
Joint Optimization for Robust Network

Design and Operation

Jennifer Gossels

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Computer Science

Advisor: Professor Jennifer Rexford

April 2020

c© Copyright by Jennifer Gossels, 2020.

All rights reserved.

Abstract

The Internet is an essential part of modern life, and Internet Service Provider (ISP) backbone

networks are integral to our Internet experience. Therefore, ISPs must build networks that

limit congestion, even when some equipment fails. This network design problem is compli-

cated, because an optimal network design must consider the eventual runtime configuration.

An ISP makes network design decisions, such as purchasing and placing equipment, on long

timescales (months or years) and network operation decisions, such as routing packets, on

short timescales (seconds). Design and operation interact such that the ISP must solve the

network operation problem as a sub-problem of network design, rendering the network design

problem difficult to formulate and computationally complex.

Today ISPs resort to a variety of simplifications; they fail to take advantage of the

reconfigurability offered by modern optical equipment or the opportunity to mix more- and

less-powerful switches throughout their networks. In this dissertation, we show how ISPs can

incorporate each of these factors into their network design and operation models to produce

less expensive networks without compromising robustness.

In Chapter 2, we explain how reconfigurable optical switches fundamentally change the

network design and operation problems by shifting the boundary between what is fixed at

design time and what is reconfigured at runtime. Then, we present an optimal formulation

for this new problem and heuristics to help our solution scale. In Chapter 3, we describe a

failure recovery protocol that allows ISPs to realize many of the benefits of outfitting their

networks with a homogeneous collection of powerful, “smart” switches, while instead using

a combination of these expensive boxes and less expensive, “dumb” switches.

We make three contributions in each chapter. First, we formulate the network design

optimization by extending the multicommodity flow framework to leverage colorless and

directionless Reconfigurable Optical Add/Drop Multiplexers (Chapter 2) or heterogeneous

nodes (Chapter 3). Second, we devise heuristics to scale our designs to larger topologies.

Finally, we evaluate our ideas on a realistic backbone topology and traffic demands.

iii

Acknowledgments

Princeton

Advisor Jennifer Rexford

Thesis Committee Gagan Choudhury

Michael Freedman

Kai Li

Wyatt Lloyd

Chapter 2

AT&T Gagan Choudhury

Kathy Meier-Hellstern

Simon Tse

Comments Mina Tahmasbi Arashloo

Manya Ghobadi

Xin Jin

Sanjay Rao

Chapter 3

Collaborator Ronaldo A. Ferreira

Data Gagan Choudhury/AT&T

Funding

National Science Foundation Graduate Research Fellowship

Grant CCF-1837030

Miscellaneous

Proofreading Bonnie Gossels

Jamie Gossels

Chapter Titles Boston Red Sox

Everything Family

iv

v

Contents

Abstract . iii

Acknowledgments . iv

List of Tables . ix

List of Figures . x

Bibliographic Notes . xii

1 Introduction 1

1.1 Network Design and Operation Today . 2

1.1.1 Network Design . 3

1.1.2 Network Operation . 6

1.1.3 Coupling of Network Design and Operation 8

1.2 Network Design and Operation Tomorrow 10

1.2.1 Reconfigurable Optics . 10

1.2.2 Heterogeneous Nodes . 11

1.3 Contributions . 13

1.4 Summary . 14

2 Sox: Strategic Optical/IP X -Layer Network Design 15

2.1 Introduction . 15

2.2 IP/Optical Failure Recovery . 20

2.2.1 IP/Optical Network Architecture . 20

vi

2.2.2 Failure Recovery in Traditional Networks 21

2.2.3 Failure Recovery in CD ROADM Networks 24

2.3 Network Design Problem . 26

2.3.1 Minimizing Network Cost . 27

2.3.2 Robust Placement of Tails and Regens 28

2.3.3 Dynamic Placement of IP Links . 31

2.3.4 Extensions to a Wider Variety of Settings 32

2.4 Scalable Approximations . 34

2.4.1 Simple Parallelizing of Failure Scenarios 35

2.4.2 Greedy Sequencing of Failure Scenarios 35

2.4.3 Roles of Simple, Greedy, and Optimal . 36

2.5 Evaluation . 37

2.5.1 Experiment Setup . 38

2.5.2 Benefits of CD ROADMs . 40

2.5.3 Scalability Benefits of Greedy . 41

2.5.4 Behavior During IP Link Reconfiguration 43

2.5.5 Evaluation on a Realistic Backbone Topology 44

2.6 Related Work . 47

2.7 Conclusion . 48

3 Red: A Communist Approach to Network Operation 50

3.1 Introduction . 50

3.1.1 Chapter Outline . 55

3.2 Overlay Model . 56

3.3 Traffic Engineering . 58

3.3.1 Extending MCF . 60

3.3.2 Enforcing Splitting Constraints . 62

3.3.3 Reducing Computation Time . 63

vii

3.3.4 Putting it All Together . 63

3.4 Failure Recovery . 64

3.4.1 Local Recovery . 64

3.4.2 Global Recovery . 66

3.5 Evaluation . 68

3.5.1 Traffic Engineering . 68

3.5.2 Failure Recovery . 70

3.6 Explaining the Limited TE Impact of big nodes 73

3.7 Related Work . 74

3.7.1 TE and Failure Recovery: Established Standards 74

3.7.2 TE and Failure Recovery: Research Proposals 76

3.7.3 Incremental Deployment . 77

3.8 Conclusion . 77

4 Conclusion 78

4.1 Summary of Contributions . 79

4.1.1 Sox . 79

4.1.2 Red . 79

4.2 Future Work . 80

4.2.1 Red + Sox . 81

Bibliography 82

viii

List of Tables

1.1 Network Design and Operation Inputs, Outputs, Constraints, and Objectives 3

2.1 Properties of Failure Recovery Approaches 22

2.2 Sox Notation . 28

3.1 Properties of TE/Failure Recovery Architectures 53

3.2 Red Notation . 59

ix

List of Figures

1.1 Hierarchical Structure of the Internet . 2

1.2 Interdependence of the Network Design and Operation Problems 9

1.3 Design vs. Operation in Traditional and Modern Networks 12

1.4 Network Designs and Associated Routing Models 13

2.1 Layered IP/Optical Architecture . 16

2.2 Design vs. Operation in Traditional Networks, Existing CD ROADM Work,

and Sox . 17

2.3 IP/Optical Network Terminology . 19

2.4 Optical Network Illustrating Different Options for Failure Restoration 22

2.5 Topology Used for Experiments . 39

2.6 Total Cost for Optimal and Legacy . 40

2.7 Cost by Computation Time for Simple, Greedy, and Optimal 42

2.8 Traffic Carried on Existing IP Topology . 44

3.1 Topology Illustrating How Edge-to-Edge Tunneling Limits Path Diversity . . 56

3.2 Example Physical and Overlay Topologies 57

3.3 big node Table Pipeline . 58

3.4 Red LP . 61

3.5 Red TE Algorithm . 65

x

3.6 Topology Illustrating Why We Need to Remove Initially Unused big nodes From

nhbn . 67

3.7 Fraction of Trials for Which Maximum Link Utilization is at Most a Certain

Value (No Link Failures) . 69

3.8 big node-to-big node Path Lengths . 71

3.9 Fraction of Trials for Which Maximum Link Utilization is at Most a Certain

Value (Link Failures) . 72

xi

Bibliographic Notes

A version of Chapter 2 appears in the August 2019 edition of the Journal of Optical Commu-

nications and Networking [27], co-authored with Gagan Choudhury and Jennifer Rexford.

Chapter 3 is derived from joint work with Ronaldo A. Ferreira and Jennifer Rexford.

xii

Chapter 1

Introduction

The Internet plays an integral role in nearly all aspects of modern life, and Internet Service

Provider (ISP) backbone networks play a critical role in the functioning of the Internet. The

Internet is a hierarchical “network of networks,” and these ISP backbones sit at the top

of the hierarchy (Figure 1.1). End systems such as laptops, cell phones, web servers, mail

servers, and toasters connect to home, enterprise, or data center networks, which in turn

connect to one or more access ISP networks. Regional ISP networks join together several of

these access ISP networks, and regional ISPs in turn communicate with each other via Tier

1 ISPs or directly by connecting at Internet exchange points (IXPs). Tier 1 ISPs such as

AT&T and Verizon maintain backbone networks that span an entire country and serve as

the “glue” connecting thousands of these smaller networks.

Thus, given their position at the top of the hierarchy, Tier 1 ISP backbones carry traffic

from millions of users each day. These users rely on these networks to provide reliable, rapid

communication at all times — a surgeon simply can’t afford for the Internet to “break” in the

midst of a procedure, nor can a Red Sox fan streaming an important playoff game tolerate a

disruption. Unfortunately for ISPs, the physical links and switches comprising their networks

sometimes do fail. It is their responsibility to design and operate their networks such that

these failures are largely transparent to their customers.

1

Figure 1.1: Hierarchical structure of the Internet. End systems connect to enterprise, home,
or data center networks, which connect to access ISP networks. Multiple access ISP networks
join together at each regional ISP network, which are themselves joined together by Tier 1
ISPs. Figure adapted from Figure 1.15 of [42].

In the next section, we explore the network design and operation problems in more detail,

defining some key terminology and discussing how ISPs solve these problems today.

1.1 Network Design and Operation Today

An ISP makes some decisions, such as how much and what type of equipment to purchase

and where to place this equipment, on large timescales on the order of months, and other

decisions, such as exactly how to route packets from a given flow, on small timescales on

the order of seconds. We say that these large-timescale decisions constitute network design,

2

Problem Inputs Outputs Constraints Objective

design
traffic matrix

network topology carry all traffic min. equipment costsPoP/fiber locations
failure scenarios

operation
traffic matrix

routing of traffic over links link bandwidths min. congestiontopology
(failure scenarios)

Table 1.1: Inputs, outputs, constraints, and objectives of the network design and operation
problems.

and these small-timescale decisions constitute network operation. For the ISP, both network

design and operation require solving constrained optimization problems; the ISP must use

input information about aspects of its network that it can’t change to produce a set of

output decisions, with the goal of optimizing a particular business objective and subject to

certain real-world constraints. In the following subsections, we describe the inputs, outputs,

constraints, and objectives of each, and Table 1.1 summarizes this discussion.

1.1.1 Network Design

A computer network is a graph whose nodes are switches and routers and whose edges are

links. We use the terms switches and routers interchangeably, since the distinction between

them is unimportant for our work. A network topology is the physical structure of this graph:

the number, type, and locations of switches and how these switches are connected, including

the bandwidth capacity of each link. Network design entails specifying a network topology,

subject to the constraint that the chosen topology must be able to carry the offered traffic

matrix. The traffic matrix is a specification of the (nonnegative but possibly zero) amount of

traffic that each edge switch wants to send to each other edge switch. Of course, the ultimate

sources and destinations of all packets are the end systems, but since we are concerned with

the design and operation of ISP backbones, for our purposes these individual demands are

aggregated at edge switches. Unlike in private backbones such as Google’s B4 [35], an ISP

has no control over the amount of traffic that each end host sends or in the timing of when

packets enter the network. Further, packets must be delivered in a timely fashion; the ISP

3

need not send them on the absolute shortest paths, but it can’t use excessively circuitous

routes, nor can it buffer packets at busy times and wait to send them when the network is

less congested.

In reality, the network will be expected to carry a variety of traffic matrices, as traffic

patterns change throughout the day and over the course of months and years. When we refer

to the single traffic matrix, we assume that these demands represent the maximum demands

the network will ever be responsible for; we assume that this traffic matrix “covers” all

others. It is straightforward but beyond the scope of this thesis to extend our techniques to

adapt to changing traffic matrices.

Hence, solving the network design problem amounts to answering the following questions:

• How many and what type of switches and routers should be placed at each potential

location?

For our purposes, choosing a set of potential locations for switches and routers is not

part of network design; we assume that an ISP has already fixed the set of cities in

which it wants to place points-of-presence (PoPs) and where in each city its PoP will be

located. These PoPs are the potential locations for switches and routers, and network

design involves placing switches at each PoP.

• How should these switches and routers be connected? What bandwidth should each

link support?

We do not choose where to lay fiber as part of network design; we assume that the

ISP has already laid its fiber in the ground. Importantly, the amount of fiber laid

between PoPs is not a limiting factor in the bandwidth of the links between said PoPs.

Rather, the limiting factor is the number of interfaces located on switches at each PoP,

along with the number of optical regenerators located along an IP link’s path to ensure

that its optical signal reaches far away destinations. Hence, network design involves

4

determining what bandwidth IP link each stretch of fiber should support, but it does

not allow for specifying additional paths for new fiber installations.

Robustness to Failures

A key part of the network design problem is ensuring that the topology will be robust to

equipment failures. A fiber link can fail if, for example, it is accidentally cut during a

construction project. Switches can fail if, for example, they lose power, are misconfigured,

or encounter a hardware problem. Sometimes one or two of a switch’s ports can fail while the

rest remain operational. We use the term failure scenario to refer to any given simultaneous

combination of specific switch or link failures.

In practice ISPs generally design their networks to be robust to certain classes of failure

scenarios such as any single link failure, any single switch failure, any single link or switch

failure, any combination of two link/switch failures, etc. Another important consideration

is shared link risk groups. Failures are not randomly distributed throughout the network.

Rather, if a natural disaster or construction accident destroys one IP link on the East Coast of

the United States, it likely will affect nearby links, too. Hence, links that are geographically

close together or are built upon common stretches of fiber are said to be part of a single

shared link risk group. Often, an ISP designs its network to be robust to all the links in

each shared link risk group failing simultaneously.

The need to account for failure scenarios greatly increases the complexity of the network

design problem. Even without considering multiple failure scenarios, problem complexity

grows as a function of the size of the network, because the solution must specify the locations

for more switches and links. Failure scenarios exacerbate this problem, since the number

of failure scenarios itself increases as the size of the network increases; the more nodes and

links a network has, the more failure scenarios are included in e.g., the set consisting of all

single node or link failures.

5

How Network Design is Done Today

A strawman approach to finding a feasible solution to the network design problem is to

dramatically overprovision the network. If the ISP builds, e.g., two extra, redundant links

for each link it actually needs, the network likely will not get too congested, even in the case

of failures. However, buying the equipment to provision this network is costly for the ISP;

while this idea gives a feasible solution to the constrained optimization problem, it does a

poor job of achieving the ISP’s objective of minimizing equipment costs.

A better approach is to formulate the network design problem as an integer linear program

(ILP) whose solution represents a minimal cost placement of IP links, including which PoPs

each link should connect and what each link’s bandwidth capacity should be. The ISP can

figure out where to place its IP switches and which optical paths its IP links should take

based on the resulting output.

1.1.2 Network Operation

Solving the network operation problem amounts to deciding how the traffic matrix should

be routed through the network topology. As in the network design problem, the traffic

matrix is one input of the network operation problem. However, whereas the network design

problem takes only the locations of PoPs and fiber spans as its second input, the network

operation problem take as input the full network topology specified as the output of network

design. The network operation problem may or may not take the set of failure scenarios as

a third input. If this information is available and incorporated into the network operation

formulation, then the network will be able to recover from failures faster than if a new

routing must be computed in response to each failure. The constraints of the network

operation problem are that no link can be assigned more traffic than it has the bandwidth

capacity to carry. The objective of the network operation problem is typically to minimize

congestion, though it can be to e.g., minimize or bound delay.

6

How Network Operation is Done Today

The job of switches in the network is to forward packets along their correct paths as fast as

possible. Since the network operation problem is complex, “as fast as possible” does not leave

time for computing a packet’s next-hop on the fly, as each packet arrives. Instead, switches

maintain forwarding tables to store the pre-computed solution to the network operation

problem. This solution can be pre-computed in a variety of ways, for example in a distributed

manner by the switches themselves or by a central controller which then installs forwarding

rules on each switch. Regardless, these forwarding tables are populated dynamically as the

network topology and traffic matrix change.

When a packet arrives, the switches match on various header fields, and their forwarding

tables indicate the action the switch should take for any given match. For our purposes, the

action specifies the next-hop switch to which the packet should be forwarded. This simple

match-action computation can be done in hardware, enabling switches to forward packets

at rates upwards of 100 gigabits per second (Gbps).

Today’s networks generally employ one of two forwarding models, which differ according

to which of the various header fields they use for matching: hop-by-hop forwarding or edge-

to-edge tunneling. In hop-by-hop forwarding, all switches match on the packet’s full header,

or, in practice, the packet’s destination IP address, and forward as appropriate. In contrast,

with edge-to-edge tunneling, edge switches play a special role. The ingress edge switch

matches on the packet’s full header and determines the egress edge switch at which the

packet should exit the backbone. It then labels the packet accordingly and sends the labeled

packet into the network. Interior switches match and forward only on this label. In this

model, edge switches are “smart” and maintain forwarding tables with enough entries for

all destination IP prefixes in the Internet, while interior switches are “dumb” and have

forwarding tables only large enough to store next-hop information for each egress switch in

the network.

7

To protect against failures, ISPs generally configure their switches with backup paths.

This approach, called fast reroute (FRR), can be used with hop-by-hop forwarding [51] or

edge-to-edge tunneling [8,60]. In either case, switches’ forwarding tables store precomputed

next-hops for both the failure-free network topology and for each failure for which the ISP

wants to prepare. FRR is generally effective at preventing disruption in the case of failures,

as it reduces the time during which packets are lost to 50 milliseconds. Unfortunately, FRR

imposes significant overhead, because the number of failure scenarios serves as a multiplier on

the number of rules that each switch’s forwarding table must store per packet. In addition,

setting up FRR backup paths requires switches to engage in complex protocols.

