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Abstract

Interactive theorem provers allow for the development, in the same environment, of

programs and of proofs about them. The programmatic portion of the development

can then be extracted to code which is then compiled into an executable. However,

unless both the extraction and compilation processes are formally verified, one has

no guarantees that the proofs developed still apply to the resulting executable. This

thesis describes my work on CertiCoq, a verified extraction pipeline for the Coq

theorem prover composing with the CompCert C verified compiler to achieve end-to-

end correctness guarantees.

I present a proof framework to prove optimizations over the continuation-passing

style (CPS) intermediate representation (IR) used in CertiCoq. This framework has

been used by me and others to prove the correctness of nontrivial optimizations. I

focus on a novel proof of correctness for a shrink reduction algorithm, a transformation

combining in a single pass multiple optimizations which always result in smaller terms.

I also present a verified code generation translating the CPS IR into Clight, a

front-end language of CompCert. I show how it interfaces with a verified garbage

collector and how its proof composes with the proof of correctness of CompCert.

Taken together, this thesis shows how carefuly crafted intermediate languages

facilitate verification effort in the context of an optimizing compiler.
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Chapter 1

Introduction

If the program has bugs, why bother proving the compiler correct? If the compiler

has bugs, why bother proving the program correct? Verified source programs deserve

verified compilers, and vice versa. In this thesis, I describe CertiCoq, a verified-

correct compiler for Coq—that is, for the functional language that is part of Coq’s

Gallina specification language.

This work delivers a proved-correct optimizing compiler from a realistic language

with a good proof theory.

CertiCoq is part of a multi-year effort by myself and collaborators at Prince-

ton University, INRIA, Cornell University, and the University of Edinburgh [2]. All

compiler phases are proved to preserve observable behavior from each intermediate

language to the next, with machine-checked proofs in Coq. The user can prove a pro-

gram correct in Coq, then the verification of CertiCoq guarantees that this program

compiled to machine-language has the behavior that the user verified at the source

level.

Coq is a proof and programming environment. At the center of Coq is a functional

programming language, Gallina, which can be used both to write functional programs

and, through the Curry-Howard Isomorphism, to write proofs about them. Gallina is
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a pure, dependently typed functional programming language with inductive datatypes

and mutually recursive functions.

The soundness of Coq is based on the soundness of its evaluation mechanism. Coq

provides different trusted evaluation mechanisms, from evaluating the term using

call-by-value evaluation rules to a native code just-in-time compiler. The aim of

the CertiCoq project is to provide both the small trusted computing base of the

reduction system and the speed afforded by a native code compiler. This is done using

a process called extraction, which strips Gallina terms down to their computationally

relevant core, and verified optimizing compilation using techniques like those used in

ML compilers. CertiCoq is an optimizing extraction and compilation pipeline for

Coq, verified in Coq.

Extraction mechanisms for proof and programming environments such as Coq have

been developed in order to run realistic programs developed inside them. Coq provides

an extraction plugin generating programs in general purpose functional languages

such as OCaml or Haskell, which can be further compiled and executed. However,

neither the extraction nor the compilation has been mechanically verified, making the

trusted code base of such developments very large. Compiling the extracted code does

not even provide the same guarantees that type safety provides to OCaml and Haskell,

as their type systems are not always able to express Coq dependently typed functions

– so that the extraction mechanism uses unsafe type-coercion mechanisms. This

contrasts with the CertiCoq approach, which targets C, an untyped language, but

whose proof of correctness composes with the proof of correctness of the CompCert

C compiler in order to provide end-to-end correctness guarantees.

In this thesis, I describe my work on the middle and back end of CertiCoq, from

various optimizations proved correct using a novel framework for modular proofs

(Chapter 3), to the code generation phase targeting Clight (Chapter 4), itself the

source language of the CompCert verified C compiler. Chapter 2 serves as a com-
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prehensive overview of the project. Finally, we include in Chapter 5 benchmarks for

the extraction time and running time of Coq developments through CertiCoq, and

drafts a few future exploration path to make it faster.

CertiCoq is available at https://github.com/PrincetonUniversity/certicoq/.

In this thesis, we will refer to files and theorems as they appear in commit

dfede3e30f, available at https://github.com/PrincetonUniversity/certicoq/

tree/dfede3e30f37a63f8671e8d66e5600e10c1e6e9d.

1.1 Contributions

The main technical contributions of this thesis consist of

1. the first proof of correctness of a shrink reduction phase (Section 3.2.2),1

2. the development and presentation of a proof framework allowing for modular

proofs for optimization phases (Section 3.3),

3. the proof of correctness of a code generation phase from a continuation-passing

style (CPS) intermediate representation (L6) to Clight, the source language of

CompCert (Section 4.2),

4. a novel interface between generated code and garbage collector, abstracting

away details of the correctness proofs of specific garbage collectors (Sec-

tion 4.1.6).

We also present, in Chapter 2, the first complete overview of the CertiCoq ex-

traction and compilation pipeline. 2

1This was published as “Shrink Fast Correctly”, co-authored with Prof. Andrew W. Appel [9]
2A brief overview of the CertiCoq project was published as “CertiCoq: A verified compiler for

Coq” [2]
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Chapter 2

CertiCoq

This chapter provides an overview of the CertiCoq pipeline, describing the various

transformations along the way and the decisions that were made in the design of in-

termediate languages. The compiler pipeline is joint work with Abhishek Anand, An-

drew Appel, John Li, Greg Morrisett, Zoe Paraskevopoulou, Randy Pollack, Matthieu

Sozeau, and Katja Vassilev.

Just like CompCert (and CakeML), we design the compiler with many interme-

diate languages adapted to the transformations and optimizations at each stage of

compilation, simplifying the proof effort. We go through continuation-passing style

(CPS), making all function calls tail calls, and use a garbage collection mechanism

tailored to the heavy heap usage.

Between Coq and CompCert, we have five intermediate languages. In the rest of

the thesis, we refer to Gallina as L0, to our intermediate languages as L1 to L61, and

to Clight as L7.

The first three are used for extraction purposes, removing the proof parts of terms,

erasing types and producing terms more amenable to compilation.

1L5 is unused in the current pipeline
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L1: PCUIC (see Section 2.2) embeds the Abstract Syntax Trees (AST) of Gallina

into Coq.

L2: λ � (see Section 2.3) results from erasing Props and Types from PCUIC and

replacing them with a special constant “�”.

L3: η-long λ � (see Section 2.4) differs from L2 in that it forces all constructors to

be fully applied, and match branches to be η-expanded.

The last two intermediate languages are used for general compiler transformations

and preparing for code generation to CompCert Clight.

L4: Globally nameless (see Section 2.5) creates a compilation unit by locally binding

the environment of datatypes.

L6: Our CPS intermediate representation (see Section 2.6) adds additional restric-

tions on top of CPS, such as using globally unique variable names and having

all arguments of an application be atoms, in order to make it amenable to code

generation to Clight (see Section 2.7).

In the remainder of this chapter, we describe each of the intermediate languages

in more details. Readers interested in the technical contributions of this thesis found

in Chapters 3 and 4 may skip to Section 2.6 as the details of previous phases are not

required to understand them.

2.1 L0: Gallina, the specification language of Coq

Gallina is the core language of the Coq theorem prover [35]. It is a pure, dependently

typed functional language based on the Calculus of Inductive Constructions [14].

Gallina is used both as the specification and the reasoning language. One can

write programs in it, specify them, and prove their correspondences all in the same
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language. To make this more practical, it provides separation between two distinct

sorts of types: Prop, the universe of logical propositions, and Type, the universe of

program types. The typing judgment of the Calculus of Inductive Constructions

ensures that elements of Prop do not have computational values – they are logical

proofs, and as such only their inhabitance is needed. That is, the observable outcome

of a computation cannot depend on a Prop or a proof of a Prop, even though Props

and proofs may appear in programs.

Gallina a pure language: it does not have effects. This is important for the

soundness of the proof theory, as it ensures that the terms we construct in Gallina

adequately model proofs in the Calculus of Inductive Constructions. It also means

that all functions written in Gallina have to be terminating.

As a running example for this chapter, we provide, in Figure 2.1, the implemen-

tation of a higher-order function applying a function to each element of a list. map

is a recursive function (“Fixpoint”) taking in two argument, a function f, of type

A→ B, and l, a list of As, and computes a list of Bs. It does so by pattern-matching

on l and returning nil in the case of an empty list. When the list is not empty, it

applies f to h, the head of the list, and recur on t, the tail of l.

Fixpoint map {A B:Type} (f:A -> B) (l:list A):list B :=

match l with

| nil => nil

| cons h t => cons (f h) (map f t)

end.

Figure 2.1: Example: List.Map implemented in Gallina

2.2 L1: PCUIC and MetaCoq

The Coq theorem prover is implemented in OCaml [30], a general-purpose functional

programming language. At the core of the implementation is an OCaml inductive

datatype representing Gallina terms. The first step of the CertiCoq compiler is

6



to reify the OCaml representation of Gallina as a Coq datatype, effectively deeply-

embedding Gallina inside Coq.

The L0-to-L1 translation is part of the MetaCoq project [49], and due to Gre-

gory Malecha, Abhishek Anand and Matthieu Sozeau. MetaCoq’s intermediate

representation, the Polymorphic Calculus of Cumulative Inductive Constructions (or

PCUIC), is shown in Fig. 2.2. MetaCoq, and PCUIC, evolved from an earlier

reification project, TemplateCoq [33]. PCUIC is as close as possible to the OCaml

representation of Gallina terms, allowing for ease of reification – generating embedded

Gallina from the kernel’s representation – and of reflection – recovering the kernel’s

representation from the embedded encoding. Metatheorems about Coq can be proven

in Coq by reasoning about PCUIC and connecting the proof with the adequacy of

PCUIC.

MetaCoq includes a plugin that handles reflection and reification functionalities

to go from Gallina to PCUIC and back. We use the plugin to transform Gallina

program into their representations in PCUIC, embedded in Coq.

Inductive term : Set :=

| tRel : nat -> term

| tVar : ident -> term

| tEvar : nat -> list term -> term

| tSort : universe -> term

| tProd : name -> term (* the type *) -> term -> term

| tLambda : name -> term (* the type *) -> term -> term

| tLetIn : name -> term (* the term *) -> term (* the type *) -> term -> term

| tApp : term -> term -> term

| tConst : kername -> universe_instance -> term

| tInd : inductive -> universe_instance -> term

| tConstruct : inductive -> nat -> universe_instance -> term

| tCase : (inductive * nat) (* # of parameters *) -> term (* type info *)

-> term (* discriminee *) -> list (nat * term) (* branches *) -> term

| tProj : projection -> term -> term

| tFix : mfixpoint term -> nat -> term

| tCoFix : mfixpoint term -> nat -> term.

Figure 2.2: Definition of the PCUIC Language

The syntax of PCUIC is in Figure 2.2. PCUIC uses a locally nameless [12]

representation of variables, with tRel n referring to a variable occurrence bound by

the nth binder, and tVar a to named variables a introduced in Sections.
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“tEvar n l” represents an existential subterm, and should not be encountered

in the complete terms we extract. “tSort u” represents a sort u, which could be

in Prop or in Type. “tProd a t1 t2” represents a dependent product binding t1

as a in t2, and tProj p t is a primitive projection p from an inductive record t.

“tLambda a t1 t2” binds a variable a of type t1 in t2, and tApp t1 t2 represents

a binary application. “tLetIn a t1 t2 t3” locally binds a term t1 of type t2 as a

in t3. “tConst n u”, “tInd i u” and “tConstruct i n u” represent, respectively,

a definition, an inductive type, and a constructor of an inductive type in the global

environment. “tCase (i, n) ty t bs” pattern-matches with predicate t on a term

t of inductive type ind with n parameters, using a list of branches bs of the form

(n, b) where n is the number of variables bound and b the body of the branch.

Finally, “tFix t n” and “tCofix t n” create, respectively, fixpoints and cofixpoints

of name n.

We include in Figure 2.3 our running example, List.Map (see Figure 2.1), encoded

in PCUIC.

The next step of compilation is to remove the propositional portions of terms, as

they are (by the type theory of the calculus of inductive construction) irrelevant to

computation. The resulting calculus is called λ � (pronounced “lambda box”).

2.3 L2: λ �

The translation of PCUIC into λ � is part of the MetaCoq project, and was

developed by Matthieu Sozeau and Yannick Forster, relying on a type inference algo-

rithm for PCUIC developed by Simon Boulier, Matthieu Sozeau, Nicolas Tabareau,

and Theo Winterhalter ; contributors to the design of lambda-box also include Randy

Pollack, Abhishek Anand, and Greg Morrisett. We include it in this thesis for clarity,

8



(tFix

[{|

dname := nNamed "map";

dtype :=

tProd (nNamed "A") (tSort (Universe.make'' (Level.Level "Top.15", false) []))

(tProd (nNamed "B") (tSort (Universe.make'' (Level.Level "Top.16", false) []))

(tProd (nNamed "f") (tProd nAnon (tRel 1) (tRel 1))

(tProd (nNamed "l")

(tApp (tInd {| ind_mind := "list"; ind_ind := 0 |} []) [tRel 2])

(tApp (tInd {| ind_mind := "list"; ind_ind := 0 |} []) [tRel 2]))));

dbody :=

tLambda (nNamed "A") (tSort (Universe.make'' (Level.Level "Top.15", false) []))

(tLambda (nNamed "B") (tSort (Universe.make'' (Level.Level "Top.16", false) []))

(tLambda (nNamed "f") (tProd nAnon (tRel 1) (tRel 1))

(tLambda (nNamed "l")

(tApp (tInd {| ind_mind := "list"; ind_ind := 0 |} []) [tRel 2])

(tCase ({| ind_mind := "list"; ind_ind := 0 |}, 1)

(tLambda (nNamed "l")

(tApp (tInd {| ind_mind := "list"; ind_ind := 0 |} []) [tRel 3])

(tApp (tInd {| ind_mind := "list"; ind_ind := 0 |} []) [tRel 3])) (tRel 0)

[(0, tApp (tConstruct {| ind_mind := "list"; ind_ind := 0 |} 0 []) [tRel 2]);

(2,

tLambda (nNamed "h") (tRel 3)

(tLambda (nNamed "t")

(tApp (tInd {| ind_mind := "list"; ind_ind := 0 |} []) [tRel 4])

(tApp (tConstruct {| ind_mind := "list"; ind_ind := 0 |} 1 [])

[tRel 4; tApp (tRel 3) [tRel 1]; tApp (tRel 6) [tRel 5; tRel 4; tRel 3; tRel 0]])))]))));

rarg := 3 |}] 0)

Figure 2.3: Example: List.Map implemented in PCUIC

as this phase is important to understand the application of the verified compilation

portion of our compiler to verified extraction.

The � is not a modal operator; it is a placeholder for types, proofs, and proposi-

tions that have been erased. We include the syntax of λ � in Figure 2.4. The main

difference with PCUIC is the introduction of a � constructor, replacing types and

propositions in terms, and the removal of tSort, as types are erased when going from

PCUIC to λ �.

We include in Figure 2.5 our running example, List.Map, as compiled to L2. L2

pairs an environment, containing the declaration of the list datatype (not shown) and

the map function, together with an entry point Top.map. Top.map corresponds, in the

environment, to a TFix named map binding f and l before pattern-matching on index 0

(l). The first case, matching nil, returns nil, the zeroth constructor of the datatype

list (held in the environment under the full path Coq.Init.Datatypes.list). The

second branch, matching cons, binds h and t before returning a new list formed with

9



Inductive term : Set :=

| tBox : term (* Represents all proofs *)

| tRel : nat -> term

| tVar : ident -> term

| tEvar : nat -> list term -> term

| tLambda : name -> term -> term

| tLetIn : name -> term (* the term *) -> term -> term

| tApp : term -> term -> term

| tConst : kername -> term

| tConstruct : inductive -> nat -> term

| tCase : (inductive * nat) (* # of parameters *) ->

term (* discriminee *) -> list (nat * term) (* branches *) -> term

| tProj : projection -> term -> term

| tFix : mfixpoint term -> nat -> term

| tCoFix : mfixpoint term -> nat -> term.

Figure 2.4: Definition of the λ � Language

(tFix

[{|

dname := nNamed "map";

dbody :=

tLambda (nNamed "A")

(tLambda (nNamed "B")

(tLambda (nNamed "f")

(tLambda (nNamed "l")

(tApp (tInd {| ind_mind := "list"; ind_ind := 0 |} []) [tRel 2])

(tCase ({| ind_mind := "list"; ind_ind := 0 |}, 1)

(tLambda (nNamed "l")

(tApp (tInd {| ind_mind := "list"; ind_ind := 0 |} []) [tRel 3])) (tRel 0)

[(0, tApp (tConstruct {| ind_mind := "list"; ind_ind := 0 |} 0 []) [tRel 2]);

(2,

tLambda (nNamed "h")

(tLambda (nNamed "t")

(tApp (tConstruct {| ind_mind := "list"; ind_ind := 0 |} 1 [])

[tRel 4; tApp (tRel 3) [tRel 1]; tApp (tRel 6) [tRel 5; tRel 4; tRel 3; tRel 0]])))]))));

rarg := 3 |}] 0)

Figure 2.5: Example: List.Map implemented in λ �

the first list constructor (cons), with, as first argument, the application of 3 (f) to 1

(h), and as tail a recursive call to 4 (map) with argument 3 (f) and 0 (t).

2.3.1 Removal of Props

The type system of Coq ensures that the propositional portion of terms is computa-

tionally irrelevant. Prop is the sort of propositions; Type is the sort of datatypes.

The metatheory of the Calculus of Inductive Constructions [14] tells us that the

separation of the Prop and Type sorts makes it so that functional programs written in

Gallina cannot depend on Prop, any such Prop passed (or constructed) in the program

10



is irrelevant and as thus can be replaced in order to save space, compilation time,

and runtime efficiency of the programs (compared with evaluating the propositional

portion at runtime).

It is important that propositional terms are removed early in the compilation

pipeline, since

1. erasing propositions and proofs is justified by the type system of CiC, and

therefore must be done before (or at the same time as) we erase the types, and

2. propositional terms could be arbitrarily large, and we would prefer not to waste

compilation time transforming parts of terms which will be erased before code

generation.

While the propositional portion of terms is computationally irrelevant, it is not

the case that it is never observed during computation. Letouzey identifies two cases

where a proposition may be destructed through pattern-matching in a computational

term: eq_rect and False-rec, included in Figure 2.6, are the most common example

of these two cases.

Definition False_rec:

forall (P : Type), False -> P

Definition eq_rect :

forall (A:Type) (x:A) (P:A -> Type), P x -> forall y:A, y = x -> P y.

Figure 2.6: Special cases in the extraction of Gallina terms

The first case results from being able to eliminate a proof of False (or, equivalently,

an empty datatype) to create a term of any type. In a logical term, this corresponds to

a proof by contradiction, while in computational terms, it corresponds to unreachable

code.

The second special case deals with logical singleton types such as equality. In

this case, we can observe, through pattern matching, that it is constructed using the
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single constructor of the type, even within a computationally relevant portion of a

term.

We could identify instances of these or similar examples of these two cases, and

replace them at erasure time. However, to keep the transformation simple, and as

doing so would not impact the evaluation of the resulting program, we leave them

in the code to be reduced later on – both cases are handled by shrink reduction,

described in Section 2.6.2.

As is done with the Letouzey’s extraction pipeline, MetaCoq replaces Prop by a

new constant, denoted � (represented as tBox ). Rule e box, included in Figure 2.7,

shows how, according to the semantics of λ �, tBox consumes any number of argu-

ments and evaluates to tBox – this is because tBox stands in for Prop functions of

any arity.

tApp tBox M → tBox
e box

Figure 2.7: Extract from the Evaluation Semantics of λ �

2.3.2 Type erasure

While the removal of Prop considers the removal of irrelevant content at the term

level, type erasure removes irrelevant content at the type level.

Types do not have computational values, and by forgetting them, we simplify

the rest of the pipeline, while still having the benefits associated with starting with

typed, source terms: our pipeline can uses safety and termination assumptions arising

from the well-typedness of its source terms. Meanwhile, while we can no longer

prove properties such as type preservation, we prove a stronger property, semantics

preservation, asserting that behaviors are preserved through compilation.
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The translation from PCUIC to λ � drops the type arguments from the con-

structs that were holding them (tProd, tLambda, tLetIn). Sozeau et al. have

verified in Coq the proved correctness of type and proof erasure [50]. This transla-

tion involves retypechecking the reflected terms to correctly identify the propositional

subterms.

2.4 L3: η-long λ �

At this point of the pipeline, we have an extracted term in a general call-by-value

λ-calculus. However, a few transformations are needed in order to make it more

amenable to transformations and optimizations, and closer to our desired intermedi-

ate representation. In this phase, we make constructors fully applied before stripping

them of their parameters. We also η-expand match branches, and provide an inter-

pretation of cofixpoints using suspended thunks. The translation from λ � to η-long

λ � is due to Randy Pollack.

2.4.1 η-expansion of constructors

We η-expand all constructors, creating, when necessary, anonymous functions to fully

applied constructors. For example, the list constructor cons could be bound in λ �

to a variable as:

(tConstruct "list" 1 enil)

and later applied to arguments. We would η-expand this to

tLambda nAnon

(tLambda nAnon

(tLambda nAnon

(tConstruct "list" 1 (tcons (TRel 2) (tcons (TRel 1) (tcons (TRel 0) tnil))))))

There are two reasons to do this.
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First, this eliminates partially applied constructors. This simplifies code genera-

tion, as shown in Section 4.2: all values of a constructor are allocated the same size

on the heap, and partially applied constructors in the source become functions from

the missing arguments to fully applied constructors.

