
Passive OS Fingerprinting on Commodity Switches
Sherry Bai, Hyojoon Kim, Jennifer Rexford

Princeton University
ABSTRACT
OS fingerprinting allows network administrators to identify
which operating systems are running on the hosts commu-
nicating over their network. This information is useful for
detecting vulnerabilities and for administering OS-related
security policies that block, rate-limit, or redirect traffic. Pas-
sive fingerprinting has distinct advantages over active ap-
proaches: passive fingerprinting does not generate active
probes that not only introduce additional network load but
could also trigger alarms and get blocked by network address
translators and firewalls. However, existing software-based
passive fingerprinting tools cannot keep up with the traffic
in high-speed networks. This paper presents P40f, a tool
that runs on programmable switch hardware to perform OS
fingerprinting and apply security policies at line rate. P40f
is also self-learning; P40f collects information about traffic
that cannot be fingerprinted so that new fingerprints can be
learned in the future. We present our prototype implemented
with P4 language along with experiments we ran against
packet traces from a campus network.

1 INTRODUCTION
Information about the operating systems running on end
hosts is important for managing enterprise networks. In par-
ticular, a host’s operating system can be an indication for
whether traffic from that host poses a security risk. For ex-
ample, hosts running outdated operating systems may be
vulnerable to security exploits that may cause them to be
compromised, which can cost an organization hundreds of
thousands of dollars [10]. A host that has an OS information
mismatch between its network-based and application-based
OS fingerprints may indicate that its traffic has been inter-
cepted by an attacker [11]. All in all, OS information allows
administrators to evaluate the threats and risks in their net-
work. Network administrators use host OS information for
various tasks, such as keeping device inventory up-to-date,
urging users to perform OS upgrades, and applying different
firewall rules based on OS type.

Many popular OS fingerprinting tools rely on active prob-
ing. These tools send probes designed to elicit unusual or
distinctive responses from target hosts to reveal OS-specific
quirks. For example, Nmap [27] and ZMap [12] send TCP
SYN packets to hosts, and then analyze the resulting SYN-
ACK responses. However, active fingerprinting has a number
of disadvantages. First, tools such as Nmap [27] exchange

multiple packets with each host, leading to longer scan times
and additional network load. Such approach does not scale
as the number of hosts grows in the network. Second, active
probes miss a lot of hosts, leaving them unaccounted for. For
example, active probes cannot run against hosts outside of
the administered network. Active fingerprinters also have
difficulty scanning hosts behind network address translators
(NATs). Some hosts even plainly block or ignore such probes.
Third, active probing techniques do not fit today’s dynamic
bring-your-own-device (BYOD) networks (e.g., eduroam on
college campuses [15]), which do not require host registra-
tion and where hosts come and go rapidly.
In contrast, passive OS fingerprinting tools [3, 44] mon-

itor existing network traffic to identify a host’s OS in real
time, while avoiding the need for periodic scans, extra traffic,
and bypassing of NATs and firewalls. Passive OS fingerprint-
ing tools have several advantages over active probing-based
fingerprinting tools.

• No additional network load: No probing packets
are required, thus scales better as the network size and
number of hosts grow.

• Ability to fingerprint hosts outside the network:
TCP SYN packet-based passive OS fingerprinting en-
ables the tool to even fingerprint hosts outside of the
network. Such information is extremely valuable, es-
pecially for network forensics.

• Better fit for BYOD networks: Hosts come and go
rapidly in BYOD networks, especially in wireless en-
vironments. Passive tools can fingerprint every host
while active fingerprinting tools will miss hosts be-
tween each probe.

Due to these advantages, passive fingerprinting tools are
popular in many network-monitoring applications despite of
its slight lose of accuracy when compared to active scanning.
For example, the pfSense firewall [31] uses the passive finger-
printing software p0f [44] to filter connections by operating
system [30]. The OpenBSD Stateful Packet Filter (pf) [20]—a
packet filter that resides in the kernel—can choose to pass a
packet with or without modifications, silently block a packet,
or explicitly reject a packet with a response.
Existing software tools, however, are not sufficient for

practical use despite the advantages of passive OS finger-
printing. First, software cannot keep up with large amounts
of traffic on high-speed links. Even the k-p0f tool designed
for high throughput cannot monitor a gigabit link saturated

1

with SYN and SYN-ACK packets without experiencing a
38% degradation in throughput [5]. The use of Data Plane
Development Kit (DPDK) [1] with load-balancing in mu-
tiple servers might increase the performance to a certain
extent. Yet it is still challenging to build and set up such in-
frastructure and seamlessly achieve up to 100 Gbits/second
processing rate. Second, out-of-band monitoring systems
cannot easily take actions on traffic (e.g., to block, redirect,
or rate-limit packets) based on the OS information. These
limitations could be avoided if network devices could perform
OS fingerprinting and take direct action on packets.

We present P40f, a passive fingerprinter that runs directly
in the data plane. We utilize the emerging Protocol Indepen-
dent Switch Architecture (PISA) programmable switches [4,
8] that provide flexible packet processing, which enables both
OS fingerprinting and security policy enforcement on the
switch. On top of the strengths of passive OS fingerprinting,
P40f provides the following benefits:

• OS fingerprinting in line rate: Whether the switch
has a 10G, 40G, or an 100G interface, P40f will perform
OS fingerprinting that matches the interface’s packet
processing rate with zero additional latency.

• Direct actions on switch: P40f can take direct ac-
tions, such as allow, drop, or redirect, on packets based
on their OS information.

However, to operate at line rate, these switches impose
constraints on packet parsing and processing. For example,
the number, types, and lengths of fields in a TCP option
differ from option to option, but switch parsers cannot pro-
cess headers that contain a variable number of fields or that
contain variable-length fields in the beginning or middle of
the header. This makes fine-grained TCP option processing
difficult. Fingerprinting tools like p0f also use the result of
dividing maximum segment size by window size, but hard-
ware switches typically cannot perform complex arithmetic
operations such as division or modulo.
P40f presents following contributions to overcome this

challenge:
Complete, versatile TCP option parser. P40f imple-

ments a complete, versatile, and efficient TCP option parser
in the data plane, dealing with any combination of TCP op-
tions with a variable number of fields and variable-length
fields. P40f’s TCP option parser also leaves the original TCP
header intact while doing so. Normally, such a capability
would require performing complex operations such as inte-
ger division (e.g., for extracting TCP window size), which
is not possible to perform in PISA switches. We utilize an
enhanced “loop” technique to accurately parse various TCP
options and implement a binary search in the data plane to
replace complex operations (Sections 3.1 and 3.2).

OS-based security policy enforcement in data plane.
P40f allows network administrators to express and enforce
a security policy based on a host’s operating system infor-
mation directly in the data plane. Traditionally, network
administrators need to feed live traffic to a powerful and
expensive packet analyzer that can perform deep packet in-
spection to even just identify a host’s OS type. Enforcing
a policy to take action on packets based on host OS infor-
mation in real time is even harder if the network is using
a third-party middlebox for such purpose. P40f provides an
interface for network operators to express OS-based security
policies, which can allow, drop, or redirect packets based on
host OS types (Section 3.3).

Collecting data to learn new OS signatures. TCP SYN
packet-based OS fingerprinting is powerful; over 98% of out-
going SYN packets can be labeled in our campus network.
Yet, some packets might be missed. P40f can forward uniden-
tified traffic to an external system to drive the creation of
new signatures. For example, the HTTP user-agent field is
known to be a good host OS identifier. P40f forwards uniden-
tifiable SYN packets with destination port 80 (HTTP) to an
external analyzer that can perform OS fingerprinting using
the HTTP user-agent field. P40f implements a Bloom filter
to efficiently keep track of all flows associated with such
packets in the resource-constrained data plane, and export
only the first HTTP request packet of such flows for offline
analysis (Section 3.4).
Figure 1 shows P40f’s architecture. P40f is prototyped in

P4 [7], a language for specifying how to parse and process
packets. P40f is based on the popular p0f tool [44]. Our P40f
system first extracts information from a TCP SYN packet’s
TCP/IP headers, then compares these fields against rules from
the fingerprint database. P40f’s fingerprinting capability is
not affected by the traffic being encrypted (e.g., SSH, HTTPS)
because P40f utilizes field values in the TCP/IP header, not
the payload. In addition, P40f allows administrators to spec-
ify actions to take on packets that match a particular OS
label. If the OS associated with an HTTP connection cannot
be identified using the TCP header, P40f forwards the SYN
packet and the associated HTTP request to a software for
analysis to enable the discovery of new OS signatures.