1.1.3 Coupling of Network Design and Operation

Thus far, we have explained the job of an ISP as neatly divided into two components,

network design and network operation. However, in reality the two are interconnected;

the ISP cannot solve the network design problem without simultaneously also solving the

network operation problem, and it cannot solve the network operation problem without

fixing a network design. Figure 1.2 helps illustrate precisely why the two problems must be

considered jointly. Network design decisions about where to place edge and core switches

and optical regenerators constrain the possibilities for the network operation decisions of

how to route traffic. Indeed, we saw in Section 1.1.2 that the network operation problem

takes as input the topology produced as an output of the network design problem. From

this perspective, we would think ISPs ought to solve the network design problem first.

However, to solve this network design problem, the ISP needs a sense of how traffic will

be routed, because the specific routing determines how much capacity is needed in different

regions. From this perspective, we would think that the ISP ought to solve the network

operation problem first. Thus, we see that the ISP cannot solve either the network design

problem or the network operation problem before the other and instead must solve them as

one joint optimization.

8

Network	Design	

Network	Operation	

equipment	placement	

overprovisioning	

adjusting	routing	

months

seconds

IP	routing	

Figure 1.2: Illustration of how the network design and operation problems are interdepen-
dent. The vertical dimension is timescale.

The situation gets even more complicated if we consider the possibility of failures. On a

large timescale, the ISP must provision its network such that if some components fail, there

will still be enough capacity to carry all packets without too much congestion. On a small

timescale, the ISP needs to immediately adjust routing to avoid dropping packets in flight.

How much is enough capacity to provision depends on how the routing will be adjusted, but

how the routing will be adjusted depends on how the network has been provisioned.

At a high level, what must happen is that the ISP solves the network operation problem

as an “inner loop” within the network design computation; for each candidate network

design, it determines the optimal routing for the topology remaining under each failure

scenario. Of course, this is not what happens mathematically, as an algorithm that searches

through every possible network design as its outer loop would be completely intractable. An

important part of the challenge of generating an ideal network design and associated routing

plan is to formulate the problems in a way that can be solved relatively efficiently.

9

1.2 Network Design and Operation Tomorrow

Thus far, we have defined the network design and operation problems and described how

ISPs solve them today. In this section, we will explain how two factors, namely (i) emerg-

ing, reconfigurable optical technology and (ii) the realization that we can make use of the

resources of “smart” interior switches that traditional routing models overlook, each present

opportunities for us to improve upon these existing solutions; we can reformulate the net-

work design and operation problems to better navigate the tradeoff between minimizing

equipment costs and provisioning robust, minimally congested networks.

1.2.1 Reconfigurable Optics

Traditionally, the network design problem was to both place switches at link endpoints and

fix how they should be connected with IP links. Link placement was part of network design

by necessity; if an ISP wanted to modify either (i) the optical paths traversed by its IP links;

or (ii) the IP-layer connectivity itself, then it needed to deploy workers to the relevant sites

to manually make the changes. This lack of flexibility required ISPs to design their IP-layer

links to be robust to failures, which forced them to install extra, expensive switches whose

resources lay idle except in a few rare failure scenarios. However, this forced coupling of IP

switches and their incident links did allow us to simplify the network design optimization

problem, obviating the need to explicitly model the optical layer.

The optical layer is relevant for generating the IP topology in two ways:

• The length of the optical path underlying each IP link plays a significant role in deter-

mining the monetary cost of the IP link, because we need to place optical regenerators

every 1000 miles to ensure that the optical signal remains strong.

• It helps determine which links are part of a single shared link risk group.

When switches were permanently tied to a single IP link and each IP link was permanently

tied to a single optical path, we could always minimize cost by assigning each IP link to

10

its shortest possible optical path. Hence, we could calculate the cost of a potential IP link

without explicitly modeling every hop of its optical path; we only needed its total length. We

didn’t need to incorporate the optical topology into the optimization problem for determining

shared link risk groups, either, because we could precompute the set of failure scenarios.

Now, new optical technology allows both (i) establishing new IP links; and (ii) changing

the optical paths of existing IP links on the fly, as long as sufficient switches have been placed

at the PoPs and sufficient regenerators have been placed along the optical path. Therefore,

this technology provides the opportunity to shift IP link placement from network design

into network operation (Figure 1.3). But, switch placement remains part of network design,

because we still need to deploy workers to each PoP to install new endpoints.

Unfortunately, this increased flexibility comes at the cost of complicating the network

design problem. Since we can now reuse regenerators and switches across failure scenarios,

we can no longer assume that the least expensive design sends every IP link over its shortest

optical path; it might be less expensive to use slightly longer paths for some links in some

failure scenarios if those paths allow for reusing regenerators and switches across failure

scenarios. For this reason, we must explicitly model the optical topology in our network

design formulation.

1.2.2 Heterogeneous Nodes

As we mention above (Section 1.1.2), existing routing models generally fall into one of

two categories: hop-by-hop forwarding or edge-to-edge tunneling. Each of these network

operation paradigms is closely tied to a particular network design (Figure 1.4). Because

hop-by-hop forwarding requires all nodes to perform equally complex matches and store

equally massive forwarding tables, this approach is generally used when all switches in the

network have similar processing power and memory. We call this the all-nodes-equal network

model. In contrast, because edge-to-edge tunneling requires edge switches to match on a

more complex set of header fields and store larger forwarding tables than interior nodes,

11

Network Design

Network Operation

months

minutes

seconds

this thesis

equipment placement

IP routing

IP link placement

traditional

IP routing

equipment placement

IP link placement

Figure 1.3: Components of network design vs. network operation in both traditional (left)
and modern (right) networks.

this approach is generally used when edge switches have more processing power and memory

than their interior counterparts. We call this the smart-edge-dumb-interior network model.

This traditional approach makes some sense; hop-by-hop forwarding is well suited to a

network in which all nodes are equal, and edge-to-edge tunneling is well suited to a network in

which all edge nodes are “smart” and all interior nodes are “dumb.” However, we argue that

confining ourselves to these two extreme design points is missing an opportunity to achieve

the best of both worlds with a hybrid architecture. We propose that the ISP upgrade a

select few interior switches to make them “smart” enough to play the role of traditional edge

switches. Then, the ISP can route packets by tunneling them between these “smart” big nodes,

rather than from edge-to-edge. This hybrid approach is superior to hop-by-hop routing from

a cost perspective, because it doesn’t require all interior nodes to be “smart.” In addition, it

is superior to edge-to-edge tunneling, because it allows the network to recover more rapidly

in the event of a switch or link failure.

12

Network Design

Network Operation

traditional

IP routing

equipment placement

all-nodes-
equal

hop-by-hop

smart-edge-
dumb-interior

edge-to-edge
tunneling

this thesis

IP routing

equipment placement

heterogeneous
nodes

hybrid routing

Figure 1.4: Traditionally, networks consist of either homogeneous switches throughout or
“smart” switches at the edge and “dumb” switches in the interior. In the former case, ISPs
generally employ hop-by-hop routing, and in the latter case they use edge-to-edge tunneling.
We propose an intermediate design, in which heterogeneous nodes are mixed throughout the
network, and a corresponding routing model in which packets are tunneled from “smart”
big node to “smart” big node.

1.3 Contributions

We have now explained that reconfigurable optics and heterogeneous nodes allow for creating

less expensive, more robust networks than were previously possible. However, to generate

these better network designs and routing models, we must reformulate the traditional design

and operation optimization problems. The existing optimization problems each operate on

one type of entity: network design takes place entirely at the IP layer, and network operation

assumes either homogeneous switches throughout the network or an edge made up entirely

of “smart” switches and an interior composed entirely of “dumb” switches. In contrast, our

two new network design formulations require jointly optimizing across the IP and optical

layers and across various types of switches mixed throughout the network, respectively.

In both cases, formulating the problems in this more complex way is necessary because

ISPs need their networks to be robust to failures. If switches and links could never fail, we

13

would have no need to reconnect IP links during network operation (assuming no drastic

changes in the traffic matrix), and we wouldn’t derive any benefit from explicitly modeling

both the IP and optical layers. Likewise, in the absence of failures, edge-to-edge tunneling

is essentially as good at limiting congestion as our big node-to-big node tunneling model.

Put simply, emerging optical technology and heterogeneous switches give us the ability

to reformulate the traditional design and operation problems. The need to create networks

that are robust to failures gives us the motivation to do so.

Concretely, we make the following three contributions:

1. We adapt the common multicommodity flow optimization formulation in two different

ways, one which takes advantage of reconfigurable optics (Chapter 2) and one which

takes advantage of heterogeneous nodes (Chapter 3).

2. For each optimization formulation, we also present heuristics that scale better to larger

topologies.

3. We evaluate our formulations and heuristics in a realistic backbone setting. In Chapter

2, our algorithms reduce equipment costs by up to 29%. In Chapter 3 our failure

recovery algorithm allows ISPs to achieve most of the benefits of fully outfitting their

networks with expensive switches while actually upgrading only about 20% of interior

nodes.

1.4 Summary

In Chapter 2 we describe how we take advantage of reconfigurable optical technology, a

project which we call Sox: S trategic Optical/IP X -Layer Network Design. In Chapter 3

we describe how we take advantage of heterogeneous nodes, a project which we call Red: A

Communist Approach to Network Operation. We conclude in Chapter 4.

14

Chapter 2

Sox: Strategic Optical/IP X -Layer

Network Design

2.1 Introduction

Over the past several years, improvements in optical switching technology, along with ad-

vances in software control, have given network operators more flexibility in configuring their

in-ground optical fiber into an IP network. Whereas traditionally, at network design time,

each IP link was assigned a fixed optical path and bandwidth, modern remote software

controllers can program colorless and directionless Reconfigurable Optical Add/Drop Multi-

plexers (CD ROADMs) to remap the IP topology to the optical underlay on the fly, while the

network continues carrying traffic and without deploying technicians to remote sites (Figure

2.1) [12, 20,21,55].

In the traditional setting, if a router failure or fiber cut causes an IP link to go down,

all resources that were being used for said IP link are rendered useless. There are two

viable strategies to recover from any single optical span or IP router failure. First, we could

independently restore the optical and IP layers, depending on the specific failure; we could

perform pure optical recovery in the case of an optical span failure or pure IP recovery in the

case of an IP router failure. Note that the strategy we refer to as “pure optical recovery,” of

15

Figure 2.1: Layered IP/optical architecture. The highlighted orange optical spans comprise
one possible mapping of the orange IP link to the optical layer. Alternatively, the controller
could remap the same orange IP link to follow the black optical path.

course, involves reestablishing the IP link over the new optical path. We call it “pure optical

recovery” because once the link has been recreated over the new optical path, the change

is transparent to the IP layer. Second, we could design the network with sufficient capacity

and path diversity that we can perform pure IP restoration at runtime. In practice, ISPs

have used the latter strategy, as it is generally more resource efficient [18].

Now, the optical and electrical equipment can be repurposed for setting up the same

IP link along a different path, or even for setting up a different IP link. In the context

of failure recovery, the important upshot is that joint multilayer (IP and optical) failure

recovery is now possible at runtime. The controller is responsible for performing this remote

reprogramming of both CD ROADMs and routers.

Thus, programmable CD ROADMs shift the boundary between network design and net-

work operation (Figure 2.2). We use the term network design to refer to any changes that

happen on a human timescale, e.g., installing new routers or dispatching a crew to fix a failed

16

Network Design

Network Operation

traditional existing CD
ROADM work SOX

IP routing

IP link placement

IP routing

IP link placement

tail/regen
placement

IP routing

IP link placement

months

minutes

seconds

Figure 2.2: Components of network design vs. network operation in, from left to right:
traditional networks, existing studies on how best to take advantage of CD ROADMs, and
Sox. The vertical dimension is timescale. Cf. Figure 1.3.

link. We use network operation to refer to changes that can happen on a smaller timescale,

e.g., adjusting routing in response to switch or link failures or changing demands.

As Figure 2.2 shows, network design used to comprise IP link placement. To describe what

it now entails, we must provide background on IP/optical backbone architecture (Figure 2.3).

The limiting resources in the design of an IP backbone are the equipment housed at each

IP and optical-only node. Specifically, an IP node’s responsibility is to terminate optical

links and convert the optical signal to an electrical signal, and to do so it needs enough

tails (tail is shorthand for the combination of an optical transponder and a router port).

An optical node must maintain the optical signal over long distances, and to do so it needs

enough regenerators or regens for the IP links passing through it. Therefore, we precisely

state the new network design problem as follows: Place tails and regens in a manner that

minimizes cost while allowing the network to carry all expected traffic, even in the presence

of equipment failures.

This new paradigm creates both opportunities and challenges in the design and operation

of backbone networks [17]. Previous work has explored the advantages of joint multilayer op-

17

timization over traditional IP-only optimization [12,20,21,55] (e.g., see Table 1 of [21]). How-

ever, these authors primarily resorted to heuristic optimization and restoration algorithms,

due to the restrictions of routing (avoiding splitting flows into arbitrary proportions), the

need for different restoration and latency guarantees for different quality-of-service classes,

and the desirability of fast run times.

Further complicating matters is that network components fail, and when they do a pro-

duction backbone must reestablish connectivity within seconds. Tails and regens cannot be

purchased or relocated at this timescale, and therefore our network design must be robust

to a set of possible failure scenarios. Importantly, we consider as failure scenarios any single

optical fiber cut or IP router failure. There are other possible causes of failure (e.g., single

IP router port, ROADM, transponder, power failure), which allow for various alternative

recovery techniques, but we focus on these two.

Thus, we overcome three main challenges to present an exact formulation and solution

to the network design problem.

1. The solution must be a single tail and regen configuration that works for all single IP

router and optical fiber failures. This configuration should minimize cost under the

assumption that the IP link topology will be reconfigured in response to each failure.

2. The positions of regens relative to each other along the optical path determine which

IP links are possible.

3. The problem is computationally complex because it requires integer variables and con-

straints. Each tail and each regen supports a 100 Gbps IP link. Multiple tails or

multiple regens can be combined at a single location to build a faster link, but they

can’t be split into e.g., 25 Gbps units that cost 25% of a full element.

These challenges arise because the recent shift in the boundary between network design

and operation fundamentally changes the design problem; simply including link placement

in network operation optimizations does not suffice to fully take advantage of CD ROADMs.

18

Figure 2.3: IP/optical network terminology.

A network design is optimal relative to a certain set of assumptions about what can be

reconfigured at runtime. Hence, traditional network designs are only optimal under the

assumption that tails and regens are fixed to their assigned IP links. With CD ROADMs,

the optimal network design must be computed under the assumption that IP links will be

adjusted in response to failures or changing traffic demands.

To this end, we make three main contributions.

1. After describing the importance of jointly optimizing over the IP and optical layers in

Section 2.2, we formulate the optimal network design algorithm (Section 2.3). In this

way we address challenges (1) and (2) from above.

2. We present two scalable, time-efficient approximation algorithms for the network de-

sign problem, addressing the computational complexity introduced by the integer con-

straints (Section 2.4), and we explain which use cases are best suited to each of our

algorithms (Section 2.4.3).

3. We evaluate our three algorithms in relation to each other and to legacy networks

(Section 2.5).

We discuss related work in Section 2.6 and conclude in Section 2.7.

19

2.2 IP/Optical Failure Recovery

In this section we provide more background on IP/optical networks. We begin by defining

key terms and introducing a running example (Section 2.2.1). We then use this example to

discuss various failure recovery options in both traditional (Section 2.2.2) and CD ROADM

(Section 2.2.3) IP/optical networks.

2.2.1 IP/Optical Network Architecture

As shown in Figure 2.3, an IP/optical network consists of optical fiber, the IP nodes where

fibers meet, the optical nodes stationed intermittently along fiber segments, and the edge

nodes that serve as the sources and destinations of traffic. We do not consider the links

connecting an edge router to a core IP router as part of our design problem; we assume these

are already placed and fault tolerant.

Each IP node houses one or more IP routers, each with zero or more tails, and zero

or more optical regens. The optical regens at an IP node are only used for IP links that

pass through that node without terminating at any of its routers. Each optical-only node

houses zero or more optical regens but cannot contain any routers (Figure 2.3). While IP

and optical nodes serve as the endpoints of optical spans and segments, specific IP routers

serve as the endpoints of IP links.

We say that an optical span is the smallest unit describing a stretch of optical fiber;

an optical span is the section of fiber between any two nodes, be they IP or optical-only.

Optical-only nodes can join multiple optical spans into a single optical segment, which is a

stretch of fiber terminated at both ends by IP nodes. The path of a single optical segment

may contain one or more optical-only nodes. The physical layer underlying each IP link

comprises one or more optical segments. An IP link is terminated at each end by a specific

IP router and can travel over multiple optical segments if its path traverses an intermediate

IP node without terminating at one of that node’s routers. Figure 2.3 illustrates the roles

20

of optical spans and segments and IP links. The locations of all nodes and optical spans are

fixed and cannot be changed, either at design time or during network operation.

An optical signal can travel only a finite distance along the fiber before it must be

regenerated; every regen dist units the optical signal must pass through a regen, where

it is converted from an optical signal to an electrical signal and then back to optical before

being sent out the other end. The exact value of regen dist varies depending on the

specific optical components, but it is roughly 1000 miles for our setting of a long-distance

ISP backbone with 100 Gbps technology. We use the value of regen dist = 1000 miles

throughout this thesis.