Second, this allows us to remove the parameters of inductive types, which do not

have computational values. While we don’t have the full type information, we still

remember how many parameters each inductive type has. However, while types have

been removed at this point, constructors still hold them. Only after η-expansion can

we be certain that the right arguments are removed from constructors.

Inductive lambda (n : nat) : Set :=

| var : fin n -> lambda n

| app : lambda n -> lambda n -> lambda n

| lam : lambda (S n) -> lambda n.

Inductive lambda : val :=

| var : val -> val

| app : val -> val -> val

| lam : val -> val

Figure 2.8: Example: λ-calculus before and after parameter erasure

2.4.2 η-expansion of branches

Up to this point, every branch reduces to a number of bindings corresponding to

the arguments of the matched constructors. We η-expand branches to remove these

explicit bindings, and replace them by implicit binders. Later in the pipeline (when

translating to L6), we insert explicit projections for the arguments of matched con-

structors, which are easier to optimize away than general functions.

2.4.3 Cofix elimination

We realize coinductive datatypes by replacing them by inductive datatypes with an

additional unit argument, creating a suspended thunk on definition. This transfor-
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mation has to happen on η-long constructors, as we want it to be inserted as their

last argument. Then, a unit value is applied to values of coinductive datatypes being

matched on, forcing the thunk. This translation is correct, but highly inefficient if a

coinductive value is forced more than once.

2.5 L4: Globally nameless

Up to this point, compiled terms live in an environment of datatypes with other top-

level constants. We let-bind the relevant content to recover a complete program, on

which further optimizations may be applied. We also strip the lambdas of pattern-

match branches, which have been η-expanded in the previous phase (see Section 2.4.2)

for a more efficient representation of pattern-matching. This transformation was

developed by Matthieu Sozeau with advice from Randy Pollack.

Inductive exp: Type :=

| Var_e: N -> exp

| Lam_e: name -> exp -> exp

| App_e: exp -> exp -> exp

| Con_e: dcon -> exps -> exp

| Match_e: exp -> branches_e -> exp

| Let_e: name -> exp -> exp -> exp

| Fix_e: efnlst -> N -> exp

| Prf_e : exp

with exps: Type :=

| enil: exps

| econs: exp -> exps -> exps

with efnlst: Type :=

| eflnil: efnlst

| eflcons: name -> exp -> efnlst -> efnlst

with branches_e: Type :=

| brnil_e: branches_e

| brcons_e: dcon -> (N * (* # args *) list name (* arg names *)) -> exp ->

branches_e -> branches_e.

Figure 2.9: Definition of the globally nameless language

We provide the syntax of the globally nameless language in Fig. 2.9. The main

difference with λ � (see Fig.2.4) is the absence of parameters in the pattern-matching

construct Match_e. Binders are again represented using De Bruijn indices, with a

name argument to preserves provenance information about variables (such as their

source name, when available).
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Let_e "map"

(Fix_e (elcons "map"

(Lam_e "f"

(Lam_e "l"

(Match_e (Var_e 0) 0

(brcons_e ("list", 0) (0, nil) (Con_e ("list", 0), nil)

(brcons_e ("list", 1) (2, "h"::"t"::nil)

(App_e (App_e

(Lam_e "h"

(Lam_e "t"

(Con_e ("list", 1)

(econs (App_e (Var_e 5) (Var_e 1))

(econs (App_e (App_e (Var_e 6) (Var_e 5)) (Var_e 0)) enil)))))

(Var 1))

(Var 0))

brnil_e)))))

elfnil) 0)

(Var_e 0)

Figure 2.10: Example: List.Map implemented in L4

We include in Figure 2.10 the function List.Map translated to L4. map is bound

as sole function in a mutually recursive bundle Fix_e. It binds its arguments using

curried, anonymous abstraction Lam_e before matching on l (as Var_e 0). The cons

case, matched by “(brcons_e ("list", 1) (2, "h"::"t"::nil)”, is η-expanded

by h and t. Then, a new list is constructed from applying f (as Var_e 5) to h

(Var_e 1), and map (Var_e 6) to f (Var_e 5) and t) (Var_e 0).

2.6 L6: CPS

Continuation-passing style (CPS) is a restriction over a functional language where

all calls are tail calls [51]. This is useful in intermediate languages for functional-

language compilers, as it simplifies optimizations over the intermediate language and

code generation in the presence of a garbage collector.

Continuation-passing style makes the control flow of programs explicit, making

it easier to reason formally about order of execution and to define transformations

working over different modes of execution.

All function calls in CPS are tail calls. This is important since functional languages

such as Gallina encourage the use of recursion, which could lead to stack overflow
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if compiled naively. Finally, CPS allows us to uniformally reason about how the

garbage collector can find the live variables. In particular, at a function call, only the

arguments to the call are live.

(Function Def ′n) fd ::= f (~x) = e

(Branch) b ::= c⇒ e

(Expression) e ::= let x = Con c ~y in e

| let x = Prim p ~y in e

| let x = Projn y in e

| App x ~y

| let ~fd in e

| match x with ~b

| halt x

(Value) v ::= (c, ~v)

| (ρ, ~fd , x)

(Environment) ρ ::= ·

| ρ, x 7→ v

Figure 2.11: Syntax of the CPS Language (L6)

L6 is a continuation-passing-style functional language with mutually recursive

functions and pattern-matching. Figure 2.11 shows its syntax. The term “let x =

Con c ~y in e” binds the constructor c applied to arguments ~y to variable x in expres-

sion e. The term “let x = Prim p ~y in e” binds the result of the primitive operator p

on arguments ~y to variable x in expression e. The term “let x = Projn y in e” binds

the nth projection of y to variable x in in expression e. The term “App x ~y” applies

function x to arguments ~y. The term “match x with ~b” matches the constructor c of

x with the right branch (c⇒ e) ∈ ~b.

The well-formedness property we enforce over L6 terms is that branch patterns

do not overlap and that function names within each bundle are distinct. “halt x”

terminates computation by returning the value bound to x.
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An important decision in the design of intermediate language is the representation

of binders and variables. We represent variables using globally unique positive binary

numbers.

Having globally unique names means that a global map can refer to any binding

point in the program, so that we can, for example, tabulate information about the

provenance and, when possible, the name of the variable in the original program.

It also means that we can perform substitution without fear of variable capture –

although global uniqueness is not closed under substitution, as it may duplicate por-

tions of terms containing binders.

Using positive binary numbers as identifiers allows us to implement the lookup

tables used in the compilers as binary tries with logarithmic access time (Section 3.1

gives examples of the use of efficient lookup tables on variable-names, in an asymp-

totically efficient algorithm for shrink-reduction).

In Figure 2.12, we include the function List.map compiled to L6. For readability,

we pretty-print variables as their name, if available, followed by their unique identifier.

Function map_110 has been closure-converted into map_code_195 and env_194. As

map was closed, env_194 is empty. Then, control is given to function anon_code_196,

created from the conversion of Match_e. List l_114 is pattern-matched on, with the

nil case resulting in the continuation being called on nil. In the cons case, h_123 and

t_124 are projected out of l_114. Then, f, the argument to map, is called on h using

the new continuation x166. This continuation is constructed using anon_code_196

to handle the recursive call to map.

2.6.1 CPS Transformation

We implemented a naive CPS transformation from globally nameless terms to L6. The

transformation is adapted from the general, single-pass CPS transformation described
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in “Compiling with Continuations” [4], and differs from other CPS transformations

in two main ways:

1. We change the representation of binders from De Bruijn indices to globally

unique positive numbers in L6.

2. L6 puts many restrictions on what can appear in applied portions of terms. For

example, constructors in globally nameless can be applied to terms, where con-

structors in L6 have to be applied to variables. We use an auxiliary function to

convert an expression to an applicative context with a hole containing one more

variable in scope, standing for the original expression. This sometime involves

β-expanding the term into a new function binding containing the converted

expression.

The CPS transformation was developed by Abhishek Anand, Greg Morrisett, and

Olivier Savary Bélanger. A new version is under development by Anvay Grover with

assistance from Olivier Savary Bélanger and Andrew Appel.

2.6.2 Optimizations over CPS

By making the control flow of the program explicit, CPS makes it easier to apply

transformations rearranging this flow. Where the first half of the CertiCoq pipeline

is concerned with extraction, including type erasure and the elimination of proofs,

the optimizations that appear after CPS conversions are transformations that would

appear in any optimizing functional-language compilers.

Closure Conversion and Hoisting

The transformation over L6 having the biggest effect on the shape of the program

is closure conversion. Closure conversion makes the manipulation of closure objects
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explicit. The result is a term whose functions are closed, so that they can be hoisted

to the top-level.

The closure conversion phase implemented in CertiCoq is described by

Paraskevopoulou and Appel [44]. For each function, we compute the free vari-

able of its body, and add a new env argument. We then add projections from

env to the original names. Then, we replace every function application with an

application of, in addition to the original argument, a tuple containing the necessary

free variables to the closure converted function.

Once functions are closure converted, they are closed and can be hoisted to the

top-level. After hoisting, our program has the form “let ~fd in e”, with e containing no

function declarations. This simplifies code generation, as shown in Section 4.2.

Shrink Reduction

In a functional language with immutable data structures—such as Gallina, ML,

Haskell—several optimizations are particularly important: function inlining (β-

reduction); case-folding, compile-time evaluation of case statements when the

discriminant value can be statically determined; projection-folding, compile-time

fetching of projections of tuple-fields (or generally, fields of inductive data construc-

tors) when the tuple can be statically determined; and dead variable elimination.

The reason these are more important in functional languages than in traditional

imperative languages is that there are far more opportunities: functional languages

and their compilers use functions more heavily, and folding of field-projections is

possible only when the record-fields cannot have been updated with new values.

Also, many compiler transformations introduce β-redexes. For example, simple CPS

transformations introduce many so-called administrative (β-)redexes which can be

safely reduced to recover a more compact program.
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It is important to do all these optimizations together, because one may produce

new opportunities to do another.

For example, in

let f x := (match x with O ⇒M ; S ⇒ N) in f O

we can inline f resulting in

match O with O ⇒M ; S ⇒ N

at which point the constructor O is exposed and the case-construct can be folded

down to M . Then, since the expression N has disappeared, some of the free variables

of N (bound in some context external to the entire let expression) may now be dead,

permitting dead-variable elimination.

Case-folding, projection-folding, and dead-variable elimination are always worth

doing, because they make the program smaller and faster. Function inlining usually

makes the program faster, but if there are many uses of the function, it may make the

program bigger. Inlining a function that has only one applied occurrence will make

the program smaller and faster, because the function-definition is now dead and can

be deleted. Appel and Jim [8] described this class of optimizations (case-folding,

projection-folding, dead-variable elimination, and inlining functions with one applied

occurrence) as shrink reductions.

A traditional function-inliner or dead-variable optimizer makes one static-analysis

pass over the program, counting applied occurrences and learning which functions

are worth inlining; then another pass performs the transformations; then (because

the transformations may have enabled new optimizations) repeats the analysis pass,

then another optimization pass, and so on until the analysis pass yields no new

optimizations to perform.
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Appel and Jim described an efficient algorithm that performs (almost) all the

possible shrink reductions, even cascading ones, in one linear-time pass. This is a

quasilinear time algorithm: in linear time, it typically reduces to shrink-normal form,

but sometimes leaves a very small number of shrink redexes to be reduced in a second

pass, or very rarely in a third pass.

We have implemented and proven correct an algorithm inspired by Appel and Jim

[8] to perform all shrink reductions (producing a shrink normal form) in quasilinear

time. Having a fast and effective shrink-reduction phase is useful, because transfor-

mations often introduces redexes which, if not eliminated, would clutter and slow

down the generated code. We apply shrink reductions after CPS in order to reduce

administrative redexes, and again after closure conversion and hoisting.

Uncurrying and General Inlining

In Gallina, our source language, all functions are curried, which is to say they take

a single argument. This is impractical for code generation, where we would like to

limit the use, whenever possible, of expensive operations such as function calls. The

uncurrying phase does so by combining sequences of curried abstractions together

and having fully applied sites replaced by calls to uncurried versions of functions.

This transformation happens after CPS in our pipeline, but before any other

transformations. This is important because while CPS modifies the structures of

sequences of abstractions and applications, it does so in a predictable way, which we

can recognize during our uncurrying phase.

Uncurrying happens in two steps. First, we create uncurried version of functions.

Then, we replace fully applied calls to the curried functions by calls to the uncur-

ried functions. More details about the uncurry phase of Certicoq are included in

Section 3.5.1.

For example, in
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let add x := (let add′ y := x+ y in add′ ) in add 2 3

we would recognize the declaration and application of the curried add′ in the body of

add, and create an uncurried version

let addu x y := x+ y and add x := (let add′ y := addu x y in add′ ) in add 2 3

We can then replace the curried calls by uncurried body. In our example, the

applications of add and add′ would be inlined and deleted as dead code by shrink

reduction, resulting in

let addu x y := x+ y in addu 2 3

These reductions are not necessarily shrinking, as there might be more than one

application of the uncurried function. However, we know that the body of uncurried

shell is a single application (to the newly created curried function), so that the size of

the program will not increase. As described in Section 3.5.2, we use a general function

inliner parameterized over inlining heuristic, and use it to inline uncurried shells and

small functions, up to a small inlining bound. The uncurry phase was implemented

by Greg Morrisett and Olivier Savary Bélanger, and proved correct by John Li. [32]

2.7 L7: Clight

CertiCoq targets Clight [10], the source language of the CompCert compiler.

Clight is a large subset of the C language, imposing a few syntactic restrictions

making for a cleaner formal semantics. In this section, we summarize the formal

semantics of Clight.
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To understand the semantics of Clight, we must first show its memory model.

A Clight memory M consists of a list of distinct blocks b. Each block b has a size

δmax(b), and content accessible using pointers from (b, 0) to (b, δmax(b)).

A Clight program consists of a list of global-variable declaration and a list of

functions (both held in a global environment G) and an entry point b. Functions

contain parameters, local variables (held in local environment E) and body (as a

Clight statement s).

The main evaluation judgment G,E ` s,M ⇒t ., shown in Figure 2.13, is con-

cerned with the evaluation of a statement s in a memory M and environments G and

E. Either s diverges (with infinite trace T ), or it terminates in return value out, a

finite trace t and resulting memory M ′. In CertiCoq, we are only concerned with

terminating programs: Gallina is strongly normalizing, and our proof of correctness

ensures that programs do not acquire non-terminating behaviors along the way.

Clight statements s include control structures such as sequencing (s; s), for- and

while- loops, if-then-else constructors, switch statements, and related controls includ-

ing break statements and continues. They also include memory operations such as

assignments to a memory location or to a local variable, and constructors to call a

function and to return from a function call.

A Clight expression e evaluates to Clight value v according to judgment G,E `

e,M ⇒ v (see Figure 2.14). Expressions in Clight are pure, such that the memory

M is not modified during the evaluation of e.

A Clight value v can be a pointer Vptr (b, δ), an integer Vint i, a floating-point

value Vfloat f or an undefined value Vundef. CertiCoq does not use floating-point

values, and generates code that never handles undefined value, so that we only have

to consider the integer and the pointer case.

Our presentation so far has ignored the issue of the size of addresses. Recent

versions of CompCert can target 64-bit architecture, and use Vptr corresponding to
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64-bit integers Vlong. Our compiler and the proof of correctness is parameterized

over the architecture, handling both 32-bit and 64-bit. For brevity, in the rest of the

thesis, we will use Vint to refer to adequately sized integers for the address space,

which is to say Vint in 32-bit mode and Vlong in 64-bit mode.

2.7.1 Code Generation and Interface with C Programs

From our CPS IR, we generate stackless closure-passing Clight code. The code gen-

eration phase of CertiCoq was developed by Olivier Savary Bélanger with assistance

from Matthew Weaver and advised by Andrew Appel.

Targeting Clight rather than machine code has multiple benefits for CertiCoq.

CompCert is a mature compiler allowing us to target multiple architectures, including

x86-32, x86-64, ARM-32, ARM-64, RISC-V, and Power-PC. CompCert is a significant

proof effort, and we would have to repeat much of the same work if we were to translate

down to machine code. Moreover, by design, L6 is amenable to code generation to

Clight, and its constructors correspond almost directly to operations in Clight.2 We

provide more details on this translation in Chapter 4.

For users of CertiCoq to interact with the generated code, the compiler generates

shim functions that construct and destruct C representations of the datatypes that

were compiled through CertiCoq. A detailed overview of these functions and how

to use them is provided in Section 4.4.

2.8 The Overall Proof of Correctness

CertiCoq is proved correct using a program equivalence theorem in Figure 2.15

built on top of an abstractly defined value refinement relation shown in Figure 2.16.

2Our L6 CPS language is low-level enough to target assembly language directly, but we would
need a register allocator and we would need an instruction-selection phase for each target machine
architecture.
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Under this relation, a program in Li that computes to a value vi is translated to

a program in Li+1 computing to a refined value vi+i. The semantic framework for

composing phases was developed by Zoe Paraskevopoulou and Abhishek Anand with

advice from Andrew Appel and Greg Morrisett

Correspondence of values is defined as adherence to observations X, shown in

Figure 2.17. v1+1 is related (according to v, see Figure 2.16) to value vi if, for any

observation XO valid on vi, the same observation is valid on vi+1. Under Q-Fun, Xλ

asserts the head of the term is an abstraction. Rule Q-constr shows how XI n verifies

that the head of the term is a constructor C which is the nth constructor of inductive

type I. Finally, Q-subterm allows observations on subvalues held in constructors. In

other words, vi+1 is said to refine vi if the heads of subterms of vi+1 correspond to

those of vi.

As, at every step of compilation, our value refinement relation is only concerned

with the directly upstream and downstream language, our correctness proof is easy

to extend vertically, composing seamlessly with new phases and languages.

The overall statement of compiler correctness for CertiCoq is in Figure 2.18. It

states that for any closed Coq program P evaluating, according to the semantics of

Gallina (⇓) to value v, CertiCoq compiles (↪→) P to Clight statement stmt, which

in turn evaluates according to the semantics of Clight (→∗) in a well-formed memory

m properly, resulting in a memory m′. By convention, our code generation will have

placed the resulting value in the args1 location of memory, and our proofs ensure that

this value refines v. Our proof of correctness composes with the CompCert proof of

correctness to prove end-to-end compilation correctness, from Coq to machine code.

Currently, the overall proof of correctness of CertiCoq (see Figure 2.18) is only

concerned with full program compilation. However, we have explored strengthening

the correctness statement to allow for horizontal composition – composing multiple
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portions of programs compiled with CertiCoq– or even wider notions of horizontal

modularity.

Our correctness statement is also too weak for programs that use axioms – only

closed (axiom-free) Coq programs are guaranteed to evaluate to a value, our correct-

ness statement can be vacuously true for programs with axioms. We hope to weaken

this assumption, in the future, to allow for provable axioms in the computationally

irrelevant sort Prop, which should follow from a mechanized proof of proof irrelevance

as is currently in the work as part of the MetaCoq project [49]. We also plan on

supporting a few commonly used axioms such as function extensionality which, while

not provable in Coq, can be proven not to harm strong normalization as part of a

richer, extensional reduction semantics.

2.9 Related Work

The Coq theorem prover currently includes an extraction mechanism to OCaml

implemented by Pierre Letouzey [31]. In his thesis, Letouzey proves a number of

properties, including that proof irrelevance implies that we can replace Prop by �.

However, these proofs have never been formalized (in a proof assistant). Moreover,

to run the generated OCaml program, one would have to use – and trust – the

OCaml compiler. Instead, our extraction pipeline is verified and targets a verified

C compiler, reducing the trusted computing base of Coq.

In addition to extraction facilities to OCaml and Haskell, Coq provides a number

of evaluation mechanisms. The internal evaluation mechanism is compute, an inter-

preter based on the call-by-value semantics of the Calculus of Inductive Constructions,

but supporting other evaluation strategies. While these mechanisms, being so simple,

are reasonably trustworthy (and the call-by-value strategy, being the direct implemen-

tation of the semantics of the Calculus of Inductive Constructions, is the specification
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with respect to which CertiCoq is proved correct) , they are not optimized in terms

of memory and time consumption, and as such they do not scale well to medium and

large development. Coq also provides two evaluation mechanisms based on a process

named reflection. Using vm_compute [25] or native_compute, Gallina terms are ex-

tracted to OCaml, and compiled with (respectively) the byte-code and native OCaml

compiler. The result is then injected back into Coq. These evaluation mechanisms

scale reasonably well, but they considerably increase the trusted computing base of

the theorem prover, to include not only the reflection facilities, but also the bytecode

or native OCaml compiler3.

CompCert [29] is a verified optimizing compiler for C developed in the Coq the-

orem prover. Taken together with a Hoare logic for C such as VST [5], this provides

a end-to-end, proved correct compilation pipeline from a realistic programming lan-

guage with a strong proof theory. However, being an impure, imperative programming

language, C does not afford as clean a proof theory as Gallina. We see benefits in

both projects coexisting, with, in future plans, linking the two proof theories to allow

for programs mixing Gallina and C code. Moreover, since CompCert is developed

in Coq, we could make it safer by extracting it to C with CertiCoq instead of to

OCaml using the current extraction pipeline.4

The CakeML [53, 54] project includes a verified compiler for a “substantial subset

of Standard ML” to assembly, which has been used as an extraction mechanism for

HOL4 [36]. The backend generates machine code for multiple architectures (as does

CompCert). CakeML is the most mature verified extraction pipeline (for a functional

language in a proof assistant), and includes many backend optimizations which have

not yet been implemented in CertiCoq. Meanwhile, the source language of CakeML

3While Coq is implemented in OCaml, and as such, depends on its compiler and runtime system,
Gallina could be type-checked by a foundational checker in the style of Flit [62]

4This is not done at the moment since a few passes of CompCert are developed in OCaml and
proved correct using translation validation. Work would need to be performed to implement and
prove correct these phases in Gallina or in C.
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is not dependently typed, so it does not share the same concerns with respect to

erasure in its front end. Another big difference between the two projects is that

CakeML does not use continuation-passing style (CPS). CPS makes all function calls

tail calls, and we argue in Chapter 3 that it facilitates the compilation process.