To illustrate the value of P40f for network administrators,
we present the results of running P40f on packet traces of
both incoming and outgoing traffic on a university campus
network. We discuss the types of operating systems observed
for both internal and external hosts, and also compare P40f’s
output to user-agent strings observed in HTTP traffic in
these traces. Because user-agent strings often contain infor-
mation about the OS running on the HTTP client, we can use
this information to validate whether the operating systems
reported by P40f are accurate.

2

Figure 1: P40f architecture

Roadmap: Section 2 presents an overview of p0f, with
emphasis on the TCP signatures used to infer the OS of the
sending host. Section 3 describes how P40f performs OS
fingerprinting in the data plane. We evaluate our prototype
of P40f in Section 4. We present a measurement case study
using P40f in Section 5. Section 6 discusses related work, and
Section 7 concludes the paper.

2 BACKGROUND: P0F OVERVIEW
P40f is based on p0f [44], a popular passive OS fingerprinter
implemented in software. P0f monitors a network interface
and performs passive OS fingerprinting on packets sent
on this interface. To perform OS fingerprinting on a TCP
SYN packet, p0f first extracts information from the packet’s
TCP/IP headers. P0f then compares this information to en-
tries in a fingerprint database file to match the packet to
an operating system label. A p0f TCP signature is a string
that summarizes the information needed to identify the OS
or application that sent a particular TCP packet. Signatures
are organized into signature groups that are each given an
OS or application label. Figure 2a shows the format of a
signature in the fingerprint database, as given in the p0f
README [43]. Figure 2b shows an example signature group
with two signatures.

A signature consists of nine colon-delimited fields, sum-
marized in Table 1. The field olayout, which captures exact
ordering of TCP options, is particularly important, especially
for distinguishing between different classes of operating sys-
tems (e.g., Linux vs. Windows): almost all values of olayout
in the p0f v3.09b database are unique to one OS class.

sig = ver:ittl:olen:mss:wsize:scale:olayout:quirks:pclass

(a) Format of a p0f v3.x TCP signature

label = s:unix:Linux:3.11 and newer
sig = *:64:0:*:20,10:mss,sok,ts,nop,ws:df,id+:0
sig = *:64:0:*:20,7:mss,sok,ts,nop,ws:df,id+:0

(b) Signature group for “Linux 3.11 and newer”

Figure 2: P0f signature format and examples

Each signature group corresponds to an OS label. A p0f v3
OS label contains four fields: type, class, name, and flavor [43].
The type field specifies whether the signature is specific or
generic: generic signatures match broader groups of operat-
ing systems, are considered “last-resort,” and thus are given
lower priority than specific signatures. The class field speci-
fies the OS architecture family to which the label belongs:
examples of classes include “unix”, “win” (Windows), and
“cisco.” The name field specifies the name of the specific OS to
which this OS label corresponds: examples of names include
“Linux” or “OpenBSD.” The flavor field contains information
further qualifying the OS label, such as the OS version.

3 PASSIVE OS FINGERPRINTING IN P4
PISA-based programmable switch generally consists of some
number of parsers, match-action pipeline stages, and de-
parsers. To perform OS fingerprinting on a packet, P40f first
extracts packet headers, including TCP header options, in the
parser of the switch. In the parser and match-action pipeline,
P40f collects information about p0f signature fields and stores
it in metadata (p0f_metadata). P40f then uses this metadata
as a key in a lookup table occupying one of the final stages
of the pipeline. After the lookup table match, the policy ac-
tion associated with the matched OS label is executed on the
packet. Finally, P40f deparses the packet headers and forward
the packet to its next destination. Figure 3 summarizes the
path of the packet through the switch.
In Section 3.1, we discuss fine-grained parsing of TCP

options, which is nontrivial because of the variable length,
number, and ordering of options between TCP packets. In
Section 3.2, we discuss collection of p0f signature field in-
formation in p0f_metadata. In Section 3.3, we discuss the
fingerprinting rules in the lookup table, including policy
actions that may be contained in a fingerprinting rule. In
Section 3.4, we discuss collecting data about packets that can-
not be identified within the switch such that p0f signatures
can be learned and verified over time.

3.1 Parsing Variable-Length TCP Options
TCP options contain information critical for P40f’s OS finger-
printing. P0f signature fields such as mss, scale, and quirks

3

Ethernet/
IPv4/TCP

Parsing

Processing Pipeline

p0f_metadata
OS Label +

Policy

Lookup Table

Next TCP
Option?

NOP
(Kind 1)

EOL
(Kind 0)

MSS
(Kind 2)

TS
(Kind 8)

.

.

.

Accept
(No more
options)

C
ol

le
ct

 re
m

ai
ni

ng
 p
0
f
_
m
e
t
a
d
a
t
a

E
xe

cu
te

 p
ol

ic
y

ac
tio

n

Packet In

(src_ip_1, dst_ip_1,
src_port_1, seq_no_1)
(src_ip_2, dst_ip_2, …)
(src_ip_3, dst_ip_3, …)

HTTP Bloom Filter

IP
v4

 fo
rw

ar
di

ng

TCP port 80?
Add TCP flow

info

§ 3.1

Deparsing;
Packet Out

§ 3.2 § 3.3 § 3.4

Figure 3: Diagram summarizing P40f’s processing of a SYN packet. p0f_metadata, or match field information, is
collected during TCP options parsing (Section 3.1) and at the beginning of the processing pipeline (Section 3.2). This metadata
is then used as a key to look up the appropriate policy to execute (Section 3.3). If the SYN packet is a web packet and has been
chosen to be sampled, then we add its TCP flow information to the HTTP Bloom filter, then send a clone of the packet to
software for analysis (Section 3.4).

all rely on information contained in TCP option fields. The
olayout signature field requires capturing the exact order-
ing of TCP options in a packet, and certain quirks signature
fields require detection of multiple options of the same type.
Fine-grained parsing of TCP options, however, is diffi-

cult because a TCP packet can contain a variable number of
options, each of variable length and containing variable con-
figurations of fields. Performing such parsing in a switch at
line rate is particularly challenging. In P4, each header and its
constituent fields must be explicitly defined for the header to
be extracted in the parser, but the variability of TCP options
makes it challenging. Dapper [18] approaches this problem
by creating a parsing “loop”. Dapper first identifies the type
of option being parsed using the option’s “kind” byte, then
passes control to a sub-parser for this specific option type.
However, Dapper defines a fixed deparsing order, meaning
that packet options may be modified after switch processing.
As a result, the ordering of options in the deparsed packet
may be different from that of the original packet, and du-
plicate options in the original packet can be lost when the
packet is sent to its next destination, which is undesirable. A
TCP options parser written by Andy Fingerhut [14] also uses
a parsing “loop,” first reading the option kind byte and then
passing control to a subparser. Fingerhut’s parser resolves
Dapper’s ordering issue by using a P4 header stack, which
can store options in their exact original order, including mul-
tiple options of the same type. However, this parser does not
adhere to the TCP standard [38] because it assumes that all
options have both kind and length fields. Furthermore, the

parser does not support common TCP options recognized
by p0f, such as the timestamp option (kind 8).
P40f’s parser extends on Fingerhut’s TCP options parser

by adding support for options without length fields, as well
as for the remaining option types recognized by p0f. Addi-
tionally, because the switch can only access the“front” (most
recently extracted) option in a header stack, all collection of
TCP options data must be done while each option is parsed.
Therefore, information about mss, scale, olayout, and some
quirks are all collected by the P40f parser.

3.2 Computing P0f Signature Fields
In order to match a packet to an OS label, P40f collects in-
formation about p0f signature fields defined in Table 1 from
each packet. In the switch, we maintain one metadata field
for each p0f signature field; these metadata fields make up a
struct called p0f_metadata. p0f_metadata is populated dur-
ing parsing and in the match-action pipeline of the switch.