Example network design problem. The network in Figure 2.4 has two IP nodes, I1 and

I2, and five optical-only nodes, O1-O5. I1 and I2 each have two IP routers (I1, I2 and I3,

I4, respectively). Edge routers E1 and E2 are the sources and destinations of all traffic. The

problem is to design the optimal IP network, requiring the fewest tails and regens, to carry

80 Gbps from E1 to E2 while surviving any single optical span or IP router failure. We do

not consider failures of E1 or E2, because failing the source or destination would render the

problem trivial or impossible, respectively.

If we don’t need to be robust to any failures, the optimal solution is to add one 100 Gbps

IP link from I1 to I3 over the nodes I1, O1, O2, O3, and I2. This solution requires one tail

each at I1 and I3 and one regen at O2, for a total of two tails and one regen.

2.2.2 Failure Recovery in Traditional Networks

In traditional networks, the design problem is to place IP links; in this setting, once an IP

link is placed at design time, its tails and regens are permanently committed to it. If one

optical span or router fails, the entire IP link fails and the rest of its resources lie idle. During

network operation, we may only adjust routing over the established IP links.

In general, this setup allows for four possible types of failure restoration. Two of these

techniques are inadequate because they cannot recover from all relevant failure scenarios

21

Figure 2.4: Example optical network illustrating the different options for failure restoration.
The number near each edge is the edge’s length in miles.

Recovery Technique # Tails # Regens IP? Optical?
pure optical 2 2 7 4

pure IP, shortest path 4 4 4 7

pure IP, any path 4 3 4 4

separate IP and optical 4 4 4 4

joint IP/optical 4 2 4 4

Table 2.1: Properties of various failure recovery approaches. The first four techniques are
possible in legacy and CD ROADM networks, while the fifth requires CD ROADMs.

(first two rows of Table 2.1). The other two are effective but suboptimal in their resource

requirements (second two rows of Table 2.1). We describe these four approaches below,

guided by the running example shown in Figure 2.4. In Section 2.2.3 we show that CD

ROADMs allow for a network design that meets our problem’s requirements in a more cost-

effective way.

Inadequate recovery techniques. In pure optical layer restoration, if an optical span

fails, we reroute each affected IP link over the optical network by avoiding the failed span.

The rerouted path may require additional regens. In the example shown in Figure 2.4, this

amounts to rerouting the IP link along the alternate path I1-O4-O2-O5-I2 whenever any

optical span fails. This path requires one regen each at O4 and O2. However, because the

(I1, I2) link will never be instantiated over both paths simultaneously, the second path can

reuse the original regen O2. Hence, we need only buy one extra regen at O4, for a total of

22

two tails (at I1 and I2) and two regens (at O2 and O4). The problem with this pure optical

restoration strategy is that it cannot protect against IP router failures.

In pure IP layer restoration with each IP link routed along its shortest optical path, we

maintain enough fixed IP links such that during any failure condition, the surviving IP links

can carry the required traffic. If any component of an IP link fails, then the entire IP link

fails and even the intact components cannot be used. In large networks, this policy usually

finds a feasible solution to protect against any single router or optical span failure. However,

it may not be optimally cost-effective due to the restriction that IP links follow the shortest

optical paths. Furthermore, in small networks it may not provide a solution that is robust

to all optical span failures.

If we only care about IP layer failures, the optimal strategy for our running example is

to place two 100 Gbps links, one from I1 to I3 and a second from I2 to I4 and both following

the optical path I1-O1-O2-O3-I2. Though this design is robust to the failure of any one of

I1, I2, I3, and I4, it cannot protect against optical span failures.

Correct but suboptimal recovery techniques. In contrast to the two failure recovery

mechanisms described above, the following two techniques can correctly recover from any

single IP router or optical span failure. However, neither reliably produces the least expensive

network design.

Pure IP layer restoration with no restriction on how IP links are routed over the optical

network is the same as IP restoration over shortest paths except IP links can be routed over

any optical path. With this policy, we always find a feasible solution for all failure conditions,

and it finds the most cost-effective among the possible pure-IP solutions. However, its

solutions still require more tails or regens than those produced by our ILP, and solving for

this case is computationally complex. In terms of Figure 2.4, pure IP restoration with no

restriction on IP links’ optical paths entails routing the (I1, I3) IP link along the I1-O1-O2-

O3-I2 path and the (I2, I4) IP link along the I1-O4-O2-O5-I2 path. This requires two tails

23

plus one regen (at O2) for the first IP link and two tails plus two regens (at O4 and O2) for

the second IP link, for a total of four tails and three regens.

The final failure recovery technique possible in legacy networks, without CD ROADMs,

is pure IP layer restoration for router failures and pure optical layer restoration for optical

failures. This policy works in all cases but is usually more expensive than the two pure IP

layer restorations mentioned above. In terms of our running example, we need two tails and

two regens for each of two IP links, as we showed in our discussion of pure IP recovery along

shortest paths. Hence, this strategy requires a total of four tails and four regens.

In summary, the optimal network design with legacy technology that is robust to optical

and IP failures requires four tails and three regens.

2.2.3 Failure Recovery in CD ROADM Networks

A modern IP/optical network architecture is identical to that described in Section 2.2.1 aside

from the presence of a remote controller. This single logical controller receives notifications of

the changing status of any IP or optical component and also any changes in traffic demands

between any pair of edge routers and uses this information compute the optimal IP link

configuration and the optimal routing of traffic over these links. It then communicates the

relevant link configuration instructions to the CD ROADMs and the relevant forwarding

table changes to the IP routers.

As in the traditional setting, we cannot add or remove edge nodes, IP nodes, optical-only

nodes, or optical fiber. But, now the design problem is to decide how many tails to place on

each router and how many regens to place at each IP and optical node; no longer must we

commit to fixed IP links at design time. Routing remains a key component of the network

design problem, though it is now joined by IP link placement.

Any of the four existing failure recovery techniques is possible in a modern network. In

addition, the presence of software-controlled CD ROADMs allows for a fifth option, joint

IP/optical recovery. In contrast to the traditional setting, IP links can now be reconfigured

24

at runtime. As above, suppose the design calls for an IP link between routers I1 and I2 over

the optical path I1-O1-O2-O3-I4. Now, these resources are not permanently committed to

this IP link. If one component fails, the remaining tails and regens can be repurposed either

to reroute the (I1, I2) link over a different optical path or to (help) establish an entirely

new IP link.

Returning to our running example, with joint IP/optical restoration, we can recover from

any single IP or optical failure with just one IP link from I1 to I3. If there is any optical link

failure then this link shifts from its original shortest path, which needs a regen at O2, to the

path I1-O4-O2-O5-I2, which needs regens at O2 and O4. Importantly, the regen at O2 can

be reused. Hence, thus far we need two tails and two regens. To account for the possibility

of I1 failing, we add an extra tail at I2; if I1 fails then at runtime we create an IP link from

I2 to I3 over the path I1-O1-O2-O3-I2. Since this link is only active in the case that I1 has

failed, it will never be instantiated at the same time as the (I1, I3) link and can therefore

reuse the regen we already placed at O2. Finally, to account for the possibility of I3 failing,

we add an extra tail at I4. This way, at runtime we can create the IP link (I1, I4) along the

path I1-O1-O2-O3-I2. Again, only one of these IP links will ever be active at one time, so

we can reuse the regen at O2. Therefore, our final joint optimization design requires four

tails and two regens. Hence, even in this simple topology, compared to the most cost efficient

traditional strategy, joint IP/optical optimization and failure recovery saves the cost of one

regen.

A Note on Transient Disruptions

As shown in Figure 2.2, IP link configuration operates on the order of minutes, while routing

operates on sub-second timescales. IP link configuration takes several minutes because the

process entails the following three steps:

1. Adding or dropping certain wavelengths at certain ROADMs;

2. Waiting for the network to return to a stable state; and

25

3. Ensuring that the network is indeed stable.

A “stable state” is one in which the optical signal reaches tails at IP link endpoints with

sufficient optical power to be correctly converted back into an electrical signal. Adding or

dropping wavelengths at ROADMs temporarily reduces the signal’s power enough to interfere

with this optical-electrical conversion, thereby rendering the network temporarily unstable.

Usually, the network correctly returns to a stable state within seconds of reprogramming

the wavelengths (i.e., steps (1) and (2) finish within seconds). However, to ensure that the

network is always operating with a stable physical layer (step (3)), manufacturers add a

series of tests and adjustments to the reconfiguration procedure. These tests take several

minutes, and therefore step (3) delays completion of the entire process. Researchers are

working to bring reconfiguration latency down to the order of milliseconds [19], similar to

the timescale at which routing currently operates. However, for now we must account for

a transition period of approximately two minutes when the link configuration has not yet

been updated and is therefore not optimal for the new failure scenario.

During this transient period, the network may not be able to deliver all the offered

traffic. We mitigate this harmful traffic loss by immediately reoptimizing routing over the

existing topology while the network is transitioning to its new configuration. As we show in

Section 2.5.4, by doing so we successfully deliver the vast majority of offered traffic under

almost all failure scenarios. Many operational ISPs carry multiple classes of traffic, and their

service level agreements (SLAs) allow them to drop some low priority traffic under failure or

extreme congestion. At one large ISP, approximately 40-60% of traffic is low priority. We

always deliver at least 50% of traffic just by rerouting.

2.3 Network Design Problem

We now describe the variables and constraints of our ILP for solving the network design

problem. After formally stating the objective function in Section 2.3.1 we introduce the

problem’s constraints in 2.3.2 and 2.3.3. To avoid cluttering our presentation of the main

26

ideas of the model, throughout 2.3.1 - 2.3.3 we assume exactly one router per IP node. In

2.3.4 we relax this assumption, which is necessary if we want the network to be robust to any

single router failure. We also explain how to extend the model to changing traffic demands.

For ease of explanation, we elide the distinction between edge nodes and IP nodes; we

treat IP nodes as the ultimate sources and destinations of traffic.

2.3.1 Minimizing Network Cost

Our inputs are (i) the optical topology, consisting of the set I of IP nodes, the set of optical-

only nodes, and the fiber links (annotated with distances) between them; and (ii) the demand

matrix D.

We use the variable Tu to represent the number of tails that should be placed at router

u, and Ru represents the number of regens at node u. An optical-only node can’t have any

tails.

The capacity of an IP link ` = (α, β) is limited by the number of tails dedicated to ` at

α and β and the number of regens dedicated to `. Technically, the original signal emitted

by α is strong enough to travel regen dist, and ` doesn’t need regens there. However, for

ease of explanation, we assume that ` does need regens at α, regardless of its length. This

requirement of regens at the beginning of each IP link is necessary only for the mathematical

model and not in the actual network. We add a trivial postprocessing step to remove these

regens from the final count before reporting our results. An IP link may require placing

regens at an IP node along its path, if it doesn’t terminate at that node. We don’t remove

these regens in postprocessing. Table 2.2 summarizes our notation.

Our objective is to place tails and regens to minimize the ISP’s equipment costs while

ensuring that the network can carry all necessary traffic under all failure scenarios. Let cT

and cR be the cost of one tail and one regen, respectively. Then the total cost of all tails is

27

Definition

Inputs

I set of IP nodes
I set of IP routers
N set of all nodes (optical-only + IP)
D demand matrix, where Dst ∈ D is demand from IP node s to IP node t
F set of all possible failure scenarios F = {f1, f2, . . . , fn}
distuvf shortest dist. from optical node u to optical node v in failure scenario f

Outputs Tu # tails placed at IP router u
(Network Design) Ru total regens placed at node u

Outputs Xαβf capacity of IP link (α, β) in failure scenario f
(Network Operation) Ystαβf amount of (s, t) traffic routed on IP link (α, β) in failure scenario f

Intermediate Rαβuvf # regens at u for optical segment (u, v) of IP link (α, β) in failure f
Values Ruf # regens needed at node u in failure scenario f

Table 2.2: Notation.

cT
∑

u∈I Tu, the total cost of all regens is cR
∑

u∈N Ru, and our objective is

min cT
∑
u∈I

Tu + cR
∑
u∈N

Ru.

The stipulation that the output tail and regen placement work for all failure scenarios

is crucial. Without some dynamism in the inputs, be it from a changing topology across

failure scenarios or from a changing demand matrix, CD ROADMs’ flexible reconfigurability

would be useless. We focus on robustness to IP router and optical span failures because

conversations with one large ISP indicate that failures affect network conditions more than

routine demand fluctuations. Extending our model to find a placement robust to both

equipment failures and changing demands should be straightforward.

2.3.2 Robust Placement of Tails and Regens

In traditional networks, robust design requires choosing a single IP link configuration that

is optimal for all failure scenarios under the assumption that routing will depend on the

specific failure state [17]. With CD ROADMs, robust network design requires choosing a

single tail/regen placement that is optimal for all failure scenarios under the assumption that

both routing and the IP topology will depend on the specific failure state. In either case,

solving the network design problem requires solving the network operation problem as an

28

“inner loop”; to determine the optimal network design we need to simulate how a candidate

network would operate, in terms of IP link placement and routing, in each failure scenario.

At the mathematical level, CD ROADMs introduce two additional sets of decision vari-

ables to the traditional network design optimization. With the old technology, the problem

is to optimize over two sets of decision variables: one set for where to place IP links and what

the capacities of those links should be, and a second set for which links different volumes of

traffic should traverse. In traditional network design, there is no need to explicitly model

tails and regens separate from link placement, because each tail or regen is associated with

exactly one IP link. Now, any given tail or regen is not associated with exactly one IP link.

Thus, we must decide not only link placement and routing but also the number of tails and

regens to place at each IP node and the number of regens to place at each optical node. We

describe these two novel aspects of our formulation in turn.

Constraints governing tail placement. Our first constraint requires that the number of

tails placed at any router u is enough to accommodate all the IP links u terminates:

∑
α∈I

Xαuf ≤ Tu (2.1)∑
β∈I

Xuβf ≤ Tu (2.2)

∀u ∈ I,∀f ∈ F

As shown in Table 2.2, Xαuf is the capacity of IP link (α, u) in failure scenario f . Hence,∑
α∈I Xαuf is the total incoming bandwidth terminating at router u, and Constraint (2.1)

says that u needs at least this number of tails. Analogously,
∑

β∈I Xuβf is the total outgoing

bandwidth from u, and Constraint (2.2) ensures that u has enough tails for these links, too.

We don’t need Tu greater than the sum of these quantities because each tail supports a

bidirectional link.

Constraints governing regen placement. The second fundamental difference between

our model and existing work is that we must account for relative positioning of regens both

29

within and across failure scenarios. Because of physical limitations in the distance an optical

signal can travel, no IP link can include a span longer than regen dist without passing

through a regenerator. As a result, the decision to place a regen at one location depends

on the decisions we make about other locations, both within a single failure scenario and

across changing network conditions. Therefore, we introduce auxiliary variables Rαβuvf to

represent the number of regens to place at node u for the link between IP routers (α, β) in

failure scenario f such that the next regen traversed will be at node v.

Ultimately, we want to solve for Ru, the number of regens to place at u, which doesn’t

depend on the IP link, next-hop regen, or failure scenario. But, we need the Rαβuvf variables

to encode these dependencies in our constraints. We connect Ru to Rαβuvf with the constraint

Ru ≥
∑
α,β∈I
v∈N

Rαβuvf ∀u ∈ N,∀f ∈ F. (2.3)

We use four additional constraints for the Rαβuvf variables. First, we prevent some node

v from being the next-hop regen for some node u if the shortest path between u and v exceeds

regen dist:

Rαβuvf = 0

∀α, β ∈ I,

∀u, v such that distuvf > regen dist.

Second, we ensure that the set of regens assigned to an IP link indeed forms a contiguous

path. That is, for all nodes u aside from those housing the source and destination routers,

the number of regens assigned to u equals the number of regens for which u is the next-hop:

∑
v∈N

Rαβuvf =
∑
v∈N

Rαβvuf

∀u ∈ N, ∀α, β ∈ I,∀f ∈ F.

30

We need sufficient regens at the source IP router’s node a, and sufficient regens with the

destination IP router’s node b as their next-hop, for each IP link

∑
u∈N

Rαβauf ≥ Xαβf∑
u∈N

Rαβubf ≥ Xαβf

∀α, β ∈ I,∀f ∈ F ;

But, b can’t have any regens, and a can’t be the next-hop location for any regens

Rαβuaf = Rαβbuf = 0

∀u ∈ N,∀α, β ∈ I,∀f ∈ F.

Additional practical constraints. We have two practical constraints which are not fun-

damental to the general problem but are artifacts of the current state of routing technology.

First, ISPs build IP links in bandwidths that are multiples of 100 Gbps. We encode this

policy by requiring Xαβf , Tu, and Ru to be integers and converting our demand matrix into

100 Gbps units.

Second, current IP and optical equipment require each IP link to have equal capacity to

its opposite direction. With these constraints, only one of (2.1) and (2.2) is necessary.

Finally, we require all variables to take on nonnegative values.

2.3.3 Dynamic Placement of IP Links

Thus far, we have described constraints ensuring that each IP link has enough tails and

regens. But, we have not discussed IP link placement or routing. Although link placement

and routing themselves are part of network operation rather than network design, they play

central roles as parts of the network design problem. How many are “enough” tails and

regens for each IP link depends on the link’s capacity, and the link’s capacity depends on

31

how much traffic it must carry. Therefore, the network operation problem is a subproblem

of our network design optimization.