PILSNER [42] is another verified compilation pipeline from ML to assembly

developed and extracted from Coq, and built to showcase a novel proof method for

simulation relation between language (Parametric Inter-Language Simulations). Like

us, it compiles through a CPS-based IR. It however assumes unbounded memory, and

includes very few optimizations.

TIL [55] is a type-directed optimizing compiler from Standard ML to machine

code. In his thesis, Tarditi identifies two cases where types provides optimization

with information that would be difficult to recover with simple static analysis. First,

types make debugging the compiler easier. While this is useful during development,

CertiCoq’s transformations are proven correct, making testing superfluous. Second,

Standard ML has a notion of constructor-level and term-level computation, with

constructor-level computation being side-effect free, and as such easier to optimize.

As Gallina, our source language, is side-effect free, we would gain no advantage from

this in keeping the types around. TIL also uses type information to achieve tag-free

representation of most data structures. However, as noted by Tolmach[57], only a

simplified digest of type information is needed for tag-free garbage collection, con-

sisting of the arity of each constructors and the digested type of each of their fields.

While we only keep track of the former in the current CertiCoq pipeline, it would be

simple to extend it to keep track of the latter. In the meantime, we use a lightweight

tagged representation inspired by OCaml [30] where the last bit of values distinguish

pointers from unboxed values.

TAL [40] is a typed assembly language together with a type-preserving compiler

from System F to TAL, pushing the typing information all the way down to assembly.
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In both TIL and TAL, the properties enforced are limited to type safety, and their

source language does not afford the proof theory provided by the Coq theorem prover.

Type information has also been used to achieve more precise deforestation[60],

a transformation which removes intermediate data structures by composing, when

possible, operations performed on the source data structure and on the intermediate

one. Voigtländer [58] uses parametricity to manipulate operations on tree-like data

structures, while Chevalier [13] uses type information to selectively inline functions to

enable deforestation. Both improve on previous syntactic deforestation algorithms.

As an alternative to performing type-based deforestation directly on PCUIC, we

could keep track of functions whose inlining would enable deforestation to perform

the optimization after type erasure.

Verisoft [1] is a verified compilation stack aimed at systems software verification,

from C0, a small subject of the C programming language, down to machine code,

verified in Isabelle/HOL. The project include a Hoare logic for C0 providing facilities

to reason about the software being compiled. Verisoft does not fit our desiderata in

that C0 is not a realistic language, and the compiler to machine-code, while being

verified, is not optimizing.

Why3 [23] is a tool for deductive program verification including WhyML, a pro-

gramming and specification language which can be extracted in a proved correct

way to OCaml. This extraction procedure generates first-order verification condition

which are discharged by an SMT solver.

2.10 Conclusion

In this chapter, we have presented a verified extraction and compilation pipeline for

the Coq theorem prover. Extraction is a crucial component of a proof and pro-

gramming environment: a proof about a program is only useful if what is being run
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corresponds to that program. Special care has been taken to ensure the efficiency of

our pipeline, both in terms of optimization phases and in the code generation to C.

31



letrec [

fun map_code_195(map_env_197,k_112,kapArg_191) :=

let anon_clo_199 := con_15(anon_code_196,map_env_197) in

let env_198 := con_103(kapArg_191,anon_clo_199) in

let x188 := con_15(anon_code_200,env_198) in

let k_code_201 := proj_0 15 k_112 in

let k_env_202 := proj_1 15 k_112 in

k_code_201(k_env_202,x188)

fun anon_code_200(anon_env_203,x189,x190) :=

let anon_proj_204 := proj_1 103 anon_env_203 in

let kapArg_proj_205 := proj_0 103 anon_env_203 in

let anon_code_206 := proj_0 15 anon_proj_204 in

let anon_env_207 := proj_1 15 anon_proj_204 in

anon_code_206(anon_env_207,x189,x190,kapArg_proj_205)

fun anon_code_196(anon_env_208,k_115,l_114,f_111) :=

case l_114 of {

| cons =>

let x124 := proj_1 101 l_114 in

let x123 := proj_0 101 l_114 in

let anon_clo_210 := con_15(anon_code_196,anon_env_208) in

let env_209 := con_104(f_111,k_115,x124,anon_clo_210) in

let x166 := con_15(anon_code_211,env_209) in

let f_code_212 := proj_0 15 f_111 in

let f_env_213 := proj_1 15 f_111 in

f_code_212(f_env_213,x166,x123)

| nil =>

let x121 := nil() in

let k_code_228 := proj_0 15 k_115 in

let k_env_229 := proj_1 15 k_115 in

k_code_228(k_env_229,x121)

}

fun anon_code_211(anon_env_214,x0kdcon_144) :=

let k_proj_216 := proj_1 104 anon_env_214 in

let env_215 := con_105(k_proj_216,x0kdcon_144) in

let x165 := con_15(anon_code_217,env_215) in

let anon_proj_218 := proj_3 104 anon_env_214 in

let anon_proj_219 := proj_2 104 anon_env_214 in

let f_proj_220 := proj_0 104 anon_env_214 in

let anon_code_221 := proj_0 15 anon_proj_218 in

let anon_env_222 := proj_1 15 anon_proj_218 in

anon_code_221(anon_env_222,x165,anon_proj_219,f_proj_220)

fun anon_code_217(anon_env_223,x1kdcon_163) :=

let x0kdcon_proj_224 := proj_1 105 anon_env_223 in

let x164 := cons(x0kdcon_proj_224,x1kdcon_163) in

let k_proj_225 := proj_0 105 anon_env_223 in

let k_code_226 := proj_0 15 k_proj_225 in

let k_env_227 := proj_1 15 k_proj_225 in

k_code_226(k_env_227,x164)

] in

let env_194 := con_102() in

let map_110 := con_15(map_code_195,env_194) in

halt map_110

Figure 2.12: Example: List.Map implemented in L6
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G,E ` s,M ⇒T ∞

G,E ` s,M ⇒t out,M ′

G,E ` s1,M ⇒t1 Normal,M1 G,E ` s2,M1 ⇒t2 out,M2

G,E ` (s1; s2)⇒t1,t2 out,M2

Figure 2.13: Some of the evaluation judgments for Clight statements [10]

G,E ` e,M ⇒ v

G,E ` a1,M ⇒ v1 G,E ` a2,M ⇒ v2 evalbinop(op, v1, v2) = v

G,E ` a1op a2,M ⇒ v

Figure 2.14: Some of the evaluation judgments for Clight (r)-expressions [10]

pi : Li  pi+1 : Li+1 ∧ pi ⇓ vi ⇒ pi+1 ⇓ vi+1 ∧ vi v vi+1

Figure 2.15: The abstractly defined program equivalence theorem

v v v′ := ∀O. v XO ⇒ v′ XO

Figure 2.16: The abstractly defined value refinement relation

λ.v Xlam
Q− fun

nth n I = C
C~v Xind I n

Q− constr

nth n ~v = v v XO

C~v Xsub O n
Q− subterm

Figure 2.17: Definition of the observations predicate X

P ⇓ v ∧ CLO(P )⇒ P ↪→ stmt ∧ (m, stmt)→∗ (m′, skip) ∧ v v m′args1

Figure 2.18: Statement of the Overall Correctness Theorem
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Chapter 3

The CPS Intermediate

Representation and the Proof

Framework

The last intermediate language of CertiCoq is L6. Its syntax can be found in

Figure 2.11, duplicated here for convenience, and is described in Section 2.6.

L6 is the language on which many optimizations and transformations are applied,

and as such we have spent a considerable amount of time making sure its syntax

and semantics make it easier to prove things about it. In this chapter, we show its

semantics, before presenting the proof framework, a series of rewrite systems aimed at

facilitating proofs about transformations over L6. Portions of this chapter are adapted

from Savary Bélanger and Appel [9], which presented the the proof of correctness of

the shrink reduction phase of CertiCoq and the proof framework in which it was

developed.
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(Function Def ′n) fd ::= f (~x) = e

(Branch) b ::= c⇒ e

(Expression) e ::= let x = Con c ~y in e

| let x = Prim p ~y in e

| let x = Projn y in e

| App x ~y

| let ~fd in e

| match x with ~b

| halt x

(Value) v ::= (c, ~v)

| (ρ, ~fd , x)

(Environment) ρ ::= ·

| ρ, x 7→ v

Figure 2.11: Syntax of the CPS Language (L6)

3.1 The Semantics of our CPS IR

The semantics of our object language is given through a big-step, environment-based

judgment ρ ` e ⇓k v1 evaluating expressions e in environment ρ into value v in at

most k reductions. We will sometimes omit the argument k and just write ρ ` e ⇓ v

when the cost is inconsequential. The environment maps variables to values. A value

is either a constructor c with its arguments ~v or a closure including a function’s body

e with its parameters ~x and an environment ρ providing values for the function’s free

variables. Figure 3.1 shows the evaluation rules.

In our object language, pattern-matching is broken into two operations. First, our

case constructor “match x with (c1 ⇒ e1, ..., cn ⇒ en)” determines which pattern ci

the construction bound to variable x matches, and proceeds to evaluate ei, as seen in

1bstep e in theories/L6 PCPS/eval.v
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ρ(x) = c ~w (c⇒ e) ∈ ~b ρ ` e ⇓k v
ρ ` match x with ~b ⇓k v

e match

ρ(y) = c ~w ρ;x 7→ wn ` e ⇓k v
ρ ` let x = Projn y in e ⇓k v

e proj

ρ(f) = (ρ′, ~fd , f) (f (~x) = e) ∈ ~fd ρ′; fi 7→ (ρ′, ~fd , fi); ~x 7→ ρ(~y) ` e ⇓k v
ρ ` App f ~y ⇓k+1 v

e app

∀yi∈~y, ρ(yi) = wi ρ;x 7→ (c, ~w) ` e ⇓k v
ρ ` let x = Con c ~y in e ⇓k v

e constr

∀yi∈~y, ρ(yi) = wi f ~w = w ρ;x 7→ w ` e ⇓k v
ρ ` let x = Prim f ~y in e ⇓k v

e prim

ρ; f1 7→ (ρ, ~fd , f1); ...; fn 7→ (ρ, ~fd , fn) ` e ⇓k v where names(~fd) = {f1, ..., fn}
ρ ` let ~fd in e ⇓k v

e fun

ρ(x) = v

ρ ` halt x ⇓k v
e halt

Figure 3.1: Evaluation rules of the object language

e match.2 Then, projection constructs “let x1 = Proj1 x in...let xm = Projm x in” are

used to bind variables to the m arguments of ci which will be replaced by the right

values when evaluated as shown in rule e proj.

ML’s and Haskell’s syntax and type systems connect case matching with pro-

jection, so that the programmer cannot mistakenly project a field from the wrong

constructor. We separate projections from cases because it makes the operational

semantics simpler, the optimizer simpler, and the proof simpler: our language is an

untyped intermediate language, not a typed source language. CertiCoq is meant to

be used only to compile source programs type-checked in Coq; the Coq type system

guarantees that they will not get stuck. Therefore, as the front end phases are proved

correct, the program translated to lower-level intermediate languages (such as the

CPS presented here) will not get stuck.

2The well-formedness property ensures that each constructors appear once and as such that
patterns are non-overlapping.
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Rule e app shows how applications are evaluated. When a function f is applied

to arguments ~y, we look up f in the environment ρ to retrieve the function closure

(ρ′, ~fd , f). Next, we find function f in ~fd with arguments ~x and function body e. We

then evaluate the function body e in saved environment ρ′ extended with bindings

for each mutually recursive function in ~fd and by associating each yi in ~y to their

respective xi in ~x.

We define FV(e) and BV(e) to be respectively the set of free and bound variables

of a term e or of a bundle of function definitions ~fd . We also define names(~fd) to be

all the names of functions from the bundle:

names(~fd) := {f |f (~x) = e ∈ ~fd}

An important property that is not enforced by the syntax presented in Fig. 2.11 is

that bound names are globally unique. This property is easy to achieve and maintain;

the translation from the previous intermediate language uses a state monad to assign

unique variable names. We also make sure that the free variables of the top-level

program are disjoint from its bound variables. This allow us, for example, to perform

function inlining without worrying about variable capture. We define the proposition

UB(e) to assert that e has the unique binding property.

Applicative context

We define a notion of applicative context, intuitively a term with a hole, which will

be used in the statement of the rewriting rules and in the proof of correctness of our

function inliner.

An applicative context3 is either a hole, a let-binder over an applicative context,

a case construct where one of the branches is an applicative context or a function

3exp ctx and fundefs ctx in theories/L6 PCPS/ctx.v
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(Function Context) fc ::= f (~x) = C
(Expression Context) C ::= J K

| let x = Con c ~y in C
| let x = Prim p ~y in C
| let x = Projn y in C

| let ~fd in C

| let ~fd ++ fc :: ~fd in e

| match x with ~b++ (c⇒ C) ::~b

Figure 3.2: Applicative Context

bundle where exactly one of the function bindings has an expression context as body.

An expression e can be placed in the hole of a context C to form expression CJeK.

Similarly, a context C2 can be placed in the hole of a context C1 to form a composed

context C1 · C2.

We define BVstem(C)4 to be the variables bound on the stem of C, the variables

in scope at the hole in the applicative context C:

FV(CJeK) = FV(C) ∪ (FV(e) \ BVstem(C))

For example,

BVstem

(
let x = Con c ~y in let ~fd ++ (f (~z) = J K) :: ~fd ′ in e

)
= {x, f} ∪ ~z ∪ names(~fd ++ ~fd ′)

Logical relation

Our notion of equivalence reuses a step-indexed logical relation developed by

Paraskevopoulou for the proof of correctness of CertiCoq’s closure-conversion phase

[44]. The main idea is that terms e1 and e2 are related at index k (e1
∼=val
k e2)

whenever they are observationally equal for up to k β-reductions (e1 ≈k e2).

4bound stem ctx in theories/L6 PCPS/stem ctx.v
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Two values v and w are related (v ∼=val
k w5) if k = 0 or if:

• both are constructors with k-equivalent arguments: v = c v1 ... vn, w =

c w1 ... wn and ∀ni=1, vi
∼=val
k wi

• both are functions, and for any related list of arguments, they evaluate to

related values, which is to say: v = (ρ′1,
~fd1 , f1), w = (ρ′2,

~fd2 , f2) with

(f1 (~x) = e1) ∈ ~fd1 , (f2 (~y) = e2) ∈ ~fd2 and, given two lists v1, ..., vn and

w1, ..., wn of k − 1-related values (vi ∼=val
k−1 wi), evaluating the functions’ body

after extending the functions’ environments with these related mappings (for all

fi ∈ ~fd1 , gi ∈ ~fd2 , xi ∈ ~x, yi ∈ ~y, vi ∈ ~v and wi ∈ ~w) produces related values:

(ρ′1; fi 7→ (ρ′1,
~fd1 , fi);xi 7→ vi, e1) ∼=exp

k−1

(ρ′2; gi 7→ (ρ′2,
~fd2 , gi); yi 7→ wi, e2)

Two environments ρ1 and ρ2 are related (ρ1
∼=env
k ρ2) if, for every variable x, either

x is not present in either, or ρ1 x = v1 and ρ2 x = v2 and v1
∼=val
k v2.

Two terms e1 and e2 are related under environments ρ1 and ρ2 (written

(ρ1, e1) ∼=exp
k (ρ2, e2)) if they evaluate to related values. More precisely, they

are related at index k if, whenever ρ1 ` e1 ⇓j v1 (with j ≤ k), then there exists some

j′ and v2 such that ρ2 ` e2 ⇓j′ v2 and v1
∼=val
k−j v2.

If, for all i and for all environments ρ1 and ρ2 such that ρ1
∼=env
i ρ2, two terms e1

and e2 are related according to (ρ1, e1) ∼=exp
i (ρ2, e2), then e1 and e2 are contextually

equivalent (e1 ≈ e2).

5preord val in theories/L6 PCPS/logical relations.v
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3.2 The Proof Framework

For compiler optimization phases, correctness means that the input and the output

of the transformation compute to equivalent values. For reasoning purpose, this is

often done in two steps:

1. First, an inductive relation relating the input and the output of the transfor-

mation is defined, and this relation is proven to correspond to the optimization

phase

2. Then, it is proven that the relation only contains semantically related terms –

this is the hard part

The first one is usually straightforward – in most cases, the induction principle

arising from the definition of the inductive relation corresponds directly to the re-

cursive form of the function. The second part is much harder, because it deals with

relating a specialized, optimized transformation with very general semantics notion.

What we propose instead is to go through a series of rewrites relation which spe-

cializes towards different optimization phases and admits fewer and fewer programs.

The first rewrite system, proven to be semantically correct, is similar to a general

evaluation system for the system. Then, each rewrite system restricts the applica-

tion of the rewrites rule down to describing the operations of the implemented code

transformation. This method has two main benefits:

1. By reducing the gap between the first relation and the semantics equivalence,

we simplify that proof, which is often the most complex portion of proofs of

semantics correctness

2. By layering the proof, we allow for reusing portions of the correctness proofs

for other optimization phases which uses similar operations
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In the remainder of this chapter, we show two rewrite systems: a general rewrite

system corresponding to general reductions rule over L6, and a shrinking rewrite

system specialized to shrinking reductions. These systems are presented as rounded

box in Figure 3.3. We then show applications of these system to the proofs of various

optimizations, presented as squared box in Figure 3.3.

Uncurrying
(3.5.1)

x�

Alternative
Shrink

Reducer

y�
Semantic

Equivalence
(3.1)

General
Rewrites
(3.2.1)

ks
Shrink

Rewrites
(3.2.2)

ks

Shrink
Reduction
Program

(3.3)

ks

General
Inliner
(3.5.2)

\d

Figure 3.3: The Proof Framework

3.2.1 General Rewrites

Figure 3.4 shows the rules of our general rewriting system6, which we then prove

correct using the above logical relation.

Dead variables

When a variable does not occur statically within its scope, we can remove its binding

without affecting evaluation. Dead variable rewriting rules have the form let x =

in e  e, where is any let-binding construct in our object language, for example

Con c ~y, whenever x is not used in e.

6rw in theories/L6 PCPS/shrink cps correct.v
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f 6∈ FV(e2) ∀
(f ′ (~y) = e3)∈ ~fd1++ ~fd2

, f 6∈ FV(e3 )

let ~fd1 ++ (f (~x) = e1) :: ~fd2 in e2  let ~fd1 ++ ~fd2 in e2

Dead fun

∀ f ∈ names(~fd), f 6∈ FV(e)

let ~fd in e e
Dead bundle

x 6∈ FV(e)

let x = in e e
Dead var

(f (~x) = e) ∈ ~fd (FV(e)
⋃

names(~fd))
⋂

BVstem(C) = ∅ (BV(eα)
⋃
~x)
⋂
~y = ∅

let ~fd in CJApp f ~yK let ~fd in CJ(~x 7→ ~y)eαK
Inl fun

x 6∈ BVstem(C) (c⇒ e) ∈ ~b
let x = Con c ~y in CJmatch x with ~bK let x = Con c ~y in CJeK

Fold case

x 6∈ BVstem(C) zn 6∈ BVstem(C)
⋃

BV(e)

let x = Con c ~z in CJlet y = Projn x in eK let x = Con c ~z in CJ(y 7→ zn)eK Fold proj

Figure 3.4: General Rewrite Rules

To handle removal of dead mutually recursive functions, things are a bit more

complicated; we use two rules to handle different scenarios under which it is safe

to remove function bindings. Dead bundle, removes a bundle of mutually recur-

sive functions if none of them occurs in the rest of the term. However, this is too

coarse-grain to handle the case where only some of the functions in the bundle are

dead. For this situation, Dead fun removes a function definition if it has no applied

occurrences outside its own body.

Folding and inlining

Folding and inlining rules perform general reduction steps at compile time. One such

folding rule is Fold case, which performs ι-reduction whenever the correct branch

can be statically predicted. Fold case would be used to perform this reduction:

let x = Con S y in

match x with (O ⇒M); (S ⇒ let z = Proj1 x in N)

 let x = Con S y in (let z = Proj1 x in N)
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As our language separates pattern-matching into the matching and the binding of

projections, we can simply (using firstMatch) return the body of the first branch in ~b

matching c in place of the match and let other reductions handle the projections, if

any. These projections can then be folded using rule Fold Proj. It lets us eliminate

making a binding y for the nth projection of the value bound to x if x is bound in

the context to c ~z and the nth variable of ~z is not rebound in the term. For example,

we could further reduce the previous example:

let x = Con S y in (let z = Proj0 x in N)

 let x = Con S y in (z 7→ y)N

Function inlining replaces a call to a function by the body of the function. If this

was the only call to the function, the function definition can then be eliminated using

the Dead fun rule. It allows for α-renaming (changing the name of bound variables)

of the function body e into eα, This rule is only valid if FV(e) and the functions’ name

from ~fd , including f , are disjoint from the variables bound on the stem of C, and if

the function’s parameters ~x and bound variables of eα are disjoint from arguments ~y,

so that there is no variable capture occurring.