Most p0f_metadata fields can be extracted directly from
the packet headers; for example, the ver field maps directly
to the version field in a packet’s IP header. However, the TCP
window size (p0f signature field wsize) is hard to extract;
this is because a wsize field value can be expressed as either
a fixed integer or a multiple of the TCP maximum segment
size (e.g., mss*2). Switches typically cannot perform inte-
ger division, so we cannot simply divide the packet’s TCP
window size value by the MSS value.

To overcome this limitation, P40f performs a binary search
instead over a range of reasonable values (0 to 64) in order to
find an integer value of TCP window size divided by MSS, or

4

Field Description

ver IP version. Value is ‘4’ for IPv4, ‘6’ for IPv6, or
wildcard (‘*’).

ittl Initial TTL used by the OS.

olen Length of IPv4 options or IPv6 extension head-
ers.

mss TCP maximum segment size. Supports wild-
card value (‘*’).

wsize TCP window size. Value is a fixed integer, a
multiple of MSS or MTU, a multiple of an inte-
ger, or a wildcard (‘*’).

scale TCP window scaling factor. Supports wildcard
value (‘*’).

olayout Exact layout of TCP options, including of bytes
of padding after EOL option (if present). Con-
sists of comma-delimited strings.

quirks Implementation quirks found in IP and TCP
headers and in TCP options. Consists of
comma-delimited strings. Examples include
“don’t fragment bit set” (‘df+’) and “sequence
number is zero” (‘seq-’).

pclass Payload size classification. Value is ‘0’ for zero
payload size, ‘+’ for nonzero payload size, or
wildcard value (‘*’).

Table 1: Fields of a p0f v3.x TCP signature.

wsize_div_mss. Performing binary search over this range
requires six iterations at most. At each iteration, we maintain
the invariant that wsize_div_mss falls between some lower
and higher bound. If no value has been found after six itera-
tions, TCP window size is not a multiple of MSS. In that case,
wsize_div_mss is set to 0, so the packet cannot match any
rule corresponding to a signature with wsize expressed as
mss*n. Any signature with wsize expressed as a fixed integer
translates to a rule with wildcard wsize_div_mss. Figure 4
shows the pseudocode for one iteration of binary search in
P40f.

3.3 Inferring OS Label and Applying Policy
The match-action pipeline contains a lookup table contain-
ing fingerprinting rules. After collecting all p0f_metadata
information, the switch uses p0f_metadata to look up an
appropriate rule containing an OS label for and policy action
to be executed on the packet.

Each rule contains ninematch fields, which are used by the
switch to match each packet to a particular rule. Each match

action binary_search_iter() {
mid = (lo + hi) >> 1;
mid_mss = (lo_mss + hi_mss) >> 1;
// Compare wsize to midmss
if (wsize < mid_mss) {

hi = mid;
hi_mss = mid_mss;

} else if (wsize > mid_mss) {
lo = mid;
lo_mss = mid_mss;

} else { // wsize == mid mss
wsize_div_mss = mid;

}
}

Figure 4: One iteration of binary search for calcu-
lating wsize_div_mss. We maintain the invariant that
wsize_div_mss falls within the range [lo,hi], which is ini-
tialized to [0, 64]. If no value has been found after six stages,
wsize is not divisible by MSS.

field maps one-to-one to one of the fields in p0f_metadata,
thus also maps to each p0f signature field in Table 1. The
switch uses p0f_metadata as a key for the lookup table. A
rule also contains three other components: an OS label ID, a
policy action, and a priority value. If a packet matches multi-
ple rules, the switch tie-breaks between the rules based on
their priority values. The switch then increments a counter
associated with the OS label ID of the matched rule, which is
saved in the register memory. Such counters can be used to
provide valuable information to operators such as the pro-
portion of each particular OS that initiated a connection to
the network. There are around 45 total OS labels in the p0f
database and each counter is eight bytes wide in the current
prototype, which totals to 360 bytes. This is much less than
1% of the total available on PISA-based hardware such as
the Edge-core Wedge 100BF-32X with the Barefoot Tofino
chip [13]. Finally, the switch executes the policy action.
P40f currently supports three policy actions: drop_pkt,

drop_ip, and redirect. The drop_pkt action drops any
packet matched to an OS label. The drop_ip action drops
the packet as well as any subsequent packets received from
the source IP address this packet came from. The redirect
action redirects any packet matched to this OS label to a
specified destination IP address. This destination IP is given
as a parameter for the redirect action in the policy file.

Fingerprinting rules are generated by a Python script that
takes as input a p0f fingerprint database file and a security
policies file. The script generates at least one rule for each p0f
signature in the fingerprint database. The rule is then given
an OS label ID based on the OS label for its corresponding p0f

5

signature. If the OS label has been assigned a policy action
in the policies file, the rule is given this action.

The format and and example of a policy in the policy file
is as follows:

[target] -> [action name] [action parameters]
s:unix:Linux:3.11 and newer -> redirect 10.0.1.2

The target of the policy is the OS label or group of OS labels
to which the policy applies. The action name is the type
of action applied to this label. The action parameters are
any parameters the policy action might take: for example,
the redirect policy takes the IP address to which packets
should be redirected as a parameter. In the above example,
the policy states that all SYN packets that match Linux 3.11
and newer should be redirected to IP address 10.0.1.2.

3.4 Exporting Data to Learn New Rules
Some SYN packets may not match any of the signatures in
the p0f signature database, thus may not be identifiable in
the switch running P40f. However, if the SYN packet forms
part of an HTTP connection, then HTTP packets sent on this
connection may contain a user-agent header field, which can
be used to identify the host OS. Even if the switch is able to
match such a SYN packet to an OS label, we can use HTTP
user-agent fields to verify that the OS label is correct.
P40f captures unidentifiable SYN packets that form part

of a web connection (destination port 80), as well as the
first data packet observed on this connection, and forwards
copies of these packets to the software for analysis. P40f
forwards the first data packet observed on a web connection
to the software because this packet is likely to be an HTTP
request; therefore, the packet’s HTTP header may contain
a user-agent field that can identify the OS running on the
sender. P40f also samples a small proportion (e.g., 10%) of
SYN packets that can be labeled by the switch and sends
copies of these packets and their corresponding first data
packets to the software as well. P40f still allows the TCP
handshake to proceed by forwarding the original packet to
its intended destination.

When sending a SYN packet to the software, P40f records a
three-tuple (source IP address, destination IP address, source
port) of the packet and its sequence number. Any subsequent
web packets with the same tuple and with sequence number
incremented by one are forwarded to the software as well.
Any such packet is likely to be an HTTP request with a user-
agent header field since TCP port 80 is associated with HTTP
by convention. However, non-HTTP connections might use
TCP port 80 as well. Thus, the software checks if a received
packet is HTTP or not.

P40f needs to keep track of (source IP address, destination
IP address, source port) tuples and sequence numbers to
forward subsequent packets to the software. However, the

amount of memory for the data structure might increase and
overwhelm the hardware switch. We resolve this issue by
using a Bloom filter, which allows P40f to test if an element
is in a set using a small, fixed amount of memory. The four
values source IP adddress, destination IP address, source port,
and sequence number + 1 are extracted from each SYN packet
and added to the Bloom filter as a single element. For every
TCP packet that passes through the switch, this set of four
values is checked against the Bloom filter. If the Bloom filter
contains the set, the switch clones the packet and forwards
the clone to the software. Our Bloom filter implementation
is based on a well-known P414 implementation of a counting
Bloom filter found in the SIGCOMM 2016 P4 tutorials [9].
Such resource-effective Bloom filter comes with a cost;

lookups to the Bloom filter can result in false positives. This
means that the switch may forward data packets to the soft-
ware even if they do not correspond to previously-seen un-
matched SYN packets. It is the responsibility of the soft-
ware to ignore non-SYN packets that do not correspond to
previously-received SYN packets. Fortunately, Bloom filter
lookups never result in false negatives.

4 EVALUATION OF PROTOTYPE
The P4 component of the P40f prototype consists of 1,037
lines of code. In Section 4.1, we describe the resource foot-
print of the prototype and show that P40f can be run in
parallel with other P4 applications. In Section 4.2, we de-
scribe validation of the P40f prototype against p0f.

