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Abstract

Despite the incredible influx of sequencing data, pinpointing the gene variants re-

sponsible for the development of heterogeneous diseases remains a particularly hard

task because the same phenotypic outcome (disease) can result from a myriad of

combinations of different alterations across the genome. A promising avenue is to

consider genome alterations within the context of pathways instead of genes because

different alterations within any of several genes comprising the same pathway can

have similar consequences with respect to disease development. Large-scale biologi-

cal networks provide a helpful proxy for biological pathway knowledge as genes that

participate in the same pathway tend to interact with each other and form modules

within the larger network. In this dissertation, I introduce two novel methods that

further our ability to computationally highlight potential disease-causing genes by

examining disease genomes in the context of biological networks.

First, in Chapter 2, I present a novel network-based approach which tackles cancer

mutational heterogeneity by utilizing per-individual mutational profiles. I provide an

intuitive formulation relying on balancing the size of a connected subgraph within the

larger network with covering many patients. I describe a machine learning-like schema

for selecting the value of the single required parameter and both an integer linear

programming framework and a fast heuristic for optimizing the objective function. I

demonstrate the outstanding performance of my method in identifying cancer-relevant

genes, especially those mutated at very low rates.

Next, in Chapter 3, I propose a general computational framework that uses prior

knowledge of disease-associated genes to guide a network-based search for novel ones

based upon newly acquired information. I use a graph diffusion kernel to spread the

signal from the set of already known disease genes and then use it to bias a random

walk originating from the newly implicated genes to move closer to the known ones.

I demonstrate that integrating the two types of information is better than using
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either one of them alone. I show, in the context of cancer, that my method readily

outperforms other network-based methods. Finally, I apply my approach to several

complex diseases, thereby demonstrating its versatility in a broad range of settings.
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1 Introduction

We are now in an era of large-scale genomics data. Sequencing technologies have

become so cheap that it is feasible to even imagine a world where everyone who goes

to a doctor has his or her genome sequenced. Large-scale efforts such as the 1000

Genomes Project [17] and The Cancer Genome Atlas [81], as well as many smaller

projects, have already sequenced tens of thousands of genomes cataloging millions of

variants. Nevertheless, despite all this abundant data, understanding the genetic ba-

sis behind complex human diseases remains an open question of active research [47].

In contrast to simple Mendelian diseases, for which a small set of commonly shared

genetic variants are responsible for disease phenotypes, complex heterogeneous dis-

eases such as autism and cancer are driven by a myriad of combinations of different

alterations across the genome. Individuals exhibiting the same phenotypic outcome

(disease) may share very few, if any, genetic variants. This makes unraveling the

genetic underpinnings of heterogeneous diseases a particularly hard task.

1.1 Biological networks

Biological networks have proven to be a helpful framework through which scientists

can approach this task and investigate disease genomes [61, 18]. Broadly speaking,

biological networks represent patterns of interaction between different entities in the

cell. In protein–protein interaction networks, used in this dissertation, nodes represent

the product of the genes—proteins—and an edge between two nodes indicates that
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the corresponding proteins interact with one another. The human protein–protein

interaction networks available today are massive, consisting of thousands of nodes

and edges, and encoding an incredible amount of biological information.

It has been shown that genes related to the same disease manifest a significantly

high tendency to interact with one another in the network [63, 28] and that genes

related to diseases with similar phenotypes also have a higher propensity to inter-

act with one another [95, 26]. The overarching conclusion is that genes associated

with a disease are not randomly positioned in the network but rather, they cluster

together [37] and that if a few disease genes are identified, other disease-related genes

are likely to be found proximal in the network. These insights have led to the develop-

ment of numerous network-based methods for identifying disease genes, as discussed

next.

Early “linkage” approaches consider only direct interactions between genes located

in the linkage interval of a disease with known disease-related genes [51, 61]. Later

methods expand the use of topological information encoded in the network by reason-

ing that genes belonging to a module containing already known disease-related genes

have a higher likelihood of being involved in the same disease [22, 52, 32]. These

algorithms rely on diffusion startegies to “spread” or “release” disease signal from

known disease genes [48, 89]. Genes that may not directly interact with any disease

genes but are in close network vicinity to them would still receive relatively larger

disease signal. Recently, with the rapid advancement of sequencing technologies and

the widespread availability of exome sequencing data, the source of where information

is released or diffused from has shifted from known disease genes to newly discovered

variants that may be causal for disease [56, 39, 1].

With respect to heterogeneous diseases, and particularly cancer, a prominent view-

point is to examine genomic alterations in the context of pathways. A biological

pathway is typically described as a set of molecules and molecular interactions that
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collectively mediate a specific biological activity within a cell [8]. The main insight

is that even though different individuals may contain alterations in different genes, if

these genes are part of the same pathway, disturbing one of them will have the same

effect: perturbing the pathway and contributing to the development of the disease.

Hence, analyzing known pathways for enrichment of mutations [41, 10] and pinpoint-

ing those that are significantly mutated across patients [93, 90] illuminates some of

the mechanisms behind complex diseases. However, as our knowledge of pathways is

incomplete, the power of these studies is somewhat limited. Thus, de novo discovery

of disease-relevant pathways has been the focus of several new methods [88, 74, 4, 12].

Again, relying on the observation that genes that participate in the same biological

pathway tend to interact with each other and form small modules within the larger

network, studies successfully diffuse mutational signal from large-scale sequencing

data to uncover disease genes [88, 34]. A different class of methods are based on the

prize-collecting Steiner tree algorithm as they aim to identify modules that contain

the most “prized” nodes with the minimal number of edges [84, 80].

1.2 Cancer

Most of the work in this dissertation aims to uncover genes that are causal in cancer.

This is an exceptionally hard task because of the immense mutational heterogeneity

of the disease. Although tumors from the same cancer type (or even from different

cancer types originating in different tissues) display strong phenotypic similarities as

all cancer cells exhibit certain hallmark behaviors such as uncontrolled growth and

proliferation and resistance to cell death [29], they often contain very few genetic

alterations in common. It has been shown that even cells from the same tumor can

contain different sets of genetic variants [60]. Further, cancer cells harbor numerous,

oftentimes hundreds of, somatic mutations [92], with the vast majority of these muta-
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tions thought to play no role in cancer initiation or progression [68, 27]. Distinguishing

between the numerous so-called “passenger” mutations and the “driver” mutations

important for the oncogenic process has been a central goal of cancer genomics.

To aid in this goal, large-scale cancer genome sequencing efforts, such as The

Cancer Genome Atlas (TCGA) [81] and the International Cancer Genome Consortium

(ICGC) [83] have sequenced thousands of tumor samples across tens of different cancer

types, revealing millions of somatic mutations. While these massive studies have

provided researchers with an incredible influx of readily available data, untangling

the genetic roots of cancer remains an open problem. Numerous analyses of the data,

though, have confirmed that “driver” genes preferentially target specific signaling and

regulatory pathways [82, 59], underscoring the power of network-based methods to

provide a valuable context within which to study cancer genomes [64, 2]. Both of the

approaches developed in this dissertation use biological networks and, while generally

pertinent to complex diseases, are applied predominantly to cancer.

1.3 Contribution of this dissertation

In this dissertation, I propose new methods to uncover disease-relevant genes. I rely

on the fact that biological networks provide a helpful proxy to biological knowledge of

pathways and function and that this can be leveraged to tackle disease heterogeneity.

The fundamental insight underlying my work is that the modularity of biological

networks can be better exploited if information such as what the individual mutational

profiles of patients are or what some of the already known disease-relevant genes are,

is incorporated. My work consists of two main algorithms designed to help decipher

the complexity of disease genomes.

In Chapter 2, I focus my attention on cancer because this is a disease that affects

millions of people and which exhibits a vast mutational heterogeneity. I discuss
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my work on using a network-based strategy to explain the mutational profiles of

cancer patients. The main intuition behind this work is that, instead of aggregating

mutational data, considering the per-individual mutational profiles of cancer patients

helps uncover rare genomic variants (i.e., present only in a handful of individuals)

that nevertheless play an important role in tumorigenesis and/or cancer progression.

I present nCOP, a novel network-based method which aims to find genes with variants

across large number of patients that also form a small connected subcomponent within

the larger biological network. I describe two algorithms to solve the problem and a

machine learning-like schema to automatically select the value of a single required

parameter. I demonstrate that nCOP is more effective in discovering cancer genes than

both a state of the art frequency-based method and other network-based methods,

and that it excels at zooming in on infrequently mutated but cancer-relevant genes.

In Chapter 3, I broaden my scope to several complex diseases and discuss my

work on incorporating prior knowledge of disease-associated genes to better interpret

various types of new incoming data. The intuition behind this work is that existing

knowledge can inform the way the new information is examined in a network con-

text. I present uKIN, a method which first uses a graph diffusion kernel to spread a

signal from the set of already known disease genes and then uses it to bias a random

walk originating from the newly implicated genes to move closer to the known ones.

First, I show how this approach successfully integrates existing knowledge and new

information in the context of cancer and how it outperforms other methods in uncov-

ering cancer-relevant genes. Then, I demonstrate the versatility of my method and

integrate new information from genome-wide association studies in order to uncover

disease genes for several other complex diseases.

In Chapter 4, I conclude by summarizing my findings and discussing the implica-

tions of and future directions for the original work presented in this dissertation.

5



2 Network-based Coverage of Mu-

tational Profiles Reveals Cancer

Genes

2.1 Introduction

Large-scale cancer genome sequencing consortia, such as The Cancer Genome At-

las (TCGA) [81], the International Cancer Genome Consortium (ICGC) [83] and

other smaller, cancer-specific studies have sequenced the protein-coding regions of

thousands of tumor samples across tens of different cancer types. Initial analyses of

these data have revealed that while there may be numerous somatic mutations in a

tumor that result in altered protein sequences, very few are likely to play a role in

cancer development [5, 91, 27]. Therefore, a major challenge in cancer genomics is

to develop methods that can distinguish the so-called “driver” mutations important

for cancer initiation and progression from numerous other “passenger” mutations.

Early statistical approaches have identified cancer-driving genes by highlighting

those genes that are mutated more frequently in a cohort of patients than expected

by chance according to some background model [97, 20, 53]. However, the genetic

underpinnings of cancer are highly heterogeneous: even when considering a single

cancer type, very few genes are found to be somatically mutated across large numbers
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of individuals [36]. Further, genes altered only in a few individuals may also be

important for tumorigenesis and cancer progression [78]. Clearly, these rarely mutated

but cancer-relevant genes cannot be detected by purely frequency-based approaches.