General rewrite system

From the rewrite rules shown so far, we create a rewrite system which will describe

the transformations that our optimizations apply to a program.

We first take the contextual closure of  , denoted  C
7, defined as:

e1 = CJe′1K e2 = CJe′2K e′1  e′2
e1  C e2

7gr clos in theories/L6 PCPS/shrink cps correct.v
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This allows reductions to happen anywhere in the term, following the usual notion

of general reductions.

We then take the reflexive transitive closure of the contextual closure of the general

rewrite rules to form a system of General Reduction, denoted e ∗C e
′.

Proof of correctness

Our correctness theorem has the following form: Any two terms related by general

rewrites evaluate, under equivalent environments, to equivalent values.

Theorem 3.2.1 (Correctness of GR8).

∀e1 e2, e1  ∗C e2 =⇒

∀ρ1 ρ2 k, ρ1
∼=env
k ρ2 =⇒ (ρ1, e1) ∼=exp

k (ρ2, e2)

We prove a generalization of contextual compatibility that allows us to prove non-

local rewrite rules. Contextual compatibility states that two expressions e1 and e2 are

related (at k) under a given applicative context C in related evaluation environments

ρ1 and ρ2 if, for any related ρ3 and ρ4, e1 and e2 are related (at k). This is because

C will affect related ρ1 and ρ2 in the same way, resulting in related ρ3 and ρ4.

The function inlining case of this proof reuses the proof of equivalence of α-

equivalent terms developed by Zoe Paraskevopoulou

Remark 3.2.2 (Contextual Compatibility9).

∀e1 e2 C ρ1 ρ2 k,(
∀ρ3 ρ4, ρ3

∼=env
k ρ4 =⇒ (ρ3, e1) ∼=exp

k (ρ4, e2)
)

=⇒

ρ1
∼=env
k ρ2 =⇒

(ρ1, CJe1K) ∼=exp
k (ρ2, CJe2K)

8rw correct in theories/L6 PCPS/shrink cps correct.v
9preord exp compat in theories/L6 PCPS/shrink cps correct.v
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|e|x = 0

let x = in e ⇁ e
S Dead var

∀ f ∈ names(~fd), |e|f = 0

let ~fd in e ⇁ e
S Dead bundle

|let ~fd1 ++ ~fd2 in Q|f = 0

let ~fd1 ++ (f (~x) = e) :: ~fd2 in Q ⇁ let ~fd1 ++ ~fd2 in Q
S Dead fun

(c⇒ e) ∈ ~b
let x = Con c ~x in CJmatch x with ~bK ⇁ let x = Con c ~x in CJeK

S Fold case

let x = Con c ~z in CJlet y = Projn x in eK ⇁ let x = Con c ~z in CJ(y 7→ zn)eK S Fold proj

|let ~fd1 ++ (f (~x) = e) :: ~fd2 in CJApp f ~yK|f = 1

let ~fd1 ++ (f (~x) = e) :: ~fd2 in CJApp f ~yK ⇁ let ~fd1 ++ ~fd2 in CJ(~x 7→ ~y)eK
S Shrink fun

Figure 3.5: Shrink Rewrite Rules

However, this is too weak to prove the correctness of nonlocal rules such as

Fold proj, where, for the term that binds the projection to be related when the

binding is substituted with the right projection, we need to ensure ρ3 and ρ4 still

contain the binding of the constructor.

(ρ1, let x = Con c ~z in CJlet y = Projn x in eK)

∼=exp
k

(ρ2, let x = Con c ~z in CJ(y 7→ zn)eK)

In order to prove this, we bind x in the context:

(ρ1[x 7→ (c,~v)], CJlet y = Projn x in eK)

∼=exp
k

(ρ2[x 7→ (c,~v)], CJ(y 7→ zn)eK)

We cannot apply Contextual Compatibility here, because “let y = Projn x in e”

and “(y 7→ zn)e” are only related in contexts that map x to (c, ~v) and zn to vN ,

even though x and zn cannot appear in C due the premise of Fold proj. So we

must be more precise and state that C will only affect the mapping of variables of
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ρ1[x 7→ (c, ~v)] and ρ2[x 7→ (c, ~v)] which are bound on the stem of C. Thus, we can

select a set of variables S not bound in C and only consider ρ3 and ρ4 that agree with

ρ1 and ρ2 on variables from S (this is written ρ
.
=S ρ

′). In our previous example, we

could select S = {x, zn}

Theorem 3.2.3 (Extended Contextual Compatibility10).

∀e1 e2 C ρ1 ρ2 S k, BVstem(C)
⋂
S = ∅ =⇒(

∀ρ3 ρ4, ρ1
.
=S ρ3 =⇒ ρ2

.
=S ρ4 =⇒

ρ3
∼=env
k ρ4 =⇒ (ρ3, e1) ∼=exp

k (ρ4, e2)
)

=⇒

ρ1
∼=env
k ρ2 =⇒ (ρ1, CJe1K) ∼=exp

k (ρ2, CJe2K)

3.2.2 Shrink Reduction

Shrink Rewrites Most of the rules in Fig. 3.5 are very similar to the general rewrite

rules given earlier. We write |e|x for the number of applied occurrences of variable

x in expression e. The main difference is that their assumptions are computational,

relying on the number of occurrences and (globally) on the unique binder property

rather than on sets such as FV and BV. This is an important distinction which

will make our life easier in the proof of correspondence to the algorithm. Consider

for example S Fold proj. Due to the unique binding property, we can drop the

assumption that x 6∈ BVstem(C).

Other than the assumptions, the main difference between the two rewrite systems

is the use of S Shrink fun in place of Inl fun. Indeed, the latter does not qualify

as a shrink reduction as the overall size of the program grows when we inline a

function and keep its definition. S Shrink fun is only applicable when the inlined

function has a single applied occurrence. It is admissible (assuming the unique binding

property) from Inl fun followed by Dead fun.

10preord exp compat stem vals in theories/L6 PCPS/shrink cps correct.v
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The shrink rewrite system and its correctness

We take the reflexive transitive closure of the contextual closure of the shrink rewrite

rules presented in Fig. 3.5 to form a system of shrink rewrites denoted ⇁∗C
11.

We then prove that terms related by shrink reduction are also related by general

reduction:

Theorem 3.2.4 (GR includes SR12).

∀e1 e2, e1 ⇁
∗
C e2 =⇒ e1  ∗C e2

Moreover, we use the fact that ⇁ is more restrictive than  to prove certain

properties for any term related by it. For example, shrink reduction preserves the

unique binding property (this includes the disjointness of the bound and free variables

of the term):

Theorem 3.2.5 (SR preserves UB13).

∀e1e2, e1 ⇁
∗
C e2 ∧ UB(e1) =⇒ UB(e2)

The set of bound variables does not increase as we shrink a term:

Theorem 3.2.6 (SR reduces BV).

∀e1e2, e1 ⇁
∗
C e2 =⇒ BV(e2) ⊆ BV(e1)

It does not introduce free variables, for example at the top level:

Theorem 3.2.7 (SR reduces FV).

∀e1e2, e1 ⇁
∗
C e2 =⇒ FV(e2) ⊆ FV(e1)

11gsr clos in theories/L6 PCPS/shrink cps correct.v
12grs in gr in theories/L6 PCPS/shrink cps correct.v
13gsr preserves clos in theories/L6 PCPS/shrink cps correct.v
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Therefore, closed terms remain closed under shrink reductions14.

3.3 Shrink Inliner

Function contract, shown in Figure 3.6, performs shrink reductions in a single pass

down and up a program (or top-level expression) P . As contract proceeds down the

term e (initially P , then some e such that ∃C,P = CJeK), we collect in table ρ the

functions and constructors which could respectively be inlined and folded.

In addition to the term e currently being transformed, contract maintains four

tables:

• σ : var → var , is a delayed renaming substitution (mapping variables to vari-

ables) under which e is being considered.

• δ : var → nat , tallies the number of occurrences of each variable in the whole

program.

• ρ : var → Value′, maps function and constructor variables encountered so far

(on the stem of C) to their definitions.

(Value′) V ::= (c, ~x) | (~x, e)

• θ : var → bool , indicates which functions have been inlined.

δ is updated using functions decreaseOcc σ δ ~x which decreases by one the count

of each variables in σ~x and decreaseCount σ δ e which decreases δ(x) by |σe|x, the

number of applied occurrences of x in σe.

In the SML/NJ implementation, these maps are implemented using imperative

arrays with constant access time. As our compiler is implemented in Gallina, a pure

functional language, we instead represent our variables as positive binary numbers

14gsr preserves clos in theories/L6 PCPS/shrink cps correct.v
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and implement maps by binary tries, resulting in logarithmic access time. As shown

in Fig. 3.1, this is still quite fast. Moreover, if one wanted to use constant-access-time

impure arrays (a monadic extension to Coq)—thus recovering the original constant

access time—our proof of correctness could easily be adapted.

At the top-level, function contract top calls contract after initializing the maps:

σ = id, δ is initialized to have δ(x) = |e|x for each variable x appearing in e, ρ is

empty and θ maps all variables to ⊥.

The function contract calls helper functions to process the branches of a pattern-

match (contract branches, see Figure 3.9) and blocks of recursive functions (preFun

and postFun, see Figures 3.7 and 3.8).

When encountering a let-bound constructor “let x = Con c ~y in e”, we first check,

by looking up x in δ, if x does not occur in the whole program, in which case we

can remove the binding of x and decrease the occurrence count for each variable in ~y

under σ. Otherwise, we recursively shrink-reduce e after updating the environment

map with the binding x 7→ (c, ~y). On return, we check again if x is dead in the updated

counts (i.e., δ), as shrink reductions performed in e may have decreased the occurrence

count of x. When encountering a let-bound projection “let x = Projn y in e”, if x is

not dead, we look up σy in our environment map ρ to see if we statically know the

construct (c, ~y) bound to it. If it is, we can remove the binding of x and replace in

the rest of e (by extending the renaming σ) all occurrences of x by the nth projection

of σ~y and update the count using “foldCount δ σ x ~yn y”, setting x to 0, increasing

the occurrence count of σ~yn by δ(x) and decreasing σ~y by one.

When converting pattern-matching construct “match v with ~b”, we first look up v

in ρ to see if we know enough about what is bound to it to select the correct branch,

which is to say that ρ(σv) = (c, ~y) and (c⇒ e) ∈ ~b, and we proceed to shrink-reduce

e after adjusting δ to account for the removed occurrence of σv and (using caseCount)
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for the deletion of all other branches. If σv is not known or if no branches match, we

recursively shrink-reduce each of the branches using contractCase (see Fig. 3.9)

When we get to an application “App f ~y”, we first look up σf in the environment

map ρ to see if it is a known function (~x, e) and if this is the only occurrence of σf .

In that case, we inline the function and proceed with shrink inlining within its body

e after updating the renaming substitution with mappings xi 7→ (σyi) for each xi, yi

in ~x, ~y and updating the occurrence count with inlineCount σ δ f ~x ~y, decreasing to 0

all xi ∈ ~x and σf and adding δ(~xi)− 1 to each σ~yi.

We process a block of mutually recursive functions “let ~fd in e” by first (using

function preFun) adding live functions in ~fd to the environment map ρ. We then

apply the contract function to e, the rest of the program. We then traverse ~fd a

second time with function postFun, this time converting the body of live, non-inlined

functions. The second traversal uses the initial ρ rather than the one augmented by

preFun, such that we don’t inline functions within their mutually recursive bundle.

The algorithms of each of those pass are given in Figures 3.7 and 3.8.

preFun σ δ ρ ~fd is used on the downwards pass through the term, removing dead

functions (and adjusting the occurrence count map δ accordingly) and adding the live

ones to the environment ρ.

postFun σ δ ρ θ ~fd processes a block of mutually recursive function ~fd on the

upward pass of contract. For each function f (~x) = e, we first check if it has been

inlined (θ(f) = >), in which case we simply remove the binding of the function and

continue processing the rest of the block (as the count δ has already been adjusted

at the inlining points, as shown in Fig. 3.6). If the function isn’t inlined, we check if

it is dead (δ(f) = 0), in which case we delete the binding of f , decrease the count of

variables occurring in the body of the function e under the renaming substitution σ

and continue processing the rest of the block. Finally, if the function is neither dead
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nor inlined, we apply the shrink inlining algorithm (see Fig. 3.6) to the body of the

function before processing the rest of the block.

Proof of termination

contract is not structurally recursive. While most recursive calls are done on a strictly

smaller subterm of its term input e, the inlining case receives a one-AST-node program

(App f ~y) and calls contract on the body of f as found in map ρ. However, if we

believe our algorithm is indeed applying shrink reduction to the term, as we are going

to prove next, we know that the size of the overall program is decreasing. We can

use the other inputs of contract to approximate the size of the whole program. At

any point in the algorithm contract e, while converting program P , there exists some

applicative context C such that P = CJeK. This context C consists of all of the

bindings encountered on the way to e, some of which (those eligible to be inlined or

folded) are reflected in ρ, minus all of the functions which have already been inlined.

Our termination measure for contract σ δ ρ θ e is |e|+ |ρ|θ where |e| is the number of

AST nodes in e and |ρ|θ the environment map size, defined as:

|ρ|θ =
∑
x∈D(ρ)

if
(
ρ(x) = (~x, e) ∧ θ(x) = ⊥

)
then |e| else 0

Which is to say that we add up to the size of e the size of each body of non-inlined

functions (according to θ) in ρ.

This approximation of the size of P is enough to show termination. For example,

in the function inlining case where ρ(f) = (~x, e) and θ(f) = ⊥, we start we size

|App f ~y|+ |ρ|θ and the recursive call has measure |e|+ |ρ|θ[f 7→>] which can easily be

shown to be smaller:
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|App f ~y|+ |ρ|θ = 1 + |ρ\f |θ + |e|

= 1 + |ρ|θ[f 7→>] + |e|

< |e|+ |ρ|θ[f 7→>]

Termination of the helper functions is proven in a similar manner. For

contractCase, we keep track of the fact that the current ~b is a suffix of the original

one ~b′, and as such for any (c ⇒ e) ∈ ~b, |e| < |match y with ~b′|, and similarly for

postFun with the list of function declaration ~fd .

Proof of correspondence

Our proof of correspondence relies on top-level programs being closed. The main

theorem for the correspondence of contractTop with our shrink-rewrite system is stated

as:

Theorem 3.3.1 (contractTop on closed program is in SR15).

UB(P ) ∧ CLO(P ) =⇒ (P ⇁∗C contractTop P )

where CLO(e) is defined as FV(e) = {}.

This composes with Theorem 3.2.4 and further with Theorem 3.2.1 to have:

Theorem 3.3.2 (Correctness of contractTop).

UB(P ) ∧ CLO(P ) =⇒ P ≈ contractTop P

We might like to apply the shrink-reducer to open terms as well. For any term

P with the unique-binding property UB(P ), there exists a context C such that

CLO(CJP K) and UB(CJP K); where C is constructed such that for any sequence of

15shrink corresp top in theories/L6 PCPS/shrink cps corresp.v
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rewrites CJP K ⇁∗C e′, there exists some e′′ such that e′ = CJe′′K and P ⇁∗C e
′′. Thus,

we can use an alternative function contractTop′ which closes term P with C, performs

shrink reductions and then returns the unpacked term. For this function, we have:

Theorem 3.3.3 (Correctness of contractTop′).

UB(P ) =⇒ P ≈ contractTop′ P

As we recur down the program P and populate the different maps carried by

contract, we need a generalization of this theorem where the current term e being

converted is related to the state of the top level program P . Every time the algorithm

modifies the term, we have to justify it through our shrink-rewrite rules, which may

depend on global properties about the program being transformed. For example,

removing the definition of a dead variable involves invoking the Dead var rule which

assume that the variable does not occur in the rest of the program, which would

be inconvenient to calculate every time we want to use it. For that reason, a big

part of the correspondence proof is to show that the maps that are maintained in

the algorithm correctly represent the state of the whole program. Intuitively, while

converting program P , at any point in the algorithm where we call contract σ δ ρ θ e,

there exists some applicative context C such that P = σ(inline C θ)JσeK, where inline

is a function that removes the definition of any function f in C such that θ(f) = >. P

is the state of the program, and each of the maps σ, ρ, δ and θ are correct (according

to their invariants) for it. The reductions applied as we process term e affect P and

the maps are adjusted accordingly.

The generalized theorem is:
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Theorem 3.3.4 (contract is in SR16).

let P := σ(inline C θ)JσeK,

UB(P )∧

CLO(P )∧

INVP (δ)∧

INVC(ρ)∧

INVρ,P (θ)∧

INVσ(inline C θ),(σe)(σ) =⇒

∃e′ δr θr,

let P ′ := σ(inline C θ′)Jσe′K,

(e′, δr, θr) = contract σ δ ρ θ e ∧

P ⇁∗C P
′∧

INVP ′(δr)∧

INVρ,P ′(θ′)

INVσ(inline C θr),(σe′)(σ).

which is to say that when running contract e with maps respecting their invariants

and corresponding to a program P , contract returns a term e′ and modified maps δr

and θr describing the updated program P ′, and proofs that P shrink rewrites to P ′

and that the invariants still hold on current maps on the new state. The proof goes

by induction on the size of the approximation of P given by |e| + |ρ|θ, just like the

proof of termination.

We now detail the invariant on each of the maps and give a sketch of their im-

portance in the proof of correspondence, before describing the auxiliary lemmas to

handle case and functions.

16shrink corresp in theories/L6 PCPS/shrink cps correct.v
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INVC,e(σ)

σ is a renaming substitution under which the program is being considered. Its invari-

ant states that any variable in its domain is not bound in P , and that variables in its

range are either dead or bound on the stem of C:

INVC,e(σ) := ∀x y,

(x 7→ y) ∈ σ =⇒ x 6∈ BV(P )

∧|P |y = 0 ∨ y ∈ BVstem(C)

σ is applied everywhere in P , both in e and in C. Due to the unique binding

property, adjustment to σ due to a variable bound in e will not affect C, because the

variable could not occur free (or otherwise) in C (σweaken). Moreover, the domain

of σ is disjoint from its codomain. Combined with the fact that we only add to σ

mapping from binding we remove (inlined functions arguments, folded projections,

etc.), we can freely fuse multiple delayed substitutions together (σfuse) or stage them

as needed, as shown in Figure 3.10.

INVρ,P (θ)

θ keeps track of which functions have been inlined by the algorithm. θ is threaded

through the algorithm, and it is shown monotonic, which is to say that for any variable

f , if θ(f) = > for input θ then output θr will have θr(f) = >, which is important to

prove termination of contract. For the proof of correctness of contract, θ’s invariant

states that inlined functions and their arguments do not appear bound in P .

INVρ,P (θ) := ∀f, θ(f) = > =⇒

f 6∈ BV(P ) ∧ ρ(f) = (~x, e) =⇒ ~x 6∈ BV(P )
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INVP (δ)

δ accounts for the number of occurrences of each variable in P . Its invariant is stated

as:

INVP (δ) := ∀x, |P |x = δ(x)

We say δ is a correct count for P if for all variables x, δ(x) is exactly the number

of times x occurs in P . In the statement of the theorem, this accounts for the delayed

substitution σ and for the bodies of inlined functions according to θ.

The unique binding property is important here again to ensure the algorithm

updates the count correctly. For example, on “contract let x = Projn y in e”, we

know δ is correct for “(σCθ)Jσ(let x = Projn y in e)K” for some C which respects the

provided maps. In the case where we fold the projection, we need to prove that δ

after “foldCount δ σ x ~yn y” is correct for “(σx 7→(σ~yn) Cθ)Jσ[x 7→ σ~yn]eK”. We can

first observe that x cannot occur in Cθ due to the unique binding property, so this

is equivalent to “(σCθ)Jσ[x 7→ (σ~yn)]eK”. By the invariant on σ, we know that x is

neither in the domain or the range of σ and as such “σ[x 7→ (σ~yn)]e” is the same as

“(x 7→ (σ~yn))(σe)”, which is to say we can first apply σ before substituting σ~yn for

x. Finally, by the unique binding property, we know that x will not be bound in e

such that all of its occurrences will be replaced by σ~yn, which brings us to the correct

count.

INVC(ρ)

ρ is a view of the current context. The invariant for ρ asserts that it contains every

function and constructor on the stem of C and nothing more.
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INVC(ρ) := ∀x,

ρ(x) = (c, ~y)↔ ∃C1C2, C = C1 · (let x = Con c ~y in C2)

∧

ρ(x) = (~y, e)↔ ∃C1C2 f̃d , C = C1 · (let ~fd in C2)

∧(x (~y) = e) ∈ ~fd

Some of the functions in ρ may have been inlined (such that they are not in

inline C θ) and are thus not eligible to be inlined. However, this means they do not

occur in P , so we will will never look them up in ρ again.

Auxiliary proofs

When converting case and bundles of functions, we call the auxiliary functions shown

in figure 3.9, 3.7 and 3.8. Just like for contract, we need to carefully select a P

that best represents the current state of the program; it is important to be aware of

which portions of the term have already been converted as they no longer need to be

considered under delayed σ and what is available to be folded or inlined.

Case When contracting term “match x with ~b”, we first verify if we can fold the

statement. If this is not possible, we contract each of the branches in ~b using func-

tion contractCase. As we progress through the lists of branches, ~b is split into the

contracted branches ~b1 (initially empty) and its remaining suffix ~b2 (empty when the

contractCase returns to contract) . When calling “contractCase σ δ ρ θ ~b2”, the current

state P is

σ(inline C θ)Jmatch x with (~b1 ++ σ~b2)K

The invariant on σ allows us to prove that x = σx and ~b1 = σ~b1 such that

match x with (~b1 ++ σ~b2) = σ
(
match x with (~b1 ++ ~b2)

)
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On b2 = (c⇒ eb) ++ b3, we can rewrite the state as

σ
(

inline
(
C ·match x with ~b1 ++ (c⇒ J K) :: ~b3

)
θ
)
JσebK

to recur on eb with contract. On return b′3 with updated δr and θr, the state is

P ′ = σ(inline C θr)Jmatch x with ~b1 ++ (c⇒ e′b) :: ~b3K

We also return proofs that P ⇁C P ′, that δr is a correct count for P ′, that the

invariant for θr holds for σ and P ′ and that the invariant for σ holds for P ′.

