memory.

2 { compat-th : ∀ (i : nat) (cnt : i ∈ tp),

3 permMapLt (getThreadR cnt).1 (getMaxPerm m) ∧

4 permMapLt (getThreadR cnt).1 (getMaxPerm m);

Similarly, we require that the permission of each lock is lower than the max permis-

sions in the memory.

5 compat-lp : ∀ (l : address) (pmaps : permission-map),

6 ThreadPool.lockRes tp l = Some pmaps →

7 permMapLt pmaps.1 (getMaxPerm m) ∧

8 permMapLt pmaps.2 (getMaxPerm m);

127

All locations noted as a lock by the lock pool L, must have been allocated in the

memory (i.e., lower than nextblock)

9 lockRes-blocks : ∀ (l : address) (rmap : permission-map),

10 lockRes tp l = Some rmap → valid-block m (fst l) }

A.3 The concurrent permission machine

A.3.1 Formal definition of the CPM

Permission coherence

The definition of Coherence is described in section 3.2.2 and the full code can be

found in VST/concurrency/common/HybridMachine.v in line 91. We use the nota-

tion ∈, to mean containsThread, defined above in appendix A.2. We use the pred-

icate permMapsDisjoint2, which says that two permissions are not competing (def-

inition 3.2.1) and lock-coherence which says the permissions are data-lock coherent

(definition 3.2.2). The definition of coherence, is an invariant preserved by the exe-

cution of CPMs, so we call it invariant:

1 Record invariant (tp: thread-pool) :=

The permissions of any two threads (both permissions π1 and π2), are not competing

2 { no-race-thr : ∀ i j (cnti: i ∈ tp) (cntj: j ∈ tp) (Hneq: i ,j),

3 permMapsDisjoint2 (getThreadR cnti) (getThreadR cntj);

The permissions protected by any two unlocked locks are not competing

4 no-race-locks:

5 ∀ laddr1 laddr2 rmap1 rmap2

6 (Hneq: laddr1 ,laddr2)

7 (Hres1: lockRes tp laddr1 = Some rmap1)

128

8 (Hres2: lockRes tp laddr2 = Some rmap2),

9 permMapsDisjoint2 rmap1 rmap2;

The of permissions any thread and that of am unlocked lock are not competing

10 no-race-locks-thr: ∀ i laddr (cnti: i ∈ tp) rmap

11 (Hres: lockRes tp laddr = Some rmap),

12 permMapsDisjoint2 (getThreadR cnti) rmap;

For a thread, the locations it sees as regular location (i.e., have nonempty permissions

in π1) are not seen as locks by it’s or the permissions in locks

13 thread-data-lock-coh: ∀ i j (cnti: i ∈ tp) (cntj: i ∈ tp),

14 lock-coherence (getThreadR cntj).1 (getThreadR cnti).2) ∧

15 (∀ laddr rmap, lockRes tp laddr = Some rmap →

16 lock-coherence rmap.1 (getThreadR cnti).2);

For an unlocked lock, the locations it sees as regular location (i.e., have nonempty

permissions in π1) are not seen as locks by any other thread or any other lock

17 locks-data-lock-coh: ∀ laddr rmap (Hres: lockRes tp laddr = Some rmap),

18 (∀ j (cntj: j ∈ tp), lock-coherence (getThreadR cntj).1 rmap.2) ∧

19 (∀ laddr’ rmap’, lockRes tp laddr’ = Some rmap’ →

20 lock-coherence rmap’.1 rmap.2);

Finally, and this is a small technical detail, for every lock created we protect a number

of addresses that can’t be written. This simulates some libraries, such as Pthreads

that store more information in a lock than just its state. The definition is parametric

on the size of the locks and for a lock of size 1, the following proposition is trivial.

lr-valid protects the lock, by ensuring that all the permissions are empty for the parts

of the lock that don’t contain the state (and thus should only be accessed by the

library).

129

21 lockRes-valid: lr-valid (lockRes tp)}.

A.4 MOIST simulations and semantics of Comp-

Cert

A.4.1 Definitions for MOIST simulations

Here we present and explain the Coq definition for inj-sim. The definitions takes two

languages L1 and L2 with states state L1 and stateL2 respectively.