A promising alternative viewpoint is to consider somatic mutations in the context

of pathways instead of genes. In particular, it has been proposed that alterations

within any of several genes comprising the same pathway can have similar conse-

quences with respect to cancer development, and that this contributes to the muta-

tional heterogeneity evident across cancers. Consistent with this, numerous analyses

of TCGA data have shown that certain known pathways are frequently altered across

tumor samples of a particular cancer via mutations in different genes [82, 59]. Early

studies have leveraged this observation by analyzing known pathways for enrichment

of somatic mutations [41, 10] and pinpointing those that are significantly mutated

across patients [93, 90]. The power of these studies is somewhat limited, however, as

our knowledge of pathways is incomplete and new pathways cannot be identified by

these approaches.

De novo discovery of cancer-relevant pathways using large-scale protein interaction

networks has thus been the focus of several newer methods (e.g., [88, 10, 15, 65,

74, 4, 12]). In particular, since protein-protein interaction networks have a modular

organization [30, 76], proteins taking part in the same pathways and processes tend to

be close to each other in the network. One prominent class of techniques leverages this

modular structure by propagating mutational information through protein interaction

networks and deriving pathways from the induced subnetworks [88, 56, 39, 1]. For

instance, Vandin et al. [88] diffuse a “heat” signal arising from the frequency with

which proteins are somatically mutated across a cohort of samples to uncover cancer-

relevant modules while Hofree et al. [34] approach the problem from a different angle,

using biological network information to stratify cancer subtypes. A recent pan-cancer

network analysis [56] affirms the power of diffusing mutational data across protein
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interaction networks, especially for uncovering rarely mutated cancer genes. However,

such diffusion approaches can be highly influenced by frequently mutated genes [56],

and further, these methods do not consider whether most patients have mutations

in any of the identified pathways. On the other hand, the tendency of most cancer

pathways to have mutations in no more than a single component gene within an

individual have led to the development of separate set of methods for identifying

cancer-related genes based on mutational exclusivity [87, 55, 44, 46]. These methods,

however, have limited power in detecting rarely mutated cancer -relevant genes.

Here we present a novel network-based approach to tackle cancer mutational het-

erogeneity by utilizing per-individual mutational profiles. Our method is based on

the expectation that if a pathway is relevant for cancer, then (1) many individuals

will have a somatic mutation within one of the genes comprising the pathway and

(2) the genes comprising the pathway will interact with each other and together form

a small connected subcomponent within the larger network. Therefore, given a bio-

logical network as well as patient sample data consisting of somatic point mutations,

the goal of our approach is to find a set of candidate genes that both “cover” the

most patients (i.e., individuals have mutations in one or more of these genes) and

are connected in the network (i.e., these genes are likely to participate in the same

cellular pathway or process). In contrast to network diffusion approaches, our frame-

work focuses on per-individual mutational profiles and as a result, the “influence” of

frequently mutated genes is not spread through the network. We note that network-

based coverage approaches have been previously introduced to uncover pathways that

are dysregulated [85, 13, 45] or mutated [19, 46] across cohort of samples. However,

either patients were required to be covered by these approaches [85, 13, 45, 46], in

some cases multiple times (which is especially relevant for dysregulated genes, since

there are many of them), or these approaches were designed for data sets with sig-

nificantly fewer mutations [19]; both cases lead to very different optimizations and
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algorithms that are not effective for the task at hand. Alternatively, other approaches

have attempted to discover sets of mutated genes that cover not patients but instead

genes dysregulated in cancers, with coverage defined by short paths in interaction

networks [3, 74, 4].

We devise a simple yet intuitive objective function that balances identifying a

small subset of genes with covering a large fraction of individuals. Our objective has

just a single parameter that is automatically set using a series of cross-validation tests,

eliminating the need of many previous approaches to manually select values for various

thresholds and parameters. We develop an integer linear programming formulation to

solve this problem and also give a fast heuristic algorithm. We apply our method—

network-based coverage of patients (nCOP)—to 24 cancer types from TCGA and

uncover both well-known cancer driver genes as well as new potential cancer-related

genes. We compare nCOP to previous methods that do not use network information,

including a state-of-the-art frequency-based method [53] and a “set cover” version of

our approach that attempts to find a set of genes that covers cancer samples without

considering network connectivity, and demonstrate nCOP’s superior power in detecting

known cancer genes and in zooming in on rarely mutated ones. Finally, we compare

nCOP to recent network-based methods that aggregate mutational information and

show that our per-patient approach readily outperforms them.

2.2 Results

2.2.1 Algorithm Overview

We begin by giving a brief summary of our method (Figure 2.1); each part is described

in more detail in the Methods section 2.3. The biological network is modeled as an

undirected graph where each vertex represents a gene, and there is an edge between

two vertices if an interaction has been found between the corresponding proteins. We
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annotate each node in the network with the IDs of the individuals having one or more

mutations in the corresponding gene (Figure 2.1a). We aim to find a relatively small

connected component such that most patients have mutations in one of the genes

within it. A small subgraph is more likely to consist of functionally related genes and

is less likely to be the result of overfitting to the set of individuals whose diseases we

are analyzing. However, we would also like our model to have the greatest possible

explanatory power—that is, to account for, or cover, as many patients as possible by

including genes that are mutated within their cancers. We formulate our problem to

balance these two competing objectives with a parameter α that controls the trade-off

between keeping the subgraph small and covering more patients.

For a fixed value of α, we have developed two approaches to solve the underly-

ing optimization problem. One is based on linear programming and the other is a

fast greedy heuristic (see Methods 2.3.2 and 2.3.3 respectively). We use the greedy

heuristic in the context of a carefully designed cross-validation procedure to select a

value for α that results in good coverage of patients but avoids overfitting to them

(Figure 2.1b). Once α is selected, this value is used within our objective function and

we next analyze the entire patient cohort. In particular, multiple independent trials

using α are run on randomly chosen subsets of the patient data (Figure 2.1c), as we

have found that introducing a little bit of randomness helps increase performance as

compared to a single run on the full data set. Each trial outputs a subgraph, and our

final aggregated output is an ordered list of candidate genes ranked by how frequently

each has been selected over the trials (Figure 2.1d).

We run nCOP, using the greedy heuristic algorithm, on somatic point mutation

data from 24 different TCGA cancer types. Results in the main paper use the HPRD

network [69] for all analysis and highlight kidney renal clear cell carcinoma (KIRC)

with 416 samples as an examplar.
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Rank Gene 
Name 

% Times 
Found in G’ 

Patients 
Covered 

1 TP53 93% P1, P6, P7... 
2 PTEN 88% P3, P5... 
3 MTOR 84% P2, P4... 
4 RHEB 84% P1... 
5 SVIL 68% P3... 
6 SPG2 52% P3... 

Aggregate results across iterations: c d 

Figure 2.1: Overview of our approach. (a) Somatic mutations are mapped onto
a protein-protein interaction network. Each node is associated with the set of indi-
viduals whose cancers have mutations in the corresponding gene. The overall goal is
to select a small connected subnetwork such that most individuals in the cohort have
mutations in one of the corresponding genes (i.e., are “covered”). (b) nCOP auto-
matically selects a value for the parameter α by performing a series of cross-validation
tests. First, 10% of the individuals are withheld as a test set. Next, the remaining in-
dividuals are repeatedly and randomly split into into two groups, a training set (80%)
and a validation set (20%). For each split, the nCOP search heuristic is run for a
range of α values (0 < α < 1) using the individuals comprising the training set. The
parameter α is selected to obtain high coverage of the individuals in the validation
sets while maintaining similar coverage on the training sets (i.e., not overfitting to
the training set). Coverage of individuals in the initially withheld test set is also cal-
culated and confirmed to be similar to the validation sets. (c) Once α is selected, to
avoid overfitting on the entire dataset, nCOP is run 1000 times using random subsets
of 85% of the individuals. (d) Finally, the subnetworks output across the runs are
aggregated and candidate genes are ranked by the number of the times they appear
in the outputted subnetworks.
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2.2.2 Automatic parameter selection reveals generalizability

of uncovered subnetworks

Our optimization function for uncovering a subnetwork of mutated genes that covers

many patients has one parameter, α. Large values of α result in a larger number

of selected genes that cover more patients, yet may contain more irrelevant genes;

this may especially be a factor if there are many samples where missense mutations

are not the driving event. To choose an appropriate value for α for a set of cancer

samples, we split our samples into training, validation and test sets [31], run our

greedy heuristic using samples in the training set, and then choose an α where patient

coverage deviates between the training and validation sets (see Methods 2.3.4). We

note that this framework differs from a traditional machine learning cross-validation

setting in that we are not training using a set of trusted examples; instead, our

intuition is that cancer-relevant genes that are uncovered using the training samples

should also cover samples outside of this set.

We demonstrate that, across the 24 cancer types, our cross-validation framework

is a highly effective approach for choosing an α that balances patient coverage with

subnetwork size. For all cancers, as α increases, the total number of genes in the

chosen subnetwork G′ increases (as expected), as does the fraction of patients in

the training set that are covered by these genes (Figure 2.2a and Supplementary

Figure A.1). For smaller values of α, coverage on the validation sets closely matches

that obtained on the training sets; that is, the sets of genes chosen using patients in

the training sets are also effective in covering patients in the corresponding validation

sets. For KIRC, when α = 0.5, genes chosen using the training sets cover on average

nearly 70% of patients in the corresponding validation sets, with coverage on the

completely withheld test set within 5% of this. The fact that a small subnetwork can

be found that covers a large fraction of previously unseen patients is consistent with
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Figure 2.2: We illustrate our cross-validation procedure for parameter selection us-
ing the KIRC data set and the HPRD protein-protein interaction network. For each
random split of the individuals, we run our algorithm on the training set for different
values of α, and next plot the fraction of covered individuals in the training (blue) and
validation (red) sets. We also give the number of proteins in the uncovered subgraphs
(orange). For each plotted value, the mean and standard deviation over 100 random
splits are shown. (a) When using somatic missense mutations, at higher values of α,
overfitting occurs as the coverage on the validation set levels while coverage on the
training set continues to increase. The parameter α is selected using an automated
heuristic procedure (green rhombus) so that coverage on the validation set is good
while overfitting on the training set is not extreme. (b) When using somatic synony-
mous mutations, there is poor coverage on the validation set regardless of coverage on
the training set. Further, as compared to using missense mutation data, significantly
more genes are required to cover the same fraction of individuals.

the hypothesis that a shared pathway or process plays a role in most (but not all) of

these patients’ cancers.