Functions When contract is called on a bundle of functions “let ~fd in e”, we first

call “preFun σ δ ρ ~fd”, before converting e and calling “postFun σ δ ρ θ ~fd”. The

carried maps already account for some prefix ~fd1 for which ~fd1 ++ ~fd2 = ~fd , with

~fd1 = [ ] at first.

For “ ~fd ′2 ← preFun σ δ ρ ~fd2”, program P , originally

σ(inline C θ)Jσ(let ~fd1 ++ ~fd2 in e)K

is updated to

P ′ = σ(inline C θ)Jσ(let ~fd1 ++ ~fd ′2 in e)K

with P ⇁C P ′. Functions in ~fd2 which are already dead have their bindings

removed from ~fd ′2 . δr is updated accordingly, and is correct from P ′. The updated

environment ρr adds to ρ all the functions bound by ~fd ′2 . Because the names in ~fd

are disjoint from the inlined functions as tallied by θ, the resulting P ′ (where ~fd1 is

empty) can be rewritten as

σ
(
inline (C · let ~fd ′2 in J K) θ

)
JσeK
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which is in the right form to contract e.

When we call “postFun σ δ ρ θ ~fd” from contract, e has already been converted

by the main function, and we turn on to processing the bodies of live, noninlined

functions in ~fd . After converting e, the program state P is

σ
(
inline (C · let ~fd1 ++ ~fd2 in J K) θ

)
JerK

When ~fd2 = (f (~x) = eb; ~fd3 ) for some live f , we need to show that we can rewrite

P to be of the right form for its body eb to be translated (into e′b) using convert:

σ
(

inline
(
C · let ~fd1 ++ (f (~x) = eb) :: ~fd3 in J K

)
θ
)
JerK

=

σ
(

inline
(
C · let ~fd1 ++ (f (~x) = J K) :: ~fd3 ) in er

)
θ
)
JebK

By the invariant on σ and θ, we know er is equivalent to σer and that inline with θ

has no effect on er. The proof of correctness for postcontract carries this fact along to

be able to move er in and out of the context as we recur on functions’ bodies. postFun

updates δr and θr and returns ~fd ′3 which can form ~fd ′2 = (f (~x) = e′b;
~fd ′3 ), with the

resulting state being

P ′ = σ
(
inline (C · let ~fd1 ++ ~fd ′2 in J K) θr

)
JerK

which can be rewritten as

σ(inline C θr)Jlet ~fd1 ++ ~fd ′2 in erK

We also return proofs that P ⇁C P
′ and that the maps properly characterize P ′.
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3.3.1 Reduction of Administrative redexes

Administrative redexes are β-redexes introduced by the CPS transformation and that

can safely be reduced without affecting the original term. For example, an early CPS

transformation [45] converts the term “(λx.x) y” as

λk1.(λk2.k2(λx.λk3.k3 x))(λm.(λk4.k4 y)(λn.(m n) k1))

Implementations of the CPS transformation in several compilers, in order to gen-

erate smaller terms that leave less work for later optimization phases to do, cleverly

avoid producing so many administrative redexes [16, 46]. Danvy and Nielsen [17] give

a comprehensive account of different CPS transformations and on the administrative

redexes they introduce.

But these clever CPS transformations that avoid producing administrative redexes

are more difficult to prove correct [19]. Furthermore, some administrative redexes

should not be reduced! They represent join points of the control flow; reducing them

duplicates the instructions following the join point [47]. This duplication occurs in

many optimizing CPS transformations over languages with pattern-matching [47, 19].

We recommend: use a simple CPS transformation that makes no effort to reduce

administrative redexes; then use shrink-reduction. This is approximately as efficient

as the more clever CPS transformation, and it reduces just the right set of redexes,

including all the administrative that are not join points.

Theorem 3.3.5. All administrative redexes with a single applied occurrence will be

reduced in a single pass of the shrink inliner.

The proof is a corollary of our proof of correspondence of the shrink inliner (The-

orem 3.3.4), where we prove that the algorithm correctly tabulates the number of

occurrences for every variables in the program, such that administrative redexes with

a single applied occurrence will be eligible for inlining when we get to them during
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the first shrink inlining pass. Since all administrative redexes introduced by the CPS

translation have a single applied occurrence17, which is to say that there is no dead

applied occurrences that would require clever ordering of reductions to eliminate in

a single pass, all of them are reduced in a single pass.

3.4 Performance

Benchmark Binom Color Veristar

Size without Shrink Inlining (AST nodes) 3156 76.6k 82.0k
Size with S.I. (AST nodes) 616 28.5k 14.8k

# of evaluation steps without S.I. 4560 120.3M 348.3M
# of evaluation steps with S.I. 1132 26.9M 82.9M
Time for one S.I. pass (sec.) 0.0069 0.34 0.27

# inlined functions in one S.I. pass 620 9240 14305
# of cases folded by one S.I. pass 2 1 8

# of projections folded by one S.I. pass 2 2 14
# of dead constructors removed by one S.I. pass 41 52 486

# of dead functions removed by one S.I. pass 0 87 51
# of shrink reductions performed by second S.I. pass 0 24 16
# of shrink reductions performed by third S.I. pass 0 3 0

Size after closure conversion without S.I. (AST nodes) 6390 188.5k 255.8k
Size after C.C. with S.I. (AST nodes) 1163 34.9k 32.3k

Time for C.C. without S.I. (s.) 0.30 1039.68 481.43
Time for C.C. with S.I. (s.) 0.0080 3.28 1.41

# of functions inlined by S.I. after C.C. 0 0 0
# of cases folded by S.I. after C.C. 0 0 0

# of projections folded by S.I. after C.C. 6 136 250
# of dead constructors by S.I. removed after C.C. 4 1261 796

# of dead functions by S.I. removed after C.C. 0 4 0

Table 3.1: Shrink reduction performance measurements

17Case statements are often converted with the continuation hoisted outside of the branches, re-
sulting in sharing a single continuation between all branches (and in multiple applied occurrences).
This conflates common-subexpression evaluation with the conversion – we instead bind the contin-
uation in each branch to ensure reduction of all administrative redexes. Case-folding from shrink
reducing, or an eventual common-subexpression phase would then be able to eliminate the leftover,
duplicated continuations

61



We have tested the effect of the shrink inliner on a few programs when evaluated

in the intermediate language on which the transformation is performed. The results

are included in Figure 3.1. Binom is an implementation of binomial queues [59]

(priority queues with log-time insert, delete-min, and merge). Color runs a verified

implementation of the Kempe/Chaitin algorithm for graph coloring [11] on a large

graph. Veristar [52] is a verified theorem prover (resolution theorem proving with

paramodulation) for a subset of separation logic, run over a large entailment.

We see a significant number of functions inlined in a single shrink inlining (S.I.)

pass, resulting in substantially smaller programs that run 5x faster. Most of the

inlined functions are administrative redexes. Although one pass does not always

reduce to shrink-normal form, very few redexes remain for the second and third

passes; this justifies the quasilinear time18 designation [8].

Shrink-inlining is fast: even on a large program such as Veristar, it takes a fraction

of a second. The table shows that it’s important to shrink-inline both before and after

closure-conversion; if not run before, closure-conversion takes too long; if not after,

the compiled program will run slower.

3.5 Other Optimizations over L6

3.5.1 Uncurrying

By default, all functions in Gallina are curried, which is to say that they take a single

argument. L6 functions, on the other hand, explicitly take multiple arguments, and

each L6 function call must supply all arguments to the function. Multiple-argument

functions are represented in the Coq kernel using series of function declarations, and

calling a function with n arguments is represented as n function calls. Uncurrying

18Our implementation runs in quasi-N logN time due to using functional datastructures with
logN access time.
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eliminates such calls, creating fully applied version of the functions which can be called

directly by fully applied application sites. An example of the effect of uncurrying is

given in Section 2.6.2. We include in figure 3.11 the rule for creating uncurried shells

for curried functions, taken from John Li’s report on the proof of correctness of the

uncurry phase [32]. In a case of a function of n arguments, bundle-curried is

applied n− 1 times.

The proof of correctness of the uncurrying phase is described in a report by John Li

[32]. Uncurrying, like closure-conversion, does not correspond to operations of general

reductions, and thus the proof is made directly over the logical relation at the base of

the proof framework. We note that if parts of the transformation were parts of rewrite

systems in the framework, the proof of correctness of that rewrite systems could be

reused directly in the context of the proof of correctness of the transformation with

respect to the logical relation. This happens, for example, whenever α-conversion is

used as part of an optimization phase.

3.5.2 Function Inlining

While shrink inlining is an efficient way to clean up code after transformations intro-

ducing shrink redexes, other transformations introduce redexes which are not shrink

redexes. For this, we implemented a general β-reducer. We proved this phase correct

using the proof framework described in Section 3.2 – function inlining corresponds

directly to the general β-reduction rule included in the general rewrite system (Sec-

tion 3.2.1).

Function inlining β-reduces some of the redexes in a program, without the restric-

tion of the shrink reducer, which only reduces β-redexes if such a reduction would

result in a dead function. Of course, not every β-redex should be reduced – this could

be non terminating, in the case where unreachable code is non terminating, or could
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lead to an explosion in the size of the program. For this, we want to be able to select

which β-redex is reduced.

To avoid specializing the inlining phase to a specific use-case, we separate the

transformation into two phases:

1. First, a phase computes an inlining heuristic which can statefully determine

which β-redexes should be reduced

2. Then, this inlining heuristic is provided to a general inlining phase as a param-

eter.

We see benefits in separating analysis and rewriting phases – the analysis may do

complicated reasoning, and produce potentially unsafe optimization heuristic, but it

doesn’t have to be proven correct. Meanwhile, the rewriting phase only follow through

with safe rewrites, and is proven correct for any heuristic. This separation simplifies

the rewriting phase, making it easier to prove it correct. It also makes it reusable

for different optimizations, for example, in this case, to inline uncurried shells and to

inline small functions.

Inlining Heuristic The inlining heuristic is described as a record holding three

functions:

• updateFunDef, a function updating the inlining decision at the declaration point

of bundles of mutually recursive functions

• updateInFun, a function updating inlining decision when converting a particular

function within a bundle

• updateApp, a function updating and returning inlining decision on applications

Examples of Inlining Heuristics In CertiCoq, we have two uses for function

inlining:
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1. The first is to inline function definitions when these definitions are small. Func-

tions under a small size b can be inlined (up to a maximum inlining depth n)

without worrying about the size of the resulting program.

The inlining heuristic for small functions has as state s a map from function

name to inlining decision, initialized with everything mapping to false. For a

fixed bound b, we would have:

• updateFunDef for every function f in the bundle, set f to true if the size

of its body is under the bound b

• updateInFun on f sets f to false, to avoid unfolding a function body within

itself

• updateApp on App f ~y returns as inlining decision s(f) without updating

the heuristic

2. The second arises from the uncurry optimization which is performed on L6,

described in section 3.5.1. This optimization creates shell functions currying

the application of newly created uncurried functions. Whenever possible, we

would like to inline these shells, and, if the original curried function does not

escape, we would like to completely remove all occurrences of it, replacing it by

the uncurried version.

For post-uncurrying contraction, our inlining heuristic has as state s a map from

function name to a natural number, initialized with all functions shell mapping

to 1, and updated to have the continuation of shells mapping to 2:

• updateFunDef does not update the heuristic

• updateInFun does not update the heuristic

• updateApp on App f k :: ~y checks if f is a shell (1), in which case we set

k to 2 and return true as inlining decision, on App k ~y checks if k is a
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shell’s continuation (2), in which case we return true as inlining decision,

otherwise we return false.

The inlining decisions can be composed, with their state becoming a product of the

states, and their inlining decision becoming a boolean or of the inlining decisions of

the underlying heuristics:

• θ = (θ1, θ2)

• updateFunDef θ e = (updateFunDef1 (π1 θ) e, updateFunDef2 (π2 θ) e)

• updateInFun θ e = (updateInFun1 (π1 θ) e, updateInFun2 (π2 θ) e)

• updateApp θ e = updateApp1 (π1 θ) e ∨ updateApp2 (π2 θ) e

General function inlining in Coq We parameterize our function inlining phase

with an inlining heuristic which determines, at every function application, if a function

should be inlined. For termination purpose, we provide a maximum inlining depth

which we decrease when converting the body of an inlined function.

We show in Figure 3.12 the function inlining algorithm. Function inline traverses

an expression e while querying and updating θ, the state of the inlining heuristic. In

addition to e, the term e being transformed, θ, the state of the inlining heuristic, and

n, the maximum inlining depth, inline maintains two tables:

• σ : var → var , is a delayed renaming substitution (mapping variables to vari-

ables) under which e is being considered.

• ρ : var → Value′, maps function variables encountered so far to their definitions.

inline traverses e, propagating downward the state of the inlining heuristic. There

are two interesting cases in the traversal of e: function declaration, and function

application.
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When reaching the declaration of a mutually recursive bundle of functions

“let ~fd in e”, we first extend the function environment ρ with the function bindings

~fd . We then query the inlining heuristic updateFunDef, providing us with states θ1

and θ2 which are used, respectively, to convert the functions and the rest of the

program. We recursively transform expression e in the updated function environment

and the updated heuristic state θ1, before transforming all of the function bodies in

bundle ~fd with updated heuristic state θ2.

Function inlineFunn ρ σ θ ~fd is defined as a mutually recursive function together

with inline. For every function declaration (f (~x) = eb) ∈ ~fd , we update the heuris-

tic state θ (θ2 from the last paragraph) using the heuristic at function declaration

updateInFun, before converting the body eb.

The second important case is on function application “App f ~y”. There, after

applying the renaming substitution σ, we query updateAppto know if σ f should

or should not be inlined. If it is to be inlined, and ρ contains the declaration of

σ f as (~x, e), we extend the renaming substitution σ with parameters ~x mapping to

arguments σ ~y, and recursively call inline while decreasing the maximum inlining

depth by one.

Preserving globally unique names In order to preserve globally unique names

when performing general inlining, we have to freshen the name of variables bound

in the term being substituted. To do so, we have a global counter keeping track

of the next available name. We can then freshen the variables bound in a term by

replacing each of them with sequential names starting from the next available name,

and replacing the bound occurrences with the new names – substituting new names

for the originally bound one is simple since the original term was uniquely bound and

as such no capture can occur. The resulting term is α-equivalent to the original one,

but its variable bindings are globally unique.
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Proof of Correctness The proof of correctness of inline goes by lexicographic

induction on (e, n). The statement of correctness is:

Theorem 3.5.1 (inline in GR).

UB(P ) =⇒ (P ⇁∗C inlinen · · θ P )

Which is to say that P can be rewritten using the general rewrite system (see

Section 3.2.1), under any starting state θ and maximum inlining depth n, to the

output of inline. The proof follows directly from showing that the rewriting done by

the inlinecorresponds to Rule Inl fun (see Figure 3.4). This proof composes with

the proof of correctness of the general rewrite system (Theorem 3.2.1) to achieve a

proof that the input and the output of inlineare semantically related under our logical

relation (Section 3.1).

3.6 Related Work

The shrink inliner we present in Figure 3.6 is taken almost directly from Appel and

Jim [8], who describe the algorithm implemented in the SML/NJ compiler. They

present a set of rewriting rules which was the main source of inspiration for our

shrink-rewrite system, and prove its confluence. The main difference is that their

algorithm allowed occurrence-counts to be over-approximations, and they split the

occurrence-counts into applied and escaping in order to tolerate this approximation.

However, with a few changes to the occurrence updates, we can get the exact number

of occurrences in our map δ, and as such have no reason to split it into the two types

of occurrences.

In addition to the algorithm we implemented, Appel and Jim [8] presented fully

linear-time algorithm that heavily uses imperative graph-update, which is less conve-

nient to implement in a functional programming language. Kennedy [28] improved,
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implemented, and measured the fully linear-time algorithm, and reported excellent

performance. Neither Appel and Jim nor Kennedy formally proved the correctness

of their their algorithms.

The CakeML project [53] includes a verified compiler for a “substantial subset

of Standard ML”. It contains a two-pass optimization inlining small, non-recursive

functions. Inlining decisions are not updated as inlining is performed, making it

similar to the naive algorithm that Appel and Jim show performs much worse than

linear time. The optimization pipeline also includes a constant propagation and

folding phase which, for example, folds if -statements if their guard can be computed

statically. However, doing these optimizations in different phases misses cascading

reductions where further optimizations are enabled by each reduction.

Pilsner [42] is a verified compiler with an ML-like source language and CPS-based

intermediate language. It includes a simple function-inlining optimization which does

not update its inlining decisions during the inlining pass, nor does it inline within

the body of inlined functions. It has a dead-variable-elimination phase deleting dead

definitions in a single pass up and down a program. In addition to missing cas-

cading reductions, it misses optimization opportunities from the interaction of dead

definitions arising from projection-folding, which this optimizer does not do.

CompCert [29] is a verified optimizing compiler for C. It includes a function in-

lining pass. However, the decisions to inline are taken in a different pass and are not

updated as inlining is done. There is no attempt (and in a C compiler, less need) to

combine inlining, constant folding, and dead-variable elimination into a single efficient

pass.

Administrative redexes in the context of CPS transformations have been the sub-

ject of many papers since being introduced by Plotkin [45]. Our pipeline which

consists of a simple CPS transformation followed by a pass which reduces adminis-

trative redexes is similar to the two-pass CPS transformation presented by Sabry and
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Felleisen [46]. However, our shrink inlining pass is not limited to reducing administra-

tive redexes; it also performs case-folding, dead-variable elimination, and reduction

of many non-administrative redexes.

Administrative normal form (ANF)[24] is a representation aimed at providing the

benefits of CPS while still being in direct style. While some transformations such

as contification are difficult to represent in ANF[28], recent work[34] has shown how

ANF can be augmented with explicit join points to allow these transformations to be

performed. In addition, using ANF with join points instead of CPS may make the

identification (and subsequent elimination) of common-subexpressions easier. One

difference between our language and ANF is that the latter does not restrict argu-

ments of function applications to be atoms. This mean that a shrink inlining rewrite

(S Shrink fun from Figure 3.5) could increase the size of the term. We believe ANF

could be made to enforce that restriction. Alternatively, we could change the shrink

inlining rule to only apply when, for each of the parameters of the function being

applied, either they occur a single time in the body, or the applied argument is an

atom. In order to limit test to the garbage collection trigger to the start of functions

(see Section 4.1.6), the code generated by our back end uses the property that all

calls are in tail position, and that we can statically compute the maximum number of

values allocated by functions. ANF does not ensure that all calls are in tail position,

making the computation of roots and of the maximum allocation between function

calls more complicated, so that we would have to use the more conservative approach

of testing for the garbage collection trigger at every allocation.

3.7 Conclusion

In this chapter, we presented a proof of correctness for a shrink inliner compilation

phase combining constant folding, function inlining and dead-variable elimination.
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The full proof composes multiple correspondence proofs, step-by-step refining a se-

mantic notion of equivalence into our syntax-driven algorithm.

We also showed how other transformations could reuse the proof of correctness

of the general rewriting system, either directly or through a refined system such as

shrink rewrites.