4.1 Resource Usage

Number of stages. When compiled using the p4c compiler
for the BMv2 software switch [36], the processing pipeline
of the P4 code consists of 15 tables. Figure 5 shows the ta-
bles used by P40f as well as the packet flow through the
tables. Seven tables are used for obtaining all p0f signature
information, including the six tables for binary searching
for wsize_div_mss. One table is required for the p0f signa-
ture lookup table. Five tables are required for deciding and
sending a packet to the software that does fingerprinting
based on HTTP user agent. This includes sampling, adding to
HTTP Bloom filter, lookup, and cloning packets. Lastly, two
tables are required for IPv4 forwarding. One table queries a
Bloom filter to check if the source IP address has previously
been given an OS label for which the drop_ip policy applies.
If so, the packet must be dropped. Another table performs
a longest-prefix-match to determine the next interface on
which to forward.

A programmable hardware switch typically contains 10-
20 stages, and each stage has around 10-20 parallel tables.
P40f’s P4 program has 15 sequential tables, thus will fit in a
hardware switch that has 15 or more stages. Also, while P40f

6

requires 15 stages, each stage does not use many resources.
Given that hardware switches can execute multiple indepen-
dent tables in parallel in a stage, smarter P4 compilers from
production-grade Software Development Environment (e.g.,
Barefoot P4Studio) will easily allow other P4 applications to
run in parallel with P40f.

Register memory space. P40f prototype uses a constant
amount of memory in the form of registers and packet meta-
data. The memory required for OS counter registers is neg-
ligible because the number of OS labels in the fingerprint
database is unlikely to be larger than in the order of hundreds:
the p0f v3.09b database contains just 45 OS labels. Similarly,
the Bloom filters used for lookup of TCP connection infor-
mation and IP address lookup require only a small, fixed
amount of stateful memory. Packet metadata also requires
only a small amount of memory.

4.2 Validation
We validated that both the P4 program and the rule gener-
ator script are correct by generating test packets using a
Python script. The script produces at least one packet for
each signature in the p0f v3 database. We compiled P40f with
the p4c compiler and installed the P4 program on the BMv2
software switch [35]. We then installed the generated rules
onto the switch using the P4 Runtime API. We then sent the
test packets through the switch. We also used p0f to iden-
tify these same test packets. We verified that the OS labels
assigned to the packets by the switch and by p0f were the
same for each test packet. The only packets for which P40f
and p0f assigned different labels were those that P40f labeled
s:!:NMap:OS detection. We believe that this discrepancy
is due to a bug in p0f related to detecting the ack+ quirk, in
which the ACK number in the TCP header is non-zero, but
the ACK flag is not set.

5 CAMPUS MEASUREMENT STUDY
In this section, we present a measurement study on a campus
network using our prototype of P40f. Figure 6 shows the
diagram of the edge of the campus network and indicates
where packet traces were captured. The purpose of this study
is to demonstrate the benefit to network administrators by
having the capability to fingerprint host OS directly in the
data plane.

For privacy reasons, evaluation scripts were run on packet
data by a campus network administrator working in the
university’s office of information technology department. No
other individuals were able to view personally-identifiable
information such as unanonymized IP addresses or packet
payloads. All evaluation script outputs were checked and
verified to be free of such information before further analysis.
To mitigate risk, all of our data collection and evaluation

TCP?

TCP SYN?

IP?

Collect p0f metadata

Binary search iter_1

Binary search iter_6

p0f signature lookup table

Sample packets for software

No label match or selected
as sample?

Clone packet for software

Add tuple to Bloom filter

Destination port 80?

Check tuple in Bloom filter

Tuple in Bloom filter?

Clone packet for software

Check IP in IP Bloom filter

IP address in IP Bloom filter?

IPv4 forwarding

Drop
Packet

False

...

False

True

False

False

False

True

Forward Packet

True

True
False

False

True

True

True

§3.1
§3.2

§3.3

§3.4

Figure 5: P40f Stage resource usage. Each red box with
straight lines corresponds to a single table. Each blue box
with dotted lines corresponds to a conditional branch.

processes were reviewed and approved by our institution’s
review board.
In Section 5.1, we discuss the presence of TCP options

in the SYN packets observed in these traces: we observe
7

Figure 6: The edge of the university campus network.
Inbound traffic was captured between the border router and
the IDS, while outbound traffic was captured between the
core router and the IDS.

that a lack of TCP options may be indicative of an adversar-
ial sender. In Section 5.2, we use P40f’s OS fingerprinting
to characterize operating systems running on external and
internal hosts of the campus network. In Section 5.3, we
use both incoming and outgoing packet traces to analyze
the user-agent field found in HTTP packets originated from
outside and inside the network, respectively.

5.1 SYN Packets With No TCP Options
As discussed in Section 2, both the ordering and contents of
TCP options are critical features of a p0f signature. For exam-
ple, we observe that no TCP SYN signature in the p0f v3.09b
fingerprint database contains an empty olayout field. Thus,
a packet without TCP options cannot be labeled by P40f. For
both incoming and outgoing packet traces, we track the num-
ber of SYN packets with and without TCP options. We also
track how many of these SYN packets saw a corresponding
ACK packet. To do this, we count the number of SYN packets
for which we observed a subsequent ACK packet with the
same three-tuple (source IP address, destination IP address,
source port) and with a sequence number one greater than
the sequence number of the SYN.

In a one-minute capture of incoming packets (from Inter-
net to campus), we observed 286,215 SYN packets, and 72% of
them (220,991) contained no TCP options. We observed that
17,226 SYN packets saw corresponding ACK packets, but
among them, only six packets (0.0348%) contained no TCP
options. In a one-minute capture of outgoing packets, we ob-
served 105,288 SYN packets, and two of them (0.00190%) con-
tained no TCP options. 87,087 SYN packets saw ACK packets,
and among these packets, only two packets (0.00230%) con-
tained no TCP options.

We find that while the proportion of outgoing SYNs with
no TCP options is very small (0.00190%), the majority of
incoming SYNs (77.2%) contain no TCP options. This sug-
gests that P40f’s ability to fingerprint external SYN packets
is limited. However, we also observe that among incoming
SYN packets that see a following ACK, the proportion of

packets with no TCP options is small (0.0348%). This sug-
gests that while most incoming SYN packets contain no TCP
options, most of these SYN packets are not sent to establish a
TCP connection; rather, they may be the result of adversarial
behavior such as port scanning. Thus, while P40f may not
be able to perform fingerprinting on packets with no TCP
options, an absence of TCP options is itself an indication
that the sender may be adversarial.

Since over 99% of outgoing SYN packets contain TCP op-
tions, P40f is more suitable for fingerprinting hosts that are
present in the network. As network administrators are more
interested in tracking information of internal hosts in their
network than external hosts, P40f still promises great benefit
for managing an enterprise network.

5.2 Operating Systems Running on Hosts
In this section, we use P40f’s OS fingerprinting to charac-
terize external and internal hosts of the network. To char-
acterize external hosts, we run P40f on SYN packets in the
one-minute incoming packet trace. To characterize inter-
nal hosts, we run P40f on SYN packets in the one-minute
outgoing packet trace.
We used Tcpreplay [42] to replay TCP packets with only

the SYN flag set (tcp[13] == 2) through the BMv2 software
switch running P40f. There are 284,594 such packets in the
incoming trace and 100,297 such packets in the outgoing
trace. We note that these counts are slightly smaller than
the numbers of SYN packets reported in Section 5.1 (286,215
and 105,288 packets). This is because the TCPreplay filter
excluded packets with flags other than the SYN flag (e.g.,
PSH or URG) set. While non-SYN flags correspond to the p0f
signature quirks urgf+, pushf+, and ack-, we observe that
no signature in the p0f v3.09b database contains any of these
quirks. Therefore, any packet with non-SYN flags set would
not have been successfully matched to an OS label, so the
characterization results are not affected.

In the incoming packet trace, 242,936 SYN packets (85.4%)
could not be labeled. Since 77.2% of SYN packets in the in-
coming trace do not contain TCP options (Section 5.1), such
a high rate of unlabeled packets is not unexpected. On the
other hand, only 1,113 SYN packets (1.11%) could not be
labeled in the outgoing packet trace.