For larger values of α (> 0.6 for KIRC), however, coverage on the validation sets

lags behind that observed on the training sets. For even larger values of α (> 0.85 for

KIRC), the algorithm selects many genes, and eventually increases the coverage for

most cancers on the training sets to nearly 100%. However, larger values of α do not

substantially increase coverage of the withheld patients. This difference between the

training and validation curves captures the overfitting of the model and also illustrates

the trade-off between covering more patients and keeping the solution parsimonious.
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We note that the eventual plateau of the validation curve is consistent across cancer

types (Supplementary Figure A.1). For each cancer type, values of α are selected by

our automated procedure (see Methods 2.3.4); this value is α = 0.5 for the KIRC

dataset shown in Figure 2.2.

As a control, we repeat the same procedure using only synonymous mutations

(Figure 2.2b). We observe that the coverage on the validation sets is much poorer.

Though coverage of course increases as more nodes are added, it never exceeds 50%

even when α is increased to 1 or when we have nearly perfect coverage on the training

set, despite adding many more nodes. This poor performance is consistent with the

expectation that synonymous mutations do not result in altered protein sequences

and do not disturb cellular pathways. Hence, given the differences observed between

using missense versus silent mutation data when varying settings for α and comparing

training and validation sets, our formulation appears to be well-suited for investigating

mutational profiles in the context of interaction networks.

2.2.3 nCOP effectively uses network information to uncover

known cancer genes

Having shown in the previous section how to select a value for the only parameter in

the model, we next evaluate nCOP’s performance in uncovering known cancer genes

(CGCs) [24].

We first consider the KIRC data set, and find that our top predictions include a

high fraction of CGC genes (Figure 2.3a). To illustrate the power of our network-based

method, we compare its performance to approaches that do not consider any network

information. In particular, we consider a set cover version of our approach that

does not use network information at all, as well as a state-of-the-art frequency-based

approach, MutSigCV 2.0 [53]. For the same number of predicted genes, our approach
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consistently has a larger fraction of CGCs than either approach, demonstrating the

advantage of using network information.

We next compare nCOP to these two non-network approaches across all 24 cancer

types. In particular, we compute the log ratio of the area under the precision-recall

curve (AUPRC) of our approach versus each of the other approaches on each cancer

type (Figure 2.3b). We outperform MutSigCV 2.0 in 22 of the 24 cancers and the

set cover approach in all cancers, demonstrating the clear advantage of using network

information; the performance improvement of nCOP over the set cover approach is par-

ticularly notable as the main difference between these approaches is the additional use

of network information by nCOP. In several cancers, the performance improvements

of nCOP are substantial. For example, nCOP shows a four-fold improvement over

MutSigCV 2.0 in predicting cancer genes for liver hepatocellular carcinoma (LIHC)

and an eight-fold improvement over MutSigCV 2.0 on pheochromocytoma and para-

ganglioma (PCPG). The overall results are consistent across different lists of known

cancer genes (Supplementary Figure A.2a and b), numbers of predictions considered

(Supplementary Figure A.2c), and networks (Supplementary Figure A.2d). The su-

perior performance of nCOP as compared to these non-network based approaches on

the vast majority of cancers demonstrates its considerable power.

Having shown that nCOP better identifies cancer-relevant genes than two ap-

proaches that do not use network information, we next consider whether the spe-

cific way in which nCOP uses network information is beneficial. Towards this end,

we compare the effectiveness of nCOP in uncovering cancer genes to Muffinn [12], a

method published last year that considers mutations found in interacting genes, and

to DriverNet [3], a method that finds driver genes by uncovering sets of somatically

mutated genes that are linked to dysregulated genes. We find that nCOP outperforms

Muffinn on 20 and DriverNet on 21 of the 24 cancer types (Figure 2.3c). We also

compare nCOP to Hotnet2 [56], a cutting-edge network diffusion method. As Hotnet2
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Figure 2.3: nCOP is more successful than other methods in identifying known
cancer genes. (a) Our network-based algorithm nCOP, a set cover version of our
algorithm that ignores network information, and MutSigCV 2.0, a frequency-based
approach, are compared on the KIRC dataset. nCOP ranks genes based on how fre-
quently they are output, and MutSigCV 2.0 ranks genes by q-values. The set cover
approach is run for increasing values of k until all patients are covered. For each
method, as an increasing number of genes are considered, we compute the fraction
that are CGCs. Over a range of thresholds, our algorithm nCOP outputs a larger
fraction of CGC genes than the other two approaches. (b) Comparison of nCOP to
two network-agnostic methods across 24 cancer types. For each cancer type, we com-
pute AUPRCs for nCOP, the set cover approach, and MutSigCV 2.0, using their top
100 predictions. We give the log2 ratios of nCOP’s AUPRCs to the other methods’
AUPRCs. Our approach nCOP outperforms the set cover approach on all 24 can-
cers, and MutSigCV 2.0 on 22 of the 24 cancer types. (c) Comparison of nCOP to
two network-based methods, Muffinn and DriverNet, across 24 cancer types. For
each cancer type, we compute the log2 ratio of nCOP’s AUPRC to the other methods’
AUPRCs. Our approach nCOP outperforms Muffinn and DriverNet on 20 and 21,
respectively, of the 24 cancer types.

does not output a ranked list of genes, we could not compute an AUPRC. Instead, ex-

amining the complete list of genes highlighted by both methods, we observe that nCOP

exhibits significantly better precision while trailing slightly in recall (Supplementary

Figure A.3).

Robustness tests. We briefly describe some additional tests we performed to show

that nCOP is robust and well-behaved. First, to confirm the importance of network
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structure to nCOP, we have run nCOP on two types of randomized networks, degree-

preserving and label shuffling, and have shown that (as expected) overall performance

deteriorates across the cancer types (Supplementary Figure A.2e); we note that these

randomized networks maintain the relationships between genes and the cancers they

are found to be mutated in, and thus retain significant cancer-relevant information.

Second, to make sure that the novel genes we uncover are not driven by patients

with large numbers of passenger mutations (i.e., that the novel genes are not likely to

be passenger genes), we have compared the overall number of mutations for patients

having missense mutations only in CGC genes but not in any non-CGC (or novel)

genes to the total number of such mutations for patients having missense mutations

only in novel genes but not in any CGC genes (Supplementary Figure A.4), and have

found that patients with only mutations in novel genes do not harbor more mutations.

Finally, to make sure that genes are not more likely to be picked because they have

higher degree, we have confirmed that newly predicted genes do not tend to exhibit

higher degree than known cancer genes; indeed, among all novel genes found across

all cancer types, most have degree less than 15, and there are only a couple with high

degree (≥ 50).

2.2.4 nCOP newly predicts rarely mutated cancer genes

We next demonstrate that nCOP highlights genes with a range of mutation rates.

When considering genes that are output by nCOP in at least 50% of the trials on the

KIRC samples, we see many well-known cancer players: some are highly mutated,

such as VHL, BAP1 and TP53, while others, such as ERBB2 and RUNX1T1, are

each mutated only in a handful (< 1%) of samples. While the former set of genes can

be uncovered by any frequency-based technique, the latter have missense mutation

rates that are similar to those of genes not relevant for cancer (Figure 2.4a) and

are thus hard to uncover by frequency-based methods. Indeed, of the 4818 genes
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that have any missense mutations across the KIRC samples, nCOP identifies 47 as

cancer relevant, with 24 of those in the bottom 90% of mutated genes with respect

to their missense mutation rates. Among these 24 genes, 12 are CGCs (p < 10−8,

hypergeometric test). The statistically significant enrichment of CGC genes in the

rarely mutated genes found by nCOP is true across all cancers except for UCS where

nCOP predicts only six genes. Thus, nCOP provides a means for pulling out cancer

genes from the “long tail” [27] of infrequently mutated genes.

In addition to ranking known cancer genes highly, nCOP also gives high ranks

to several non-CGC genes that may or may not be implicated in cancer, as our

knowledge of cancer-related genes is incomplete. Among these novel predictions for

KIRC are HIF1A, NR5A2, and SALL1, which have all recently been suggested to

play a role in cancers [73, 94, 58] and are each mutated in less than 3% of the

samples. SALL1 is a zinc-finger transcription factor which is shown to play a role

in kidney development [11] and mutations within it have been linked to Townes-

Brocks syndrome, a rare genetic disease associated with kidney abnormalities and

malformation [49]. Among the individuals in the KIRC dataset covered by the SALL1

gene, one has no mutations affecting protein coding in any known cancer gene. Thus,

while this particular individual’s tumor is not driven by mutations in known cancer

genes, nCOP pinpoints a role for SALL1.

Several of the genes uncovered by nCOP with low missense mutation rates in KIRC

are part of the PI3K-AKT signaling pathway, a prominent cancer pathway that pro-

motes cell survival and growth. When considering the 28 genes output by nCOP with

missense mutation rates lower than that of AKT2, a key component of this pathway,

we find that 18 of them form a small connected component (Figure 2.4b) and to-

gether are mutated in ∼14% of the samples. Three of our novel predictions, STAT1,

CDKN1A and HSP90AA1, interact with AKT1. Existing literature [66, 50, 9, 14]

supports a possible role of these genes in tumor progression. Notably, STAT1, a gene

18



B

C

UCEC

THCA

STAD

READ

PRAD

PCPG

PAAD

OV

LUSC

LUAD

LIHC

LGG

KIRP

KIRC

KICH

HNSC

GBM

COAD

CESC

BRCA

BLCA

ACC

AR

BR
W
D1

CA
V1

CD
H8

CD
KN
1A

CD
KN
1B

CS
NK
2A
1

EE
F1
A1

EN
C1 FL

G

G
RB
2

G
SK
3B

HD
AC
1

HN
F4
A
IN
G
1

LA
M
A4

LR
IF
1

M
AP
K1

M
TO
R

PP
P2
R2
B

PT
N

RA
D5
1

SA
LL
1

SM
AD
2

SM
AD
3

TE
P1

TP
63

UB
E2
A

UB
E2
I

W
DR
33

W
W
OX

ZC
CH
C1
0

coverage <1% 1−5% >5%

A

Figure 2.4: nCOP identifies rarely mutated genes. (a) The missense mutation
rates, computed for each gene as the total number of missense mutations observed
within it divided by the product of the number the samples and the length of the gene
in nucleotides per 103 bases, are sorted from high to low and are shown for all mutated
genes in the KIRC dataset. Genes that are output by nCOP in at least half the trials
are shown in red for known cancer genes, and in blue for new predictions. All other
genes are shown in grey. Well known cancer genes output by nCOP, such as VHL and
TP53, are at the peak of the distribution. nCOP is also able to uncover known cancer
genes with very low mutational rates lying at the tail of the distribution. (b) Several
of the infrequently mutated genes selected by nCOP form a module with five genes
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that belong to the prominent cancer PI3K-AKT signaling pathway. Red nodes de-
note CGC genes and blue nodes denote novel predictions. (c) Shown are all newly
predicted, non-CGC genes that are uncovered by nCOP in more than 3 cancers. The
majority of these predictions are mutated in less than 5% of the samples in the cor-
responding cancers in which they are implicated. A star indicates that the gene
covers an individual of a particular cancer type who does not have any protein coding
affecting variant in any CGC gene.

which modulates diverse cellular processes, such as proliferation, differentiation and

cell death, also covers an individual with no variants in any known cancer gene.