Proving correspondence of the algorithm to the shrink-rewrite system rather than

the general one or the logical relation significantly simplifies the reasoning. As previ-

ously stated, some of the invariants on the terms and maps, such as closedness, are

preserved by shrink reductions, and as such do not have to be threaded through the

proof. Moreover, the shrink-rewrite system already incorporates some optimizations

that make it easier to prove the algorithm correspondence. For example, substitution

is performed in a global way since the unique binding property prevents any shad-

owing and capture of variables. Meanwhile, the notion of substitution used for the

rewrite system is the more usual one which corresponds closely with the semantics of

our language which is defined for nonuniquely bound terms.
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contract σ δ ρ θ e = match e with

| halt x ⇒ (halt (σx), δ, θ)

| let x = Prim p ~y in e ⇒ if δ(x) = 0
then δ ← decreaseOcc δ σ ~y

contract σ δ ρ θ e
else (e′, δ, θ)← contract σ δ ρ θ e

if δ(x) = 0
then δ ← decreaseOcc δ σ ~y

(e′, δ, θ)
else (let x = Prim p (σ~y) in e′, δ, θ)

| let x = Con c ~y in e ⇒ if δ(x) = 0
then δ ← decreaseOcc δ σ ~y

contract σ δ ρ θ e
else ρ := ρ[x 7→ (c, ~y)]

(e′, δ, θ)← contract σ δ ρ θ e
if δ(x) = 0
then δ ← decreaseOcc δ σ ~y

(e′, δ, θ)
else (let x = Con c (σ~y) in e′, δ, θ)

| App f ~y ⇒ if θ(σf) = 1 ∧ ρ (σf) = (~x, e)
then δ ← inlineCount δ σ f ~x ~y

σ := σ[~x 7→ (σ~y)]
θ := θ[(σf) 7→ >]
contract σ δ ρ θ e

else (App (σf) (σ~y), δ, θ)
| let x = Projn y in e ⇒ if δ(x) = 0

then δ ← decreaseOcc δ σ y
contract σ δ ρ θ e

else if ρ(σy) = (c, ~y)
then δ ← foldCount δ σ x ~yn y

σ := σ[x 7→ (σ~yn)]
contract σ δ ρ θ e

else (e′, δ, θ)← contract σ δ ρ θ e
if δ′(x) = 0
then δ ← decreaseOcc δ′ σ y

e′

else (let x = Projn (σy) in e′, δ, θ)

| match v with ~b ⇒ if ρ(σv) = (c, ~y) ∧ (c⇒ e) ∈ ~b
then δ ← caseCount δ σ ~b

δ ← decreaseOcc δ σ v
contract σ δ ρ θ e

else (~b′, δ, θ)← contractCase σ δ ρ θ ~b

(match (σv) with ~b′, δ, θ)

| let ~fd in e ⇒ ( ~fd ′, δ, ρ′)← preFun σ δ ρ ~fd
(e′, δ, θ)← contract σ δ ρ′ θ e

( ~fd ′′, δ, θ)← postFun σ δ ρ θ ~fd ′

(let ~fd ′′ in e′, δ, θ)

Figure 3.6: Shrink Inliner Algorithm
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preFun σ δ ρ ~fd2 = match ~fd2 with

| [ ] ⇒ ([ ], δ, ρ)

| (f (~x) = eb) :: ~fd3 ⇒ if δ(f) = 0
then δ ← decreaseCount δ σ eb

preFun σ δ ρ ~fd3

else ( ~fd ′3 , δ, ρ)← preFun σ δ ρ ~fd3
ρ := ρ[f 7→ (~x, eb)]

((f (~x) = eb) :: ~fd ′3 , δ, ρ)

Figure 3.7: Pre Function Inlining Algorithm

postFun σ δ ρ θ ~fd2 = match ~fd2 with

| [ ] ⇒ ([ ], δ, θ)

| (f (~x) = eb) :: ~fd3 ⇒ if θ(f)

then postFun σ δ ρ θ ~fd3
else if δ(f) = 0

then δ ← decreaseCount δ σ eb
postFun σ δ ρ θ ~fd3

else (e′b, δ, θ)← contract σ δ ρ θ eb
( ~fd ′3 , δ, θ)← postFun σ δ ρ θ ~fd3

((f (~x) = e′b) :: ~fd ′3 , δ, θ)

Figure 3.8: Post Function Inlining Algorithm

contractCase σ δ ρ θ ~b2 = match ~b2 with

| [ ] ⇒ ([ ], δ, θ)

| (c⇒ eb) :: ~b3 ⇒ (e′b, δ, θ)← contract σ δ ρ θ eb
(~b′3, δ, θ)← contractCase σ δ ρ θ ~b3
((c⇒ e′b) :: ~b′3, δ, θ)

caseCount δ σ ~b = match ~b with

| [ ] ⇒ δ

| (c′ ⇒ e) ::~b ⇒ if c = c′

then decreaseCount δ σ (snd ~b)
else δ ← decreaseCount δ σ e

caseCount δ σ ~b

Figure 3.9: Case Algorithm
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(σC)Jσ(let x = Proj2 y in e′)K = (σC)Jlet x = Proj2 (σy) in (σe′)K by definition
= (σC)J(x 7→ (σy2)) (σe′)K by fold proj(⇁)
= (σC)J(σ[x 7→ (σy2)]) e′K by σfuse
= (σ[x 7→ (σy2)]) CJ(σ[x 7→ (σy2)]) e′K by σweaken

Figure 3.10: Example of substitution fusion

Figure 3.11: Rewrite rule for one step of uncurrying, from Li [32]
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inlinen ρ σ θ e = if n = 0 then (σ e, θ) else match e with

| halt x ⇒ halt (σx)

| let x = Con c ~y in e ⇒ e′ ← inlinen ρ σ θ e
let x = Con c (σ~y) in e′

| App f ~y ⇒ (inl, θ)← updateApp θ (App (σf) (σ~y))
if inl
then (~x, e)← ρ(ρ f)

e′ ← freshen(e)
σ := σ[~x 7→ (σ~y)]
inlinen−1 ρ σ θ e

′

else App (σf) (σ~y)
| let x = Prim p ~y in e ⇒ e′ ← inlinen ρ σ θ e

let x = Prim p (σ~y) in e′

| let x = Projn y in e ⇒ e′ ← inlinen ρ σ θ e
let x = Projn (σy) in e′

| match v with ~b ⇒ ~b′ ← inlineCasen ρ σ θ ~b

match (σv) with ~b′

| let ~fd in e ⇒ ρ′ ← ρ, ~fd

(θ1, θ2)← updateFunDef θ (let ~fd in e, σ)
e′ ← inlinen ρ

′ σ θ1 e
~fd ′ ← inlineFunn ρ

′ σ θ2
~fd

let ~fd ′ in e′

inlineFunn ρ σ θ ~fd = match ~fd with

| [ ] ⇒ [ ]

| (f (~x) = eb) :: ~fd3 ⇒ ~fd ′3 ← inlineFunn ρ σ θ ~fd3
θ ← updateInFun θ (f (~x) = eb)
e′b ← inlinen ρ σ θ eb
(f (~x) = e′b) :: ~fd ′3

Figure 3.12: Function Inlining Algorithm
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Chapter 4

Code Generation

The last step of compilation in CertiCoq generates CompCert Clight from the

CPS intermediate representation discussed in Chapter 3. While the two languages

follow different paradigms, with L6 being a pure, functional language and Clight an

impure, imperative one, restrictions over L6, both syntactic and in terms of additional

properties enforced, facilitate the generation of equivalent Clight programs. In this

chapter, we discuss our approach to code generation, describing how we represent each

component of L6 in Clight, how the runtime system interacts with our generated

code, and finally how we prove correct the code generation phase of CertiCoq with

a clean interface to garbage collection.

4.1 Generating C from a functional language

At this point of compilation, branches of case-constructs have been bound as func-

tions, and every L6 function is in continuation-passing style, closed and lambda-lifted

as part of the same mutually recursive function bundle.

As discussed in Kelsey [27] and in Appel [3], functional programming, and in par-

ticular functional languages in continuation-passing style, is directly related to static

single-assignment (SSA), an intermediate representation for imperative language. We
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use this correspondence to generate Clight as an intermediate representation be-

tween CertiCoq and CompCert.

Extended basic blocks of the original program are represented as functions in L6.

Because these functions have been closure-converted and lambda-lifted, they corre-

spond to first-class, global functions in Clight. Closure-conversion and continuation-

passing style simplify memory management, allowing us to easily identify the live

variables at function entry.

Finally, continuation-passing style coupled with tail call optimization in C compil-

ers allows us to directly generate C functions from L6 functions. Previous functional

compilers targeting C (such as sml2c [56]) relied on analysis to determine the right

way to handle calls. Generating C functions from L6 functions results in a sim-

pler code generator and exposes the structure of programs to optimizations in the C

compiler.

4.1.1 Representing datatypes in C

We represent values on the heap using a representation used by many ML compilers

including OCaml [30] and SML/NJ[37], leaving nullary constructors unboxed and

boxing non-nullary ones. To differentiate unboxed values from pointers to a boxed

values, we use the last bit of unboxed values as a flag set to 1 – meanwhile, the

pointers used for boxed values are word aligned, always ending in 0.1

For an inductive type T , defined as shown in Figure 4.1, we assign (unboxed)

ordinal 0 to A and 1 to C, and (boxed) ordinal 0 to B and 1 to D.

Unboxed values are kept in local memory as the integer 2× ordinal + 1.

Boxed values of arity n are represented as a pointer to the second of n+1 contigu-

ous memory location, each of the size of a value, providing access to the representation

1In this chapter, we assume a 64-bit architecture, with 8-byte pointers. However, Certi-
Coq works in 32 and in 64-bit mode, and its proof is parameterized over the size of pointers.
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datatype T : Type

| A : T

| B : R -> T

| C : T

| D : R -> S -> T

Figure 4.1: Example of a Coq datatype

of each of its fields, while the first location holds a header containing the ordinal and

the arity of the constructor.

Cons 6 (Cons 8 (Cons 10 Nil)))

(a) A list in Coq

(* Where 5 -> Nil and 6 -> Cons *)

Vconstr 6 [Vint 6;

Vconstr 6 [Vint 8;

Vconstr 6 [Vint 10;

Vconstr 5 []]]]

(b) A list in L6

(c) A list in L7

Figure 4.2: Example of an Inductive Value throughout the compilation process

We include in Figure 4.2 an example of the same inductive value represented

in different languages during compilation. First, as shown in Figure 4.2a, the list

[6;8;10] can be represented in an inductive datatype list with constructor Nil:

list and Cons:int -> list -> list. We show how this value would be represented

in L6 in Figure 4.2b. In L6, information about the constructors is kept in a global

map – we assume here that 5 refers to Nil and 6 to Cons. Finally, as shown in
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Figure 4.2c, in Clight, non-nullary constructors are represented in the heap as boxed

values. We use the notation n|m to represent concatenating the bit representation

of n with the one of m. Here, the list is represented as three blocks of three values

each. The head of the list is pointed to by x at address 8224. The value before that,

2|0|1, is the header for Cons, which is the first boxed constructor of list and has two

arguments (the zero in the middle represents bits reserved for garbage compilation).

The first field of the head contains the unboxed value 6, while the second contains

a pointer to the next element of the list, at memory location 8200. This value has

the same header, also representing Cons, and hold unboxed value 8 in its first field,

and a pointer to memory location 4192 in its second. 4192 holds the last link in our

list, with a representation of Nil (first unboxed constructor of list) in its second

argument.

4.1.2 Garbage Collection

Because we target Clight, which has manual memory management, we need to pro-

vide a runtime memory management system to reclaim unused memory. Inspired by

the SML-NJ compiler, CertiCoq uses heap-allocated data structures and closures,

and garbage collection to efficiently collect dead portions of the heap. Garbage col-

lection is a runtime mechanism to identify data in memory that are no longer needed

by the code, and reuse (or deallocate) their memory footprint. Different garbage

collection techniques exist, with varying complexity and cost. CertiCoq provides a

general interface that allows using a wide variety of collectors.

Garbage collection is a hard problem that has been the subject of numerous pub-

lications. Diwan et al. [20] presented a list of challenges encountered when garbage

collecting statically typed languages:

1. Garbage collection “must be able to determine if an object is reachable from

other live objects or from the roots”.
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2. Garbage collection “must be able to find all pointers to a given object so that

they may be updated when the object is moved”.

McCreight et al. [39] and Dargaye [18] concurrently presented a way to handle

those challenges, making use of a “shadow stack” (as introduced by Henderson [26]) to

store values across calls. Their intermediate language includes primitives to explicitly

keep track of roots, guiding the translation to a Clight program interfacing with a

garbage collector. However, in both cases, measured overhead for the generated code

was high due to the expensive operations that had to be performed over any local

variables that could contain a live pointer.

In our case, garbage collection is facilitated by the design of L6, the source of our

code generation phase:

1. Since L6 is in CPS and closure-converted, and we perform garbage collection

on function entry, live roots are exactly the arguments to the function.

2. Since Gallina, and all our intermediate languages including L6, are pure, newly

allocated objects can only refer to old ones. This is because objects, in pure

languages, are immutable. This greatly simplifies the implementation of gen-

erational garbage collection – when tracing the live objects, we don’t have to

traverse older generations.

In the rest of this section, we present the interface we have formalized between code

generation and garbage collection, and the generational garbage collector provided

with CertiCoq which has been verified and respects the provided interface.

4.1.3 Abstract state for the generated code

We define an abstract state that we target when translating from L6, and later in-

stantiate it as concrete Clight memory and local environment.

The abstract state, shown in Figure 4.3, has three components:
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Figure 4.3: Abstract state for the generated code

1. tinfo, a structure containing three pointers representing the state of GC heap and

a fourth pointer to an array containing either pointers to GC heap or unboxed

values.

2. GC heap, an abstract representation of a heap containing boxed values at non-

overlapping virtual addresses.

3. local, a table containing mappings from variables to either a pointer to the

GC heap or an unboxed value.

The example in Figure 4.3 shows a local environment containing the mapping

(w,O), with O represented as the first unboxed constructor of nat, and (x, SSO),

with SSO represented as a pointer to a pair of words containing the header (S has

arity 1 and is the first boxed constructor), and a pointer to a second pair of words

containing the same header, and the representation of O, as discussed in Section 4.1.1.

tinfo contains the state of the GC heap and of the argument array using 4 cells:

1. talloc, showing where in the GC heap to allocate the next boxed value.

2. tlimit, showing where the GC heap ends.

3. theap, showing where the GC heap starts.

4. targs, an array of values containing the arguments to the current function
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Throughout the next section, we would show the effect of each L6 operations on the

abstract state, before instantiating the state in Clight and generating corresponding

Clight statements.

4.1.4 Simulating L6 in the Abstract State

Before describing our code generation algorithm, we give a sketch of the effect of the

L6 operations on the abstract state presented in Section 4.1.3.

Eproj “let y = Proj0 x in e” executes, according to rule e proj, by setting y to

the first projection of x (which has been constructed using S) before proceeding with

executing e. We show in Figure 4.4 the effect of executing this expression starting

from the abstract state from Figure 4.3. In this case, where x represents SSO, y ends

up pointing to the representation of SO.

(a) Before (b) After

Figure 4.4: The effect of “let y = Proj0 x in e” on the abstract state

Econstr “let y = Con S x in e”, according to Rule e constr, has y set to be a

value constructed by applying S to the value of x. Figure 4.5 shows the effect of this

on the abstract state. In Figure 4.5b, y points to a representation of SSSO.

Ecase “match x with ~b” has no effect on the abstract state.
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(a) Before (b) After

Figure 4.5: The effect of “let y = Con S x in e” on the abstract state

Ehalt “halt x”, according to e halt, evaluates to the value of x. By convention,

we take the second field of the argument array to hold the return value. As shown in

Figure 4.6, this results in targs1 representing SSO.

(a) Before (b) After

Figure 4.6: The effect of “halt x” on the abstract state

Eapp “App f w x” calls function f y z = e on arguments w and x using the calling

convention shared by all functions with tag t (see e app). Figure 4.7 shows the effect

of evaluating this expression on the abstract state, assuming that t corresponds to a

calling convention where the first argument is kept in cell 0 and the second in cell

1 of the argument array. As shown in Figure 4.7, this is done in two steps: First,

the arguments w and x are copied to targs according to t, which results in targs0

representing O and targs1 representing SSO (see Figure 4.7b). Then, as shown in

Figure 4.7c, we restore targs0 and targs1 to the function parameters y and z before

proceeding with the execution of e.

83



(a) Before (b) During

(c) After

Figure 4.7: The effect of “‘App f w x” on the abstract state

4.1.5 From abstract state to Clight memory

In this section, we present how we realize the abstract state described in Section 4.1.3

in Clight, using a Clight memory and a local environment.

Figure 4.8 shows how we map different portion of the abstract state and of the

program to disjoint portions of memory.

First, an area of the heap holds, for every function f in the source program,

function information finfof and function code fcodef .

Then, a disjoint area holds tinfo and the targs array.

Finally, a third area holds the boxed values which were contained in the GC heap

from Figure 4.3.

4.1.6 The Interface with Garbage Collection

Rather than integrating a specific garbage collector with our generated code, and

proving our code generation phase correct with respect to that particular garbage
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Figure 4.8: Mapping of the abstract state in a Clight memory

collector, we provide a general interface for garbage collection, and prove our code

generation phase correct with respect to a more general notion of garbage collection.

As shown in Figure 4.8, tinfo is a Clight structure containing, in addition to the

argument array, three pointers describing the state of the garbage-collected portion

of memory:

1. talloc, a pointer to the next allocatable word of memory in the current block

2. tlimit, a pointer to the end of the allocatable portion of the current block

3. theap, a pointer to the garbage collector’s own description of its memory regions;

the format of this data is left abstract to the CertiCoq compiler

Our interface works by using a global 2 array targs containing all live roots at the

point garbage collection is called. In addition to pointers to the garbage-collected

area, this array may contained unboxed values and pointers to non-garbage-collected

area, both of which are to be ignored by garbage collection.

2Actually, one such array per thread; tinfo stands for ”thread info”. The current CertiCoq run-
time system is not multithreaded, but the interface between code generator and runtime system
(that we describe in this section) permits multithreading.
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Our interface makes the following assumptions (i.e., a garbage collector can expect

these things to hold):

1. Any live portions of GC heap are reachable from the live roots in targs– which is

to say, since the live roots correspond to the environment computed by closure

conversion, functions are fully closed after closure conversion.

2. No request for allocation is made for more space than what garbage collection

can provide. In our case, this means that no function allocates more than what

garbage collection can provide before calling its continuation. In principle, we

can represent functions allocating up to 264 − 1 in finfo. However, the garbage

collector may further limit the maximum number of blocks allocated between

collection – the generational collector included in CertiCoq limits it to the size

of the nursery, which is 65536 bytes by default. We parameterize CertiCoq

with the same constant, and refuse to compile functions which would allocate

more than this amount.3

We note that while both of these assumptions hold on calls to the garbage col-

lection at every function entry due to all calls being tail calls to closed functions,

resulting in the roots and maximum number of blocks allocated being easily com-

putable at compile time, the interface would work in a more general setting by, for

example, testing if garbage collection is needed before every allocation.

On return, the code generator knows that

1. The argument array contains Clight values representing the same L6 values

as before.

2. At least as much allocatable memory as requested is available between talloc

and tlimit.

3Of course, it is still possible to run out of memory if the program’s live data exceed the available
space. Our interface with garbage collection assumes that this does not happen.
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Figure 4.9: The state of the heap before and after garbage collection

We include in Figure 4.9 a representation of the heap before and after garbage

collection.

On the left, the heap contains an area with function declarations and finfo, fol-

lowed by tinfo and the argument array targs and finally the GC heap, whose area is

represented in green. In the blown up view of tinfo, talloc points to the start of the

free area in the GC heap, tlimit to the end. We do not represent the value of theap in

the picture – it is used by the garbage collector to keep track of its memory regions,

and left abstract to our compiler. Finally, targs points to the start of the argument

array. In the argument array, the first slot is taken by a pointer to the representation

of SSO in the GC heap. The second slot is taken by a representation of O.

On the right, representing the state of the heap after garbage collection (assuming

the roots were 0 and 1), the areas are unchanged, except for the GC heap – the new

GC heap may only contain part of the old GC heap or newly allocated portions of
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memory. The pointers in talloc and targs have been updated to reflect the new GC

heap.

4.2 Code Generation

We will now describe our code generation algorithm, generating Clight statements

from a program in L6. An earlier version of this algorithm was implemented by

Matthew Weaver and Andrew Appel.

After closure conversion and lambda-lifting, all functions are part of the same

mutually recursive bundle ~fd , and we know that the body of the program e does not

contain function declarations. Moreover, we know that for any function (f, ~y, e')

in ~fd , e' does not contain function declarations.

The back end processes let ~fd in e by

1. computing the arity (number of function-parameters) and the maximum number

of words allocated by every function in the program, and generating a map

θ : var → N× N with this information.

2. generating forward declarations for all functions in ~fd , as they may represent

mutually recursive functions in Coq (and in C) and as such need to call each

other.

3. For each function in ~fd , (f, ~y, e'), creating a Clight function f with tinfo

as argument and codegen(e') as function body

4. generating a Clight function body, converting e using codegen.

4.2.1 Code generation for L6 functions

We represent L6 functions as Clight functions, taking as single parameter a struc-

ture tinfo holding the information needed to execute the function.
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tinfo is a Clight structure containing the information necessary to interpret the

memory as the current state of evaluation. It includes the information needed to

allocate new values on the heap and a pointer to an array containing the arguments

to the function. As shown in Figure 4.8, tinfo contains four pointers. The first two,

talloc and tlimit, point to, respectively, the next available block of available memory,

and the last available block, and they are used both to allocate new values on the

heap and to determine when is time to garbage collect. The third one points to a

representation of the regions of memory containing the GC heap. The fourth one

points to an array of values used for arguments during function calls.

Every function f is associated with a structure finfof containing the maximum

number of words the function could allocate, followed by its arity, and, for each of its

arguments, the slots used in the argument array. Figure 4.10 provides an example of

such structure for a function with three arguments held in position 0, 1 and 2 of the

arguments array and allocating at most ten words:

value const f_info_1000000100[5] = { 10, 3, 0, 1, 2, };

Figure 4.10: Example of the structure containing information about a function

On function entry, we verify if the maximum number of memory words that could

be allocated by the function is more than the difference between tlimit and talloc.

If this is the case, we need to run the garbage collector (described in 4.1.2) before

restoring the arguments to local memory, and proceeding with the body of the func-

tion.

4.2.2 The code generation algorithm

codegen, shown in Figure 4.12, is a function constructing a Clight statement from

a L6 expression. By design of L6, most of the mapping between L6 expressions and

statement is direct with, for example, projections mapping directly to field access.
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void f(struct thread_info *tinfo){

// declarations

...

alloc = ;

limit = (*tinfo).limit;

args = (*tinfo).args;

if (!(*f_code_info <= tinfo->limit - tinfo->alloc)) {

(garbage_collect)(f_info, tinfo);

}

alloc = (*tinfo).alloc;

limit = (*tinfo).limit;

args = (*tinfo).args;

x = *(args + 0);

y = *(args + 1);

z = *(args + 2);

// function body

...

}

Figure 4.11: Example of the start of a function generated by our back end

Others, such as function application, are a bit more involved. In the rest of this

section, we describe how we represent L6 expressions as Clight statements.

In addition to e, the L6 term being converted, function codegen takes in:

1. ∆, mapping constructor tags to the name, arity and ordinal of the constructor

and to the name and tag of its datatype.