1 Record fsim-properties-inj: Type :=

The simulation uses measure Injindex with a well founded order to allow for a finite

amount of stuttering in the target. This is taken from CompCert.

2 { Injindex: Type;

3 Injorder: Injindex → Injindex →P ;

4 Injfsim-order-wf: well-founded Injorder;

The simulation also uses a match relation (denoted ∼), to relate states in the source

and target. We also require that the match relation implies an injection of the mem-

ories (using get-mem. We have also defined a similar simulation for extension phases

(extend-sim) that only requires an extension and supports equality phases. Comp-

Comp [35] has demonstrated that we can weaken this requirement to only hold when

the states are at-external; we plan to do so as future work.

5 Injmatch-states: Injindex →meminj → state L1 → state L2 →P ;

6 Injfsim-match-meminj: ∀ i f s1 s2, Injmatch-states i f s1 s2 →

7 Mem.inject f (get-mem1 s1) (get-mem2 s2);

As we explain in section 4.5.3, we currently require the injections to not drop any

block. We will address this too in future work.

130

9 Injfsim-match-full: ∀ i f s1 s2, Injmatch-states i f s1 s2 → injection-full f (get-mem1 s1);

The simulation must hold at initial states as depicted in fig. 4.18

10 Injfsim-match-entry-points:

11 ∀ s1 m0 fb args, entry-point L1 m0 s1 fb args →

12 ∃ i f s2, entry-point L2 m0 s2 fb args ∧ Injmatch-states i f s1 s2;

The simulation must also relate final states

13 Injfsim-match-final-states:

14 ∀ i s1 s2 r f,

15 Injmatch-states i f s1 s2 → final-state L1 s1 r → (final-state L2 s2 r);

The simulation of internal steps follows exactly like in CompCert, except with in-

jectable traces, as depicted in fig. 4.16

16 Injfsim-simulation:

17 ∀ s1 t s1’ f, Step L1 s1 t s1’ →

18 ∀ i s2, Injmatch-states i f s1 s2 →

19 ∃ i’, ∃ s2’ f’ t’,

20 (Plus L2 s2 t’ s2’ ∨ (Star L2 s2 t’ s2’ ∧ Injorder i’ i))

21 ∧ Injmatch-states i’ f’ s1’ s2’ ∧

22 Values.inject-incr f f’ ∧

23 inject-trace-strong f’ t t’;

The at-external property is preserved by the match relation and has a lockstep diagram,

as depicted in fig. 4.19. The code of simulation-atx-inj is presented bellow.

24 Injsim-simulation-atx:

25 simulation-atx-inj Injmatch-states;

26 Injsim-atx:

27 preserves-atx-inj Injmatch-states;

131

The public global definitions (such as public functions) are preserved by compilation.

28 Injfsim-public-preserved:

29 ∀ id, Senv.public-symbol (symbolenv L2) id = Senv.public-symbol (symbolenv L1) id

30 }.

External step diagram (fig. 4.19).

The following diagram follows exactly like the internal step diagram in fsim-properties-inj,

except for line 4 that ensures the state is at-extenral and line 8 that requires exactly

one step from the source.

1 Definition simulation-atx-inj {index:Type} {L1 L2}

2 (match-states: index →meminj → state L1 → state L2 →P) :=

3 ∀ s1 f args,

4 at-external L1 s1 = Some (f,args) →

5 ∀ t s1’, Step L1 s1 t s1’ →

6 ∀ i j s2, match-states i j s1 s2 →

7 ∃ i’, ∃ s2’ j’ t’,

8 Step L2 s2 t’ s2’ ∧

9 match-states i’ j’ s1’ s2’ ∧

10 Values.inject-incr j j’ ∧

11 inject-trace-strong j’ t t’.

132

A.5 Compiler correctness

A.5.1 COAT proof of compiler correctness

Match relation for Hybrid Machine states.

We explain the Coq code for the match relation, %, of Hybrid Machine states as

defined in definition 5.2.4. The full code can be found in VST/concurrency/compil-

er/concur match.v. The relation takes a hybrid bound hb, a well-founded measure

ocs, a memory injection j , two memories m1, m2, and the rest of the states of each

cstate1 and cstate2.