These constraints are the well-known multicommodity flow (MCF) constraints requiring

(a) flow conservation; (b) that all demands are sent and received; and (c) that the traffic

assigned to a particular IP link cannot exceed the link’s capacity. Ystαβf gives the amount of

(s, t) traffic routed on IP link (α, β) in failure scenario f . Hence, we express these constraints

with the following equations:

∑
u∈I

Ystuvf =
∑
u∈I

Ystvuf ∀(s, t) ∈ D, (2.4)

∀v ∈ I − {s, t}, ∀f ∈ F∑
u∈I

Ystsuf =
∑
u∈I

Ystutf (2.5)

= Dst ∀s, t ∈ D, ∀f ∈ F∑
(s,t)∈D

Ystuvf ≤ Xuvf ∀u, v ∈ I,∀f ∈ F. (2.6)

As before, Xuvf in Constraint (2.6) is the capacity of IP link (u, v) in failure scenario f .

Network design and operation in practice. Once the network has been designed, we

solve the network operation problem for whichever failure scenario represents the current

state of the network by replacing variables Tu and Ru with their assigned values.

2.3.4 Extensions to a Wider Variety of Settings

We now describe how to relax the assumptions we’ve made throughout Sections 2.3.1 - 2.3.3

that (a) each IP node houses exactly one IP router; and (b) traffic demands are constant.

Accounting for multiple routers colocated at a single IP node. If we assume that

IP links connecting routers colocated within the same IP node always have the same cost

as (short) external IP links (i.e., they require one tail at each router endpoint), then our

model already allows for any number of IP routers at each IP node; if this assumption holds,

32

then we simply treat colocated routers as if they were housed in nearby nodes e.g., one mile

apart. However, in general this assumption is not valid, because intra-IP-node links require

one port per router, rather than a full tail (combination router port and optical transponder)

at each end. Hence, intra IP node links are cheaper than even the shortest external links.

To accurately model costs we must account for them explicitly.

To do so, we add the stipulation to all the constraints presented above that, whenever

one constraint involves two IP routers, these IP routers cannot be colocated. Then, we add

the following:

Let U be the set of IP routers containing u and any other routers u′ collocated at the

same IP node with u. Let Pu be the number of ports placed at u for intra-node links. Let

cP be the cost of one 100 Gbps port. Our objective function now becomes

min cT
∑
u∈I

Tu + cR
∑
u∈N

Ru + cP
∑
u∈I

Pu.

Ultimately, we want to constrain the traffic traveling between u and any u′ to fit within

the intra-node links, as follows (c.f. Constraint (2.6)).

∑
(s,t)∈D

Ystuu′f ≤ Xuu′f∀u, u′ ∈ U,∀U ∈ I,∀f ∈ F.

But, no Xuu′f appear in the objective function; the links themselves have no defined

cost. Hence, we add constraints to limit the capacity of the links to the number of ports

Pu. Specifically, we use the analogs of (2.1) and (2.2) to describe the relationship between

ports Pu placed at u (c.f. tails placed at u) and the intra-node links starting from (c.f. Xuβf

33

external IP links) and ending at (c.f. Xαuf external IP links) u.

∑
u′∈U

Xu′uf ≤ Pu∑
u′∈U

Xuu′f ≤ Pu

∀U ∈ I,∀u ∈ U,∀f ∈ F

Accounting for changing traffic. Thus far, we have described our model to accommodate

changing failure conditions over time with a single traffic matrix. In reality, traffic shifts

as well. Adding this to the mathematical formulation is trivial. Wherever we currently

consider all failure scenarios f ∈ F , we need only consider all (failure, traffic matrix) pairs.

Unfortunately, while this change is straightforward from a mathematical perspective, it is

computationally costly. The number of failure scenarios is a multiplicative factor on the

model’s complexity. If we extend it to consider multiple traffic matrices, the number of

different traffic matrices serves as an additional multiplier.

2.4 Scalable Approximations

In theory, the network design algorithm presented above finds the optimal solution. We will

call this approach Optimal. However, Optimal does not scale, even to networks of moderate size

(∼ 20 IP nodes). To address this issue, we introduce two approximations, Simple and Greedy.

Optimal is unscalable because, as network size increases, not only does the problem for

any given failure scenario become more complex, but the number of failure scenarios also

increases. In a network with ` optical spans, n IP nodes, and d separate demands, the total

number of variables and constraints in Optimal is a monotonically increasing function g(`, n, d)

of the size of the network and demand matrix, multiplied by the number of failure scenarios,

`+ n. Thus, increasing network size has a multiplicative effect on Optimal’s complexity. The

key to Simple and Greedy is to decouple the two factors.

34

2.4.1 Simple Parallelizing of Failure Scenarios

In Simple, we solve the placement problem separately for each failure condition. That is, if

Optimal jointly considers failure scenarios labeled F = {1, 2, 3}, then Simple solves one opti-

mization for F = {1}, another for F = {2}, and a third for F = {3}. The final number

of tails and regens required at each site is the maximum required over all scenarios. Each

of the ` + n optimizations is exactly as described in Section 2.3; the only difference is the

definition of F . Hence, each optimization has g(`, n, d) variables and constraints. The prob-

lems are independent of each other, and therefore we can solve for all failure scenarios in

parallel. As network size increases, we only pay for the increase in g(`, n, d), without an

extra multiplicative penalty for an increasing number of failure scenarios.

2.4.2 Greedy Sequencing of Failure Scenarios

Greedy is similar to Simple, except we solve for the separate failure scenarios in sequence, taking

into account where tails and regens have been placed in previous iterations. In Simple, the `+n

optimizations are completely independent, which is ideal from a time efficiency perspective.

However, one drawback is that Simple misses some opportunities to share tails and regens

across failure scenarios. Often, the algorithm is indifferent between placing tails at router

a or router b, so it arbitrarily chooses one. Simple might happen to choose a for Failure 1

and b for Failure 2, thereby producing a final solution with tails at both. In contrast, Greedy

knows when solving for Failure 2 that tails have already been placed at a in the solution to

Failure 1. Thus, Greedy knows that a better overall solution is to reuse these, rather than

place additional tails at b.

Mathematically, Greedy is like Simple in that it requires solving |F | separate optimizations,

each considering one failure scenario. But, letting T ′
u represent the number of tails already

35

placed at u, we replace Constraints (2.1) and (2.2) with the following.

∑
α∈I

Xαuf ≤ Tu + T ′
u (2.7)∑

β∈I

Xuβf ≤ Tu + T ′
u (2.8)

∀u ∈ I,∀f ∈ F

In (2.7) and (2.8), Tu represents the number of new tails to place at router u, not counting

the T ′
u already placed. Similarly, with R′

u defined as the number of regens already placed at

u and Ru as the new regens to place, Constraint (2.3) becomes

Ru +R′
u ≥

∑
α,β∈I
v∈O

Rαβuvf ∀u ∈ O, ∀f ∈ F.

We always solve the no-failure scenario first, as a baseline. After that, we try a variety

of orderings of the other failure scenarios and choose whichever produces the lowest cost

solution.

With Greedy, we solve for the ` + n failure scenarios in sequence, but each problem has

only g(`, n, d) variables and constraints. The number of failure scenarios is now an additive

factor, rather than a multiplicative one in Optimal or absent in Simple.

2.4.3 Roles of Simple, Greedy, and Optimal

As we will show in Section 2.5, Greedy finds nearly equivalent-cost solutions to Optimal in a

fraction of the time. Simple universally performs worse than both. We introduce Simple for

theoretical completeness, though due to its poor performance we don’t recommend it in

practice; Simple and Optimal represent the two extremes of the spectrum of joint optimization

across failure scenarios, and Greedy falls in between.

We see both Optimal and Greedy as useful and complementary tools for network design, with

each algorithm best suited to its own set of use cases. Optimal helps us understand exactly how

36

our constraints regarding tails, regens, and demands interact and affect the final solution.

It is best used on a scaled-down, simplified network to (a) answer questions such as How do

changes in the relative costs of tails and regens affect the final solution? ; and (b) serve as a

baseline for Greedy. Without Optimal, we wouldn’t know how close Greedy comes to finding the

optimal solution. Hence, we might fruitlessly continue searching for a better heuristic. Once

we demonstrate that Optimal and Greedy find comparable solutions on topologies that both can

solve, we have some reason to believe that Greedy will do a good job on networks too large

for Optimal.

In contrast, Greedy’s time efficiency makes it ideally suited to place tails and regens for the

full-sized network. In addition, Greedy directly models the process of incrementally upgrading

an existing network. The foundation of Greedy is to take some tails and regens as fixed

and to optimize the placement of additional equipment to meet the constraints. When

we explained Greedy, we described these already placed tails and regens as resulting from

previously considered failure scenarios. But, they can just as well have previously existed in

the network.

2.5 Evaluation

First, we show that CD ROADMs indeed offer savings compared to the existing, fixed IP link

technology by showing that all of Simple, Greedy, and Optimal outperform current best practices

in network design. Then we compare these three algorithms in terms of quality of solutions

and scalability. We show that Greedy achieves similar results to Optimal in less time. Finally,

we demonstrate that our algorithms should allow ISPs to meet their SLAs even during the

transition period following a failure before the network has had time to transition to the new

optimal IP link configuration.

37

2.5.1 Experiment Setup

Topology and traffic matrix. Figure 2.5 shows the topology used for our experiments,

which is a scaled-down version of the core of a backbone network of a large ISP. The network

shown in Figure 2.5 has nine edge switches, which are the sources and destinations of all

traffic demands. Each edge switch is connected to two IP routers, which are colocated within

one PoP and share a single optical connection to the outside world. The network has an

additional 16 optical-only nodes, which serve as possible regen locations.

To isolate the benefits of our approach to minimizing tails and regens, respectively, we

create two versions of the topology in Figure 2.5. The first, which we call 9node-450, assigns

a distance of 450 miles to each optical span. In this topology neighboring IP routers are

only 900 miles apart, so an IP link between them doesn’t need a regen. The second version,

9node-600, assigns a distance of 600 miles to each optical span. In this topology, regens are

required for any IP link.

To evaluate our optimizations on networks of various sizes, we also look at a topology

consisting of just the upper left corner of Figure 2.5 (above the horizontal thick dashed line

and to the left of the vertical thick dashed line). We refer to the 450 mile version of this

topology as 4node-450 and the 600 mile version as 4node-600. Second, we look at the upper

two-thirds (above the thick dashed line) with optical spans of 450 miles (6node-450) and 600

miles (6node-600). Finally, we consider the entire topology (9node-450 and 9node-600).

For each topology, we use a traffic matrix in which each edge router sends 440 GB/sec

to each other edge router. In our experiments we assume costs of 1 unit for each tail and 1

unit for each regen, while communication between colocated routers is free. We use Gurobi

version 8 to solve our linear programs.

Alternative strategy. We compare Optimal, Greedy, and Simple to Legacy, the method currently

used by ISPs to construct their networks. Once built, an IP link is fixed, and if any compo-

nent fails, the link is down and all other components previously dedicated to it are unusable.

38

Figure 2.5: Topology used for experiments. We call the full network 9node-450/9node-600, the
upper two-thirds (above the thick dashed line) 6node-450/6node-600, and the upper left corner
4node-450/4node-600.

In our Legacy algorithm, we assume that IP links follow the shortest optical path. Similar

to Greedy, we begin by computing the optimal IP topology for the no-failure case. We then

designate those links as already paid for and solve the first failure case under the condition

that reusing any of these links is “free.” We add any additional links placed in this iteration

to the already-placed collection and repeat this process for all failure scenarios.

Legacy is the pure IP layer optimization and failure restoration described in Section 2.2.

As discussed previously, we need not compare our approaches to pure optical restoration,

because pure optical restoration cannot recover from IP router failures. We need not compare

against independent optical and IP restoration, because this technique generally performs

worse than pure-IP or IP-along-disjoint-paths.

We compare against IP-along-shortest-paths, rather than IP-along-disjoint-paths, for two

reasons. First, the main drawback of IP-along-shortest-paths is that, in general, it does

39

(a) Neighboring optical nodes 450 miles apart. (b) Neighboring optical nodes 600 miles apart.

Figure 2.6: Total cost (tails + regens) by topology for Optimal and Legacy, unit cost for each
tail/regen. Optimal outperforms Legacy on all topologies, and the absolute gap is greatest on
the largest network (9node-600). We get the greatest percentage savings on 6node-600.

not guarantee recovery from optical span failure. However, on our example topologies,

as in most real ISP backbones, Legacy can handle any optical failure, since the topologies

are sufficiently richly connected. Second, the formulation of the rigorous IP-along-disjoint-

paths optimization is nearly as complex as the formulation of Optimal; if we remove the

restriction that IP links must follow shortest paths, then we need constraints like those

described in Section 2.3.2 to place regens every 1000 miles along a link’s path. For this reason,

ISPs generally do not formulate and solve the rigorous IP-along-disjoint-paths optimization.

Instead, they hand-place IP links according to heuristics and historical precedent. We don’t

use this approach because it is too subjective and not scientifically replicable. In summary,

IP-along-shortest-paths strikes the appropriate balance among (a) effectiveness at finding

close to the optimal solution possible with traditional technology; (b) realism; (c) simplicity

for our implementation and explanation; and (d) simplicity for the reader’s understanding

and ability to replicate.

2.5.2 Benefits of CD ROADMs

To justify the utility of CD ROADM technology, we show that building an optimal CD

ROADM network offers up to 29% savings compared to building a legacy network (6node-600

40

topology). Since neither approach requires any regens on the 450 mile networks, all savings

in those settings (Figure 2.6a) come from tails. On 4node-600 Optimal requires 15% fewer tails,

38% fewer regens, and 23% fewer tails and regens together. On 6node-600 we achieve even

greater savings, cutting total equipment costs by 29% by using 20% fewer tails and 44% fewer

regens. On 9node-600 Optimal uses 16% more tails than Legacy but more than compensates by

requiring 55% fewer regens, for an overall savings of 23%. The bars in Figures 2.6 illustrate

the differences in total cost. Looking at Figures 2.6a and 2.6b, we see that Optimal offers

greater savings compared to Legacy on the 600 mile networks. This is because regens, more so

than tails, present opportunities for reuse across failure scenarios. Optimal capitalizes on this

opportunity while Legacy doesn’t; both algorithms find solutions with close to the theoretical

lower bound in tails, but Legacy in general is inefficient with regen placement. Since no regens

are necessary for the 450 mile topologies, this benefit of Optimal compared to Legacy only

manifests itself on the 600 mile networks.

In these experiments we allow up to five minutes per failure scenario for Legacy and the

equivalent total time for Optimal (i.e., 300 sec × 21 failure scenarios = 6300 sec for 4node-450 and

4node-600, 300 sec × 35 failures = 10,500 sec for 6node-450 and 6node-600 and 300× 59 = 17, 700

sec for 9node-450 and 9node-600). Recall that as “failure scenarios” we consider any single IP

router or optical span failure. For example, the 21 failure scenarios for the small topologies

come from eight IP routers, 12 optical spans, and one no-failure condition.

2.5.3 Scalability Benefits of Greedy

As Figure 2.7 shows, Greedy outperforms Optimal when both are limited to a short amount of

time. “Short” here is relative to topology; Figure 2.7 illustrates that the crossover point

is around 1200 seconds for 4node-600. In contrast, both Greedy and Optimal always outperform

Simple, even at the shortest time limits. The design that Greedy produces costs at most 1.3%

more than the design generated by Optimal, while Simple’s design costs up to 12.4% more than

that of Optimal and 11.0% more than that of Greedy. Reported times for these experiments do

41

�� �� �� �� �� �� �� 	�

���������	

���

���

���

���

���

���

�	�

�	�

�
�

�

�
�

�
�

�
�

Simple

Greedy

Optimal

Figure 2.7: Total cost by computation time for Simple, Greedy, and Optimal on 4node-600. Lines do
not start at t = 0 because Gurobi requires some amount of time to find any feasible solution.

not parallelize Simple’s failure scenarios; we show the summed total time. In addition, the

times for Greedy and Simple are an upper bound. We set a time limit of t seconds for each of

|F | failure scenarios, and we plot each algorithm’s objective value at t|F |.

Interestingly, the objective values of Simple for this topology, and Greedy for some others, do

not monotonically decrease with increasing time. We suspect this is because their solutions

for failure scenario i depend on their solutions to all previous failures. Suppose that, on

failure i − j, Gurobi finds a solution s of cost c after 60 seconds. If given 100 seconds per

failure scenario, Gurobi might use the extra time to pivot from the particular solution s to

an equivalent cost solution s′, in an endeavor to find a configuration with an objective value

less than c on this particular iteration. Since both s and s′ give a cost of c for iteration i− j,

Gurobi has no problem returning s′. But, it’s possible that s′ ultimately leads to a slightly

worse overall solution than s. As Figure 2.7 shows, these differences are at most 10 tails and

regens, and they occur only at the lowest time limits.

42

2.5.4 Behavior During IP Link Reconfiguration

In the previous two subsections, we evaluate the steady-state performance of Optimal, along

with Greedy, Simple, and Legacy, after the network has had time to transition both routing and

the IP link configuration to their new optimal settings based on the current failure scenario.

However, as we describe in Section 2.2.3, there exists a period of approximately two minutes

during which routing has already adapted to the new network conditions but IP links have

not yet finished reconfiguration. In this section we show that our approach gracefully handles

this transient period, as well.