Table 2 summarizes the distribution of OS labels for all the
SYN packets that can be labeled and marked by P40f. While
only 6.46% of incoming SYNs were found to be sent from
hosts running Mac OS, 41.8% of outgoing SYNs were labeled
as Mac OS. The prominence of Mac OS in the outgoing trace
reflects that the campus network consists mostly of client
devices employed for personal use: Mac OS X runs primarily
onApple laptops, desktops, and smartphones. This result also
corroborates conventional wisdom and reports suggesting

8

OS Label Inbound (%) Outbound (%)

Linux 52.01% 23.15%
2.2.x-3.x, generic 31.39% 13.98%
3.11 and newer 10.83% 7.44%
3.1-3.10 6.97% 0.88%
3.x 1.04% 0.58%
2.4.x 1.03% 0.02%
2.6.x 0.59% 0.25%
2.4.x-2.6.x, generic 0.14% 0.00%
Android 0.02% 0.00%

Windows 40.91% 34.99%
7 or 8 28.82% 11.50%
NT kernel, generic 8.96% 18.13%
XP 2.60% 0.05%
NT kernel 5.x 0.51% 5.30%
NT kernel 6.x 0.02% 0.00%

Mac OS 6.46% 41.79%
OS X, generic 6.23% 41.46%
OS X 10.9 or newer 0.12% 0.09%
OS X 10.x 0.10% 0.25%

Other 0.62% 0.06%
FreeBSD 9.x or newer 0.24% 0.04%
FreeBSD, generic 0.21% 0.01%
Solaris 10 0.13% 0.02%
FreeBSD 8.x 0.04% 0.00%

Table 2: SYN packets matching each OS label in the
one-minute packet trace of incoming and outgoing
campus traffic. Percentages are given out of the number of
successfully-labeled SYN packets.

that the proportion of academic clients who use Macintosh
devices is greater than that of the general population [23, 28].
In contrast, more than half (52.0%) of incoming connec-

tions are initiated by Linux hosts, compared to just 23.1% of
outgoing connections. One of the most accessed sites on this
campus network is a mirror site for Linux ISO images and
software packages. A large proportion of hosts accessing this
site are presumably Linux servers.

5.3 Comparison With HTTP User-Agent
For both incoming and outgoing packet traces, we tracked
each TCP connection to destination port 80 for which the
SYN was observed in the packet trace. If the first data packet
sent on the connection was an HTTP packet, we extracted
the user-agent field for examination. There were 21,058 such
packets in the incoming packet trace and 59,438 such packets
in the outgoing packet trace. We parse a p0f OS label from
each user-agent string in the same way that the database-
updating software parses user-agent fields (Section 3.4).

OS Label Group Incoming Outgoing

Windows 80.21% 37.86%
Linux 6.56% 9.81%
iOS 5.15% 12.17%
Android 4.13% 13.33%
Mac OS 3.95% 26.84%

Table 3: HTTP user-agent in the incoming and outgo-
ing packet traces that match each OS label group. Per-
centages are given out of all successfully-labeled user-agents
for each packet trace.

Table 3 shows the percentage of HTTP user-agents match-
ing each OS category for both incoming and outgoing traces.
While we could not parse an OS label from approximately
73.1% of user agents in the incoming packet trace and 67.2%
of user-agents in the outgoing packet trace, we argue that
only one parsable user agent is needed from a given host in
order to generate a new p0f signature for that host’s OS. Be-
cause the user agent is dependent on the application rather
than the operating system, HTTP traffic from a single host
may contain many different user agents.

For each HTTP packet examined, we also extracted infor-
mation about p0f signature fields from the corresponding
SYN, similar to how the P4 program obtains p0f_metadata
(Section 3.2). We used this data to build new TCP packets
using ScaPy [40], then played these packets through the
BMv2 switch with the P40f installed. To evaluate how well
P40f identifies OS labels by just using TCP options, we com-
pare the result of P40f’s OS fingerprinting on each generated
SYN packet to the user-agent in the corresponding HTTP
packet. Specifically, each OS label produced by P40f and each
HTTP user-agent was mapped to an OS label group. We
then counted the number of instances of each (P40f OS label
group, user-agent OS label group) pair. Table 5 shows the
number of instances for each pair in the incoming packet
trace, and Table 4 shows the number of instances for each
pair in the outgoing packet trace. We report only the pairs
for which the user-agent could be parsed.
For the outgoing packet trace, there were very few in-

stances in which the OS label reported by P40f and the OS
label reported by the user-agent mismatch. For example, only
133 out of 7,429 (1.79%) packets labeled Windows by P40f
corresponded to user-agents that reported Linux, and no
user-agent reported an OS other than Windows or Linux.
However, the incoming trace contains many more instances
in which the P40f OS label and HTTP user-agent OS label
completely differ. In particular, only 413 out of 2,416 (19.4%)
packets labeled by P40f as Linux corresponded to user-agents

9

P40f OS
Label

User-Agent OS Label
Windows Linux Mac OS Android iOS

Windows 7,296 133 0 0 0
Linux 0 1,750 2 2,588 24
Mac OS 0 1 135 0 145
FreeBSD 2 0 0 0 0
Unknown 54 16 65 3 9

Table 4: Number of instances observed in the outgoing
trace for each P40f OS label group and user-agent OS
label group pair.

P40f OS
Label

User-Agent OS Label
Windows Linux Mac OS Android iOS

Windows 2,729 181 5 0 45
Linux 1,810 183 84 234 105
Mac OS 0 1 135 0 145
FreeBSD 4 1 2 0 1
Unknown 82 12 6 4 1

Table 5: Number of instances observed in the incom-
ing trace for each P40f OS label group and user-agent
OS label group pair.

reporting Linux or Android. Instead, for 1,810 out of 2,416
(74.9%) such packets, the user-agent reported Windows.

We further investigate this case using Table 6. Table 6
shows counts for pairs of P40f and user-agent OS labels for
the 1,810 packets labeled “Linux” by P40f but “Windows”
by the HTTP user-agent. We observe that only 392 packets
(21.7%) were labeled by P40f with a “generic”-type, which is
a last-resort OS label. P40f assigns a narrower, non-“generic”
label to each of the remaining 1,418 packets (78.3%), so P40f
is able to label about 78.3% of packets with relatively high
confidence. Thus, it is unlikely that P40f simply performs
poorly on traffic from external hosts. Rather, these hosts are
likely to be spoofing their user-agents or modifying TCP/IP
headers in order to appear to be running a different OS. Some
evidence suggests that most malicious HTTP traffic involves
the use of incorrect or suspicious user-agents [39]. We ob-
serve that 1,110 out of 1,810 packets (61.3%) are classified
as “Linux 3.1-3.10” by P40f but as “Windows XP” by the
HTTP user-agent. Of these 1,110 packets, 1,103 reported the
exact user-agent string “Mozilla/4.0 (compatible; MSIE 6.0;
Windows NT 5.1; SV1.” This suggests that a bot running
Linux 3.1-3.10 but claiming to run Windows XP could be
responsible for the majority of mismatched packets.

P40f OS Label User-Agent OS Label Count

Linux 3.11 and newer

Windows 10 96
Windows 8.1 3
Windows 8 4
Windows 7 54
Windows XP 105
Windows, generic 1

Linux 3.1-3.10

Windows 10 9
Windows 8.1 1
Windows 7 16
Windows XP 1110

Linux 2.4.x Windows 10 9
Windows 7 10

Linux 3.x, generic Windows 10 21
Windows 7 38

Linux 2.2.x-3.x, generic

Windows 10 32
Windows 8.1 3
Windows 8 3
Windows 7 33
Windows XP 232

Linux 2.2.x-3.x (no
timestamps), generic

Windows 10 3
Windows 7 14
Windows XP 13

Table 6: Number of packets observed for each Linux
P40f OS label and Windows user-agent OS label pair.
An OS label starting with g: is a “generic”-type or last-resort
label; an OS label starting with s: is a non-“generic” label.

5.4 Using P40f For Management Tasks
P40f provides valuable information about hosts inside or
outside a network. In this section, we describe how a net-
work administrator can interact with P40f and use it for real
network management tasks.
Lowering security risks for internal hosts. It is common
that a security vulnerability is tied to a specific operating sys-
tem or a specific version of an operating system. Also, most,
if not all, operating systems have an end-of-life, after which
no new updates (including essential security patches) are
provided. When a new OS-specific security vulnerability is
found or the end-of-life of an operating system is announced,
it is the network operator’s job to assess the security risk in
the network. Such management tasks are becoming more im-
portant as bring-your-own-device (BYOD) networks, where
network administrators have less control over client devices,
become more prevalent (e.g., eduroam on campuses [15]).
P40f can help the network operator handle such tasks.