2. θ, mapping the name of each function to its arity, calling-convention, and the

maximum number of values its body could allocate. Knowing which variable

represents a function is also important to determine if a variable represents a

value in local memory, or if it represents the address of a function in the heap.

We will now go through each cases for L6 expression e, describing the correspond,

through the abstract machine described in Section 4.1.4, with the Clight statements

generated by codegen.

Ehalt Every trace of L6 ends with an application of the halt evaluation rule due to

the occurrence of Ehalt x. The Clight equivalent is to place the value referred to as x
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codegen∆,θ e = match e with

| halt x ⇒ Sassign (args[1]) (VarOrFunVarθx); Sreturn 1

| let x = Con c ~y in e ⇒ if arr∆ (c) = 0
then Sset x ((ord∆ c� 1) + 1); codegen e
else s1 ← Sset x talloc; Sassign talloc ((arr∆ c� 8) + ord∆ c)

s2 ← Sassign x[0] (VarOrFunVarθ(y0)); ... ;
Sassign x[ord∆ (c)− 1] (VarOrFunVarθ(yord∆ (c)−1))

s1; s2; Sset talloc (talloc + ord∆ c+ 1); codegen e
| let x = Projn y in e ⇒ Sset x (y[n]); codegen e

| match x with ~b ⇒ (~b1, ~b2)← split boxed? ~b
~l1 ← codegenBranches(∆,θ)

~b1

s1 ← Sswitch (x[−1] & 255) ~l1
~l2 ← codegenBranches(∆,θ)

~b2

s2 ← Sswitch (x� 1) ~l2
Sifthenelse (isptr x) s1 s2

| App f ~y ⇒ s← Sassign targs[finfof [2]] y0; ... ;
Sassign targs[finfof [arrθf + 2]] yarrθf

s; Scall f tinfo

Figure 4.12: Code Generation Algorithm

codegenBranches(∆,θ)
~b = match ~b with

| [ ] ⇒ LSnil

| (c⇒ e) ::~b ⇒ LScons (ord∆ c) (codegen∆,θ e; Sbreak ) (codegenBranches ~b)

Figure 4.13: Case Algorithm for Code Generation

in a fixed place in memory to make it available to the caller of the procedure. By con-

vention, we place x in the second field of the argument array. Function VarOrFunVarθ

returns x if x is a pointer to a function (in the functions area of memory), and local(x)

otherwise.

Econstr The restriction that the arguments of constructor bindings be variables

rather than expressions greatly simplifies the code generation for Econstr. Each of

these variables represents a Clight value, either boxed (represented by the Clight

value Vptr) or unboxed (either Vint or Vlong depending on the architecture).

91



In the case of nullary constructors, variable x is set to be the representation of c.

For the example in Figure 4.14, c is the first unboxed constructor of its datatype, so

its representation is O|1, and we set x to be 1.

...

x = 1;

...

Figure 4.14: Example of the code generated for unboxed constructors

In all other cases, we place the value on the heap, at the next available space in the

GC heap, as indicated by the talloc pointer. Our boxed representation of constructors

consists of a header field followed by value fields containing either an unboxed value,

a pointer to a function or a pointer to another boxed value, corresponding to ~y. We

then set x to point to this assigned representation before updating the tallocpointer

by (1 + |~y|) ∗ 8.

...

x = alloc;

alloc = alloc + 3;

*((value *) x - 1) = 2048;

*((value *) x + 0) = y;

*((value *) x + 1) = z;

...

Figure 4.15: Example of the code generated for the allocation of boxed constructors

Eproj Projections in L6 directly correspond to fields in Clight. Since projections

could only be taken of non-nullary constructors, then y stands in for a boxed value,

represented in Clight as a Vptr. Since each of the fields of this constructor is 8 bytes

wide, we can access the nth field by adding n × 8 to the address of the pointer y,

which is precisely y[n] – this is shown, with n = 1, in Figure 4.18.

Ecase In L6, pattern-matching is separated into case-switching and projections (see

Section 2.6). As shown in the code generation algorithm in Figure 4.12 case-switching
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...

x = *((value *) y + 1)

...

Figure 4.16: Example of the code generated for a projection

match x with ~b corresponds closely to a switch statement in Clight. As nullary and

non-nullary constructors are encoded differently (as boxed or unboxed Clight values),

the encoding of case-switching in Clight first splits the branches into those targeted

by unboxed constructors ~b1 and those targeted by boxed ones ~b2.

We use external function VptrOrVint to determine if v is a pointer or an integer

value. We include the implementation of VptrOrVint in Figure 4.17. VptrOrVint re-

turns true if the last bit of the value is 0, and false otherwise (as pointers are word

aligned, while we represent integers and unboxed values x are as |2× x+ 1|). 4

We then generate branches for boxed and unboxed constructors using auxiliary

function codegenBranches ~bi, included in Figure 4.13. Each branch pairs the ordinal

of the constructor with the body of the branch as converted by our code generation

algorithm. The resulting cases are embedded in two switch statement observing the

ordinal of x depending on if it is boxed or not.

In Figure 4.18, we include an example of code generated from a case-construct on

a value n of inductive type T shown in Figure 4.1. We recover the ordinal associated

with the constructor, in the header or in the payload for boxed and unboxed values

respectively, before using a Clight switch on that ordinal.

As explained in Section 4.1.1, T has two boxed constructors, B with ordinal 0,

and D with ordinal 1. We can expect the first two statements in the B branch to

be of the form x = *((value *) n + 0); y = *((value *) n + 1) as described

in the translation of projections. We use default to catch the last ordinal of each

4Testing a pointer value for whether it is an odd number is technically undefined in the C11
standard, and in the current CompCert operational semantics. We rely on a refinement of the
CompCert semantics, axiomatized to handle such a test.
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switch; we generate a switch with a single default statement when there is a single

boxed or unboxed constructor, but expect the C compiler to subsequently optimize

the comparison away.

#define Is_ptr(x) (((x) & 1) == 0)

Figure 4.17: The implementation of Is_ptr

...

if ((Is_ptr)((value) n)) {

switch (*((value *) n - 1) & 255) {

0: // B

...

break;

default: // D

x = *((value *) n + 0);

y = *((value *) n + 1);

...

}

} else {

switch (n >> 1) {

0: // A

...

break;

default: // C

...

}

}

Figure 4.18: Example of the code generated for a case statement

Efun Since our initial code is fully closure-converted and lambda-lifted, we can-

not encounter Efun during the computation of translate_body. We describe in

Section 4.2.1 how closure-converted and fully hoisted functions are represented as

Clight top-level functions.

Eapp As shown in Figure 4.7, the code generated for “App f ~y” needs to store

according to the calling convention represented by t the arguments ~y passed to the

function in the argument array targs, before calling f . Then, the code generated for
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the function, described in Section 4.2.1, potentially calling the garbage collector if

executing the body of f allocated more than what is available in the GC heap before

restoring the arguments to f ’s local environment.

4.3 The Proof of Correctness of Code Generation

We prove the correctness of the CertiCoq backend using a forward simulation proof

over the operational semantics of L6 and of CompCert Clight.

The main theorem , included in Figure 4.19, states that if program P compiles to

statements stmt, and P evaluates to value v, then a starting state with stmt multisteps

to a skip state where the value held in memory at location targs1 is related to v.

Theorem 4.3.1.

· ` P ⇓ v ∧
codegen∆,θ P = sP ∧
init(m) =⇒

∃m′,
·, · ` sP ,m⇒ε ·,m′∧
(·, v) 'val

θ,m′ targs1.

Figure 4.19: Statement of correctness for code generation

In order to prove this theorem, we need to prove a more general statement where

e is a subterm of P being evaluated in evaluation environment ρ. The generalized

statement of correctness5 is given in Figure 4.20. The proof goes over the derivation

of big-step evaluation for L6. For every rules that could be used to evaluate a term,

we show that there exist stepping rules in the Clight evaluation semantics to evalu-

ate, in corresponding environments, the Clight statements generated resulting in a

corresponding value.

In the rest of this section, we show the different assumptions and invariants used

in the proof of correctness, before presenting an overview of the proof.

5repr bs L6 L7 related in theories/L7/shrink cps correct.v
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Theorem 4.3.2.

UB(ρ, e) ∧
INVm,lenv(tinfo) ∧
INVe(∆) ∧
ρ ` e ⇓ v ∧
codegen∆,θ e = se ∧
ρ 'env

θ,e (G,m, lenv) =⇒
∃m′,
G, lenv ` se,m⇒ε ·,m′∧
(ρ, v) 'val

θ,m′ targs1.

Figure 4.20: Generalized statement of correctness for code generation

4.3.1 The Memory Relation

Central to the proof of correctness is the relation between the L6 evaluation environ-

ment ρ and the Clight evaluation environment comprised of a global environment

G, a memory m and a local environment lenv.6

ρ 'env
θ,e (G,m, lenv)

For any x ∈ ρ, if ρ(x) is a function, or if x occurs free in e, then (m, lenv) holds

a related value for x according to the value relation shown in Section 4.3.2.

If x is the name of a function (which is to say, if ρ(x) = (ρ′, ~fd , x), then global

environment G provides us with the location Vptr G(x) 0 of a Clight function related

with ρ(x) 'val
θ,m Vptr G(x) 0.

Otherwise, the Clight value is held in the local environment at lenv(x), and the

value relation ρ(x) 'val
θ,m lenv(x) holds.

6Clight has two local environments, the ”var env” for addressable local variables, and the ”temp
env” for nonaddressable local variables. Our code generator never generates code that uses address-
able locals, so the var env is always empty; the ”lenv” here is Clight’s temp env.
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fd(x) = (~y, e) g[b, 0] 7→ Internal F (~y, e) ∼m F

(ρ, ~fd , x) 'val
θ,m Vptr b 0

VR fun

(c, ·) 'val
θ,m Vint (hdr∆ c)

VR ucon

m[b, o− 8] = Vint(hdr∆ c) (∀vi ∈ ~v. m[b, o+ (i× 8)] = v7
i ∧ vi 'val

θ,m v7
i )

(c, ~v) 'val
θ,m Vptr b o

VR bcon

Figure 4.21: Value Relation between L6 and Clight

4.3.2 The Value Relation

We include in Figure 4.21 the relation v6 'val
θ,m v7 between a L6 value v6 and a Clight

value v7 as represented in memory m by CertiCoq.

Rule VR fun states that a function value (ρ, ~fd , x) is related to a pointer Vptr b 0

in memorym if x corresponds to an entry (~y.e) in ~fd , bmaps, in the global environment

G to a function F 7, and (~y, e) is related to F according to ∼m as described in

Figure 4.22. F is a function taking in tinfo and returning void. Its body starts with the

garbage collection test sgc described in Section 4.1.6, followed by assignments setting

the variables ~y to the arguments passed to the function in targs (governed by the

calling-convention represented in finfo). Finally, the rest of the body, se, corresponds

to expression e according to the code generation relation codegen(e) = se.

Rule VR ucon shows how an unboxed constructor (c, ·) is related to a Clight

Vint hdr∆ c, if c has arity 0, and hdr∆ c is the proper header for c, as described in

Section 4.1.1.

Finally, rule VR bcon relates a boxed constructor (c, ~v) with a Clight pointer

Vptr b o if, accessing the pointer to a value array at element −1, we find hdr∆ c, and

if, for every value vi in ~v, vi is related to the Clight value held at the ith value-sized

location after Vptr b o.

7In Clight, functions are always block-aligned, that is, are at addresses (Vptr b offset) whose
offset is 0
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(~y, e) ∼m F :=
return F = void ∧
param F = [Tpointer(Tstructtinfo)noattr];∧
temps F = ~y ∧
body F = sgc; s~y; se ∧
s~y = Sset y1 targsfinfo1

; ...; Sset yn targsfinfon ∧
codegen(e) = se

Figure 4.22: Representation relation between L6 and Clight functions

4.3.3 Assumptions in the proof of correctness

In order to represent L6 programs in Clight, a few things need to be true of the

original program. For some of these assumptions, we are able to transform an incom-

patible program to a compatible one. For others, we refuse to generate code. In this

section, we present the different assumptions made and how they are handled by our

code generation phase.

All functions are closure-converted and hoisted. When the back end receives

the program under the form of an L6 term, we expect it to be hoisted, which is to

say of the form let ~fd in e, with e containing no function declarations.

Moreover, for every function (f, ~y, e') ∈ fd , e′ should be closed under ~y ∪ fd ,

as is the case with closure-converted functions. This is important for the proof of

the code generation phase, as ~y then corresponds to the live roots at the entry of e′,

which are needed if we are to safely garbage collect memory before executing e′.

Maximum allocation per function. Our compiler assumes that no function al-

locates more memory than what the garbage collector can provide. This is because,

in the back end, calls to the garbage collector are only inserted at the beginning of

functions, and executed if there is enough available space, in the worse case, to run

the function.
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To insert calls to the garbage collectors in the middle of functions, or indeed to

break functions at that point, we would have to compute the live variables and then

closure-convert and hoist the remainder of the function. Instead, we parameterize the

proof of the back end by a constant assumed to be bigger than the number of blocks

allocated by any function in the program being compiled, and refuse to generate code

if a function allocating more is found.8

Maximum number of arguments per function. Under the current calling con-

vention, we assume that no function has more arguments than a fixed number (for

example, 1024). However, compared to the allocation limit, it is easier to deal with:

1. As functions in Gallina are curried, multiple-argument functions are created

by us, either through CPS, uncurrying, or lambda-lifting. We can limit the

maximum number of arguments uncurried and lambda-lifted to a fixed bound

(and CPS conversion merely translates 1-argument functions to 2-argument

functions).

2. Under the current calling convention, arguments are passed in a heap-allocated

array (allocated once, at the beginning of program (or thread) execution). This

array can be declared to be bigger or smaller depending on the maximum num-

ber of arguments allocated by a function in the compiled program.

Under the current calling convention, and considering we are for now interested in

whole program compilation, the second option is what we adopt. We think the first

solution would be an easy addition and would make sense with other convention, for

example, when passing the arguments through callee-saved registers, by limiting the

number of arguments to the number of available registers.

8We remind the reader that an L6 ”function” is a tree of control flow, in which there are a
bounded, statically determinable number of allocations of fixed, statically known size.
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Maximum number of arguments per constructor. Our header representation

(see Section 4.1.1) allows for 54 bits for the arity of constructors. CertiCoq will

refuse to compile a program if it refers to a computational datatype containing a

constructor with more than 254 arguments.

Maximum number of constructors per inductive datatype. Our header rep-

resentation (see Section 4.1.1) allows for 8 bits for the ordinal of a boxed constructor,

and 63 for unboxed constructors. CertiCoq will refuse to compile a program if it

refers to a datatype with more than 28 − 1 non-nullary constructors or more than

263 − 1 nullary constructors.

Full program compilation. Our proof of correctness assumes we are compiling

the whole program.

This is in line with our expected use of developing safety-critical portions of the

code in Coq, and interacting with that safe core through the generated shim.

We envision being able to relax this assumptions, at the level of the code genera-

tion proof, by including a global environment of safe import and export procedures,

effectively proving the correctness of our generated shim.

Axiomatized (external) function. As detailed previously, we make use of the last

bits of Clight values to differentiate between integers and pointers. Unfortunately,

the Clight semantics does not allow for this distinction. We thus have to axiomatize

the semantics of the function isptr to return true on aligned (divisible by word size)

addresses.9

The garbage collector is also abstracted as an external function in the proof of

correctness, with the semantics described in Section 4.1.2. We then prove on the side

9To realize this axiom as a theorem would require an extension to the CompCert correctness
proof (but not a change to the behavior of the CompCert compiler).
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that this specification is compatible with the specification under which the implemen-

tation of the garbage collector was proved correct [61], in VST.

Correctness of the conversion environments. When starting the code genera-

tion, we receive global environments describing the name and components of inductive

datatypes found in the program. By this point of the compiler, we made sure that

• every constructor found in the program is represented in ∆.

• every constructor is applied to the number of arguments corresponding to its

arity as recorded in ∆.

4.3.4 Invariants in the proof of correctness

To generalize the statement of correctness (see Figure 4.20), we need invariants as-

serting the correspondence between the L6 structures, the conversion environments

and the Clight state. We now detail the invariant used in the proof.

Allocatable space. In the expression simulation relation, we assert that there is

enough writable space between the allocation pointer and the limit pointer to allocate

all the values assigned in the expression:

Theorem 4.3.3 (Sufficient allocatable space).

(8×m ≤ tlimit− talloc)

This fact is reasserted at each function entry using, when needed, the proof that

running the garbage collector results in enough space. This stays true throughout

evaluation – since we provision memory for the heaviest path of the function, any

step preserves or reduces the sum of the space used currently and the space needed

until the end of the function.
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Separation of spaces in memory. In a disjoint area of the heap, we keep the

structure describing the current state of the allocatable space and information about

the running program (as described in Section 4.1.6). It is important that this space

is separated from the allocatable space, and that both of these are separated from

the portion of memory holding the code portion of functions.

4.3.5 Specification of the interface with garbage collection

At the proof level, we axiomatize the effect of garbage collection on the provided

interface (described in Section 4.1.6). We separate the logical portion of the proof

from the spatial component:

Before garbage collection, we have a list of roots ~v7 held in the arguments array of

tinfo at position described in finfo pointing to the garbage-collected area L (which we

referred to as “GC heap” previously in this chapter) of a memory m and representing

a list of L6 values ~v6.

After garbage collection, in the same arguments array of tinfo, and at the same

position described in finfo, we have a list of roots ~v7
′ pointing to a modified garbage-

collected area L′ of a memory m′ representing the same list of L6 values ~v6. We also

know that the space between the new talloc and tlimit pointer of the updated tinfo is

writable, and at least the required size as described in finfo.

Theorem 4.3.4 (Assumptions w.r.t. correctness of a garbage collector10).

GCfinfof tinfo m = (m′, tinfo′) ⇒

(∀i ∈ finfof , v6 'val
θ,m targs[i]⇒ v6 'val

θ,m′ targs[i]) ∧

tlimit′ − talloc′ ≥ finfof [0] ∧

(∀talloc′o ≤ o < tlimit′o,Writable(m talloc′b o))

10program gc inv in theories/L7/shrink cps correct.v
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On the spatial side, before garbage collection, L contains all the pointers reachable

from ~v7, and is disjoint from tinfo and the area in which functions are allocated. After

garbage collection, any location in m not in L and tinfo is unchanged. tinfo is still

allocated at the same location in m′, but the values it holds may have changed.

Finally, all pointers reachable from ~v7
′ are contained in L′, which is disjoint from tinfo

and the area in which functions are allocated.

Theorem 4.3.5 (Spatial Assumptions w.r.t. correctness of a garbage collector11).

GCfinfof tinfo m = (m′, tinfo′) ∧

(∀talloco ≤ o < tlimito,¬L tallocb o)⇒

∃L′, (∀talloc′o ≤ o < tlimit′o,¬L′ talloc′b o) ∧

(∀i ∈ finfof , ∀b o, reachablem′ targs[i] b o⇒ L′ b o)

4.3.6 A correct generational garbage collector

The generational garbage collector developed for CertiCoq has been proved correct

by Wang et al. [61]. We showed that their representation of garbage collection is

compatible with our interface. However, we have not yet proven the spatial portion

of the interface. This is because the garbage collector has been proved correct using

the VST program logic [5], while the code generator is proved correct directly over

the semantics of Clight. The proof could be completed by unfolding the definition of

VST’s Hoare triple (semax), as described in Program Logics for Certified Compilers

[7]. Doing so would allow us to show that only the portions concerned with garbage

compilation (which is to say, tinfo, targs and the GC heap) have been affected by

garbage collection.

11program gc inv in theories/L7/shrink cps correct.v
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4.3.7 Forward simulation between L6 and Clight

In this section, we give an overview of the simulation proof between L6 and Clight.

The proof goes by induction on the L6 big-step evaluation derivation, in well-formed

L6 and Clight environments.

The top-level statement of correctness is given in Figure 4.19. The generalized

statement of correctness is given in Figure 4.20.

We provide here the details of each case of the proof, corresponding to the evalu-

ation rule of the semantics of L6 included in Figure 3.1:

ρ ` halt x ⇓ v By the evaluation derivation (e halt), we know that ρ(x) = v. Since

x is free in halt x, by the memory relation, we know that v 'val−id
m,l x. By , the value

corresponding to v will be placed in the first slot of the argument array, as required.

ρ ` let x = Projn y in e ⇓ v By the evaluation derivation (e proj), we know that

ρ(y) = c ~w, and that ρ;x 7→ wn ` e ⇓ v. Since y is free in let x = Projn y in e, by

the memory relation, we know that v 'val−id
m,l x. Since v is a boxed constructor, we

have l y = Vptr b o and (c, ~w) 'val
θ,m Vptr b o. By inversion on the value relation,

we could only be in the boxed constructor case VR bcon, and m[b, o + (n × 8)] =

v7
n ∧ wn 'val

θ,m v7
n). Extending l with x 7→ v7

n by stepping through the assignment

statements provides a local environment and memory related to ρ;x 7→ wn, and we

can apply the induction hypothesis on ρ;x 7→ wn ` e ⇓ v and codegen(e) = s.

ρ ` let x = Con c ~y in e ⇓ v The constructor case of code generation relies on

assumptions we are holding about allocatable space in the Clight memory. By

the evaluation derivation (e constr), we know that ∀yi∈~y, ρ(yi) = wi and ρ;x 7→

(c, ~w) ` e ⇓ v. Here, we need to consider two different cases, corresponding to our

value representation described in Section 4.1.1:
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If ord∆ c = 0, then we are generating Clight code “Sset x ((ord∆ c� 1) + 1); s”

where codegen(e) = s. Stepping through the assignment statement updated the local

environment to l, x 7→ hdr∆ (c), with ρ;x 7→ (c, ~w) 'env
θ,e (G,m, l, x 7→ hdr∆ (c)).