When we consider the full ranked list of genes output by our procedure for KIRC

and perform a rank-based gene set enrichment analysis using the Broad Institute

GSEA tool [79], four pathways from the KEGG database, all cancer-relevant, are

enriched at p < 0.05 (microRNAs in cancer, pathways in cancer, jak stat signaling

pathway, and choline metabolism in cancer). Interestingly, the thyroid hormone sig-

naling pathway is also enriched. It has been shown that thyroid hormones play a role

in kidney growth and development [43] and four of our non-CGC predictions are part

of that pathway, together with four known cancer genes.

When run individually on all 24 cancer types, nCOP newly implicates 32 genes as

relevant in at least in at least three cancer types (Figure 4c). These genes typically

are infrequently mutated, with 93% of them mutated in fewer than 5% of the samples

in each of the cancers in which they are predicted to play a functional role. Several of

the novel genes unveiled by nCOP are found in individuals whose cancers do not harbor

somatic mutations in any known cancer gene; thus, somatic mutations within these

novel genes are promising as candidate driver events within these cancers. Across

all cancer types, there are 285 patients who do not have mutations affecting protein

coding in any known cancer gene, and nCOP covers 114 of them (40%) by selecting

100 genes. The selection of these novel genes is not driven by samples with hypermu-

tator phenotypes (Supplementary Figure A.4) and 13 appear in more than 3 cancers

(Figure 2.4c). While some newly uncovered genes may be false positives, others (like
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SALL1 and STAT1 ) are strong candidate genes for further investigation. This illus-

trates the power of nCOP to zoom in on rarely mutated genes and to help uncover the

genetic underpinnings of the studied tumor samples.

2.3 Methods

2.3.1 General formulation

We model the biological network, as usual, as an undirected graph G = (V,E) where

each vertex represents a gene, and there is an edge between two vertices if an inter-

action has been found between the corresponding protein products. Each vertex vj

is associated with a set Cj containing the IDs of the individuals who have somatic

mutations in the corresponding gene. We formulate our problem as that of finding a

connected subgraph G′ of G so as to minimize

αX + (1− α)Size(G′),

where X is the fraction of patients that do not have an alteration in a gene included in

G′ (i.e., they are uncovered), Size(G′) is the size of the subgraph, and 0 ≤ α ≤ 1 is a

fixed parameter controlling the trade-off between keeping the subgraph G′ small and

covering more patients. A patient with ID i is covered if i ∈
⋃

vj∈G′
Cj, and uncovered

otherwise. We note that our problem is similar, though not identical, to the Minimum

Connected Set Cover Problem [75], a NP-hard problem.

A simple and natural measure for the size of a subnetwork is its number of nodes

(i.e., Size(G′) = |G′|). However, longer genes may tend to acquire more mutations

simply by chance. We correct for that by associating with each node vj a weight wj

that is equal to the ratio of the length of the gene to the total number of mutations

it has. The size of the subcomponent is then defined as Size(G′) =
∑

vj∈G′
wj. This
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way, genes having longer length will be weighted more, correcting for a possible bias

towards selecting longer genes. We note that since our objective function balances

the fraction of uncovered patients with the size of the graph, we would like the size

of the graph to be between 0 and 1; thus, we normalize each node weight by dividing

by the unnormalized size of what we call a fully covering subgraph Gf—a connected

subgraph of G that covers all patients. (In practice, we compute Gf using the greedy

heuristic described below, with α = 1).

2.3.2 Integer linear programming formulation

The problem of finding a minimum connected subgraph that covers as many patients

as possible can be solved using constraint optimization. Let n be the number of

patients in our sample. For each patient i, we define a binary variable pi that is set

to 1 if patient i is covered by the chosen subgraph G′, and 0 otherwise. For each

vertex (or gene) vj, we define a binary variable xj that is set to 1 if the vertex is

included in the chosen subgraph G′, and 0 otherwise. It is straightforward to set up

constraints to ensure that a patient is considered uncovered if none of its mutated

genes are part of G′, and covered if at least one of its mutated genes is selected as

part of G′ (see Equations (1) and (2) below).

The challenging part of the ILP is setting up constraints to ensure that the chosen

nodes form a connected subgraph G′. For this task, we employ a flow of commodity

technique [23], which we now briefly describe. We inject |G′| units of flow into G′

(i.e., we inject
∑
xi units of “flow” into a vertex that is included in the chosen

subnetwork). Flow can move from one vertex to any of its neighbors in the network,

and each vertex removes exactly one unit of flow as the flow passes through it. All

flow must be removed from the subnetwork, and we set the constraints so that this is

possible only if the subnetwork G′ is connected. For the source of the flow we use an

artificial external node vextr. The main issue is that we do not know which node vextr
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should be connected to, as we do not know the nodes of G′ in advance. To resolve

this, we decide that vextr connects to the node that covers the largest number of pa-

tients vmax; this is equivalent to determining in advance that vmax ∈ G′, though as an

alternate approach we could also decide to choose this node probabilistically and run

the ILP several times. Finally, to handle the flow constraints, for each edge (i, j) ∈ E,

we introduce integer variables yi,j and yj,i to represent the amount of flow from node

i to node j and from node j to node i, respectively. The full integer linear program is:

minimize α(n−
∑
i

pi)/n+ (1− α)
∑
j

xjwj

subject to

pi ≥ xj ∀i, j s. t. i ∈ Cj (2.1)

pi ≤
∑
j:i∈Cj

xj for each patient i (2.2)

∑
i:(i,j)∈E

yi,j = xj +
∑

i:(i,j)∈E

yj,i for each vertex vj (2.3)

∑
j:(i,j)∈E

yi,j ≤ |V |xi for each vertex vi (2.4)

∑
i

xi = yextr,max (2.5)

pi, xi, yi,j ∈ {0, 1} for all such variables (2.6)

Equation (1) ensures that a patient is considered covered if one of his or her somat-

ically mutated genes is included in G′. Equation (2) ensures that a patient is not

considered covered if none of his or her somatically mutated genes is chosen to be

part of the subgraph. Equations (3), (4) and (5) enforce the connectivity requirement.

Equation (3) requires that the flow going out of each vertex in the chosen subnetwork

is 1 less than the flow coming in. Equation (4) requires that if a vertex is not part of
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the chosen subgraph, the flow going through it is 0. Equation (5) sets the amount of

flow injected into the subgraph to be equal to the number of chosen nodes.

2.3.3 Greedy heuristic

Solving the ILP yields an exact solution but is computationally difficult. Thus, we

have also developed an efficient greedy heuristic. Our heuristic procedure initializes

G′ by randomly choosing the first gene from among the five most mutated genes, with

probability proportional to the number of patients it is found mutated in. It then

expands the subgraph G′ iteratively as follows. At each iteration, all vertices that are

at most distance 2 from a vertex in G′ are examined and the one that improves the

objective function the most is chosen; any ties are broken uniformly at random. If

this vertex is not directly adjacent to the nodes in the subnetwork, the intermediary

node is also added. The heuristic terminates when no improvement to the objective

is possible. We repeat this heuristic multiple times, as it is probabilistic.

In practice, the greedy heuristic finds a solution that is on average ∼90% of the

best value for the objective function as determined by the ILP formulation using

CPLEX [38]. For example, on the glioblastoma dataset of 277 individuals, the ILP

finds 61 genes covering 90% of the patients when using α=0.5. In comparison, for

this value of α, the greedy heuristic finds on average 66 genes covering 88% of the

patients with 39 genes in common. In the rest of the paper, we use the greedy

optimization as it has comparable performance to the ILP, while being much faster.

2.3.4 Parameter selection and solution aggregation

We split our samples into training, validation and test sets [31]. A test set of (10%)

of the patients is completely withheld. While varying α in small increments in the

interval (0; 1), the remaining data is repeatedly split (100 times for each value of α)

into training (80%) and validation (20%) sets. For each split, the greedy heuristic
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algorithm is run on the training set to find G′. The fractions of patients covered (by

the selected G′) in the training and validation sets are compared. The parameter

α is selected where performance on the validation sets deviates as compared to the

training sets. While this can be done visually, for all results reported here we do this

automatically using a simple two-rule procedure that selects the smallest α for which

the difference in average coverage between the training and validation set exceeds

5% and for which average performance on the validation set is within 10% from the

maximum observed one for any α. Finally, the coverage of patients on the (completely

withheld) test set is computed to ensure it is similar to the one on the validation set.

Once α is chosen for a set of cancer samples, we repeatedly (1000 times) run the

algorithm on this set, each time withholding a fraction (15%) of the patients in order

to introduce some randomness in the process. Genes are then ranked by the number

of times they appear in G′. In practice, we have found that this improves performance

as compared to running the algorithm once on the full data set.

2.3.5 Data sources and pre-processing

We downloaded all level 3 cancer somatic mutation data from The Cancer Genome

Atlas (TCGA) [81] that was available as of October 1, 2014. This data consists of

a total of 19,460 genes with somatic point mutations across 24 cancer types. For

each cancer, samples that are obvious outliers with respect to their total number

of mutated genes are excluded. See Supplementary Table 1 for a list of the cancer

types, the cancer-specific thresholds to determine outlier samples, the number of

patient samples considered for each cancer type, and other statistics about the TCGA

somatic mutation dataset.

We use two different biological networks in our analysis: HPRD [69] (Release

9 041310) and BioGrid (Release 3.2.99, physical interactions only) [77]. Biological

networks can exhibit several nodes with very high connectivity, often due to study
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bias. As such high connectivity destroys the usefulness of the network information, we

remove all nodes whose degrees are clear outliers with unusually high degree (degree

> 900 and more than 10 standard deviations away from the mean). For BioGrid, this

removes UBC, APP, ELAVL1, SUMO2, CUL3. For HPRD, we remove no nodes.

For both networks, we exclude the nine longest genes (TTN, MUC16, SYNE1, NEB,

MUC19, CCDC168, FSIP2, OBSCN, GPR98 ) as they tend to acquire numerous

mutations by chance while covering many patients.

To further handle the connectivity arising within the networks due to high-degree

nodes, we filter edges using the diffusion state distance (DSD) metric introduced

in [7]; the DSD metric captures the intuition that edges between nodes that also

share interactions with low degree nodes are more likely to be functionally meaningful

than edges that do not (and thus are assigned closer distances). For each edge, the

DSD scores (as computed by the software of [7]) between the corresponding nodes

are Z-score normalized, and edges with Z-scores > 0.3 are removed. We note that the

overall performance of our approach improves when performing this filtering (data

not shown), supporting the claim of [7] that preprocessing a biological network in

this manner is an important step. The final number of nodes and edges, respectively,

for the filtered networks are 9,379 and 36,638 for HPRD ; and 14,326 and 102,552 for

BioGrid.