1 Record concur-match hb (ocd: option compiler-index)(j: meminj)

2 (cstate1: HMhb) (m1: mem)

3 (cstate2: HMhb+1) (m2: mem):=

The states have the same number of threads

4 { same-length: num-threads cstate1 = num-threads cstate2

As explained in section 4.5.3, we currently require that injections are full. This will

be addressed in future work.

5 ; full-inj: Events.injection-full j m1 (∗ to be removed ∗)

Both states are compatible with the memory. The definition of mem-compatible is

explained in appendix A.2

6 ; memcompat1: mem-compatible cstate1 m1

7 ; memcompat2: mem-compatible cstate2 m2

Each thread’s lock permissions π2 is mapped in the following sense: if the thread has

some (non-empty) permissions in the target (Σ2) then in the source (Σ1) the same

thread has the same permission in the same location (up to injection).

8 ; lock-perm-preimage:

133

9 ∀ i (cnt1: i ∈ cstate1) (cnt2: i ∈ cstate2),

10 perm-surj j (lock-perms cnt1) (lock-perms cnt2)

For each thread, the memories restricted to the thread’s permissions inject: m1 |π11,i

j
↪→

m2 |π22,i
. The extra arguments Hlt1 Hlt2 ensure that the memories, restricted to the

thread’s permissions are well formed. Both arguments can be derived from the mem-

ory compatibility described above

11 ; INJ-threads:

12 ∀ i (cnt1: i ∈ cstate1) (cnt2: i ∈ cstate2) Hlt1 Hlt2,

13 Mem.inject j (@restrPermMap (getThreadR cnt1).1 m1 Hlt1)

14 (@restrPermMap (getThreadR cnt2).1 m2 Hlt2)

Similarly, for each thread, the memories restricted to the thread’s lock permissions

inject, m1 |π21,i

j
↪→ m2 |π22,i

.

15 ; INJ-locks:

16 ∀ i (cnt1: i ∈ cstate1) (cnt2: i ∈ cstate2) Hlt1 Hlt2,

17 Mem.inject j (@restrPermMap (getThreadR cnt1).2 m1 Hlt1)

18 (@restrPermMap (getThreadR cnt2).2 m2 Hlt2)

Also, for each lock, the memories restricted to the lock permissions inject (notice the

locks are not the same address, but are related by the injection).

19 ; INJ-lock-permissions:

20 ∀b b’ delt opt-rmap,

21 j b = Some (b’, delt) →

22 ∀ofs, lockRes cstate1 (b, unsigned ofs) = opt-rmap →

23 lockRes cstate2 (b’, unsigned (add ofs (repr delt))) =

24 (option-map (virtueLP-inject m2 j) opt-rmap)

And all locks are injected.

134

25 ; INJ-lock-content:

26 ∀b ofs rmap,

27 lockRes cstate1 (b, ofs) = Some rmap →

28 inject-lock j b ofs m1 m2

Both states are coherent, as defined in appendix A.3.1 (code explained above in

appendix A.3.1) .

29 ; source-invariant: invariant cstate1

30 ; target-invariant: invariant cstate2

Finally, all threads are in a match relation from source to target. For i > hb we

use the match relation for Clight given by the self simulation by lemma 5.3.2 and,

similarly, for i < hb we use the match relation for Assmebly given in lemma 5.3.2.

For i = hb, we use the match relation given by the MOIST simulation of CompCert

31 ; mtch-source: ∀ (i:nat), (i > hb) →

32 ∀ (cnt1: i ∈ cstate1) (cnt2: i ∈ cstate2) Hlt1 Hlt2,

33 match-thread-source j (getThreadC cnt1)

34 (@restrPermMap (getThreadR cnt1).1 m1 Hlt1)

35 (getThreadC cnt2)

36 (@restrPermMap (getThreadR cnt2).1 m2 Hlt2)

37 ; mtch-target:

38 ∀ (i:nat), (i < hb) →

39 ∀ (cnt1: i ∈ cstate1) (cnt2: i ∈ cstate2) Hlt1 Hlt2,

40 match-thread-target j (getThreadC cnt1)

41 (@restrPermMap (getThreadR cnt1).1 m1 Hlt1)

42 (getThreadC cnt2)

43 (@restrPermMap (getThreadR cnt2).1 m2 Hlt2)

44 ; mtch-compiled:

135

45 ∀ (i:nat), (i = hb) →

46 ∀ (cnt1: i ∈ cstate1) (cnt2: i ∈ cstate2) Hlt1 Hlt2,

47 match-thread-compiled ocd j (getThreadC cnt1)

48 (@restrPermMap (getThreadR cnt1).1 m1 Hlt1)

49 (getThreadC cnt2)

50 (@restrPermMap (getThreadR cnt2).1 m2 Hlt2) }.