The fundamental difference between these experiments and those in Sections 2.5.2 and

2.5.3 is that here we disallow IP link reconfiguration. Whereas in Sections 2.5.2 and 2.5.3 we

jointly optimize both IP link configuration and routing in response to each failure scenario,

we now reoptimize only routing; for each failure scenario we restrict ourselves to the links that

were both already established in the no-failure case and have not been brought down by said

failure. Specifically, in these experiments we begin with the no-failure IP link configuration

as determined by Optimal. Then, one-by-one we consider each failure scenario, noting the

fraction of offered traffic we can carry on this topology simply by switching from Optimal’s

no-failure routing to whatever is now the best setup given the failure under consideration.

Figure 2.8 shows our results. The graphs are CDFs illustrating the fraction of failure

scenarios indicated on the y-axis for which we can deliver at least the fraction of traffic

denoted by the x-axis. For example, the red point at (0.85, 50%) in Figure 2.8a indicates

that in 50% of the 59 failure scenarios under consideration for 9node-450, we can deliver at least

85% of offered traffic just by reoptimizing routing. The blue line in Figure 2.8a represents

the results of taking the 21 failure scenarios of 4node-450 in turn, and for each recording the

fraction of offered traffic routed. The blue line in Figure 2.8b shows the same for the 21

failure scenarios of 4node-600, while the orange lines show the 35 failure scenarios for 6node-450

and 6node-600, and the red lines show the 59 failure scenarios for the large topologies.

43

��

��������	�
	��
�
�	�����	����
�

�	

��	

�	

��	

��	

��	

��	

��	

��	

��	

���	

�
�
��
�
�

�
	�
�
�
�
��
�
	�
�
	�

�
�
�
	�
�
��
	�
�
�
�
�
��
�
	�

	�
�
�
�
�

9 edge
nodes

6 edge
nodes

4 edge nodes

(a) Neighboring optical nodes 450 miles apart.

������������������������������������

��������	�
	��
�
�	�����	����
�

�	

��	

�	

��	

��	

��	

��	

��	

��	

��	

���	

�
�
��
�
�

�
	�
�
�
�
��
�
	�
�
	�

�
�
�
	�
�
��
	�
�
�
�
�
��
�
	�

	�
�
�
�
�

9 edge nodes

6 edge nodes

4 edge nodes

(b) Neighboring optical nodes 600 miles apart.

Figure 2.8: Percentage of failure scenarios for which rerouting over the existing IP links
allows delivery of at least the indicated fraction of offered traffic.

We find two key takeaways from Figure 2.8. First, across all six topologies we always

deliver at least 50% of traffic. Second, our results improve as the number of nodes in the

network increases, and we do better on the topologies requiring regens than on those that

don’t. On 9node-600, we’re always able to route at least 80% of traffic. Generally, ISPs’ SLAs

require them to always deliver all high priority traffic, which typically represents about

40-60% of total load. However, in the presence of failures or extreme congestion they’re

allowed to drop low priority traffic. These results are promising for translating to real ISP

topologies, since most operational backbones are larger even than our 9node-600 topology.

Note that we don’t expect to be able to route 100% of offered traffic in all failure scenarios

without reconfiguring IP links; if we could, there would be little reason to go through the

reconfiguration process at all. But, we already saw in Section 2.5.2 that remapping the IP

topology to the optical underlay adds significant value.

2.5.5 Evaluation on a Realistic Backbone Topology

As we have shown, this network design problem is both complicated to formulate and compu-

tationally complex to solve. Our Greedy heuristic serves as an important step toward making

our solution scalable, but as described thus far, even Greedy cannot be used on a graph closely

resembling AT&T’s actual topology, which consists of 202 links, 68 edge nodes, and 40 op-

tical backbone nodes, of which 23 are also IP nodes and 17 are optical-only. Each of the 23

44

IP nodes contains two IP routers. The primary bottleneck is CPU, as Gurobi cannot paral-

lelize its process of finding an initial feasible solution [28], and after running our experiments

for seven days on our university’s Beowulf cluster [5], we don’t even get an initial feasible

solution for the first failure scenario.

To scale Greedy to this realistic setting, we make the following modifications. We collapse

the two routers located at each IP node into one. This simplification reduces the

computational complexity of the problem by cutting the number of IP routers in half, from

46 to 23. Once we do this, we can no longer consider router failures in our set of failure

solutions, because when the single router at each IP node fails, the edge switches connected

to that node become detached from the network. However, it is straightforward to adapt

the solution on this simplified problem to get a good but not necessarily optimal solution to

the real network and our target set of failure scenarios (any single link or router).

Suppose our solution calls for placing Tu0 tails at the single IP router in the simplified

topology in the no-failure case and Tu tails per IP router in the simplified topology when

considering all single optical link failures. Then we place max(Tu0, 0.5Tu) per router in the

actual network. This solution must be feasible, because when solving for the real network

we allow for either one router failure or one optical link failure. Placing Tu0 tails per router

covers the situations in which a router failure is worse for a given node than any optical

link failure. Placing Tu tails per node covers the situations in which an optical link failure

requires more tails at a given router than any router failure. Since we aren’t allowing for

a router failure and optical link failure simultaneously, we can divide these Tu tails across

the two routers at each node. Hence, by choosing the maximum of Tu0 and 0.5Tu for each

router, we ensure that we can always carry the necessary traffic.

We prevent IP links from taking particularly circuitous optical paths. Specifically,

we prevent an IP link from using a regen at a given optical node if doing so would require the

IP link to be more than some constant path stretch times longer than its shortest path.

This restriction simplifies the problem by limiting the number of Rαβuvf we need to solve for.

45

Also, it does little to worsen the final solution, because indirect, long routes are unlikely to

require fewer regens than shorter routes. Further, even if this restriction marginally increases

the monetary cost of the network design, the ISP might prefer a solution that avoids the

increased latency inherent in choosing these longer paths.

We simplify the traffic matrix. The full traffic matrix for AT&T’s backbone network

contains 2648 demands. We reduce the size of the problem by randomly choosing 1500 or

1000 of these. To translate our results from this smaller traffic matrix to the real network,

we can aggregate the demands of nearby edge switches. As long as the routing between

the group of aggregated edge switches is straightforward, we can choose one to serve as the

representative of the group for the purposes of the optimization. Then, in postprocessing we

can deal with routing packets to specific edge switches within each group.

We relax Gurobi’s error tolerance. Gurobi solves an ILP by computing a lower bound

on the best possible solution and finding some feasible solution as an upper bound. It then

works to raise the lower bound and lower the upper bound until the two are within some

configurable fraction of each other. By slightly increasing this number to ∼ 10%, we allow

the solver to terminate with an optimal solution more quickly than if it had to continue the

process until its best feasible solution was within ∼ 1% or 0.1% of its lower bound.

We provide Gurobi with a partial initial feasible solution. The vast majority of the

variables in this problem relate to regen placement. We set initial feasible values for these

variables by assuming that a dedicated IP link connects each (s, t) pair. We set the Rαβuvf

variables such that, in each failure scenario, this link follows its shortest possible path and

has enough capacity to carry all (s, t) traffic.

With all these optimizations, we are confident that Gurobi will be able to solve the net-

work design problem on a realistic backbone topology. Whereas we don’t find an initial

feasible solution to the first failure scenario after seven days when we try to solve the full

problem, with these simplifications we find an optimal solution to the first two failure sce-

narios within several days. However, the full computation may take weeks or months to run,

46

since the ILP for each failure scenario remains complex, and we have 202 failure scenarios.

In practice, this is a reasonable runtime for the network design computation, because this

problem by definition operates on large timescales and only needs to be solved every few

months or years. We leave to future work a full evaluation of the results of running this

optimized version of Greedy on the realistic topology and how this setting compares to the

smaller networks we discuss above (Sections 2.5.1 - 2.5.4).

2.6 Related Work

Perhaps most similar to our work is that by Papanikolaou et al. [46–48], who present an ILP

for finding a minimal cost network design for IP-over-elastic-optical-networks. Our work goes

beyond theirs in that we avoid precalculating optical paths to determine regen placement.

On the other hand, their work is more detailed than ours in that they choose each link’s

transmission rate and spectrum.

Another class of related work addresses either IP link reconfiguration and routing or tail

and regen placement, but not both, as we do. For example, the Owan work by Jin et al. [37]

optimizes IP link reconfiguration and routing to minimize completion time for bulk transfers,

but they assume that tails and regens are fixed. Like our work, Owan is a centralized system

to jointly optimize the IP and optical topologies and configure network devices, including

CD ROADMs, according to this global strategy. However, there are three key differences

between Owan and our project. First and foremost, Jin et al. take the locations of optical

equipment as an input constraint, while we solve for the optimal places to put tails and

regens. This distinction is crucial, as a main source of complexity in our model is the need

to make decisions on two separate timescales. Second, our objective differs from that of Jin et

al. We aim to minimize the cost of tails and regens, while they aim to minimize the transfer

completion time or maximize the number of transfers that meet their deadlines. Third, our

work applies in a different setting. Owan is designed for bulk transfers and depends on the

network operator being able to control sending rates, possibly delaying traffic for several

47

hours. We target all ISP traffic; we can’t rate control any traffic, and we must route all

demands, even in the case of failures, except during a brief transient period during IP link

reconfiguration.

Similarly to Jin et al., Gerstel et al. address the IP link configuration problem without

placing tails and regens [24]. Like us, they take as input the end-to-end IP traffic matrix,

the optical layer topology, and the set of possible failures their IP-optical mapping must

withstand. Unlike us, they must start with an existing IP topology, which can be the ISP’s

current setup or any reasonable mapping. Our technique can modify an existing IP topology

or start from scratch. In general, Gerstel et al. discuss similar ideas to ours about and

reasons for multilayer optimization, but they don’t present a complete formulation of an

optimal algorithm for how to achieve it.

In contrast to the work by Jin et al. and Gerstel et al., which address IP link reconfigu-

ration but not tail and regen placement, Bathula et al. minimize the number of regen sites

without discussing how to reconfigure IP links in response to failures [11]. Further, their

work differs from ours in that we aim to minimize the total number of regens.

Our work is also related, though less directly, to various projects addressing failure re-

covery [22, 54, 58, 61] and robust optimization [16, 29, 41]. Also relevant is the work by

Brzezinski et al. [14], which demonstrates that, to minimize delay, it is best to set up direct

IP links between endpoints exchanging significant amounts of traffic, while relying on packet

switching through multiple hops to handle lower demands. Finally, some previous projects

have attempted to solve our same joint tail/regen placement, IP link reconfiguration, and

routing problem but present only heuristics without a formulation of the full optimization

problem [21].

2.7 Conclusion

Advances in optical technology and SDN have decoupled IP links from their underlying

infrastructure (tails and regens). We have precisely stated and solved the new network design

48

problem deriving from these advances, and we have also presented a fast approximation

algorithm that comes close to the optimal solution.

49

Chapter 3

Red: A Communist Approach to

Network Operation

3.1 Introduction

As we mention in the Introduction to this thesis (Chapter 1), ISP backbone networks are

infrastructure as crucial to modern life as roads and utilities. Therefore, even though these

networks are largely invisible to us as consumers, we care a great deal about how well they

serve their purpose of providing fast, reliable communication. The architecture of any given

ISP backbone plays a key role in determining how well the network can meet these needs.

Hence, we ought to think carefully about how we can improve upon the standard design and

operation models of today’s networks.

The vast majority of existing ISP backbones, along with most research proposals, fall

into one of two categories:

(i) smart-edge-dumb-interior : all edge switches are “smart,” and all interior nodes are

“dumb”

(ii) all-nodes-equal : all switches are homogeneous.

50

When we refer to “smart” vs. “dumb” switches, we are specifically concerned with three

axes along which switches differ:

Splitting flows over multiple next-hops. Every switch maintains a forwarding table in

its memory, where the first column in the table matches on one or more of the packet’s header

fields and the second action column specifies matching packets’ next-hop in the backbone

network. Because switches must process a high volume of packets at rapid speeds, these

tables are generally implemented in hardware. As such, they offer limited flexibiilty to

stray from this basic match-action paradigm; many can do nothing more than send equal

proportions across equal (minimal) cost paths. Researchers have explored how to work

around these hardware restrictions and approximate splitting a given “match” across multiple

next-hops in arbitrary proportions [38]. However, to do so, these proposals require multiple

table entries for certain paths, thereby consuming additional memory and leaving less room

for other destination prefixes. In contrast to these severely constrained legacy switches, most

modern switches place no restrictions on which paths can be used for load balancing, but

even some of these require equal splits [1].

Processing various header fields. SDN switches running OpenFlow 1.0 can match on 12

specific header fields, while those running OpenFlow 1.4 can match on 41 [13]. Even protocols

as basic as multiprotocol label switching (MPLS) are not supported by all switches [4]. At

the other extreme, programmable switches allow matching on arbitrary combinations of bits.

Responding to link failures. Some switches can participate in protocols to detect and re-

cover from link failures (e.g., bidirectional forwarding detection (BFD)), while others cannot.

And, some switches support only a subset of protocol features [3].

Even though many networks fit either the smart-edge-dumb-interior or all-nodes-equal

models, some networks don’t fall into either category. Because of factors such as incre-

mental upgrades [12], business mergers [45], and efforts to avoid vendor lock in, networks

are heterogeneous ; edge switches generally are quite “smart,” but some interior nodes are,

too. Heterogeneous networks preclude routing and failure recovery architectures that rely on

51

complex processing from interior switches. But, they’re also not well-suited to approaches

that assume all interior switches are “dumb,” because these solutions waste the resources

of the “smarter” interior nodes. In this chapter, we propose a “sweet spot” intermediate

architecture that takes advantage of the resources of whichever interior nodes happen to

be “smarter” without requiring complex functionality from any. Our solution also allows

ISPs to purposefully and selectively add “smart” nodes to the network interior to derive the

routing and failure recovery benefits that we describe below.

Table 3.1 summarizes the existing backbone network designs and the network operation

models typically associated with each, and it also shows how our proposal fits in. As we

mention above, the goal of any ISP backbone is to provide fast, reliable communication.

To do so, it must limit congestion, even in the presence of failures. Three factors critical

to meeting these goals are (i) the speed and ease with which the network can recover from

switch or link failures; (ii) the cost of routers/switches; and (iii) the ability of the routing

scheme to distribute packets over all links in the network, rather than overcrowding a few

common paths. We care about the cost of routers and switches because the cheaper each

individual box is, the more machines an ISP can afford, the more capacity it can handle,

and the less congestion in the network.

Having outlined these goals, we now explain the basic design and operation models of

the existing approaches and examine how well they fulfill their objectives.

In an all-nodes-equal model, routing is generally done through an interior gateway proto-

col (IGP) such as Open Shortest Path First (OSPF) or Intermediate System to Intermediate

System (IS-IS). Each router is responsible for maintaining its own complete map of the net-

work and calculating the best next-hop to use for any given destination IP address. These

protocols require expensive equipment, because they require routers to perform complex

logic to construct their forwarding tables, and they require significant memory for storing

at least one table entry per destination IP prefix. In addition, they limit path diversity by

52

Design Operation Model
Inexpensive Fast Failure Rec. Diverse

Equipment w/ Ltd. Overhead Paths

all-nodes-equal hop-by-hop 7 4; 7

smart-edge-dumb-interior edge-to-edge tunneling 4; 7 7

heterogeneous nodes Red 4 4 4

Table 3.1: Properties of various TE/failure recovery architectures.

requiring packets to travel along shortest paths. On the other hand, they do allow for rapid

recovery after a switch or link fails.

In contrast, in a smart-edge-dumb-interior model, routing is generally done via edge-to-

edge tunneling [10,23,30,32,33,35,49,53,54]. When a packet enters one of these networks, the

ingress edge determines the appropriate egress edge switch. It labels the packet accordingly,

and the interior switches use this label, rather than the packet’s destination IP address,

to route the packet. In some cases, interior nodes are still responsible for calculating the

appropriate next-hop to use for any given egress switch, while in others the label encodes

the packet’s full path. Either way, this model imposes less of a burden on interior node

processing power and memory than does the all-nodes-equal model, since they only need

space in memory proportional to the number of egress switches in the network, rather than

space proportional to the number of destination IP prefixes in the Internet. However, failure

recovery with edge-to-edge tunneling is either slow or imposes significant overhead on switch

memory. One common edge-to-edge tunneling technique, MPLS, offers fast reroute (FRR),

which promises to switch traffic from a failed path to a live path within tens of milliseconds.

But, ISPs can only use FRR if their interior nodes support it, which somewhat negates

the cost savings promised by the smart-edge-dumb-interior model by preventing them from

using the least expensive “dumb” switches on the market. In addition, FRR is complex,

requiring nodes to exchange multiple messages to set up the backup tunnels [8,60]. Another

drawback of the smart-edge-dumb-interior model, which it shares with the all-nodes-equal

architecture, is that it allows packets to make use of only a limited number of paths.

53

Therefore, as Table 3.1 shows, both existing network architectures offer positive qualities

but also suffer from serious drawbacks. We propose a hybrid model that combines the

strengths of each of the two existing approaches and avoids their weaknesses. More precisely,

we consider a setting of an ISP backbone in which edge nodes are “smart,” but interior

nodes can be either “smart” (big nodes) or “dumb” (little nodes). Since interior big nodes are just

as capable as edge nodes, we propose to tunnel big node-to-big node, rather than edge-to-edge.