2.3.6 Performance evaluation

To evaluate the gene rankings of all the tested methods, we use the curated list of

517 cancer census genes (CGCs) available from COSMIC [25]. All genes in this list

are considered as positives, and all other genes are considered as negatives. Though

we expect that there are genes other than those already on the CGC list that play a

role in cancer, this is a standard approach to judge performance (e.g., see [39]) and

gives us an idea of how methods are performing as cancer genes should be highly
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ranked by methods that perform well. To avoid potential biases due to using a single

list of positives, we additionally tested using two different sets of cancer genes (Sup-

plementary Figure A.2). Since only the top predictions by any method are relevant

for cancer gene discovery, we judge performance by computing the area under the

precision-recall curve (AUPRC) using the top 100 genes predicted by each method

(without thresholding the output of any method by score or level of significance).

If a method returns less than 100 genes total, we extend the precision-recall curve

to 100 genes assuming that it performs as a random classifier. We note that rea-

sonable changes to the number of predictions considered does not change our overall

conclusions (Supplementary Figure A.2).

Other approaches. To ascertain the contribution of network information, we com-

pare nCOP to two approaches that do not use network information: (1) MutSigCV

2.0 [53], a state-of-the-art method that identifies genes that are mutated more fre-

quently than expected according to a background model, and (2) a set cover approach

that tries to find mutated genes that simply cover as many patients as possible. We

formulate the set cover approach as an ILP that tries to find a good cover consist-

ing of k vertices. Using the same notation as for nCOP, the set cover objective is to

maximize
∑
i

pi, subject to Equations (1) and (2) of nCOP, and with the additional

constraints that
∑
j

xj ≤ k and
∑
j

xj ≥ k. We also compare nCOP to HOTNET2 [56],

Muffinn [12], and DriverNet [3], three recent network-based approaches. To ensure

fair comparisons, all methods are run on exactly the same cancer mutation data. Sim-

ilarly, Hotnet2, Muffinn and nCOP are run on the same network. DriverNet instead

uses an influence (i.e., functional interaction) graph and transcriptomic data; we use

their default influence graph and provide as input TCGA normalized expression data.

MutSigCV 2.0, Hotnet2, Muffinn, and DriverNet are run with default parameters

(for Hotnet2, this is 100 permuted networks, and β = 0.2 for the restart probability

for the insulated heat diffusion process).
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2.4 Discussion

In this paper, we have shown that nCOP, a method that incorporates individual

mutational profiles with protein–protein interaction networks, is a powerful approach

for uncovering cancer genes. Our method is based on an intuitive mathematical

formulation and demonstrates higher precision than other state-of-the-art methods

in detecting known cancer genes. Further, our approach is particularly beneficial

in highlighting infrequently mutated genes that are nevertheless relevant for cancer.

Our approach therefore complements existing frequency-based methods (e.g., [53])

that generally rely on comparisons to background mutational models and lack the

statistical power to detect genes mutated in fewer individuals.

In the future, nCOP can be extended in a number of natural ways. First, while

nCOP currently analyzes only mutations within genes that affect protein coding,

other alterations are also commonly observed in cancers. For example, copy number

variants (CNVs) are found frequently in cancers and can play critical functional roles

[98]. Although nCOP does not currently use CNV information, our framework can

be extended to incorporate this data. Indeed, as the numbers of CNVs and point

mutations found within each cancer genome appear to be inversely related [16], con-

sidering both types of alterations will increase the power of our approach. Second,

nCOP may also benefit from incorporating gene weights that reflect likelihood to

play a role in cancer; in our current work, we consider a gene’s length but no other

gene-specific attributes are considered. Such gene weights may be derived from ex-

isting approaches to detect frequency of mutation or to assess the functional impact

of mutations. Finally, while nCOP can output groups of genes that are not part of a

single connected component due to our randomized aggregation procedure, extending

nCOP’s core algorithms to explicitly consider multiple subnetworks corresponding to

distinct pathways may be a particularly promising avenue for future work.

28



We have applied nCOP across 24 different cancer types, and have shown that it

is broadly effective in identifying cancer genes in each of them. However, cancers

affecting the same tissue can often be grouped into distinct subtypes; breast cancer,

for example, is broadly subtyped based on receptor status and expression patterns

[67, 86]. In future applications, nCOP could be used to study how different known

subtypes of a given type of cancer yield overlapping or differing perturbed pathways.

Even more interesting, and with immediate clinical relevance, would be to develop

additional techniques to stratify patients into different cancer subtypes based upon

the differently perturbed modules that nCOP uncovers.

We conclude by noting that researchers can use our framework to rapidly and

easily prioritize cancer genes, as nCOP requires only straightforward inputs and runs

on a desktop machine. Indeed, nCOP’s efficiency, robustness, and ease of use make it

an excellent choice to investigate cancer as well as possibly other complex diseases. As

sequencing costs plummet and cancer and other disease sequencing mutational data

become more abundant, the predictive power of our method should only increase

(Supplementary Figure A.5). In sum, we expect that our method nCOP will be of

broad utility, and will represent a valuable resource for the cancer community.

29



3 Use of prior knowledge in net-

works

3.1 Introduction

Genetic variants have been identified in thousands of individuals with various ac-

quired and inherited diseases, including cancer, autism, and Alzheimer’s, among oth-

ers. Despite this incredible influx of mutation data, pinpointing the gene variants

responsible for the development of complex diseases remains a daunting task as the

same phenotypic outcome (disease) can result from a myriad of combinations of dif-

ferent alterations across the genome. Therefore, a major challenge in computational

biology is to develop methods that can decipher large genomic datasets and hone in

on those genes that are causal for a particular disease.

Protein-protein networks provide a powerful framework within which to identify

disease genes [37]. In particular, genes that take part in the same pathway or cellular

process tend to be close to each other in the network [30, 76], and since genes relevant

for a given disease typically target a relatively small number of biological pathways,

they are not randomly positioned in the network but instead tend to interact with

one another and cluster together in the network [63, 28, 26]. Consequently, if known

disease genes are mapped to the network, other disease-relevant genes are likely to

be found in their vicinity [64]. Indeed, biological networks have proven to be instru-
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mental in identifying disease genes [18, 2]. While early methods consider only direct

interactions between genes [51], later approaches exploit the full topological infor-

mation in the network by “propagating” or “diffusing” signal from known disease

genes [61, 48, 89]. In this manner, genes that do not directly interact with any known

disease genes but are proximal to them in the network may still receive a relatively

large amount of signal from disease genes, and thus be implicated as disease causing.

With the widespread availability of exome sequencing data and genome-wide associa-

tion studies (GWAS), the source of where information is propagated from has shifted

from known disease genes to those that are newly identified as perhaps playing a role

in disease [10, 88, 1, 65, 39, 56]. For instance, cancer genes and pathways have been

identified based on diffusing a “heat” signal arising from the frequency with which

genes are somatically mutated across tumors from a cohort of patients [56]. Thus,

there are two dominant paradigms for uncovering disease genes using biological net-

works: spreading signal either from well-established, annotated disease genes or from

genes that have been newly implicated as putatively causal.

Here, we argue that both sources of information should be utilized, and that ex-

isting knowledge of disease-genes should inform the way new data is examined within

networks. In particular, while our prior knowledge of causal genes for a given disease

may be incomplete, this information nevertheless is a valuable source of information

about the biological processes underlying the disease. Towards this end, we introduce

a guided random walk approach to uncover disease genes, where signal is propagated

from the new data such that the signal tends to move towards genes that are closer to

known disease genes. In contrast, other methods perform diffusion or random walks

uniformly [88, 39], or where the diffusion is scaled by weights on network edges that

reflect their estimated reliabilities [1]. Our guided random walk formulation relies on

a single parameter that balances how much emphasis is placed on the new information

versus the prior knowledge. We numerically solve for the stationary distribution that
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the walk converges to and use how frequently each node is visited to rank the genes

with respect to disease relevance.

We demonstrate the efficacy of our method uKIN—using Knowledge In

Networks—by first applying it to discover genes causal for cancer. Here, new

information consists of genes that are found to be somatically mutated in tumors—

only a small subset of which are thought to be relevant for cancer initiation or

progression—and prior information consists of “driver” genes annotated already to

be cance-relevantr [25]. We demonstrate, across 24 cancer types, that propagating

signal by integrating both sources of information performs substantially better in

uncovering known cancer genes than propagating signal from either source alone.

Next, we show that uKIN readily outperforms state-of-the-art network-based meth-

ods, and that uKIN can incorporate cancer-specific prior knowledge to better uncover

causal genes for specific cancer types. Finally, we demonstrate uKIN’s versatility by

applying it to three other complex diseases, where the genes comprising the new

information arise from GWAS studies.

3.2 Results

3.2.1 Algorithm Overview

We first give a brief summary of our method uKIN (Figure 3.1). At a high level, our

approach propagates new information across a network, while using prior information

to guide this propagation. While our approach is generally applicable, here we focus

on the case of propagating information across biological networks in order to find

disease genes. We assume that prior knowledge about a disease is given by a set of

genes already implicated as causal for that disease, and new information consists of

genes that are potentially disease-relevant. In the scenario of uncovering cancer genes,

prior information comes from the set of known cancer genes, and new information
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Figure 3.1: Overview of our approach. (a) Known disease-relevant genes (prior
knowledge) are mapped onto a gene-gene interaction network (shown in red, top).
Signal from this prior knowledge is propagated through the network via a network
flow approach [71], resulting in each gene in the network being associated with a
score such that higher scores (visualized in darker shades of red, bottom) correspond
to genes closer to the set of known disease genes. These scores are used to set
transition probabilities between genes such that a neighboring gene that is closer to
the set of prior knowledge genes is more likely to be chosen. (b) Genes putatively
associated with the disease—corresponding to the new information—are mapped onto
the network (shown in green, top). To integrate both sources of information, random
walks with restarts are initiated from the set of putatively associated genes, and at
each step, the walk either restarts or moves to a neighboring gene according to the
transition probabilities (i.e., walks tend to move towards genes outlined in darker
shades of red). These prior-knowledge “guided” random walks with restarts have a
stationary distribution corresponding to how frequently each gene is visited, and this
distribution is used to order the genes. Higher scores correspond to more frequently
visited genes (depicted in darker greens, bottom).

corresponds to those genes that are found to be somatically mutated across patient

tumors. For other complex diseases, new information may arise from (say) genes

weakly associated with a disease via GWAS studies or found to have de novo or rare

mutations in a patient population of interest.