A.5.2 Simulations for synchronizations

Diagram for synchronization steps

We present bellow the Coq specification of a diagram for synchronization steps, as

defined in lemma 5.5.1. Notice that we separate the memory from the rest of the

CPM state in the implementation:

1 Lemma external-step-diagram:

2 ∀ (U : schedule) (cd : option compiler-index)(j : meminj)

3 (st1 : cpm)(m1 : mem)(st1’ : cpm)(m1’ : mem) (st2 : cpm) (m2 : mem)

4 (ev1 : sync-event),

The initial states are in a match relation, (st1,m1) %j (st2,m2). The condition Hcmpt

is redundant with the match relation, but we use it to construct the well formed

memories.

5 ∀ (Hcmpt : mem-compatible st1 m1),

6 concur-match cd j st1 m1 st2 m2 →

The thread i is at the top of the shedule

7 ∀ (i:tid) (cnt1 : i ∈ st1),

8 schedPeek U = Some i →

The thread i can take a synchronization step Ψ,Φ `HM 〈i · f, st1,m1〉
ev1
7→

〈
f, st′1,m

′
1

〉
136

9 syncStep true cnt1 Hcmpt st1’ m1’ ev1 →

Then we can construct, in the target HM, a new event ev2, a new state st′2, measure

cd and memory injection j .

10 ∃ ev2 (st2’ : cpm) (m2’ : mem) (cd’ : option compiler-index) (j’ : meminj),

The new states are in a match relation (st′1,m
′
1) %j (st

′
2,m

′
2).

11 concur-match cd’ j’ st1’ m1’ st2’ m2’ ∧

the produced events inject, ev1
j
↪→→ ev2,

12 inject-mevent j’ (external i ev1) (external i ev2) ∧

Finally, the target machine can take a synchronization step Ψ,Φ `HM 〈i · f, st2,m2〉
ev2
7→〈

f, st′2,m
′
2

〉
13 external-step U st2 m2 (schedSkip U)

14 (external i ev2) st2’ m2’.

137

Bibliography

[1] IEEE Standard for Information Technology-Portable Operating System Interface
(POSIX(R)) base specifications, issue 7, in IEEE std 1003.1-2017 (revision of
IEEE std 1003.1-2008).

[2] Sarita V. Adve and Mark D. Hill. Weak ordering—a new definition. In Proceed-
ings of the 17th Annual International Symposium on Computer Architecture,
ISCA ’90, pages 2–14, New York, NY, USA, 1990. ACM.

[3] Andrew W. Appel, Robert Dockins, Aquinas Hobor, Lennart Beringer, Josiah
Dodds, Gordon Stewart, Sandrine Blazy, and Xavier Leroy. Program Logics for
Certified Compilers. Cambridge, 2014.

[4] Andrew W. Appel, Paul-Andre Melliès, Christopher D. Richards, and Jerôme
Vouillon. A very modal model of a modern, major, general type system. In Proc.
34th Annual Symposium on Principles of Programming Languages (POPL’07),
pages 109–122, January 2007.

[5] Mark John Batty. The C11 and C++11 Concurrency Model. PhD thesis, Univer-
sity of Cambridge, 2014. 2015 SIGPLAN John C. Reynolds Doctoral Dissertation
award and 2015 CPHC/BCS Distinguished Dissertation Competition winner.

[6] Lennart Beringer, Gordon Stewart, Robert Dockins, and Andrew W. Appel. Ver-
ified compilation for shared-memory C. In European Symposium of Programming,
Lecture Notes in Computer Science, pages 107–127. Springer, 2014.

[7] Hans-J. Boehm. Threads cannot be implemented as a library. In PLDI ’05: 2005
ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, pages 261–268, New York, 2005.

[8] Qinxiang Cao, Lennart Beringer, Samuel Gruetter, Josiah Dodds, and An-
drew W. Appel. VST-Floyd: A separation logic tool to verify correctness of
C programs. J. Autom. Reasoning, 61(1-4):367–422, 2018.