The chief advantage of big node-to-big node tunneling over the all-nodes-equal model is re-

duced cost for the ISP. Whereas hop-by-hop forwarding in an all-nodes-equal network de-

mands that all switches have enough memory to store forwarding table entries for all desti-

nation IP prefixes, big node-to-big node tunneling allows those little nodes with limited memories

to maintain just one table entry per backbone egress node. But, big nodes with large mem-

ories can still make use of them as they would in an all-nodes-equal setting. Further, in

an all-nodes-equal model, if the ISP wants to introduce new functionality or finds that its

switches’ routing tables are growing over time, it must upgrade all switches.

Given the massive size and geographic expanse of backbone networks and the high cost

of switches and routers, upgrading an entire network at once is logistically infeasible and

prohibitively expensive. Therefore, ISPs continuously engage in years-long upgrade cycles;

they’re constantly refreshing select portions of their networks such that every few years they

turn over their full suite of equipment. However, by the time they reach the end of each

cycle, the switches that were replaced in early phases are several years old, outdated and

“dumb” compared to the ones replaced at the end.

With big node-to-big node tunneling, whichever switches have been replaced most recently

can serve as big nodes. As the upgrade cycle proceeds and today’s big nodes become more limited

compared to switches that have been upgraded even more recently, the current generation

of big nodes becomes little nodes, and the new generation becomes big nodes. Since Red places

no restrictions on the locations of interior big nodes, this process need not impact how the

54

ISP chooses to go about updating its network. However, the ISP may choose to target its

upgrades to maximize the benefits of Red.

Having explained how big node-to-big node tunneling is an improvement over hop-by-hop

forwarding in an all-nodes-equal architecture, we now address edge-to-edge tunneling and

the smart-edge-dumb-interior design. The chief advantage of big node-to-big node tunneling over

the edge-to-edge model is faster failure recovery. The problem with edge-to-edge tunneling

is that it creates long paths, which increase the time necessary to recover from a failure.

Generally, edge nodes monitor the liveness of their paths via some protocol based on ex-

changing heartbeat probes (e.g., BFD [39, 40]). The longer the path, the longer before the

ingress realizes that probes are not getting through, and consequently the longer before it

can take steps to route around the failure. And, all else being equal, a long path is more

likely to fail, because it contains more individual links, each of which may fail at any time.

Another advantage of big node-to-big node tunneling over the edge-to-edge approach is

greater path diversity. Figure 3.1a shows an example network in which the ingress switch

s can split flows destined for egress t over two paths, but all forwarding is restricted to

edge-to-edge tunneling. For simplicity, we omit from the figure any nodes internal to a

tunnel, but Figures 3.1a, 3.1b, and 3.1c all depict the same physical network.

In contrast, consider Figure 3.1b. In this network, we assume that one node along the

upper path happens to be as powerful as s. Ingress s can still split flows over only two paths,

but now W can do the same. Hence, while each (s, t) flow in Figure 3.1a can make use of

two total paths, an (s, t) flow in Figure 3.1b can use three. In addition, these path diversity

gains are multiplicative. As Figure 3.1c shows, with three interior big nodes, each (s, t) flow

can use nine paths.

3.1.1 Chapter Outline

Even though the potential gains from big node-to-big node tunneling are immediately apparent,

we must overcome two key research challenges to realize these benefits in practice. We must:

55

(a) Edge-to-edge tunneling allows only two paths.

(b) Taking advantage of W ’s splitting ability provides an additional path.

(c) Path diversity gains from interior big nodes are multiplicative; three inerior big nodes allow for
nine (s, t) paths.

Figure 3.1: Example topology illustrating how edge-to-edge tunneling limits path diversity.
We assume the underlying network is the same in both a and b; in both cases there exist
more paths, but we only show those that (s, t) traffic is allowed to use.

1. formulate and solve the routing traffic engineering (TE) optimization problem, which

requires simultaneously choosing the optimal sequence of tunnels a flow should take

while also determining the optimal set of physical paths to implement each tunnel; and

2. devise a failure recovery protocol to take advantage of the shorter paths produced by

our big node-to-big node approach.

In Section 3.2 we describe our overlay model that serves as the foundation to our solutions

to both of these problems. We then describe our TE formulation (Section 3.3) and failure

recovery protocol (Section 3.4). We evaluate our architecture in Section 3.5, and in Section

3.6 we explain the mathematics underlying some of our seemingly surprising results. In

Section 3.7 we discuss related work, and we conclude in Section 3.8.

3.2 Overlay Model

The fundamental idea behind Red is that switch capabilities are not necessarily tied to loca-

tion in the network. big nodes play the role of traditional edge switches and are responsible for

both packet-processing logic and executing the Red failure recovery protocol. Importantly,

56

Figure 3.2: Example physical topology with its associated virtual overlay graph.

big nodes may be in the middle of the network; if an interior switch has the necessary capabil-

ities (Section 3.2), then it is a big node. little nodes play the role of traditional interior switches

and are responsible only for exact-match forwarding. We use the term waypoint to refer to a

big node in the middle of the network.

To be able to compute the optimal routing and failure recovery for a big node/little node

network, we extend the notion of edge switches and their tunnels as an overlay graph on the

physical network. Our overlay contains all big nodes and the tunnels between them.

Formally, the Red network model consists of the physical network graph G and also

an overlay virtual topology V . The physical graph contains all switches and links actually

present in the ISP’s network. The virtual graph contains only the big nodes of the physical

network; internal little nodes are omitted from the virtual graph. A virtual link exists between

two big nodes if there exists a physical path in the physical graph between the two switches

that doesn’t traverse an intermediate big node. Figure 3.2 shows an example physical topology

and its associated virtual overlay graph.

The Red forwarding model is to tunnel big node-to-big node, rather than edge-to-edge. In-

stead of having a packet’s ingress switch determine its entire path through the ISP, Red has

a packet’s ingress choose (i) the next big node the packet should reach; and (ii) its path to this

next-hop big node. The next-hop big node then chooses the next big node and a path to reach it,

57

(a) Table pipeline for big node e1 in b.
(b) Network corresponding to table pipeline
shown in a.

Figure 3.3: big node table pipeline.

and so on until the packet reaches a big node that determines the packet should be forwarded

outside the ISP.

Switch Capabilities

More specifically, we assume each big node has a two-stage table pipeline. When a packet p

enters a big node W , the first table matches on an arbitrary set of header fields and assigns p to

one of k1 next-hop big nodes. These eligible next-hop big nodes are the k1 neighbor big nodes of W

most directly “en route” to p’s destination. We describe in more detail how the set of eligible

next-hops is chosen, and how any given next-hop is chosen from the set, in Section 3.3. The

second table matches on this assigned next-hop big node and chooses one of k2 physical paths.

Finally, the switch pushes a label corresponding to this physical path and forwards p to

the first switch on the path. A little node has just one table; when p enters a little node, the

switch matches on the label and forwards p to the indicated next-hop. Figure 3.3a shows an

example of big node e1’s table pipeline for the network in Figure 3.3b.

3.3 Traffic Engineering

At startup, Red’s central controller directs traffic on optimal routes for the baseline, no-failure

case. Ultimately, Red’s TE algorithm must compute forwarding rules for the controller to

send to

(a) big nodes indicating

58

Variable Definition
W set of all waypoints

E set of all edge switches
L set of all internal little nodes

G physical graph; nodes of the physical graph are E ∪W ∪ L
V virtual overlay graph; nodes of the overlay graph are E ∪W (big nodes)
cαβ capacity of link (α, β)
Dst demand from edge switch s to edge switch t
Zstabp amount of traffic from src. edge s to dst. edge t that traverses the virtual link

from src big node a to dst big node b on path p
Bstabp indicator that Zstabp > 0
Iαβp indicator that physical link (α, β) is on path p; Iαβp = 1 if path p uses link

(α, β) else 0
Pab set of allowed paths implementing virtual link (a, b)
nhbn(W, t) set of allowed next-hop big nodes at big node W for dst. edge t

Table 3.2: Notation.

(i) the fraction of each flow from source IP prefix s to destination IP prefix t to forward

to each next-hop big node; and

(ii) the fraction of flow destined to each next-hop big node to forward to each physical

next-hop; and

(b) little nodes indicating the single next-hop to forward all packets labeled as destined to a

particular big node on a particular path.

To simplify the problem formulation, we solve for the volume of flow to be sent on each link,

rather than the percentage splits. We convert to splitting fractions as a final, post-processing

step before actually installing the rules. Hence, in mathematical notation, we solve for the

values Zstabp, the volume of (s, t) flow assigned to overlay link (a, b) that should traverse

physical path p.

We formulate Red’s optimization first by extending the multicommodity flow framework

and then adding mechanisms to enforce switch flow splitting constraints and to reduce com-

putation time. Table 3.2 summarizes our notation.

59

3.3.1 Extending MCF

At its core, our formulation of Red’s optimization is an extension of MCF, a general paradigm

used for routing various “commodities” from their respective sources to their respective des-

tinations in a network. “Optimal” can be defined in various ways — in max flow applications

the objective is to maximize the total volume of flows routed, in max concurrent flow appli-

cations the objective is to satisfy demands for each commodity while maximizing the fraction

of links kept under their set capacities, and in min cost applications the objective is to route

all demands at a minimal cost while respecting all capacity constraints [56]. The problem’s

constraints include capacity constraints on the maximum volume of traffic that can be routed

on each edge and flow conservation constraints to ensure that all the traffic that is sent by

each source node arrives at its appropriate destination.

Although a variety of flavors of MCF exist in the literature, we have not encountered an

existing formulation that applies to our overlay/underlay setting in which nodes are limited

in the number of next-hops across which they can transmit. We now describe our novel

adaptation of MCF, highlighting the similarities and differences between our formulation

and the standard setup.

As with traditional MCF, Red’s initial inputs comprise the physical topology G and the

demand matrix of bandwidth requirements for all edge-to-edge flows. Red’s information

about the physical topology includes the capacities of all links and the role of each switch

(edge switch, waypoint, or little node). Red uses these inputs to create the overlay graph V

(Section 3.2).

Assume for now that Red uses its knowledge of the physical network to compute the entire

set Pab of physical paths implementing each overlay link (a, b). We relax this requirement

in Section 3.3.3. Incorporating Pab into the flow conservation constraints is how we apply

MCF to our overlay/underlay setting and a key way in which our formulation differs from

traditional MCF.

60

C
o
n
st

ra
in

ts
Flow conservation at all waypoints.∑

a∈V
p∈Paw

Zstawp =
∑
b∈V
p∈Pwb

Zstwbp ∀s, t ∈ E ,∀w ∈ V − {s, t}.
(3.1)

Source edge sends all demand; destination edge receives all demand.∑
b∈V
p∈Psb

Zstsbp =
∑
a∈V
p∈Pat

Zstatp = Dst ∀s, t ∈ E .
(3.2)

Source edge receives nothing; destination edge sends nothing.∑
p∈Pas

Zstasp =
∑
p∈Ptb

Zsttbp = 0 ∀s, t ∈ E ,∀a ∈ V . (3.3)

O
b

je
ct

iv
e

Minimize a convex function of link utilization [59]:

min
∑
αβ

Φ(α, β) ∀α, β ∈ G, (3.4)

where

uαβ =
fαβ
cαβ

(3.5)

and

Φ(α, β) =



fαβ uαβ ≤ 1/3

3fαβ − 2/3cαβ 1/3 ≤ uαβ ≤ 2/3

10fαβ − 16/3cαβ 2/3 ≤ uαβ ≤ 9/10

70fαβ − 178/3cαβ 9/10 ≤ uαβ ≤ 1

500fαβ − 1468/3cαβ 1 ≤ uαβ ≤ 11/10

5000fαβ − 16318/3cαβ 11/10 ≤ uαβ.

(3.6)

Figure 3.4: Formulation of Red’s LP.

Figure 3.4 shows our formulation. Constraints (3.1)-(3.3) are standard flow conservation

constraints. Our objective is a convex function of link utilization designed to minimize

queuing delay. Specifically, Equation (3.6) is a piecewise-linear approximation of the M/M/1

delay formula for packets on a particular link (α, β), and our objective (3.4) is to minimize

the sum of delays across the entire network.

61

3.3.2 Enforcing Splitting Constraints

As described thus far, the formulation in Figure 3.4 distinguishes between big nodes and

little nodes but does not capture switch flow splitting limitations. To fix this problem, we

can add the following constraints, where M is a constant greater than the maximum volume

that could possibly be sent on any path.

Bstabp ≥
Zstabp
M

∀s, t ∈ E , ∀a, b ∈ V ,

∀p ∈ Pab (3.7)∑
p∈Pab

Bstabp ≤ k2 ∀s, t ∈ E , ∀a, b ∈ V (3.8)

∑
b∈V
p∈Pab

Bstabp ≤ k1 ∀s, t ∈ E ,∀a ∈ V (3.9)

Bstabp ∈ {0, 1} ∀s, t ∈ E , ∀a, b ∈ V ,

∀p ∈ Pab (3.10)

Together, constraints (3.7) and (3.10) ensure that Bstabp = 1 if any (s, t) traffic is sent on

path p of overlay link (a, b). Constraint (3.8) forces each overlay link (a, b) to use no more

than k2 physical paths per (s, t) flow. Constraint (3.9) forces big node a to use no more than

k1 next-hop big nodes b for each (s, t) flow, regardless of the physical paths.

Although the formulation in Figure 3.4 combined with constraints (3.7)-(3.10) correctly

enforce splitting constraints, this problem is an integer linear program (ILP). ILPs are NP-

hard, while continuous LPs can be solved in polynomial time. In both theory and practice,

solving an ILP takes exponentially longer than solving a similar sized LP. Additionally,

choosing a suitable value for M is difficult; M must be large enough such that
Zstabp
M

is never

greater than 1 but small enough not to cause floating point errors.

62

3.3.3 Reducing Computation Time

Because formulating Red’s TE problem as an ILP would make it intractable, we instead

enforce splitting constraints via two pre-processing steps. First, we enforce k1 by restricting

each big node W to a set of up to k1 eligible next-hop big nodes for each (s, t) flow. We use the

heuristic of choosing the k1 next-hops that minimize path stretch en route to t and denote

this set as nhbn(W, t).

Second, we enumerate only k2 paths for each overlay link, rather than all possible paths;

each set Pab has at most k2 elements. This strategy simultaneously prevents Red from

violating switch limitations and also drastically reduces the time to compute Pab.

Red’s process for choosing paths allows for flexibly prioritizing path disjointness and path

length. We iteratively apply a standard shortest paths algorithm [2], beginning with setting

the weight wαβ of any physical link from switch α to switch β to be inversely proportional

to its capacity:

wαβ =
max(γ,δ)∈G cγδ

cαβ
. (3.11)

The numerator in (3.11) is the highest capacity of any link in the network and is constant

for all links. The denominator is the capacity of the specific link (α, β). At each iteration,

we take the shortest not-yet-chosen path and then multiply the weights of all links in this

path by a configurable parameter disjoint path multiplier (dpm). Hence, if all links have

equal capacity, setting dpm = 1 is equivalent to choosing the k2 paths with the fewest hops.

Increasing dpm gives greater priority to path disjointness at the cost of path length.

With these limited sets of next-hop big nodes and physical paths, the LP in Figure 3.4 does

respect switch limitations, even without the integer constraints (3.7)-(3.10).

3.3.4 Putting it All Together

Figure 3.5 illustrates Red’s complete four-step process for computing optimal route assign-

ments. First, Red uses its knowledge of the physical network to create the overlay graph.

63

Second, Red chooses nhbn(W, t) and enumerates k2 physical paths for each overlay link. Fi-

nally, Red solves the LP shown in Figure 3.4 to compute the volume of (s, t) traffic assigned

to each physical path p implementing each allowed overlay link (a, b). As a post-processing

step, Red converts these flow volumes to splitting proportions and pushes the appropriate

rules to switches. Red repeats this process every-so-often as traffic demands change but does

not go through all these steps in response to link failures.

3.4 Failure Recovery

The existence of interior waypoints, combined with Red’s failure recovery protocol, allow Red

to respond more quickly to most link failures than is possible with edge-to-edge tunneling.

Red’s failure recovery protocol tries to localize the process as much as possible, which makes

recovery faster and limits the number of live links asked to take on more load. Red’s specific

response depends on the location of the failed link within the physical and virtual topology

in relation to the path of a given flow. In most cases, the closest big node preceding the failed

link can renormalize its flow splitting ratios to avoid the failure; we say these are instances

of local recovery, because the central controller isn’t involved. In the few situations when

local recovery isn’t possible, the controller computes new paths only for the specific flows

that can’t be recovered locally.

In the following subsections, we define the precise situations in which local recovery is

possible and which require a global response. We also detail exactly how Red reroutes any

given flow f in each case. Assume that f ’s no-failure path includes [W1, α, β,W2], where W1

and W2 are big nodes and α and β are little nodes. Link (α, β) fails.

3.4.1 Local Recovery

Local recovery comprises two sub cases.

1: W1 has at least one live path to W2. In this case, W1 renormalizes its splitting ratios

across its remaining live paths to W2. For example, suppose W1 initially sends 100 units of

64

W E L G cαβ Dst

admin input/observe from network

overlay creation
(§3.2)

V

choose nhbn
(§3.3.3)

nhbn(W, t)

choose paths
(§3.3.3)

Pab Iαβp

linear program
(§3.3.1)

Zstabp

rules to switches

Figure 3.5: Red’s TE algorithm. Blue rectangles represent inputs and outputs to the var-
ious phases of computation. Red ovals represent these computational processes. Table 3.2
summarizes the meanings the various symbols.