Correctness follows by induction hypothesis on codegen(e) = s and ρ;x 7→ (c, ~w) `

e ⇓ v.

If ord∆ c 6= 0, we are generating code to allocate a boxed value: “codegen(let x =

Con c ~y in e) = Sset x − 1 ((arr∆ c � 8) + ord∆ c); Sset yi vi+1; s”. In this

case, because of our assumption about the memory, we know that there is enough

allocatable space in m after the allocation pointer for |~y|+1 value-sized blocks. First,

we place the header of c in m[alloc]. Then, for each yi ∈ ~y, we have wi 'val−id
m,l yi

by the memory relation, and we store that value at m[alloc + (i × ||val)]. Finally,

we set x to point after the header, at m[alloc + 8)], establishing all the necessary

pieces for VR bcon to hold for c ~y, and extending the memory relation to have

ρ;x 7→ (c, ~w) 'env
θ,e (G,m, l, x 7→ Vptr balloc oalloc + 8). Before using the induction

hypothesis on codegen(e) = s and ρ;x 7→ (c, ~w) ` e ⇓ v, we update the allocation

pointer’s offset to to oalloc+(|~y|+1)×8, and reestablish the assumption that is enough

allocatable space for the allocation in the heaviest path in e after the new allocation

pointer.

ρ ` match x with ~b ⇓ v Code generation for case-statement relies on the correctness

of our constructor environment, ensuring that each constructor c of an inductive type

has a distinct hdr∆ c. It also relies on the axiomatized semantics of isptr properly

distinguishing between our representation of boxed and unboxed values (see Sec-

tion 4.1.1). By the evaluation derivation (case e match), we know that ρ(x) = c ~w,

(c⇒ e) ∈ ~b and ρ ` e ⇓ v. Well-formedness of ~b ensures that only one case matches c.

By the environment relation, we have v 'val
θ,m l x (as x is matched on, and thus cannot

be a function). If c is a nullary constructor, we are in the unboxed case (VR ucon)

105



and we switch on the header held unboxed in l. Otherwise, l x is a pointer, and we can

recover the header and switch on it. In both cases, the recursion is done on ρ ` e ⇓ v

and codegen(e) = s with a Clight continuation skipping through the remaining case

of the switch.

ρ ` App f ~y ⇓ v Application is by far the most complicated case of this proof, as

it relies on multiple assumptions of correctness for environments in order to properly

save and restore arguments from the arguments array, to perform a call to the right

location in memory, and to reestablish environment assumptions about the new code

block by calling, if needed, garbage collection.

In the application case (R app),  first generates statements to place the values

corresponding to ~y, in appropriate slots of the argument array according to the calling

convention of f . By the memory relation, we have corresponding Clight values in g

(in the case of functions) or l (for constructors) for any yi ∈ ~y.

Then, we step through the call to f , held in the global memory of the Clight

program p. The expression relation ensures that a corresponding function info finfois

available in the global environment, and that f maps to a sequence of statements

consisting of a conditional statement for garbage collection, assignment statements

restoring the arguments of f into local memory, followed by the translation of the

body of the function.

At this point, we step through the conditional statement inserted by the code

generator to ensure enough allocatable memory is available in the garbage-collected

area for the heaviest path of e, the body of function f . If there is enough space, we

proceed with the proof using m′ = m. Otherwise, the garbage collection is called,

and we use its axiomatized semantics to prove that the memory after collection,

m′, is suitable and related to ρ, ~x 7→ ~y under the memory relation. We provide
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in section 4.1.2 details about the interface and axiomatized semantics for garbage

collection. For the code generation proof, we concentrate on three properties of m′:

1. m is related to m′ over ~y.

2. tinfo has been properly updated, and there is enough space in m′ between talloc

and tlimit.

3. nothing outside in tinfo, targs or the garbage-collected area has changed between

m and m′.

This ensures all of the assumptions about m are still true about m′, in addition to

enough space in m′ being available.

We then restore the arguments of f from the arguments array to the new local

environment l′. Since f is closure-converted, we know that all of the free-variables of

its body are bound as arguments (potentially in the environment argument). Mean-

while, because f is hoisted, any function in ρ is also present in ρ′, so that portion of

the memory relation is preserved. Taken together, these two steps ensure that the

memory relation ρ′ 'env
θ,e (G,m′, l′) holds.

4.4 Generated Shims

CertiCoq compiles a Coq expression into a set of mutually recursive C functions, one

of which is the designated entry point. We expect that this C-language entry-point

function will be called from hand-written C code. This C-language ”driver” might,

for example, read input, formulate it as a Coq value in the OCaml-like representation

described earlier in this chapter, call the entry-point function with an appropriate

continuation-function argument, and then when that continuation is called, traverse

the Coq result data structure and print output.
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The writer of this C code will need to construct and traverse Coq values. For

that purpose, we provide a simple library of functions to construct and destruct C

representation (as described in Section 4.1.1) of every encountered datatypes.

For example, for the datatype included in Figure 4.1, we generate the following C

functions, with the type signatures shown in Figure 4.23:

• an eliminator function elim_T taking in a value c~v of type T and setting the

second argument to be the ordinal representing c and the third arguments to

be an array containing values ~v.

• a function make_T_A returning the value 1, corresponding to the unboxed en-

coding of the ordinal of A, 0.

• a function make_T_B taking in a value v as first argument, and returning a

representation of B v in the value array passed as second argument.

• a function make_T_C returning the value 3, corresponding to the unboxed en-

coding of the ordinal of C, 1.

• a function make_T_D taking in a value v1 as first argument and v2 as second,

and returning a representation of D v1 v2 in the value array passed as third

argument.

void elim_T(value val, value *ordinal, value **argv)

value make_T_A(void)

value make_T_B(value arg0, value **argv)

value make_T_C(void)

value make_T_D(value arg0, value arg1, value **argv)

Figure 4.23: Type signature of shim functions generated for datatype T (from Fig-
ure 4.1)
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We also generate constant arrays names_of_T holding the names of the construc-

tors of T, and arities_of_T, holding their arities.

Finally, we generate functions call_n and call_n_export, where n stands to the

number of arguments, taking in a value (f,~e) representing a function closure and n

values representing its arguments ~v, and call f with ~e and ~v. The export versions of

the function copies the resulting value outside of the garbage-collected area, allowing

for safe deallocation of tinfo and of the garbage-collected area of memory.

Taking together, these functions can be used to write C programs calling Coq

functions as compiled by CertiCoq.

4.5 Related Work

Oeuf [41] is a verified extraction pipeline for a restricted subset of Gallina to Cmi-

nor, an intermediate representation of CompCert. This project has been developed

concurrently to CertiCoq. It does not support user-defined datatypes, limiting the

users to a predefined set of base types. It avoids dealing with extraction concerns

by requiring its source terms to be written using eliminators for the provided base

types. It also assumes unbounded memories, which we don’t – we formalized the in-

terface with garbage collection, and our proof links with the proof of a verified garbage

collector. On the other hand, Oeuf’s correctness statement allows reasoning about

code that calls Oeuf-compiled code, which is not supported currently by CertiCoq’s

correctness statement.

GCminor [39] is an intermediate language extending CompCert Cminor with prim-

itives to interact with a garbage-collected heap, together with a library to define and

prove the correctness of garbage collectors. A similar setup is presented in the thesis

of Dargaye [18]. As mention in Section 4.1.6, this approach suffers from high runtime
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overhead. Moreover, neither supports the use of a bit to distinguish pointer, making

their framework not compatible with our representation of values.

PVS2C [48] presents a code generator from PVS, an interactive proof assistant

based on higher-order logic, to the C programming language. Unlike Gallina, PVS

is impure, supporting references and array updates. To support this, and to avoid

memory leaks, they implement a reference counting runtime system keeping track

of the number of live references to each object, and collecting objects when their

reference count drops to zero. A formal model for reference counting is presented

by the same author in an earlier paper [22], and shown to not impact the execution

of well-typed PVS programs. It instruments the operational semantics with explicit

operations to add and subtract from reference counts kept in a new portion of the

state. Our solution is more general; while we implement a generational copying

garbage collector, which is significantly faster than reference counting, our garbage

collection interface could be used by a reference counting collector.

As of 2018, CakeML includes a generational garbage collector [21] which was devel-

oped and proved correct concurrently to ours. Their garbage collector is configurable

in term of data representation, while ours assumes the representation described in

Section 4.1.1. However, their proof does not expose an abstract, modular interface

to garbage collection. Instead, they proved the correctness of code generation with

respect to a specific garbage collector, and show a simulation relation between that

garbage collector and others.

Cogent [43] is a project that aims to generate correct C code from a specification

language embedded in HOL4. Compiling a Cogent program generates a C program

and a proof, in HOL4, that the semantics of the C program correspond to the orig-

inal program. In addition to using different proof techniques, with proof-carrying

code in place of simulation proofs in CertiCoq, the Cogent language is much more

restrictive than Gallina, being limited to malloc-free functional programs, and aimed
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at the development of system software, for which a garbage collector would not be

appropriate.

Other optimizing compilers have been developed, but not proved correct, from

functional languages to C. We explore in the rest of this section the similarities and

differences in compilation techniques used with CertiCoq.

Directly relevant is the sml2c project [56], which include a code generation phase

from the SML intermediate representation, a direct inspiration for L6, to the C pro-

gramming language. They implement a garbage collector, and like us (and SML/NJ

before), they insert a single heap check at the beginning of every function. Fewer

C compilers supported tail-call elimination at the time sml2c was developed, they

instead rely on a dispatch loop.

Zinc→K2 is an optimizing compiler from CaML-light to C[15]. The research effort

of this project is centered on optimizing function calls through explicit specialization.

The compiler also uses a one-bit tag to differentiate between pointers and values,

together with a copying garbage collector. A major different with CertiCoq is that

their intermediate representation is not in continuation-passing style, so that they do

not benefit from function entry having a defined sets of roots. Instead, their collector

must deal with ambiguous roots spanning the whole accessible heap, a costly process.

4.6 Conclusion

In this section, we presented a code generation phase from a functional intermediate

language to a subset of the C programming language.

While code generators have been developed before between a functional language

and an imperative one, the design of our intermediate language allows for a straight-

forward translation to C, which impacts both the performance of the generated code

and the size of the proof.
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Our garbage collection interface separates the challenge of finding roots from the

correctness of garbage compilation, resulting in a more modular proof of correctness.
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Chapter 5

Evaluation

In this chapter, we evaluate CertiCoq by comparing our extraction pipeline with

the unverified one currently included with the Coq theorem prover. We follow with

a discussion of future work in the form of additional optimization phases and of

alternative code generation that would improve the performance of the generated

code.

5.1 Benchmarks

We evaluate the performance of the compiler on benchmarks introduced in Section 3.4,

and on a functional implementation of the Secure Hash Algorithm (SHA) developed

for a proof of correctness of SHA-256 using VST1 [6]. Binom is a small benchmark

consisting of a sequence of operations on binomial queues (89 LOC), Color runs the

Kempe/Chaitin graph coloring algorithm on a large graph (1359 LOC), Veristar runs

a paramodulation-based resolution decision procedure for separation logic over a large

entailment (1964 LOC), and SHA runs SHA-256 on a 200 byte message (1143 LOC).

1Section 4 of Appel [6] presents two functional programs, SHA256 and SHA256', which are proved
equivalent but the latter is much faster than the former. We use the slow version (SHA256) to
facilitate the comparison with Oeuf
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Figure 5.1 presents the compilation time (in ms) of the various benchmarks

throughout the compiler.

• L0 to L1 records the time taken by MetaCoq to reflect the Coq kernel repre-

sentation of the program into PCUIC (see Section 2.2).

• L1 to L2 records the time taken by MetaCoq to type-check the reflected program

and and to erase its propositional portion while going from PCUIC to λ � (see

Section 2.3).2

• L2 to L3 η-expands constructors and branches (see Section 2.4).

• L3 to L4 changes the representation to globally nameless and creates a term rep-

resenting the full program by locally binding the environment (see Section 2.5).

• L4 to L6 performs CPS conversion and a change of binder representation to

globally unique identifiers (see Section 2.6).

• L6 to L6c records the time taken by a series of optimizations and transfor-

mations over L6: uncurrying, shrink reduction followed by closure conversion

and lambda-lifting and a second round of shrink reduction (see Section 2.6 and

Chapter 3).

• Finally, L6c to L7 generates a Clight program from a closure-converted and

lambda-lifted L6 term (see Section 2.7 and Chapter 4).

The total compilation time includes pretty-printing C to a file from the compiled

Clight.3 We include for comparison the time taken by the currect extraction to

2Most of the time in this translation (in, in a lot of cases, in the whole pipeline) is spent type
checking the reflected term in order to check if the term to erase is a proof in Prop or a type. Work
is ongoing to speed up the type checking process, and to avoid redoing work that is already being
performed in the Coq kernel.

3We could avoid this pretty-printing by sending the Clight abstract syntax tree (AST) generated
by L6-to-L7 directly to Compcert.
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OCaml. Benchmarks were run on a MacBook Pro (Retina, 15-inch, Mid 2015) with

a 2.5 Ghz Intel Core i7 and 16 GB 1600 MHz DDR3 memory, using Coq 8.8.2 and

OCaml 4.05.0. Binom is a toy benchmark aimed at showing the compilation and

runtime overhead. Color is computationally simple, but involves the encoding of a

very large graph, resulting in slower compilation time. Veristar and SHA256 are

both computationally involved, with functions and proofs about them taking most of

the lines of code, resulting in most of the compilation time being spent in erasure (L1

to L2) and in functional optimization (L6 to L6c).

Figure 5.2 presents the runtime of the compiled benchmarks and of code extracted

to OCaml and compiled using the OCaml byte-code compiler ocamlc and the OCaml

native-code compiler ocamlopt (reported times do not include extraction and com-

pilation time). Also shown are the run time of various evaluation facilities in Coq.

compute is an interpreter with a call-by-value evaluation strategy. vm_compute and

native_compute rely on reification to OCaml, employing, respectively, the byte-code

and the native-code OCaml compiler, before reflecting the value into the Coq kernel.

The provided time is the whole run time of the command. In the case of Veristar,

uninstantiated propositional axioms prevent these facilities from executing the bench-

mark. CertiCoq-compiled programs run faster than programs extracted to OCaml

and compiled using the OCaml byte-code compiler, but slower than those compiled

using the OCaml native-code compiler. We believe that the optimizations described

in Sections 5.2.3 and 5.2.4 will bring our runtimes closer to those of the native-code

compiler.

5.1.1 Quantitative comparison with other verified extraction

pipelines

While Oeuf [41] (see Section 4.5 for an overview of the project) also compiles Coq

to C, it assumes its source is in an eliminator form, instead of recovering it from
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Benchmark Binom Color Veristar SHA256

L0 to L1 < 1 207 179 977
L1 to L2 2 4767 600 2970
L2 to L3 < 1 1 1 1
L3 to L4 < 1 5 15 23
L4 to L6 3 138 157 152
L6 to L6c 12 711 933 901
L6c to L7 2 1654 148 252

Pretty-printing to C 30 1036 800 992
Total CertiCoq compilation time 49 8597 2841 6268
CompCert (ccomp) compilation 422 3860 8359 13669

Extraction time to OCaml 54 225 124 78
ocamlc byte-code compilation 21 177 132 70

ocamlopt native-code compilation 137 338 487 256

Table 5.1: Compilation time (in ms)

Benchmark Binom Color Veristar SHA256

CertiCoq < 1 37 83 6019
ocamlc 2 53 126 10659

ocamlopt 2 12 15 1921
compute < 1 7594 * > 600000

vm compute < 1 228 * > 600000
native compute 158 1527 * > 600000

Table 5.2: Run time performance measurements (in ms)

the Coq kernel representation of the term. The Oeuf team used the same SHA256

benchmark as we did, from the VST proof of correctness of SHA-256[6]. When

running their generated code with an unverified slab allocator, they observe a 20x

slowdown compared to extraction followed by ocamlc, while we achieve a 2x speedup

on the same benchmark.
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5.2 Future work

5.2.1 Additional optimizations over L6

While we made sure to include realistic compiler optimizations allowing the current

pipeline to handle reasonably sized Coq developments, additional optimization phases

would further decrease the size of the generated code, and reduce their execution

time. Common subexpressions are introduced at different points in the compiler.

For example, in the Coq kernel, mutually recursive function bundles are duplicated

for every access point. Continuations are also duplicated in the case of pattern-

matching. Common subexpression elimination could be applied over L6 to consolidate

the portions of the code that were not simplified by shrink reduction.

5.2.2 Separate Compilation, and Interface with C programs

We envision that most users of CertiCoq will link their extracted code with

performance-sensitive, or reactive portions of development implemented in the C

programming language. For this, the current CertiCoq release is insufficient,

because the generated shims are not proved to generate adequate representation of

values, and because the proof of correctness only considers full programs. Future

work will be needed to extend the interface between the generated code and C

programs, and to be able to link, at the proof level, proofs about Coq development

compiled with CertiCoq and proofs (in program logics such as VST) about the C

portions of the development.

5.2.3 Extraction directives and support for native datatypes

We believe significant run time performance improvement could be achieved by al-

lowing, as is the case with the Coq extraction pipeline, to translate specific Coq

datatypes and functions as native datatypes and optimized functions in the target
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language. While this is unsafe in general, we could implement blessed extraction di-

rectives and prove them correct.For example, programs proved correct with respect to

integers using modular arithmetic could be safely extracted to machine integers, and

primitive operations on them should be replaced by equivalent operations on machine

integers. L6 already supports a notion of primitive datatypes and functions through

constructor Prim, such that most of the work would be in adding the special cases to

code generation, and proving their correctness.

5.2.4 Further optimization for code generation

Our parameter passing strategy for function calls, described in Section 4.1.3, was

designed to be compatible with a wide array of architectures, including those with a

limited number of general-purpose registers such as i386. However, on x86-64 (and on

RISC machines such as ARM, PowerPC, RISC-V, etc.), we believe we would benefit

for adopting a different calling convention for the generated functions to pass argu-

ments in registers. Since multiple argument functions are introduced by uncurrying,

we could limit uncurrying to the number of available registers (for example, 16 on

x86-64). Moreover, since we are compiling functions in continuation-passing style,

and as such arguments are never needed on return, we should use a compiler directive

so that the calling convention for all our generated C functions uses no callee-save

registers at all, and uses all available registers for parameter passing, as is done in

the GHC→LLVM calling convention for Haskell.
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Chapter 6

Conclusion

In this thesis, I have described CertiCoq, a verified extraction pipeline for the Coq

interactive theorem prover. I have focused on my contributions to the project, includ-

ing the proof of correctness of optimizations over the L6 intermediate representation

and of the code generation phase. The proof framework described in Chapter 3 allows

for reusing portions of the proof of correctness of shrink reduction for other optimiza-

tions over the same intermediate representation. The proof of correctness of the code

generation phase described in Chapter 4 includes a novel interface with garbage col-

lection abstracting away details of specific garbage collectors. For Coq developments

using extraction facilities, CertiCoq considerably reduces the trusted computing

base of Coq, replacing an unverified extraction pipeline targeting an unverified com-

piler code running with an unverified runtime system. The pipeline described in this

thesis is the first step in providing a certified extraction mechanism allowing realistic

programs to be developed and proved-correct in a proof-assistant without sacrificing

runtime efficiency.

CertiCoq is an ongoing project at Princeton University, INRIA, Cornell Univer-

sity, and the University of Edinburgh. Improvements to the generated code such as
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the ones described in Section 5.2, and a certified interface with C programs proved-

correct in VST, would bring us closer to that goal.

Another line of future work would be to implement reflection facilities in order

to use CertiCoq as a reduction mechanism for large proof goals, as an alternative to

vm_compute and native_compute. While our current pipeline does away with proofs

early on, nothing prevents us for keeping them as part of the generated programs,

and evaluating them just like we do for the rest of the program. The resulting values

could then be decoded as Gallina proof terms and reintegrated into the proof state.

Work to reduce the compilation time will be required in order to make this viable.

While our current front end is tailored for Coq, we believe our middle and back

end could be reused to efficiently and safely compile other functional languages. L6 is

general enough to be used as an intermediate language for a wide array of languages,

while being structured to make it easier to optimize and to compile down to lower-level

languages.1

In 1967, McCarthy and Painter published a paper in which they outlined the “ulti-

mate goal” of “mak[ing] it possible to use a computer to check proofs that compilers

are correct”[38]. Advances in programming languages, compilers and in theorem

proving have made this goal a reality, as exemplified by projects such as CompCert,

a semantically verified optimizing compiler for C. However, the vast majority of the

compilers used today are not verified, and contain bugs that have been shown to be

absent in verified compilers like CompCert [63]. Even in a proof and programming en-

vironments such as Coq, where safety critical applications are developed with formal

guarantees about the algorithms used and the correspondence with their implemen-

tation, unverified compilation is often a part of the pipeline. I hope that this project

1The statement of correctness of the code generation phase (see Figure 4.20) is based on a forward
simulation of the big-step semantics of L6, so that it can only be used for terminating programs.
While this is not a problem in Coq, where strong reduction holds, the proof would need to be
adapted to be useful for general-purpose programming languages. We believe the proof should be
easily adapted to simulation over the small-step semantics of L6.
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and continued work in the area of compilers and runtime systems verification will

reduce the verification overhead of optimizing compilers, and make them available

and efficient enough to be widely used.
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