The first step of our approach is to compute for each gene a measure that captures

how close it is in the network to the prior knowledge set of genes K (Figure 3.1a). To
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accomplish this, we spread the signal from the genes in K using a diffusion kernel [71].

Next, we consider new information consisting of genes M that have been identified

as potentially being associated with the disease. As we expect those that are actu-

ally disease-relevant to be proximal to each other and to the previously known set

of disease genes, we spread the signal from these newly implicated genes M, biasing

the signal to move towards genes that are closer to the known disease genes K (Fig-

ure 3.1b). We accomplish this by performing random walks with restarts, where with

probability α, the walk jumps back to one of the genes in M. That is, α controls

the extent to which we use new versus prior information, where higher values of α

weigh the new information more heavily. With probability 1 − α, the walk moves

to a neighboring node, but instead of moving from one gene to one of its neighbors

uniformly at random as is typically done, the probability instead is higher for neigh-

bors that are closer to the prior knowledge set of genes K. Genes that are visited

more frequently in these random walks are more likely to be relevant for the disease

because they are more likely to be part of important pathways around K that are

also close toM. We thus numerically compute the probability with which each gene

is visited in these random walks, and then use these probabilities to rank the genes.

See Methods 3.3 for details.

We apply our method uKIN to uncover cancer genes as well as genes associated

with three rare heterogeneous disorders. To uncover cancer genes, we use somatic

point mutation data from 24 different TCGA cancer types. Genes that have missense

and nonsense somatic mutations comprise the new information, and random walks

start from these genes with probability proportional to their mutation rates. We use

the curated list of 499 cancer census genes (CGCs) available from COSMIC [25] to

derive both our prior knowledge K of cancer driver genes as well as the hidden set

of true positivies which we will use for evaluation. We test our approach for all 24

cancer types, but showcase results for glioblastoma multiforme (GBM). To uncover
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genes associated with each of the three rare diseases, we obtain our prior knowledge

from the Online Mendelian Inheritance in Man (OMIM), and genes that have been

implicated via GWAS studies provide our new information. All results in the main

paper use the HPRD protein-protein interaction network [69], with results shown for

BioGrid [77] in the Supplement.

3.2.2 uKIN successfully integrates prior knowledge and new

information

We first demonstrate that our method successfully combines prior disease knowledge

and new information by evaluating its performance on the GBM dataset. Briefly,

we use 20 randomly drawn CGCs to represent the prior knowledge K and another

400 randomly drawn CGCs to be the hidden set H of unknown cancer-relevant genes

that we aim to uncover (see Performance evaluation 3.3.5 for details). We analyze the

ranked list of genes output by uKIN as we consider an increasing number of output

genes, and compute what fraction are members of the hidden set H consisting of

cancer-driver genes. We compare uKIN’s performance when using both prior and new

knowledge with α = 0.5, to versions of uKIN using either only new information (α = 1)

or only prior information (α = 0). For all three versions, we average performance

over 100 randomized runs. For α = 0.5, we observe that a large fraction of the

top predicted genes are part of the hidden set of known cancer genes (Figure 3.2a).

Among the top 100 predictions, 24 are CGCs (p < 10−10, hypergeometric test).

At α = 1, our method completely ignores both the network and the prior infor-

mation K and is equivalent to ordering the genes by their mutational frequencies.

That is because the random walk restarts at each step with probability 1 with the

starting locations chosen probabilistically according to their mutational frequencies.

The very top of the list output by uKIN when α = 1 consists of the most frequently

mutated genes (in the case of GBM, this includes TP53 and PTEN ). As we con-
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Figure 3.2: uKIN successfully integrates new information and prior knowl-
edge. (a) We illustrate the effectiveness of our approach on the GBM data set and
the HPRD protein-protein interaction network using 20 randomly drawn CGCs to
represent the prior knowledge. We combine prior and new knowledge using a restart
probability of α = 0.5 (blue line). As we consider an increasing number of high scor-
ing genes, we plot the fraction of these that are part of the hidden set of CGCs. As
baseline comparisons, we also consider versions of our approach where we only use
the new information (α = 1) and order genes by their mutational frequency (green
line), use the new information to perform unguided random walks with α = 0.5 and
order genes by their probabilities in the stationary distribution of the walk which
depends on the network structure but not on the prior information (purple line), and
where we only use prior information (α = 0) and order genes based on propagating
information from the set of genes comprising our prior knowledge (orange line). Inte-
grating both prior and new sources of information results in better performance. (b)
The performance of our network-based algorithm uKIN when integrating information
at α = 0.5 is compared to the three baseline cases where either only prior informa-
tion is used (α = 0, left) or only new information is used (α = 1, right; α = 0.5
(unguided), middle). In all three panels, for each cancer type, we compute the log2

ratio of uKIN’s AUPRC to the other approach’s AUPRC. Across all 24 cancer types,
using both sources of information outperforms using just one source of information.

sider an increasing number of genes, ordering them by mutational frequency is clearly

outperformed by uKIN with α = 0.5.

At the other extreme with α = 0, the starting locations and their mutational fre-

quencies are ignored as the random walk is memoryless and the stationary distribution

depends only upon the propagated prior information Q. As expected, performance is
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considerably worse than when running uKIN with α = 0.5. Nevertheless, we observe

that several CCGs are found for α = 0; this is due to the fact that known cancer

genes tend to cluster together in the network [10] and our propagation technique

ranks highly the genes close to the genes in K.

Another important basecase to consider is an unguided walk with the same restart

probability α = 0.5. In that case, the walk selects a neighboring node to move

to uniformly at random. The stationary distribution that the walk converges to

depends upon the starting locations and the network topology but is independent of

the prior information. Such a walk provides a good baseline to judge the impact the

propagated prior information Q has on the performance of our algorithm. As evident

in Figure 3.2a, an unguided walk performs very poorly (purple line), highlighting the

importance of Q in guiding the walk.

Noteworthily, the trends we observe on GBM hold across all 24 cancers (Fig-

ure 3.2b). For all cancer 24 cancers, the version of uKIN that uses both prior and new

information with α = 0.5 oupterforms using only prior information (Figure 3.2b, left)

or only new information (Figure 3.2b, middle and right). Further, we have observe

this improvement with using both prior and new information across all cancers for

a wide range of α (0.2 < α < 0.8), clearly demonstrating that using both sources of

information is beneficial.

3.2.3 uKIN is effective in uncovering cancer relevant genes

Having shown in the previous section that our formulation is successful in integrat-

ing prior knowledge and new information, we next evaluate uKIN’s performance in

uncovering cancer relevant genes as compared to several previously published meth-

ods. In particular, for each of the 24 cancer types, we compute the log2 ratio of the

area under the precision-recall curve (AUPRC) of uKIN with α = 0.5 to the AUPRC

for each of the other approaches. uKIN is run 100 times with 20 randomly sampled
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genes comprising the prior knowledge, and evaluation is performed with respect to

the 400 genes in the hidden set. First, we compare uKIN to MutSigCV 2.0 [53], a

state-of-the-art frequency-based approach (Figure 3.3a). Our approach outperforms

MutSigCV 2.0 on 22 of 24 cancer types. Second, we compare to three network-based

approaches: Muffinn [12], a method that considers mutations found in interacting

genes, DriverNet [3], a method that finds driver genes by uncovering sets of somat-

ically mutated genes that are linked to dysregulated genes, and nCOP [35], a recent

method that examines the per-individual mutational profiles of cancer patients in a

biological network (Figure 3.3b). uKIN exhibits superior performance across all can-

cer types when compared to DriverNet, outperforms Muffinn in 23 out of 24 cancer

types and nCOP in 17 of the 24 cancer types.

In several cancers, the performance improvements of uKIN are substantial. For

example, uKIN has a four-fold improvement over MutSigCV 2.0 in predicting cancer

genes for ovarian cancer (OV) and pancreas adenocarcinoma (PAAD), and a four-fold

improvement over DriverNet for uterine corpus endometrial carcinoma (UCEC) and

lung squamous cell carcinoma (LUSC). The limited number of patient samples avail-

able for uterine carcinosarcoma (UCS) limits nCOP’s perfomance [35] whereas uKIN is

able to leverage the prior knowledge available, resulting in uKIN’s two fold improve-

ment over nCOP; this highlights the benefits from incorporating existing knowledge of

disease-relevant genes, especially when the new data is sparse. We also compare to

Hotnet2 [56], a cutting-edge network diffusion method. As Hotnet2 does not output

a ranked list of genes, we could not compute an AUPRC. Instead, examining the

complete list of genes highlighted by both methods, we observe that uKIN exhibits

both significantly better precision and recall (Supplementary Figure A.7). Overall,

the clear advantage of uKIN over previous network-based approaches illustrates the

benefits of using prior information in identifying cancer-relevant genes.
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Figure 3.3: uKIN is more effective than other methods in identifying known
cancer genes. For each method, for each cancer type, we compute the log2 ratio of
uKIN’s AUPRC to its AUPRC. (a) Comparison of uKIN to MutSigCV 2.0, a state-
of-the-art frequency-based approach. uKIN outperforms MutSigCV 2.0 on 22 of the
24 cancer types. (c) Comparison of uKIN to DriverNet (left), Muffinn (middle),
and nCOP (right). Our approach uKIN outperforms DriverNet on all cancer types,
Muffinn on all but one cancer type and nCOP on 17 out of 24 cancer types.

Robustness tests. The overall results shown hold when we use different lists of

known cancer genes used as a gold standard (Supplementary Figure A.8a), different

numbers of predictions considered (Supplementary Figure A.8b), and different net-

works (Supplementary Figure A.8c). Further, we confirm the importance of network

structure to uKIN, by running uKIN on two types of randomized networks, degree-

preserving and label shuffling, and show that, as expected, overall performance de-

teriorates across the cancer types (Supplementary Figure A.8d); we note that while

network structure is destroyed by these randomizations, per-gene mutational infor-

mation is preserved, and thus highly mutated genes are still output.
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3.2.4 Cancer-specific prior knowledge yields better perfor-

mance

While many well-known cancer genes play a common role in the the development

of multiple cancers (e.g., TP53 and PTEN ), others have been implicated in only a

single or handful of cancer types. We next test how uKIN’s performance changes when

using such highly specific prior knowledge. When filtering the set of CGC genes to

those annotated to be drivers for a specific type of cancer, four cancer types, GBM,

breast invasive carcinoma (BRCA), skin cutaneous carcinoma (SKCM), and thyroid

carcinoma (THCA), have enough genes (33, 32, 42, 29, respectively) to split them in

half to form the set of prior knowledge K and the hidden set H.