[9] Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk Leinenbach, Micha l
Moskal, Thomas Santen, Wolfram Schulte, and Stephan Tobies. VCC: a prac-
tical system for verifying concurrent C. In 22nd International Conference on
Theorem Proving in Higher Order Logics (TPHOLs 2009), LNCS 5674, 2009.

138

[10] Santiago Cuellar, Nick Giannarakis, Jean-Marie Madiot, William Mansky,
Lennart Beringer, Qinxiang Cao, and Andrew W. Appel. Compiler correctness
for concurrency: from comncurrent separation logic to shared memory assembly
language. Technical Report TBD, Department of Computer Science, Princeton
University, 2020.

[11] Patterson Daniel and Amal Ahmed. The next 700 compiler correctness theorems
(functional pearl). International Conference on Functional Programming. no:85,
2019.

[12] Robert W. Dockins. Operational refinement for compiler correctness. PhD thesis,
Princeton University, July 2012.

[13] Mike Dodds, Mark Batty, and Alexey Gotsman. Compositional verification of
compiler optimisations on relaxed memory. In European Symposium on Program-
ming, pages 1027–1055. Springer, 2018.

[14] Alexey Gotsman, Josh Berdine, Byron Cook, Noam Rinetzky, and Mooly Sa-
giv. Local reasoning for storable locks and threads. In Proceedings 5th Asian
Symposium on Programming Languages and Systems (APLAS’07), 2007.

[15] Ronghui Gu, Jeremie Koenig, Tahina Ramananandro, Zhong Shao, Xiong-
nan Newman Wu, Shu-Chun Weng, Haozhong Zhang, and Yu Guo. Deep spec-
ifications and certified abstraction layers. In POPL, pages 595–608. ACM SIG-
PLAN, 2015.

[16] Ronghui Gu, Zhong Shao, Jieung Kim, Xiongnan (Newman) Wu, Jérémie
Koenig, Vilhelm Sjöberg, Hao Chen, David Costanzo, and Tahina Ramananan-
dro. Certified concurrent abstraction layers. In ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI’18), pages 646–661,
June 2018.

[17] Aquinas Hobor. Oracle Semanatics. PhD thesis, Princeton University, Princeton,
NJ, November 2008.

[18] Aquinas Hobor, Andrew W. Appel, and Francesco Zappa Nardelli. Oracle Se-
mantics for Concurrent Separation Logic. In ESOP, pages 353 – 367, 2008.

[19] Aquinas Hobor, Robert Dockins, and Andrew W. Appel. A theory of indirection
via approximation. In Proc. 37th Annual ACM Symposium on Principles of
Programming Languages (POPL’10), pages 171–185, January 2010.

[20] Hanru Jiang, Hongjin Liang, Siyang Xiao, Junpeng Zha, and Xinyu Feng. To-
wards certified separate compilation for concurrent programs. In Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation., 2019.

139

[21] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon,
Lars Birkedal, and Derek Dreyer. Iris: Monoids and invariants as an orthogo-
nal basis for concurrent reasoning. In 42nd ACM Symposium on Principles of
Programming Languages (POPL’15), pages 637–650. ACM, 2015.

[22] Jan-Oliver Kaiser, Hoang-Hai Dang, Derek Dreyer, Ori Lahav, and Viktor
Vafeiadis. Strong logic for weak memory: Reasoning about release-acquire con-
sistency in iris. In 31st European Conference on Object-Oriented Programming
(ECOOP 2017), 2017.

[23] Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer. A
promising semantics for relaxed-memory concurrency. Proceedings of the 44th an-
nual ACM SIGPLAN-SIGACT symposium on Principles of Programming Lan-
guages - POPL 17, 29, 2017.

[24] Jeehoon Kang, Yoonseung Kim, Chung-Kil Hur, Derek Dreyer, and Viktor
Vafeiadis. Lightweight verification of separate compilation. Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages - POPL 2016, 2016.

[25] Xavier Leroy. Formal verification of a realistic compiler. Communications of the
ACM, 52(7):107–115, 2009.

[26] Xavier Leroy. The CompCert verified compiler, software and annotated proof,
March 2019.

[27] Xavier Leroy, Andrew W. Appel, Sandrine Blazy, and Gordon Stewart. The
CompCert memory model. In Appel [3], chapter 32.