65

traffic to W2 on paths (p1, p2, p3) in volumes (40, 10, 50). Then, p1 fails. The remaining live

paths together initially accounted for 60 units of traffic, with p2 responsible for 10. Therefore,

p2 takes an additional 10
60
·
(
1 − (60/100)

)
= 0.067 fraction of total demand. p3 takes the

other 50
60
·
(
1 − (60/100)

)
= 0.333, giving new weights of (p1, p2, p3) = (0, 0.167, 0.833) and

new volumes (0, 17, 83).

If W1 has remaining live paths to W2 but none of these paths was initially assigned any

traffic, then W1 splits its demand equally among them.

2: W1 has no live paths to W2 but still has an overlay link to at least one

eligible next-hop big node for f . In this case, W1 renormalizes its splitting ratios across

its remaining next-hop big nodes for f ; the computation is analogous to that described above

for renormalizing across remaining paths to a given destination big node.

3.4.2 Global Recovery

As described thus far, local recovery should always be possible. However, as described

thus far local recovery can also create forwarding loops, if we allow a big node to send to a

previously unused neighbor big node, as illustrated in Figure 3.6. For ease of explanation,

Figure 3.6 shows a physical network in which all switches are big nodes; the physical and

overlay graphs are identical. Suppose Red’s initial optimization routes all (s, t) flow along

the route [s, U1, U2, t] (Figure 3.6a). Then, link (U2, t) fails. Further, assume k1 = 2, so both

t and U1 are in U2’s initial nhbn(U2, t). If U2 is allowed to recover from the (U2, t) failure by

sending to any next-hop big node in its initial nhbn(U2, t) set, then U2 can forward the traffic it

receives from U1 right back to U1. And, U1 will continue to send to U2, because (by design)

U1 doesn’t know about the (U2, t) failure. Hence, packets will loop between U1 and U2 if U1

is allowed to remain in nhbn(U2, t) (Figure 3.6b).

To avoid this problem, immediately after solving the LP and before the network gets up

and running, we remove any big node U1 from nhbn(U2, t) if the initial solution to the LP does

not route any traffic on the overlay link (U1, U2).

66

(a) Initial routing.

(b) Routing after the failure of (U2, t) if U1 is allowed to remain in nhbn(U2, t).

Figure 3.6: Example topology illustrating why we must remove initially unused big nodes from
nhbn. Black lines represent bidirectional links, and blue arrows show flow routes.

This measure is sufficient to ensure that our failure recovery protocol will never create

loops. We know that the initial optimal routing won’t include loops, and by removing unused

next-hop big nodes, we confine ourselves to the assuredly safe set of overlay links chosen by

the LP solution. However, the cost of pruning nhbn is that it is possible that W1 may have no

remaining virtual links to any eligible next-hop big nodes without being physically partitioned

from t. Hence arises the possible need for global recovery.

3: W1 can’t reach an eligible next-hop big node for f . This is the only case in which

Red’s central controller must be involved in failure recovery. The controller always knows

the current state of the network and tracks each big node’s eligible next-hop big nodes for each

(s, t) flow. Therefore, the controller realizes whenever a failure leaves W1 with no eligible

next-hops for f . At this point, the controller reoptimizes to choose a completely new route

for f . This reoptimization takes into account how other big nodes have responded to the failure

for all flows. The controller simulates all the big nodes’ renormalizations and then, assuming

these flows are fixed, chooses a new route for f . Finally, the controller sends rules to the

switches on f ’s new route to implement the recovery.

Although recovery in this scenario takes more time than in either of the above cases

because it requires communication with the central controller, it still happens much more

quickly than if the controller recomputed the optimization from scratch. The controller can

67

solve this optimization quickly, because it its responsible only for rerouting the small number

of flows that traverse some waypoint with no eligible next-hop big nodes.

3.5 Evaluation

In this section we show experimental results evaluating Red’s traffic engineering and failure

recovery algorithms. We evaluate Red using a topology representative of AT&T’s backbone

and a subset of demands from the associated traffic matrix, both of which we obtained from

the company itself. The network contains 209 bidirectional edges and 114 nodes. In our

experiments we choose big nodes randomly to mimic a situation in which big nodes happen to

exist at various points throughout the network. We also choose edge nodes randomly, though

for this we restrict ourselves to choosing from the 68 nodes that AT&T designates as actual

edge switches in its network. Our demands comprise 42 flows from a particular source edge

switch to a particular destination edge switch.

3.5.1 Traffic Engineering

In the absence of failures, big node-to-big node tunneling does not dramatically reduce conges-

tion compared to the traditional edge-to-edge approach. We evaluate the impact of interior

waypoints on traffic engineering by randomly assigning nodes to be waypoints or little nodes accord-

ing to varying probabilities and then computing the maximum link utilization resulting from

routing traffic according to the algorithm described in Section 3.3. We refer to the parame-

ter controlling the probability that any given interior node is a waypoint as waypoint prob.

Figures 3.7a and 3.7b, show CDFs of the fraction of trials for which the maximum link uti-

lization is at most a certain value. The trials differ in the traffic demands they serve. We

plot separate lines for waypoint prob in {0.0, 0.1, 0.2, 0.5, 1.0}. Figure 3.7a assumes that

each big node can split flows between two next-hop big nodes and use only one physical path

to reach each next-hop big node (k1 = 2, k2 = 1). Figure 3.7b assumes that each big node can

split flows among three next-hop big nodes and use up to three physical paths to reach each

68

(a) k1 = 2, k2 = 1

(b) k1 = 3, k2 = 3

Figure 3.7: CDF showing fraction of trials for which maximum link utilization is at most a
certain value, no link failures.

next-hop big node (k1 = 3, k2 = 3). The case in which waypoint prob = 0 is equivalent to

edge-to-edge tunneling.

If big node-to-big node tunneling has a significant impact on reducing congestion, the colored

lines should appear far apart. In particular, the blue line for waypoint prob = 0 should be

far to the right, and then the lines for successively higher values of waypoint prob should

fall farther and farther left. We see this pattern to some extent when big nodes are severely

69

limited in the number of next-hops across which they can split flows (Figure 3.7a), although

the lines for waypoint prob = 0 and waypoint prob = 0.1 cross each other, and the red

waypoint prob = 0.5 line falls directly on top of the brown waypoint prob = 1 line (which

is why the brown line is not visible in the figure). By the time big nodes can split flows across

three next-hop big nodes and use three physical paths to get to each next-hop big node, the

case in which all nodes are big nodes is indistinguishable from the case in which no nodes

are big nodes. The blue waypoint prob = 0 line is the only one that appears in Figure 3.7b

because it sits directly on top of the other four.

3.5.2 Failure Recovery

In this section we show that the presence of interior waypoints indeed reduces failure recovery

latency by shortening tunnel lengths and also that these waypoints, in conjunction with Red’s

failure recovery protocol, reduce congestion compared to the no-waypoint case.

Reduced Path Length

Figure 3.8 shows that, as we would expect, the distance between waypoints decreases as we

increase the number of waypoints in the network. The x-axis shows waypoint prob, and the

y-axis shows three different measures of big node-to-big node path length:

• avg avg distance: The average distance from a big node to each of its neighbor big nodes,

averaged over all big nodes.

• avg max distance: The distance from a big node to its farthest immediate neighbor

big node, averaged over all big nodes.

• max max distance: The maximum over all big nodes of each big node’s distance to its

farthest immediate neighbor big node.

All three metrics show a consistent dropoff as the number of waypoints increases. Our results

are not particularly sensitive to the number of edge switches. As demonstrated by Figure

70

Figure 3.8: big node-to-big node path lengths for varying numbers of waypoints.

3.8, for any given waypoint probability beyond the very lowest, networks with three, 10, and

15 edge switches all produce big node-to-big node paths of similar lengths. This makes sense,

because at medium to high values of waypoint prob the number of waypoints is much greater

than any of these values.

Reduced Congestion

To quantify the impact of big node-to-big node tunneling on limiting congestion in the presence

of link failures, we repeat our TE experiments from Section 3.5.1, separately failing each

of the 209 links in the network and calculating the maximum link utilization that results

when Red applies its failure recovery protocol. Figures 3.9a and 3.9b show the results of

these experiments. These figures are analogous to Figures 3.7a and 3.7b, respectively, except

that Figures 3.9a and 3.9b aggregate results across trials that differ not only in the traffic

demands they serve but also in which particular link was failed.

Comparing Figures 3.7a and 3.9a, we see that maximum link utilization is nearly iden-

tical with and without failures for the extreme values of waypoint prob. The blue line

representing the edge-to-edge tunneling case follows almost the same path in Figure 3.9a as

71

(a) k1 = 2, k2 = 1

(b) k1 = 3, k2 = 3

Figure 3.9: CDF showing fraction of trials for which maximum link utilization is at most a
certain value with link failures.

72

it does in Figure 3.7a, as does the brown line representing the case in which every node is a

big node. (Recall that the brown waypoint prob = 1 line in Figure 3.7a sits directly under the

red line.) However, as Figure 3.9a shows, in the presence of failures making half the nodes

big nodes is not equivalent, from the perspective of minimizing maximum link utilization, to

making all the nodes big nodes; in Figure 3.7a the red line falls to the right of the brown line.

Comparing Figures 3.7b and 3.9b, we see that, when links can fail, big node-to-big node

tunneling is at least a little helpful for reducing congestion even when big nodes can split flows

across more next-hops; the five lines in Figure 3.9b are not completely on top of each other,

although they still overlap to a great extent.

3.6 Explaining the Limited TE Impact of big nodes

At first glance, the results we present in Sections 3.5.1 and 3.5.2 seem counterintuitive. As

we explain in the chapter Introduction (Section 3.1), we would expect that the presence of

interior waypoints should help limit congestion compared to edge-to-edge tunneling, because

the ability of interior waypoints to split flows across multiple next-hops allows for greater

path diversity. However, our results are in fact consistent with what other researchers have

observed experimentally and proven mathematically ought to be the case.

Fundamentally, big node-to-big node tunneling does not reduce congestion because a

minimal-congestion routing does not require a great deal of path diversity; interior waypoints

do make multiplicatively more paths available, but these extra paths aren’t very helpful

for reducing congestion. Liu et al. [44] show that an optimal solution to an MCF routing

problem with D demands and L links can have at most L demands using more than one

path each; the other D − L demands each require only a single path. Consequently, if D

is much larger than L, most flows don’t benefit at all from the ability of waypoints to split

them across multiple next-hops. In their experiments they often observe that many more

than D−L flows use a single path [44]. Liu et al. also explain that, even in the presence of

failures, multipath routing is not particularly beneficial. When a link fails the topology now

73

has L− 1 links, and the specific path each flow takes might change, but the D+L property

still holds [44].

Having said all this, we acknowledge that our setting differs slightly from that of Liu et

al. Their proof applies to MCF routing, and our routing is a hybrid between edge-to-edge

tunneling and MCF. They conclude that the vast majority of flows must each follow a single

path when the number of demands is much larger than the number of links, but we have more

links in our network than demands. Nevertheless, we believe that their mathematical and

experimental results come from a setting similar enough to ours that the core ideas translate.

Further, they are not alone in reaching these conclusions [57].

3.7 Related Work

Red draws on the well-established traffic engineering and failure recovery techniques of MPLS

and segment routing along with a variety of research proposals in the same domain. Red also

shares some similarities with prior work on partial deployments of new technologies within

existing networks.

3.7.1 TE and Failure Recovery: Established Standards

Tunnel-Based

MPLS MPLS is an edge-to-edge tunneling architecture introduced and standardized in the

late 1990s [8, 9, 50, 52]. At the time, longest prefix matching was difficult to implement

efficiently, and the goal of MPLS was to remove the need for this complex functionality in

the interior of the network [10]. It is still widely used today for routing, TE, priority control,

service provisioning, and failure restoration [12]. However, MPLS suffers from the drawbacks

of edge-to-edge tunneling outlined above.

Segment Routing On the surface, Red’s network operation model seems to be nearly

identical to a standardized routing protocol called segment routing [23], which is an imple-

74

mentation of a concept called source routing. In segment routing, the ingress node specifies

all or part of a packet’s path through the network by pushing onto it a stack of labels.

Each label corresponds to an interior node that the packet must visit, but the packet may

also visit some nodes not named in the stack. Each interior switch that the packet visits

chooses the next hop based on whichever label is currently at the top of the stack. When

the packet reaches this intermediate destination, that switch pops its own label off the stack

and forwards the packet toward the node specified by the new top label.

Red is similar to segment routing in that its ingress switches assign each packet a par-

ticular interior node that the packet must visit as an intermediate destination on its path

through the network. We can view Red’s interior big nodes as analogous to the named nodes

specified as intermediate destinations in segment routing’s label stack. However, big node-to-

big node tunneling differs from segment routing in that Red’s ingress switches can specify at

most one intermediate destination, and segment routing’s ingress switches can specify any

number. In addition, Red’s interior big nodes keep per-flow state, while segment routing’s inte-

rior nodes do not. Red’s big nodes choose each packet’s next-hop big node by matching directly

on the packet’s destination IP address. In contrast, even named nodes in segment routing

forward based on labels in the stack pushed by the ingress edge switch.

Therefore, segment routing inherits some of the failure recovery drawbacks of edge-to-

edge tunneling. For example, suppose the ingress switch pushes a label stack requiring a

packet p to visit nodes (A, B, C, D) en route to its destination. While p is in flight, node

D fails. None of A, B, or C is equipped to respond to the change in network state and

choose an alternate path to the p’s destination; p will be dropped. In contrast, with Red the

ingress would specify A as p’s the next-hop big node. If the network is still intact when the p

reaches C, then C will push a label that the next-hop big node is D. However, if D has failed

by this point, C will have been updated with an alternate next-hop big node for p. Hence, p

will successfully reach its destination.

75

Segment routing suffers from several additional drawbacks, distinct from those of edge-

to-edge tunneling. First, adding a label stack encoding a packet’s entire edge-to-edge path

consumes bandwidth and switch processing resources [26]. Second, segment routing requires

routers to run an IGP, whereas Red does not.

Hop-by-Hop

The two most common classes of hop-by-hop routing protocols are link state and distance

vector. In link state protocols such as Open Shortest Path First (OSPF) and Intermediate

System to Intermediate System (IS-IS), each router broadcasts the identities and costs of

all of its incident links to every other router. In this way, each router constructs its own

complete map of the network and computes for itself the optimal next-hops to use for each

destination.

In distance vector protocols such as Routing Information Protocol (RIP), each router

sends to its neighbors a list of estimates of the costs of traveling from itself to all other nodes

in the network. Each router decides which of its neighbors is the better next-hop for each

destination by adding the cost of traveling from itself to said neighbor to the cost from that

neighbor to the destination. Thus, no router gets a complete map of the network and instead

makes its decisions based on local information.

OSPF and IS-IS are generally used in Tier-1 ISP backbones, while RIP is generally used

in regional and local ISP backbones and in enterprise networks [42].

3.7.2 TE and Failure Recovery: Research Proposals

Tunnel-Based

Research proposals advocate for edge-to-edge tunneling in a variety of settings [15, 22, 31,

36,43,54], including data centers [7], enterprise networks, private backbones [25,33,35], and

ISP backbones [61]. Our concept of local renormalizing across remaining live paths is based

on Suchara et al.’s state independent splitting [54].

76

3.7.3 Incremental Deployment

Like Red, the works by Agarwal et al. [6], Chu et al. [22], and Hong et al. [34] allow network

operators to realize the benefits of partially deploying new technology without going through

the expensive and logistically difficult process of upgrading their entire networks. However,

none of these projects includes the notion of big node-to-big node tunneling.

3.8 Conclusion

Red is a network architecture based on tunneling packets from big node-to-big node, rather than

tunneling edge-to-edge or forwarding hop-by-hop. In this chapter we introduce the overlay

model that serves as the basis for Red’s TE and failure recovery schemes, and then we

formulate the TE optimization problem and describe our novel failure recovery protocol.

Together, these TE and failure recovery techniques allow us to realize the benefits of big node-

to-big node tunneling: cost savings compared to hop-by-hop forwarding, faster failure recovery

than edge-to-edge tunneling, and the ability to exercise a wider set of paths than is possible

with either existing routing approach.

77

Chapter 4

Conclusion

Nearly all aspects of modern life, from entertainment to business to medical care, depend on

the Internet providing reliable, rapid communication. For this to happen, ISPs must design

and operate their backbone networks to minimize congestion, even in the presence of switch

or link failures. If ISPs had unlimited budgets, they could achieve this goal by drastically

overprovisioning their networks, installing many more switches than they anticipate needing.

However, in reality ISPs have limited budgets for equipment, and therefore they strive to

design networks that are both sufficiently robust and as inexpensive as possible. Hence, they

must solve a complex constrained optimization problem.

In this thesis, we demonstrate that ISPs can improve upon their current approaches to

solving this problem by taking advantage of whatever resources the network has to offer. In

Sox: S trategic Optical/IP X -Layer Network Design (Chapter 2), these resources are well-

functioning tails and regens that have previously been tied to now-failed IP links. In Red: A

Communist Approach to Network Operation (Chapter 3), these resources are the matching

abilities and forwarding table capacities of interior big nodes. In both projects, we achieve this

goal of maximizing the utility of available resources by making decisions as late as possible.

In Sox, we shift IP link placement from network design to network operation. In Red, we

avoid fixing a packet’s path through the network at the ingress edge switch, instead allowing

78

interior big nodes to use the best information available at the time to choose the later hops in

its path.