We first use the genes specific to a cancer type of interest in K together with the

TCGA dataM for that cancer to uncover the genes in H. Given the small number of

genes in H, we assess performance by measuring the average ranking over 100 splits

of the data that uKIN assigns the genes in H. Next, for the same cancer type, we use

a set K corresponding to a different cancer type as prior knowledge (excluding any

genes co-corresponding to the original cancer type) while still trying to uncover the

genes in the original cancer of interest (i.e., usingM and H belonging to the original

cancer type). That is, we are testing the performance of uKIN when using knowledge

corresponding to a different cancer type. For all four cancer types, we find that

performance deteriorates when uKIN uses prior knowledge for another cancer type

(Figure 3.4a), as genes in H appear further down in the list of genes output by uKIN.

This suggests that uKIN can utilize cancer-type specific knowledge and highlights the

benefits of having accurate prior information.
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Figure 3.4: (a) Use of cancer-type specific knowledge improves performance.
To assess the ability of our method to discern between knowledge specific to different
cancer types, we split the genes from CGC annotated to be drivers only for a particular
cancer type in two sets. We use the first one as prior knowledge while trying to
uncover the genes in the second. This process is repeated 100 times. Next, we use
the set of genes belonging to a different cancer type as prior knowledge while still
trying to uncover the genes in the original cancer of interest. This leads to a decrease
in perfomance (as measured by the increase in the average uKIN’s ranking of genes
we aimed to uncover) across all possible combinations. (b) uKIN identifies rarely
mutated genes. To illustrate uKIN’s ability to pull genes from the long tail of
the mutational distribution, we run uKIN with α = 0.5 and with 20 genes as prior
knowledge 100 times. For each gene, its final score is averaged across the runs. For
each of the top 100 genes, we consider the rank of its mutational rate (y-axis). Known
CGC genes are in red and novel predictions in blue. The top predictions consist of
many heavily mutated genes (i.e., those with low ranks), but uKIN is also able to
uncover known cancer genes with very low mutational ranks (red dots towards the
top).

3.2.5 uKIN highlights infrequently mutated cancer-relevant

genes

We next demonstrate that uKIN highlights genes with a broad range of mutational

rates. When we run uKIN on each of the 24 cancer types using prior knowledge con-

sisting of 20 genes sampled 100 times, and consider the top 100 predictions (averaged

across the runs), we observe that these genes have vastly diverse mutational rates
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(Figure 3.4b for GBM, BRCA, SKCM and THCA and Supplemental Figure A.6 for

all cancer types).

Naturally, because the starting locations of the random walk are chosen proba-

bilistically proportionally to the genes’ mutational frequencies, highly mutated genes

are ranked among the top prediction. This makes the presence of many genes with

very low mutational rates somewhat unexpected. In the case of GBM, among those

rarely mutated genes are LAND1A and SMAD4, which are two well known cancer

players. These genes have mutational rates that are similar to those of genes not

relevant for cancer and are therefore hard to detect with frequency-based approaches.

Among the 23 genes with mutational rank at the bottom half, 5 are CGCs (p < 10−2,

hypergeometric test). This statistically significant enrichment of CGC genes with

low mutational rank found by uKIN is true across all cancers. Thus, uKIN provides a

means for pulling out cancer genes from the “long tail” [27] of infrequently mutated

genes.

In addition to highlighting known cancer genes, uKIN also ranks highly several

non-CGC genes that may or may not play role in the initiation and progression of

cancer, as our knowledge of cancer-related genes is incomplete. Among these novel

predictions for GBM are ATXN1, SMURF1, and CCR3 which have all recently been

suggested to play a role in cancers [42, 57, 54] and are each mutated in less than 5%

of the samples. ATXN1 is a chromatin-binding factor that plays a critical role in the

development of spinocerebellar ataxia, a neurodegenerative disorder [72], and mutants

of ATXN1 have been found to stimulate the proliferation of cerebellar stem cells in

mice [21]. This is a promising gene for further investigation because glioblastoma

is a cancer that usually starts in the cerebrum and the potential role of ATXN1 in

tumorigenesis has only recently been suggested [42]. SMURF1 and its highly ranked

by uKIN network-interactor SMAD1 have already been implicated in the development
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of several cancers [96]. SMURF1 also interacts with the nuclear receptor TLX whose

inhibitory role in glioblastoma has been revealed [40].

We further find that the genes uKIN highlights are enriched in many KEGG path-

ways and GO terms relevant for cancer, including microRNAs in cancer, cell prolif-

eration, choline metabolism in cancer and apoptosis (Bonferroni-corrected p < 0.001,

hypergeometric test).

3.2.6 Larger and more accurate prior knowledge improves

performance

As our method relies on the use of prior knowledge, we examine the effect of the

amount and accuracy of such knowledge on uKIN’s performance. To probe how much

the amount of knowledge affects performance, we consider 10 randomly sampled hid-

den sets, which are held fixed as we sample 10 times per hidden set different sizes of

already implicated disease genes K (|K| = 5, 10, 20, 40, . . . , 100). We run our frame-

work on the kidney renal cell carcinoma dataset for three different values of α and

compute the log2 ratio of the respective AUPRCs versus the AUPRC for α = 1, as

when α = 1 the results do not depend on K at all (i.e., the AUPRC for α = 1 is

constant).

For α = 0.3, uKIN’s performance in recapitulating the hidden set of known cancer

genes steadily improves as a larger amount of prior knowledge is utilized (Figure 3.3a).

For small |K| < 20 uKIN with α = 0.5 performs better than α = 0.3 which is as

expected, since at α = 0.5 uKIN relies more on the new information M than on

the limited prior knowledge K. However, when K consists of a larger number of

genes (|K| > 30), α = 0.3 overtakes α = 0.5, suggesting that when substantial

prior knowledge is available, uKIN can leverage it and a smaller α is preferred. On

the other hand, when knowledge is sparse, a larger α allows uKIN to focus on the

new information. Of course, as the number of genes comprising the set of prior
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Figure 3.5: (a) uKIN benefits from more knowledge. As we consider larger
numbers of genes comprising the set of prior knowledge (|K| = 5, 10, 20, 40, . . . , 100),
we examine the ability of uKIN to uncover CGC genes in the same fixed set H when
using α = 0.5 (blue triangles), α = 0.3 (pink circles) or α = 0 (red squares). We
show the log2 ratio, averaged over 100 runs, of the AUPRC of each version of uKIN
to the AUPRC for α = 1 which is constant across all possible K. For small K, α = 0
performs poorly as is expected; as the prior knowledge available increases so does the
performance. For both α = 0.3 and α = 0.5, an increase in the size of K leads to
an initial increase in the performance but eventually performance plateaus. When
limited prior knowledge is available (|K| < 20), α = 0.5, which uses more of the new
information, does better then α = 0.3, which relies more on using prior knowledge.
When prior knowledge is abundant (|K| > 40), uKIN with α = 0.3 outperforms
α = 0.5. (b) uKIN is robust to small amounts of erroneous knowledge. We
replace a fraction of the CGCs in the set of prior knowledge K with non-cancerous
genes chosen uniformly at random from the set of non-CGC genes in the network.
uKIN remains robust to some incorrect knowledge (10%); it’s performance decreases
significantly when > 30% of the prior knowledge becomes incorrect. As expected,
for α = 0, the decrease is more notable because in that case uKIN uses only prior
knowledge.

knowledge increases, spreading information just from those genes (α = 0), the better

the propagated knowledge does as a stand alone predictor. This is consistent with

the observed clustering of CGC genes within biological networks [10]. However, even

when propagating information from 100 known cancer genes, the performance is worse

than that when integrating it with new information (with either α = 0.3 or α = 0.5,

Figure 3.3a).
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We next investigate the effect of having some incorrect prior knowledge (a plausible

real world scenario). We simulate the presence of erroneous knowledge by replacing

a fraction (10%, 20%, 30%, and 40%) of the CGCs in the set K with non-cancerous

genes chosen uniformly at random from the set of non-CGC genes in the network and

rerunning uKIN. While only a small drop in performance is observed when 10% of the

genes in K are replaced, the decrease becomes significant when > 30% are replaced

(Figure 3.3b)). Further, as expected, this decrease is more notable for α = 0 then for

α = 0.5 as the former relies entirely on prior knowledge than the latter. Overall, our

results suggest that uKIN is robust to some noise in the prior knowledge K (≤ 10%)

but that if there is uncertainty about the knowledge in K, a larger α should be used.

3.2.7 Application to identify disease genes for complex in-

herited disorders

A major advantage of our method is that it can be easily applied to other scenarios,

using a wide variety of different types of information. To demonstrate this versatility,

we applied uKIN to detect disease genes for three complex diseases: macular degenera-

tion, amyotrophic lateral sclerosis (ALS) and epilepsy. For each disease, we randomly

split in half the OMIM database’s [62] list of genes associated with the disease 100

times to form the set of prior knowledge K and the hidden set H. We use the GWAS

catalogue list of genes with their corresponding p−values to form the set M. For all

three diseases, we find that spreading the signal using only knowledge from OMIM

(α = 0) performs worse than combining both sources of information (α = 0.5). For

each of these diseases, there is virtually no overlap between the GWAS hits M and

a set of OMIM genes H; simply sorting genes by their significance in GWAS studies

(i.e., uKIN with α = 1) results in AUPRC of 0. Instead, we spread information from

the set of GWAS genesM in the same fashion as from OMIM and observe again that
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Figure 3.6: uKIN is effective in identifying complex disease genes. We demon-
strate the versatility of the uKIN framework by integrating OMIM and GWAS data
for three complex diseases, epilepsy, ALS and macular degeneration. For each dis-
ease, we compare uKIN’s performance when using OMIM annotated genes as prior
information and GWAS hits as new information with α = 0.5, to baseline versions
that propagate only information from OMIM (α = 0, left) or GWAS studies (right).
In all cases, we compute the log2 ratio of the AUPRC obtained by uKIN using both
prior and new information to the baseline methods.

using this single source of information alone has worse performance then combining

it with another (Figure 3.6, right panel).

3.3 Methods

3.3.1 Background and notation

The biological network is modeled, as usual, as an undirected graph G = (V,E)

where each vertex represents a gene, and there is an edge between two vertices if an

interaction has been found between the corresponding protein products. We require G

to be connected, restricting ourselves to the largest connected component if necessary.