10

For example, if a new security vulnerability is announced
for the Apple Mac OS X (e.g., CVE-2018-4243 [33], CVE-
2018-4249 [34]), the operator can check with the OS statis-
tics reported by P40f and immediately know that at least
41.79% of connections that comes from internal hosts are at
risk (Table 2). Linux 2.4 reached its end-of-life on April 9,
2012 [24] and Microsoft Windows XP reached its end-of-life
on April 8, 2014 [29]. An operator can detect that 0.02% of
connections are from hosts running Linux 2.4 and 0.05% of
connections are from hosts still running Windows XP in the
campus network (Table 2, outbound). An operator can use
the P4 Runtime API [37] to extract such information from
the switch’s match-action table statistics or from the register
memory.
As these internal hosts are at higher risk, a network ad-

ministrator may want to contact the owner of an vulnerable
host. To do this, the network administrator can set a se-
curity policy in P40f that applies the redirect action on
packets that match the p0f_metadata signatures of the op-
erating systems in question (Section 3.3). P40f will then mir-
ror matched packets and send them to the specified output
port, which is connected to a collector that performs further
analysis. The collector can extract host-specific information
such as source and destination IP addresses, MAC addresses,
timestamp, TCP/UDP port numbers, and so on. By joining
this information with other sources of information such as
authentication (login credentials) and DHCP (MAC and IP
addresses) logs maintained by the network, it is possible to
pinpoint the user and the location of the host at risk. For
example, in case of eduroam, once the operator has a list of
IP addresses that are identified to have a vulnerable OS type
by P40f, she can join that information with the 802.1X au-
thentication logs and DHCP logs from wireless access point
controllers to retrieve the list of email addresses of the users
who own the client devices. The operator can contact each
user of a vulnerable host to gain more knowledge and lower
the security risk in the network.
Tightening security against external hosts. P40f can be
used to tighten a network’s security against external hosts
and the wider Internet. In Section 5.1, we observed that the
majority of incoming SYNs (77.2%) contain no TCP options,
but among incoming SYN packets that see a following ACK,
the proportion of SYN packets with no TCP options is very
small (0.0348%). This suggests that most of such SYN packets
with no TCP options represent adversarial behavior such as
port scanning or SYN flooding, which in many cases have no
TCP options in packets. A network operator can use P40f to
identify and even block such adversarial behavior in the data
plane itself by taking corrective action against SYN packets
with no TCP options.

The mismatch of the OS label when using the HTTP user-
agent versus the TCP SYN option parsing is one of the key
indicators for detecting malicious behavior with a spoofed
OS [19, 25, 32]. It is easier to forge the HTTP user-agent field,
which can be done with a simple browser extension, com-
pared to changing the values in the TCP header. For example,
based on Table 6, we suspect a malicious external Linux host
is claiming to run Windows XP and sends SYN packets to
the campus to find web servers that allow communicating
with Windows XP clients. We hypothesize that this Linux
client is trying to avoid being blocked by a web server by
masquerading itself as a Windows client, or to check if the
web server implements good security practices such as disal-
lowing clients that has an outdated OS in their user-agent
field. In Section 5.3, we observed that this mismatch rate is
much higher with incoming traffic, i.e., external hosts trying
to connect to the campus’ internal web servers, compared
to the outgoing traffic. A network operator can use P40f
to detect such malicious behavior towards the network by
comparing the host OS label reported by P40f and another
system with HTTP user-agent information. For example, by
joining the OS label and the client IP address reported by
P40f with the user-agent and the client IP address logged by
the web server, the operator can detect a mismatch and also
pinpoint the suspicious client by its IP address.

6 RELATEDWORK

TCP options parsing in P4. Dapper [18] also implements
fine-grained TCP options parsing in P4. However, because
Dapper is written in P414, this parsing loop causes the ex-
act deparsing behavior to be undefined. Thus, Dapper must
explicitly define and enforce an exact order of options for
every deparsed packet. On the other hand, P40f is written in
P416, which supports the header stack type. A header stack
can store parsed options in their original order. This allows
packets to pass through the switch unmodified, leaving no
marks or unnecessary modification to the original packet
after OS fingerprinting has occurred.
Applications that use p0f. A number of existing software
applications use p0f for OS-based packet filtering. The net-
work firewall pfSense [31] can use p0f to filter connections
initiated within the network by OS [30]. A modification
[16, 17] to the OpenBSD Stateful Packet Filter (pf) [20] also
allows pf to use p0f signatures to filter SYN packets by OS.
Because pfSense and pf are both implemented as a tool that
runs on x86 systems, OS fingerprinting and filtering packets
involve the overhead of traversing the network stack. Such
process is expensive and limits overall network throughput.
P40f, on the other hand, is able to block or modify packets

11

based on OS directly in the data plane, allowing OS finger-
printing and packet filtering to be performed at line rate.
Other approaches to TCP/IP fingerprinting. ZMap [12]
is an active OS fingerprinting software tool optimized for
scanning the entire IPv4 address space. ZMap is able to
achieve short scan times through fast sending of probes,
no storing of per-connection state, and no retransmission.
ZMap was developed for large-scale networks. It is less suit-
able for BYOD networks because active fingerprinters may
not be able to detect devices that connect and disconnect be-
tween scans. Furthermore, each scan places additional load
on the network in the form of probes.
Some prior work has focused on statistical rather than

signature match-based approaches to TCP/IP fingerprinting.
Beverly [6] uses a naïve Bayesian classifier to identify the
operating system of a host based on features such as TTL,
window size, SYN size, and DF (don’t fragment). Beverly
finds that the Bayesian classifier is able to make an identi-
fication even when data from packet headers is ambiguous.
Hershel [41] is another probabilistic classification method
for single-packet passive OS fingerprinting that uses fea-
tures derived from TCP/IP header information. However,
both Bayesian classifier and Hershel involve a large amount
of computational overhead, which prevents their use in net-
work monitoring settings that require OS fingerprinting and
packet filtering in real-time. P40f can perform OS fingerprint-
ing on ongoing network traffic stream with low overhead
and without impacting network performance.
Non-TCP/IP Approaches. The use of DHCP options by a
DHCP client is specific to the client vendor, operating system,
and device. This means that OS fingerprinting can also be per-
formed by inspecting DHCP options in packets involved in a
DHCP exchange. ArubaOS [2] is a network operating system
for Aruba Networks’ wireless local area network (WLAN)
controllers. ArubaOS’s DHCP fingerprinting feature can be
enabled when the controller is placed in the path between the
DHCP client and server. Administrators can also set access
control policies based on the fingerprinted OS. Fingerbank
[21] is a database containing identification information for
a variety of operating systems and devices. Each device en-
try contains a DHCP fingerprint, MAC address information,
and/or an HTTP user agent. Users can query the database
API using one or more of these attributes to produce a de-
vice match. PacketFence [22] is a software tool for network
access control that uses Fingerbank to perform OS and de-
vice identification. Kollmann describes how DHCP-based OS
fingerprinting can be done in practice [26]. However, DHCP
fingerprinting can only be used against DHCP clients. Thus,
DHCP-based fingerprinting cannot be used in the absence of
a DHCP server on the network or against clients that do not
use the DHCP server that the network operator controls. In

contrast, P40f performs OS fingerprinting on TCP packets,
which make up a substantial amount of both incoming and
outgoing traffic on most networks. P40f can thus be used to
perform OS fingerprinting in settings and on hosts for which
DHCP fingerprinting is not applicable or available.

7 CONCLUSION AND FUTUREWORK
We present P40f, a tool that can perform passive OS finger-
printing directly in the data plane. With P40f running on
a programmable switch, network operators can define and
enforce security policies at the data plane by OS type against
incoming and outgoing traffic without relying on external
components. We prototype P40f in P4 and validate P40f’s
output against p0f with simulated packet traces. We used
the prototype to characterize both incoming and outgoing
traffic from a real campus network.