4.1 Summary of Contributions

We present two formulations for this network design problem, each targeted at particular

circumstances an ISP might encounter. Both are based on extensions to the multicommodity

flow optimization framework.

4.1.1 Sox

First, we explain how ISPs can take advantage of new optical technology, specifically CD

ROADMs, to reuse tails and regens across failure scenarios (Chapter 2). In this way, the

ISP avoids permanently tying these components to a particular IP link and wasting these

resources when the IP link goes down due to the failure of another tail, regen, or fiber

segment. We show that CD ROADMs fundamentally change the nature of the network

design problem by shifting the boundary between network design and network operation,

and we present a formulation for the new optimization problem. We also describe two

heuristics for solving this problem in a more time-efficient, scalable way, and we show that

one of these, Greedy, is nearly as effective as Optimal at generating robust, inexpensive network

designs.

4.1.2 Red

Second, we explain how ISPs can take advantage of a select few “smart” big nodes in the interior

of their backbones to reduce the disruptions their networks suffer as a result of switch or link

failures (Chapter 3). Most networks today employ one of two routing models, depending on

their switches’ abilities to match on various header fields and amount of memory available for

storing forwarding tables. Specifically, networks whose nodes are all equally “smart” use hop-

by-hop forwarding, and those with “smart” big nodes at the edges and “dumb” little nodes in the

79

interior use edge-to-edge tunneling. Hop-by-hop forwarding allows for faster failure recovery

than does edge-to-edge tunneling, but to use this model the ISP must pay to upgrade all of

its switches at once to high-end models, which is both logistically and financially infeasible.

Thus, we propose big node-to-big node tunneling, a hybrid routing model that makes use of

whichever interior nodes the ISP chooses to upgrade. big node-to-big node tunneling allows for

faster failure recovery than is possible with the edge-to-edge approach, and it allows ISPs

cost savings compared to hop-by-hop forwarding.

4.2 Future Work

Our formulations in both Sox and Red take into account a variety of real-world constraints

such as the limited regen dist an optical signal can travel between regens and the varying

abilities of switches to match on certain header fields and store forwarding tables of different

sizes. However, we also elide many details, all of which we plan to add to our models in the

future:

Changing traffic matrices. For the most part, our work assumes a single traffic matrix

that “covers” all others. We have explained at a high level how to explicitly model changing

traffic matrices, but we have yet to implement this version of the optimization and evaluate

its benefits compared to our current approach.

Multiple classes of traffic. As we mention in 2.2.3, ISPs generally carry multiple classes

of traffic, each of which is governed by a different SLA. We don’t yet account for these

differences in our mathematical formulations.

Specific latency requirements. SLAs sometimes include specific restrictions on the time

it will take for packets to reach their destinations. Our optimizations both indirectly work

toward this goal by limiting the disruption caused by failures, but neither incorporates

latency as first class constraints.

More granular models of switch capabilities. In Red, we divide interior nodes into

two categories, big nodes and little nodes, depending on their matching abilities and memory

80

capacities. However, we don’t account for the specific header fields each switch can match

on, and we don’t count a specific number of rules that each switch can store. In addition,

these are not the only two axes along which switches differ. For example, switches support

different sets of established protocols, and some allow the ISP to implement custom protocols

by offering protocol-independent packet processing (P4) [13].

Adding these features to our models will be an important yet challenging direction for

future work. The challenge will be to (i) figure out how to incorporate these considerations

into our mathematical formulations; and (ii) then make the more complex optimization

problems scale to networks of reasonable size. However, we believe these challenges are worth

tackling, because these considerations are all important aspects of the real-world problem.

We need to formulate and evaluate network designs that do explicitly model these features

so that we can compare these results to those produced by our existing, simpler models. We

may find that, in practice, there is little benefit to using the more complex formulations, or

we may find that some of these details are crucial.

We also plan to explore how to further speed up the computation time required to solve

our existing formulations. We have taken important steps toward this end by presenting some

heuristics for both, but we plan to work on developing additional heuristics and methods for

parallelizing the computation.

4.2.1 Red + Sox

Thus far, we have developed Sox and Red as independent network design strategies based

around common themes yet not explicitly designed to coexist within the same network. They

are not incompatible and could both be implemented in one backbone, but we have not yet

investigated how they can be combined to produce a whole greater than the sum of their

parts. We believe great opportunity exists in this direction, given their mathematical and

conceptual similarities.

81

Bibliography

[1] http://www.brocade.com/content/html/en/configuration-guide/FI_08030_SDN/

GUID-14B40208-34F5-4A20-B7AA-1131D9592897.html.

[2] https://networkx.github.io/documentation/stable/reference/algorithms/

generated/networkx.algorithms.simple_paths.shortest_simple_paths.html.

[3] Bidirectional forwarding detection. http://www.cisco.com/c/en/us/td/docs/ios/

12_0s/feature/guide/fs_bfd.html.

[4] MPLS limitations on QFX Series and EX4600 switches. http://

www.juniper.net/techpubs/en_US/junos/topics/reference/general/

mpls-limitations-qfx-series.html.

[5] CS cluster computing, 2019.

[6] Sugam Agarwal, Murali Kodialam, and T.V. Lakshman. Traffic engineering in software
defined networks. In IEEE INFOCOM 2013, April 2013.

[7] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson Huang, and
Amin Vahdat. Hedera: Dynamic flow scheduling for data center networks. In USENIX
Conference on Networked Systems Design and Implementation, April 2010.

[8] Alia Atlas, George Swallow, and Ping Pan. Fast reroute extensions to RSVP-TE for
LSP tunnels. IETF RFC 4090, May 2005.

[9] Daniel Awduche, J. Malcolm, J. Agogbua, M. O’Dell, and J. McManus. Requirements
for traffic engineering over MPLS. IETF RFC 2702, September 1999.

[10] Daniel O. Awduche. MPLS and traffic engineering in IP networks. IEEE Communica-
tions Magazine, 37, 1999.

[11] Balagangadhar G. Bathula, Rakesh K. Sinha, Angela L. Chiu, Mark D. Feuer, Guangzhi
Li, Sheryl L. Woodward, Weiyi Zhang, Robert Doverspike, Peter Magill, and Keren
Bergman. Constraint routing and regenerator site concentration in roadm networks.
Journal of Optical Communications and Networking, 5(11), November 2013.

[12] Martin Birk, Gagan Choudhury, Bruce Cortez, Alvin Goddard, Narayan Padi, Aswat-
narayan Raghuram, Kathy Tse, Simon Tse, Andrew Wallace, and Kang Xi. Evolving
to an SDN-enabled ISP backbone: Key technologies and applications. IEEE Commu-
nications Magazine, 54, 2016.

82

[13] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rexford,
Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and David Walker. P4:
Programming protocol-independent packet processors. SIGCOMM Computer Commu-
nication Review, 44(3):87–95, July 2014.

[14] Andrew Brzezinski and Eytan Modiano. Dynamic reconfiguration and routing algo-
rithms for IP-over-WDM networks with stochastic traffic. In IEEE INFOCOM 2005,
March 2005.

[15] Mart́ın Casado, Teemu Koponen, Scott Shenker, and Amin Tootoonchian. Fabric: A
retrospective on evolving SDN. In Workshop on Hot Topics in Software Defined Net-
working, August 2012.

[16] Yiyang Chang, Sanjay Rao, and Mohit Tawarmalani. Robust validation of network
designs under uncertain demands and failures. In USENIX Conference on Networked
Systems Design and Implementation, March 2017.

[17] Angela Chiu, Gagan Choudhury, Robert Doverspike, and Guangzi Li. Restoration
design in IP over reconfigurable all-optical networks. In IFIP International Conference
on Network and Parallel Computing, NPC, September 2007.

[18] Angela Chiu and John Strand. Joint IP/optical layer restoration after a router failure.
In Optical Fiber Communication Conference and Exposition, March 2001.

[19] Angela L. Chiu, Gagan Choudhury, George Clapp, Robert Doverspike, Mark Feuer,
Joel W. Gannett, Janet Jackel, Gi Tae Kim, John G. Klincewicz, Taek Jin Kwon,
Guangzhi Li, Peter Magill, Jane M. Simmons, Ronald A. Skoog, John Strand, Ann Von
Lehmen, Brian J. Wilson, Sheryl L. Woodward, and Dahai Xu. Architectures and pro-
tocols for capacity efficient, highly dynamic and highly resilient core networks. Journal
of Optical Communications and Networking, 4(1), January 2012.

[20] Gagan Choudhury, Martin Birk, Bruce Cortez, Alvin Goddard, Narayan Padi, Kathy
Meier-Hellstern, John Paggi, Aswatnarayan Raghuram, Kathy Tse, Simon Tse, and
Andrew Wallace. Software defined networks to greatly improve the efficiency and flex-
ibility of packet IP and optical networks. In International Conference on Computing,
Networking, and Communications, January 2017.

[21] Gagan Choudhury, David Lynch, Gaurav Thakur, and Simon Tse. Two use cases of
machine learning for SDN-enabled IP/optical networks: Traffic matrix prediction and
optical path performance prediction. Journal of Optical Communications and Network-
ing, 10(10), October 2018.

[22] Cing-Yu Chu, Kang Xi, Min Luo, and H. Jonathan Chao. Congestion-aware single link
failure recovery in hybrid SDN networks. In IEEE INFOCOM 2015, April 2015.

[23] Clarence Filsfils, Stefano Previdi, Les Ginsberg, Bruno Decraene, Stephane Litkowski,
and Rob Shakir. Segment routing architecture. RFC 8402, July 2018.

83

[24] Ori Gerstel, Clarence Filsfils, Thomas Telkamp, Matthias Gunkel, Martin Horneffer,
Victor Lopez, and Arturo Mayoral. Multi-layer capacity planning for IP-optical net-
works. IEEE Communications Magazine, 52, January 2014.

[25] Amitabha Ghosh, Sangtae Ha, Edward Crabbe, and Jennifer Rexford. Scalable multi-
class traffic management in data center backbone networks. IEEE Journal on Selected
Areas in Communications, 31(12), 2013.

[26] Alessio Giorgetti, Piero Castoldi, Filippo Cugini, Jeroen Nijhof, Francesco Lazzeri, and
Gianmarco Bruno. Path encoding in segment routing. In IEEE GLOBECOM 2015,
December 2015.

[27] Jennifer Gossels, Gagan Choudhury, and Jennifer Rexford. Robust network design for
IP/optical backbones. Journal of Optical Communications and Networking, 11, August
2019.

[28] Inc. Gurobi Optimization. Mixed-integer programming (MIP) – a primer on the basics,
2019.

[29] Grani A. Hanasusanto, Daniel Kuhn, and Wolfram Wiesemann. k-adaptability in two-
stage robust binary programming. Operations Research, 63(4), 2015.

[30] Renaud Hartert, Stefano Vissicchio, Pierre Schaus, Olivier Bonaventure, Clarence Fils-
fils, Thomas Telkamp, and Pierre Francois. A declarative and expressive approach to
control forwarding paths in carrier-grade networks. In ACM SIGCOMM, August 2015.

[31] Victor Heorhiadi, Michael K. Reiter, and Vyas Sekar. Accelerating the development
of software-defined network optimization applications using SOL. Computing Research
Repository, abs/1504.07704, 2015.

[32] Victor Heorhiadi, Michael K. Reiter, and Vyas Sekar. Simplifying software-defined
network optimization using SOL. In USENIX Conference on Networked Systems Design
and Implementation, March 2016.

[33] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mohan
Nanduri, and Roger Wattenhofer. Achieving high utilization with software-driven WAN.
In ACM SIGCOMM, August 2013.

[34] David Ke Hong, Yadi Ma, Sujata Benerjee, and Z. Morley Mao. Incremental deployment
of SDN in hybrid enterprise and ISP networks. In ACM SIGCOMM Symposium on SDN
Research, March 2016.

[35] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun
Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, Jon Zolla, Urs Hölzle,
Stephen Stuart, and Amin Vahdat. B4: Experience with a globally-deployed software
defined WAN. In ACM SIGCOMM, August 2013.

84

[36] Umar Javed, Martin Suchara, Jiayue He, and Jennifer Rexford. Multipath protocol for
delay-sensitive traffic. In International Conference on COMmunication Systems And
NETworks, January 2009.

[37] Xin Jin, Yiran Li, Da Wei, Siming Li, Jie Gao, Lei Xu, Guangzhi Li, Wei Xu, and
Jennifer Rexford. Optimizing bulk transfers with software-defined optical WAN. In
ACM SIGCOMM, August 2016.

[38] Nanxi Kang, Monia Ghobadi, John Reumann, Alexander Shraer, and Jennifer Rexford.
Efficient traffic splitting on commodity switches. In ACM Conference on Emerging
Networking Experiments and Technologies, December 2015.

[39] D. Katz and D. Ward. Bidirectional forwarding detection (BFD). IETF RFC 5880,
June 2010.

[40] D. Katz and D. Ward. Bidirectional forwarding detection (BFD) for IPv4 and IPv6
(single hop). IETF RFC 5881, June 2010.

[41] Praveen Kumar, Yang Yuan, Chris Yu, Nate Foster, Robert D. Kleinberg, and Robert
Soulé. Kulfi: Robust traffic engineering using semi-oblivious routing. Computing Re-
search Repository, abs/1603.01203, 2016.

[42] James F. Kurose and Keith W. Ross. Computer Networking: A Top-Down Approach.
Addison-Wesley Publishing Company, 6th edition, 2013.

[43] Hongqiang Harry Liu, Srikanth Kandula, Ratul Mahajan, Ming Zhang, and David Gel-
ernter. Traffic engineering with forward fault correction. In ACM SIGCOMM, August
2014.

[44] Xuan Liu, Sudhir Mohanraj, Michal Pióro, and Deep Medhi. Multipath routing from a
traffic engineering perspective: How beneficial is it? In 22nd International Conference
on Network Protocols, October 2014.

[45] Scott Moritz. Verizon’s CEO is open to possible mergers – maybe with Com-
cast or Disney, April 2017. http://www.chicagotribune.com/bluesky/technology/

ct-verizon-comcast-disney-deals-20170418-story.html.

[46] Panos Papanikolaou, Konstantinos Christodoulopoulos, and Emmanouel Varvarigos.
Incremental planning of multi-layer elastic optical networks. In International Conference
on Optical Network Design and Modeling, May 2017.

[47] Panos Papanikolaou, Konstantinos Christodoulopoulos, and Emmanouel Varvarigos.
Joint multi-layer survivability techniques for IP-over-elastic-optical-networks. Journal
of Optical Communications and Networking, 9, January 2017.

[48] Panos Papanikolaou, Konstantinos Christodoulopoulos, and Manos Varvarigos. Op-
timization techniques for incremental planning of multilayer elastic optical networks.
Journal of Optical Communications and Networking, 10, March 2018.

85

[49] Larry L. Peterson and Bruce S. Davie. Computer Networks: A Systems Approach.
Morgan Kaufmann Publishers Inc., San Francisco, CA, 5th edition, 2011.

[50] Eric Rosen and Ross Callon. Multiprotocol label switching architecture. IETF RFC
3031, March 2013.

[51] M. Shand and S. Bryant. IP fast reroute framework. IETF RFC 5714, January 2010.

[52] Vishal Sharma and Fiffi Hellstrand. Framework for multi-protocol label switching
(MPLS)-based recovery. IETF RFC 3469, February 2003.

[53] Robert Soulé, Shrutarshi Basu, Parisa Jalili Marandi, Fernando Pedone, Robert D.
Kleinberg, Emin Gün Sirer, and Nate Foster. Merlin: A language for provisioning net-
work resources. In ACM Conference on Emerging Networking Experiments and Tech-
nologies, December 2014.

[54] Martin Suchara, Dahai Xu, Robert Doverspike, David Johnson, and Jennifer Rexford.
Network architecture for joint failure recovery and traffic engineering. In ACM SIG-
METRICS International Conference on Measurement and Modeling of Computer Sys-
tems, June 2011.

[55] Simon Tse and Gagan Choudhury. Real-time traffic management in AT&T’s SDN-
enabled core IP/optical network. In Optical Fiber Communication Conference and Ex-
position, March 2018.

[56] I-Lin Wang. Multicommodity network flows: A survey, part I: Applications and formu-
lations. 15, December 2018.

[57] Meng Wang, Chee Wei Tan, Weiyu Xu, and Ao Tang. Cost of not splitting in rout-
ing: Characterization and estimation. IEEE/ACM Transactions on Networking, 19(6),
December 2011.

[58] Ye Wang, Hao Wang, Ajay Mahimkar, Richard Alimi, Yin Zhang, Lili Qiu, and
Yang Richard Yang. R3: Resilient routing reconfiguration. In ACM SIGCOMM, August
2010.

[59] Dahai Xu, Mung Chiang, and Jennifer Rexford. Link-state routing with hop-by-hop
forwarding can achieve optimal traffic engineering. IEEE/ACM Transactions on Net-
working, 19(6), December 2011.

[60] Seisho Yasukawa, Adrian Farrel, and Olufemi Komolafe. An analysis of scaling issues
in MPLS-TE core networks. IETF RFC 5439, February 2009.

[61] Jiaqi Zheng, Hong Xu, Xiaojun Zhu, Guihai Chen, and Yanhui Geng. We’ve got you
covered: Failure recovery with backup tunnels in traffic engineering. In IEEE Interna-
tional Conference on Network Protocols, November 2016.

86