[28] Xavier Leroy and Sandrine Blazy. Formal verification of a C-like memory model
and its uses for verifying program transformations. JAR, 41(1), 2008.

[29] William Mansky, Andrew W. Appel, and Aleksey Nogin. A verified messaging
system. Proc. ACM Program. Lang., 1(OOPSLA):87:1–87:28, October 2017.

[30] Peter W. O’Hearn. Resources, concurrency and local reasoning. Theoretical
Computer Science, 375(1):271–307, May 2007.

[31] Scott Owens. Reasoning about the implementation of concurrency abstractions
on x86-TSO. In ECOOP 2010: 24th European Conference on Object-Oriented
Programming, pages 478–503. Springer, 2010.

[32] Anton V. Podkopaev, Ori Lahav, and Viktor Vafeiadis. Promising compilation
to ARMv8.3. Proceedings of the Institute for System Programming of the RAS,
29(5):149–164, 2017.

[33] Anton V. Podkopaev, Ori Lahav, and Viktor Vafeiadis. Bridging the gap between
programming languages and hardware weak memory models. Proceedings of the
ACM on Programming Languages 3, no. POPL, 2019.

140

[34] Jaroslav Sevcik, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh Jagan-
nathan, and Peter Sewell. CompCertTSO: A verified compiler for relaxed-
memory concurrency. In Journal of the ACM (JACM), page 60(3), 2013.

[35] Gordon Stewart, Lennart Beringer, Santiago Cuellar, and Andrew W Appel.
Compositional CompCert. In POPL, volume 50, pages 275–287. ACM, 2015.

[36] James Gordon Stewart. Verified Separate Compilation for C. PhD thesis, Prince-
ton University, Princeton, NJ, June 2015.

141

	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	1 Introduction
	2 Related Work
	2.1 Compiler specification
	2.2 Compiler models supporting concurrency

	3 Top to Bottom structure
	3.1 Main theorem
	3.1.1 Formal definitions
	3.1.2 Coq definitions

	3.2 The concurrent permission machine
	3.2.1 Overview
	3.2.2 Formal definition of the CPM
	3.2.3 Generality of the CPM

	4 MOIST simulations and semantics of CompCert
	4.1 Memory model and memory injections
	4.2 Passing arguments to main.
	4.2.1 The prestack and the initial memory
	4.2.2 The [language=C]entrypoint: a more permissive starting state

	4.3 Memory events.
	4.4 MOIST Semantics
	4.5 Definitions for MOIST simulations
	4.5.1 Simulations for traces without deterministic relations.
	4.5.2 Simulation diagrams for builtins.
	4.5.3 Full injections

	5 Compiler Correctness
	5.1 Compiler Specification
	5.2 Compiling One At a Time (COAT)
	5.2.1 The Hybrid Machine
	5.2.2 COAT proof of compiler correctness
	5.2.3 Separate compilation

	5.3 Self simulations
	5.4 Simulations for administrative steps
	5.5 Simulations for synchronizations
	5.5.1 Simulation of the [language=C]Spawn step
	5.5.2 Simulation of the [language=C]Acquire step

	6 CSL soundness proof
	6.1 Concurrent Separation Logic
	6.1.1 Impredicativity and the spawn Rule
	6.1.2 Ghost State
	6.1.3 Mechanization

	6.2 Juicy Sequential semantics
	6.2.1 Review of VST semantic model
	6.2.2 New result: Concurrent Separation Logic is sound

	6.3 The juicy concurrent machine
	6.4 CPM simulates the Juicy Concurrent Machine

	7 Instruction interleaving and well synchronization
	7.1 Instruction interleaving
	7.2 Well synchronized programs
	7.3 Erasing the permissions, at last

	8 Conclusion
	8.1 Future Work
	8.1.1 Short-term work
	8.1.2 Long-term work

	A Implementation Details
	A.1 Obtaining and compiling the Coq code
	A.2 Useful definitions
	A.3 The concurrent permission machine
	A.3.1 Formal definition of the CPM

	A.4 MOIST simulations and semantics of CompCert
	A.4.1 Definitions for MOIST simulations

	A.5 Compiler correctness
	A.5.1 COAT proof of compiler correctness
	A.5.2 Simulations for synchronizations

	Bibliography