We plan to improve and extend P40f as we aim to deploy
it in real networks.
Run in real hardware. P40f’s P4 program can currently
run on the BMv2 software switch [35], a software simulator
for a P4-programmable switch. We are currently working on
compiling the code with the compiler for the Barefoot Tofino
hardware switch [4]. We plan to deploy P40f on a Barefoot
Tofino switch and run against mirrored traffic from a real
campus production network in real-time.
More built-in actions. More sophisticated policies may
involve rate-limiting traffic sent from hosts associated with
undesirable OSes. Rate-limiting can act as an incentive for
users of outdated or vulnerable operating systems to upgrade
or change their OSes. Rate-limiting may also help reduce
the impact of certain security attacks by vulnerable OSes,
such as SYN floods or other denial-of-service attacks. We can
implement a token bucket in the data plane by maintaining
registers that hold the state of the token bucket at any given
time. This state can include the timestamp associatedwith the
token bucket state and the number of tokens in the bucket
at this timestamp. The number of tokens can be updated
accordingly by packets from undesirable OSes.

REFERENCES
[1] 2019. The Data Plane Development Kit. https://www.dpdk.org.
[2] Aruba Networks. 2019. ArubaOS network operating system. https:

//www.arubanetworks.com/products/networking/arubaos/.
[3] Patrice Auffret. 2010. SinFP, unification of active and passive operating

system fingerprinting. Journal in Computer Virology 6, 3 (01 Aug 2010),
197–205. https://doi.org/10.1007/s11416-008-0107-z

[4] Barefoot Networks. 2019. Barefoot Tofino. https://www.
barefootnetworks.com/technology/.

[5] Jason Barnes and Patrick Crowley. 2013. K-p0F: A High-throughput
Kernel Passive OS Fingerprinter. In Proceedings of the ACM/IEEE
Symposium on Architectures for Networking and Communications Sys-
tems (ANCS ’13). IEEE Press, Piscataway, NJ, USA, 113–114. http:
//dl.acm.org/citation.cfm?id=2537857.2537875

12

https://www.dpdk.org
https://www.arubanetworks.com/products/networking/arubaos/
https://www.arubanetworks.com/products/networking/arubaos/
https://doi.org/10.1007/s11416-008-0107-z
https://www.barefootnetworks.com/technology/
https://www.barefootnetworks.com/technology/
http://dl.acm.org/citation.cfm?id=2537857.2537875
http://dl.acm.org/citation.cfm?id=2537857.2537875

[6] Robert Beverly. 2004. A Robust Classifier for Passive TCP/IP Finger-
printing. In Passive and Active Network Measurement, Chadi Barakat
and Ian Pratt (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
158–167.

[7] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, and David Walker. 2014. P4: Programming Protocol-
independent Packet Processors. SIGCOMM Computer Communica-
tion Review 44, 3 (July 2014), 87–95. https://doi.org/10.1145/2656877.
2656890

[8] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McK-
eown, Martin Izzard, Fernando Mujica, and Mark Horowitz. 2013. For-
warding Metamorphosis: Fast Programmable Match-action Processing
in Hardware for SDN. In Proceedings of the ACM SIGCOMM Con-
ference (SIGCOMM ’13). ACM, New York, NY, USA, 99–110. https:
//doi.org/10.1145/2486001.2486011

[9] Sean Choi. 2016. heavy_hitter. https://github.com/p4lang/tutorials/
blob/846f059ddd9c53157ea9cc2ec7c0b2d5359f2df0/SIGCOMM_2016/
heavy_hitter/p4src/heavy_hitter.p4.

[10] Catalin Cimpanu. 2019. Georgia county pays a whop-
ping $400,000 to get rid of a ransomware infection. https:
//www.zdnet.com/article/georgia-county-pays-a-whopping-400000-
to-get-rid-of-a-ransomware-infection/.

[11] Zakir Durumeric, Zane Ma, Drew Springall, Richard Barnes, Nick
Sullivan, Elie Bursztein, Michael Bailey, J Alex Halderman, and Vern
Paxson. 2017. The Security Impact of HTTPS Interception.. In NDSS.

[12] Zakir Durumeric, Eric Wustrow, and J. Alex Halderman. 2013. ZMap:
Fast Internet-wide Scanning and Its Security Applications. In Proceed-
ings of the USENIX Conference on Security (SEC’13). USENIX Associa-
tion, Berkeley, CA, USA, 605–620. http://dl.acm.org/citation.cfm?id=
2534766.2534818

[13] EdgeCore. 2019. Edge-core Wedge 100BF-32X with Barefoot Tofino
Chip[Online]. https://www.edge-core.com/productsInfo.php?cls=1&
cls2=5&cls3=181&id=335.

[14] Andy Fingerhut. 2017. tcp-options-parser2.
https://github.com/jafingerhut/p4-guide/blob/
f2b3fc6d02ddd0acec6afd7a38543c040defcb0b/tcp-options-parser/tcp-
options-parser2.p4.

[15] Licia Florio and Klaas Wierenga. 2005. Eduroam, providing
mobility for roaming users. In Proceedings of the EUNIS Confer-
ence. https://www.terena.org/activities/tf-mobility/docs/ppt/eunis-
eduroamfinal-LF.pdf

[16] Mike Frantzen. 2003. PF filter decisions based on source OS
type. https://groups.google.com/d/msg/bit.listserv.openbsd-
pf/_cCxtG06YC4/_fXS5WsQynIJ. Post to Usenet group
bit.listserv.openbsd-pf.

[17] Mike Frantzen. 2003-16. pf.os. https://github.com/openbsd/src/blob/
3395fe1155e42ac7e12ee105544ca6877801749f/etc/pf.os.

[18] Mojgan Ghasemi, Theophilus Benson, and Jennifer Rexford. 2017. Dap-
per: Data Plane Performance Diagnosis of TCP. In Proceedings of the
Symposium on SDN Research (SOSR ’17). ACM, New York, NY, USA,
61–74. https://doi.org/10.1145/3050220.3050228

[19] Martin Grill and Martin Rehák. 2014. Malware detection using http
user-agent discrepancy identification. In 2014 IEEE International Work-
shop on Information Forensics and Security (WIFS). IEEE, 221–226.

[20] Daniel Hartmeier. 2002. Design and Performance of the OpenBSD
Stateful Packet Filter (Pf). In Proceedings of the USENIX Annual Tech-
nical Conference. USENIX Association, Berkeley, CA, USA, 171–180.
http://dl.acm.org/citation.cfm?id=647056.713848

[21] Inverse. 2019. Fingerbank. https://fingerbank.org/.
[22] Inverse. 2019. PacketFence. https://packetfence.org/.

[23] jamf. 2016. 2016 Survey: Managing Apple Devices in Higher
Education. https://www.jamf.com/resources/e-books/2016-survey-
managing-apple-devices-in-higher-education/.

[24] Sean Michael Kerner. 2012. Linux 2.4 Hits the End of the
Line. http://www.internetnews.com/blog/skerner/linux-2.4-hits-the-
end-of-the-line.html.

[25] Amit Klein. 2012. How Fraudsters are disguising PCs to fool device
fingerprinting. https://securityintelligence.com/how-fraudsters-are-
disguising-pcs-to-fool-device-fingerprinting/. (2012).

[26] Eric Kollmann. 2007. Chatter on the Wire: A look at DHCP traffic.
http://chatteronthewire.org/download/chatter-dhcp.pdf. (2007).

[27] Gordon Fyodor Lyon. 2009. Nmap Network Scanning: The Official Nmap
Project Guide to Network Discovery and Security Scanning. Insecure,
USA.

[28] Leila Meyer. 2015. Report: Apple Device Adoption Increasing in Higher
Education. https://campustechnology.com/articles/2015/12/09/report-
apple-device-adoption-increasing-in-higher-education.aspx.

[29] Microsoft. 2014. Support for Windows XP ended. https://www.
microsoft.com/en-us/windowsforbusiness/end-of-xp-support.

[30] Netgate. 2019. List of pfSense Features. http://web.archive.
org/web/20190203121739/https://www.pfsense.org/about-
pfsense/features.html.

[31] Netgate. 2019. pfSense. https://www.pfsense.org/.
[32] Nick Nikiforakis, Alexandros Kapravelos, Wouter Joosen, Christopher

Kruegel, Frank Piessens, and Giovanni Vigna. 2013. Cookieless mon-
ster: Exploring the ecosystem of web-based device fingerprinting. In
2013 IEEE Symposium on Security and Privacy. IEEE, 541–555.

[33] NIST. 2018. Apple Vulnerability: CVE-2018-4243. https://nvd.nist.gov/
vuln/detail/CVE-2018-4243.

[34] NIST. 2018. Apple Vulnerability: CVE-2018-4249. https://nvd.nist.gov/
vuln/detail/CVE-2018-4249.

[35] p4lang. 2019. Behavioral Model Repository. https://github.com/p4lang/
behavioral-model.

[36] p4lang. 2019. P4_16 Prototype Compiler. https://github.com/p4lang/
p4c.

[37] P4 Language Consortium. 2017. P4 Runtime. https://p4.org/p4-
runtime/.

[38] J. Postel. 1981. Transmission Control Protocol. RFC 793. RFC Editor.
http://www.rfc-editor.org/rfc/rfc793.txt

[39] Christian Rossow, Christian J. Dietrich, Herbert Bos, Lorenzo Cav-
allaro, Maarten van Steen, Felix C. Freiling, and Norbert Pohlmann.
2011. Sandnet: Network Traffic Analysis of Malicious Software. In Pro-
ceedings of the Workshop on Building Analysis Datasets and Gathering
Experience Returns for Security (BADGERS ’11). ACM, New York, NY,
USA, 78–88. https://doi.org/10.1145/1978672.1978682

[40] ScaPy. 2019. ScaPy: Packet crafting for Python2 and Python3. https:
//scapy.net.

[41] Zain Shamsi, Ankur Nandwani, Derek Leonard, and Dmitri Logu-
inov. 2016. Hershel: Single-Packet OS Fingerprinting. IEEE/ACM
Transactions on Networking 24, 4 (Aug 2016), 2196–2209. https:
//doi.org/10.1109/TNET.2015.2447492

[42] TcpReplay. 2019. Tcpreplay: Pcap editing and replaying utilities. http:
//tcpreplay.appneta.com.

[43] Michał Zalewski. 2012. p0f v3: passive fingerprinter. http://lcamtuf.
coredump.cx/p0f3/README.

[44] Michał Zalewski. 2014. p0f v3 (version 3.09b). http://lcamtuf.coredump.
cx/p0f3/.

13

https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2486001.2486011
https://doi.org/10.1145/2486001.2486011
https://github.com/p4lang/tutorials/blob/846f059ddd9c53157ea9cc2ec7c0b2d5359f2df0/SIGCOMM_2016/heavy_hitter/p4src/heavy_hitter.p4
https://github.com/p4lang/tutorials/blob/846f059ddd9c53157ea9cc2ec7c0b2d5359f2df0/SIGCOMM_2016/heavy_hitter/p4src/heavy_hitter.p4
https://github.com/p4lang/tutorials/blob/846f059ddd9c53157ea9cc2ec7c0b2d5359f2df0/SIGCOMM_2016/heavy_hitter/p4src/heavy_hitter.p4
https://www.zdnet.com/article/georgia-county-pays-a-whopping-400000-to-get-rid-of-a-ransomware-infection/
https://www.zdnet.com/article/georgia-county-pays-a-whopping-400000-to-get-rid-of-a-ransomware-infection/
https://www.zdnet.com/article/georgia-county-pays-a-whopping-400000-to-get-rid-of-a-ransomware-infection/
http://dl.acm.org/citation.cfm?id=2534766.2534818
http://dl.acm.org/citation.cfm?id=2534766.2534818
https://www.edge-core.com/productsInfo.php?cls=1&cls2=5&cls3=181&id=335
https://www.edge-core.com/productsInfo.php?cls=1&cls2=5&cls3=181&id=335
https://github.com/jafingerhut/p4-guide/blob/f2b3fc6d02ddd0acec6afd7a38543c040defcb0b/tcp-options-parser/tcp-options-parser2.p4
https://github.com/jafingerhut/p4-guide/blob/f2b3fc6d02ddd0acec6afd7a38543c040defcb0b/tcp-options-parser/tcp-options-parser2.p4
https://github.com/jafingerhut/p4-guide/blob/f2b3fc6d02ddd0acec6afd7a38543c040defcb0b/tcp-options-parser/tcp-options-parser2.p4
https://www.terena.org/activities/tf-mobility/docs/ppt/eunis-eduroamfinal-LF.pdf
https://www.terena.org/activities/tf-mobility/docs/ppt/eunis-eduroamfinal-LF.pdf
https://groups.google.com/d/msg/bit.listserv.openbsd-pf/_cCxtG06YC4/_fXS5WsQynIJ
https://groups.google.com/d/msg/bit.listserv.openbsd-pf/_cCxtG06YC4/_fXS5WsQynIJ
https://github.com/openbsd/src/blob/3395fe1155e42ac7e12ee105544ca6877801749f/etc/pf.os
https://github.com/openbsd/src/blob/3395fe1155e42ac7e12ee105544ca6877801749f/etc/pf.os
https://doi.org/10.1145/3050220.3050228
http://dl.acm.org/citation.cfm?id=647056.713848
https://fingerbank.org/
https://packetfence.org/
https://www.jamf.com/resources/e-books/2016-survey-managing-apple-devices-in-higher-education/
https://www.jamf.com/resources/e-books/2016-survey-managing-apple-devices-in-higher-education/
http://www.internetnews.com/blog/skerner/linux-2.4-hits-the-end-of-the-line.html
http://www.internetnews.com/blog/skerner/linux-2.4-hits-the-end-of-the-line.html
 https://securityintelligence.com/how-fraudsters-are-disguising-pcs-to-fool-device-fingerprinting/
 https://securityintelligence.com/how-fraudsters-are-disguising-pcs-to-fool-device-fingerprinting/
http://chatteronthewire.org/download/chatter-dhcp.pdf
https://campustechnology.com/articles/2015/12/09/report-apple-device-adoption-increasing-in-higher-education.aspx
https://campustechnology.com/articles/2015/12/09/report-apple-device-adoption-increasing-in-higher-education.aspx
https://www.microsoft.com/en-us/windowsforbusiness/end-of-xp-support
https://www.microsoft.com/en-us/windowsforbusiness/end-of-xp-support
http://web.archive.org/web/20190203121739/https://www.pfsense.org/about-pfsense/features.html
http://web.archive.org/web/20190203121739/https://www.pfsense.org/about-pfsense/features.html
http://web.archive.org/web/20190203121739/https://www.pfsense.org/about-pfsense/features.html
https://www.pfsense.org/
https://nvd.nist.gov/vuln/detail/CVE-2018-4243
https://nvd.nist.gov/vuln/detail/CVE-2018-4243
https://nvd.nist.gov/vuln/detail/CVE-2018-4249
https://nvd.nist.gov/vuln/detail/CVE-2018-4249
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/p4c
https://github.com/p4lang/p4c
https://p4.org/p4-runtime/
https://p4.org/p4-runtime/
http://www.rfc-editor.org/rfc/rfc793.txt
https://doi.org/10.1145/1978672.1978682
https://scapy.net
https://scapy.net
https://doi.org/10.1109/TNET.2015.2447492
https://doi.org/10.1109/TNET.2015.2447492
http://tcpreplay.appneta.com
http://tcpreplay.appneta.com
http://lcamtuf.coredump.cx/p0f3/README
http://lcamtuf.coredump.cx/p0f3/README
http://lcamtuf.coredump.cx/p0f3/
http://lcamtuf.coredump.cx/p0f3/

	Abstract
	1 Introduction
	2 Background: P0f Overview
	3 Passive OS Fingerprinting in P4
	3.1 Parsing Variable-Length TCP Options
	3.2 Computing P0f Signature Fields
	3.3 Inferring OS Label and Applying Policy
	3.4 Exporting Data to Learn New Rules

	4 Evaluation of Prototype
	4.1 Resource Usage
	4.2 Validation

	5 Campus Measurement Study
	5.1 SYN Packets With No TCP Options
	5.2 Operating Systems Running on Hosts
	5.3 Comparison With HTTP User-Agent
	5.4 Using P40f For Management Tasks

	6 Related Work
	7 Conclusion and Future Work
	References