We explain our formulation with respect to cancer, but note that it is applicable in
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other settings (both disease and otherwise). The set of genes already known to be

cancer associated is denoted by K = {k1, k2, ..., kl}. The set of genes that have been

found to be somatically mutated in a cohort of individuals with cancer is denoted by

M = {m1,m2, ...,mp}, with F = {fm1 , fm2 , ..., fmp} corresponding to the rate with

which each of these genes is mutated. We refer to K as the prior knowledge and M

as the new information. We assume that K ⊂ V andM⊂ V ; in practice, we remove

genes not present in the network. The genes within K andM may overlap (i.e., it is

not required that K∩M = ∅). Our goal is to integrate all three types of information,

G, K and M, in order to uncover new cancer genes. Our method is based on the

intuition that genes close to K are more likely to be involved in the same cellular

processes or pathways as genes in K and hence more likely to be relevant for disease.

We thus perform random walks over the network G, starting from M but biased

towards going closer to K, and rank genes with respect to disease relevance by how

frequently they are visited.

3.3.2 Algorithm

For each gene v ∈ V , assume that we have a measure Qv that represents how close v

is to the set of genes K. We will use the measure Q, which we describe in the next

section, to guide a random walk starting at the nodes in M and walking towards the

nodes in K. Each walk starts from a gene i in M , chosen with probability proportional

to its mutational rate fi. At each step, with probability α the walk can restart from

a gene j in M , and with probability 1 − α the walk moves to a neighboring gene

picked probabilistically based upon Q. Specifically, if N (u) are the neighbors of

node u, the walk goes from node u to node v ∈ N with probability proportional to

Q(v)/
∑

w∈N Q(w). That is, if at time t the walk is at node u, the probability that it
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transitions to node v at time t+ 1 is

puv = (1− α)δuv ·
Q(v)∑

w∈N(u)Q(w)
+ α · fv∑

i∈M fi

where δuv = 1 if v ∈ N (u) and 0 otherwise. Hence, the guided random walk is

fully described by a transitional matrix P with entries puv. This stochastic matrix

is non-negative and by the Perron-Frobenius theorem it has a right eigenvector π

corresponding to eigenvalue 1. Therefore, πP t = π and π is the stationary distribution

the guided random walk converges to and this can be computed numerically. For each

gene i, its score is given by the ith element of π. Those with high scores are most

frequently visited and, therefore, are more likely relevant to cancer as they are close

to both the mutated starting nodes as well as to known cancer genes.

3.3.3 Incorporating prior knowledge

For each gene in the network, we wish to compute how close it is to the set of

cancer associated genes K. While many approaches have been proposed to compute

“distances” in networks, we use a network flow technique where each node k ∈ K

introduces a continuous unitary flow which diffuses uniformly across the edges of the

graph and is lost from each node v ∈ V in the graph at a constant first-order rate

λ [71]. Briefly, let A = {ai,j} denote the adjacency matrix of G (i.e., aij = 1 if

(i, j) ∈ E and 0 otherwise) and let S be the diagonal matrix where sii is the degree

of node i ∈ V . Then, the Laplacian of the graph G shifted by λ is defined as

L = −(A − S − λI). The equilibrium distribution of fluid density on the graph is

computed as Q = L−1b [71], where b is the elementary unit vector with 1 for the nodes

introducing the flow and 0 for the rest (i.e., bi = 1 if vi ∈ K and bi = 0 if vi /∈ K

for ∀vi ∈ V ). Q can be efficiently computed numerically. Thus, at equilibrium, each
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node v in the graph is associated with the score Qv which reflects how close it is to

the nodes already marked as causal for cancer.

3.3.4 Data sources and pre-processing

We use two different biological networks in our analysis: HPRD (Release 9 041310)

[69] and BioGrid (Release 3.2.99, physical interactions only) [77]. Biological net-

works often contain spurious interactions as well as “hub” proteins with many inter-

actions. Since both are problematic for network analysis, we pre-process the networks

as in [35]. Briefly, we remove all proteins with an unusually high number of interac-

tions (> 900 interactions and more than 10 standard deviations away from the mean

number of interactions). For BioGrid, this removes UBC, APP, ELAVL1, SUMO2

and CUL3. For HPRD, this removes no proteins. Additionally, to remove spurious in-

teractions, we remove those that have a Z-score normalized diffusion state distance [7]

> 0.3. This process leaves us with 9,379 proteins and 36,638 interactions for HPRD

and 14,326 proteins and 102,552 interactions for BioGrid.

We download level 3 cancer somatic mutation data from The Cancer Genome Atlas

(TCGA) [81] for 24 cancer types (Table A). For each cancer type, we process the data

as previously described and exclude samples that are obvious outliers with respect to

their total number of mutated genes [35]. Our set of prior knowledge comes from the

719 CGC genes that are labeled by COSMIC (version August 2018) as being causally

implicated in cancer [25]. For each cancer type, our new information consists of genes

that have somatic missense mutations, and we compute the mutational frequency of

a gene as the number of observed somatic missense mutations across tumors, divided

by the number of amino acids in the encoded protein.

We obtain 24, 28, and 63 genes associated with three complex diseases, macular

degeneration, ALS and epilepsy, respectively, from the OMIM database [62]. These

genes are used to construct the set of prior knowledge. For each disease, we form
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the set M by querying from the GWAS database [6] the genes implicated for the

disease and using the corresponding p-values to compute the starting frequencies f .

Specifically, for each disease, for each study GWAS i, if a gene j’s p-value is pi,j, we

set its frequency to − log(pi,j)/
∑

k− log(pi,k) and then for each gene average these

frequencies over the studies.

3.3.5 Performance evaluation

To evaluate our method in the context of cancer, we subdivide the CGC genes that

appear in our network into two subsets. One subset will serve as our prior knowledge

K and we will test how well our approach scores the genes in the other subset. In

particular, we randomly draw from the CGCs 400 genes to form a set H of positives

that we aim to uncover. From the remaining 199 CGCs present in the network, we

randomly draw a fixed number l to represent the prior knowledge K and run our

framework. As we consider an increasing number of most highly ranked genes, we

compute the fraction that are in the set H of positives. All CGC genes not in H are

ignored in these calculations; this allows us to compare performance when varying

the number l of genes that comprise our prior knowledge.

We also compute area under the precision-recall curves (AUPRCs). In this case,

all CGC genes in H are considered positives, all CGC genes not in H are neutral

(ignored), and all other genes are negatives. Though we expect that there are genes

other than those already in the CGC that play a role in cancer, this is a standard ap-

proach to judge performance (e.g., see [39]) as cancer genes should be highly ranked.

We compute AUPRCs using the top 100 predicted genes. To account for the ran-

domness in sampling, we repeatedly draw (10 times) the set H and for each draw

we sample the genes comprising the prior knowledge K 10 times. The final AUPRC

results from averaging the AUPRCs across all 100 runs.
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We compare uKIN on the cancer datasets to MutSigCV 2.0 [53], nCOP[35],

Muffinn [12], and DriverNet [3]. To ensure fair comparisons, all methods are run

on exactly the same cancer mutation data and the same network if applicable. All

methods’ AUPRCs are computed against the same randomly sampled test sets H

and averaged at the end. All methods are run with their default parameters.

To evaluate our method in the context of the three complex diseases, we subdivide

evenly the set of OMIM genes associated with each disease into the prior knowledge

set K and the set of positives H. Similarly to our cancer evaluation, this is done

repeatedly (100 times) and respective AUPRCs are averaged at the end.

3.4 Discussion

Here, we have shown that uKIN, a method that incorporates both existing knowledge

as well as new information, is an effective and versatile approach for uncovering disease

genes. Our method is based upon the intuition that prior knowledge of disease-

relevant genes can be used to guide the way information from new data is spread and

interpreted in the context of biological networks. Our approach demonstrates higher

precision than other state-of-the-art methods in detecting known cancer genes and

excels at highlighting infrequently mutated genes that are nevertheless relevant for

cancer.

The framework presented here can be extended in a number of natural ways.

First, in addition to positive knowledge of known disease genes, we also have “nega-

tive” knowledge of genes that are not involved in the development of a given disease.

These genes can propagate their “negative” information, thereby biasing the random

walk to move away from their respective modules and perhaps further enhancing

the performance of our method. Second, uKIN may also benefit from incorporating

edge weights that reflect the reliability of interactions between proteins (e.g., inter-
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actions between proteins that are co-expressed are more likely to be reliable, as are

interactions that are seen in multiple experiments); these weights will have an im-

pact on both the propagation of prior knowledge as well as the guided random walks.

Third, since a recent study [70] has shown that contrasting cancer mutation data with

natural germline variation data helps boost the true disease signal by downgrading

genes that mutate frequently in nature, uKIN’s performance may benefit from scaling

the starting probabilities of the new putatively implicated genes to account for their

variation in healthy populations. More interestingly, additional techniques could ex-

amine if pathways or modules accommodate large natural variation and hence, the

guided walks should move away from them. Fourth, while here we have demonstrated

how uKIN can use cancer-type specific knowledge, cancers of the same type can often

be grouped into distinct subtypes, and such highly-detailed knowledge may improve

uKIN’s performance even further.

In conclusion, uKIN is a flexible method that handles diverse types of new infor-

mation, is robust, fast, runs on a desktop machine, and is freely available online. As

our knowledge of disease-associated genes continues to grow and be refined, and as

new experimental data becomes more abundant, we expect that uKIN will prove to

be a powerful and broadly applicable framework for accurately, rapidly, and easily

prioritizing disease genes.
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4 Conclusions

In this dissertation, I introduced two new approaches for deciphering disease genomes

in the context of large biological networks. In Chapter 2, I developed a novel method

that examines per-individual mutational profiles of cancer patients. I showed that my

approach readily outperforms other state-of-the-art approaches in discovering cancer

genes. In Chapter 3, I described a general framework for incorporating prior knowl-

edge and new information. I showed how the signal from an already known set of

disease-associated genes can be used to guide the way newly acquired experimental

data is interpreted. My approach led to identifying disease genes with higher precision

than using either source of information alone. Both of my methods successfully tackle

the overarching problem of disease heterogeneity and are able to uncover rarely mu-

tated but highly relevant disease genes. Another important underlying commonality

between my two approaches is that they are both well-positioned to take advantage

of the rapidly increasing amount of available biological data. In the case of nCOP, as

the number of individuals for which we have mutational data increases, the method’s

power in detecting cancer genes will also increase. Similarly, in the case of uKIN, as

either our set of known disease genes or the amount of diverse new disease information

increases, its ability to uncover additional disease genes will also increase.

My dissertation contributes to the growing body of network-based methods de-

signed to tackle the Herculean task of understanding how genetic changes lead to a

disease. My methods will serve as a valuable resource to the scientific community as it
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continues its quest to make exciting discoveries in both basic science and biomedical

research.
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A Supplementary Figures

The following appendix contains a table summarizing the TCGA data I use along

with 8 supplementary figures that support the findings in the Chapters 2 and 3.
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Cancer Number	of 								Number	of	Mutated	Genes
Symbol Cancer	Type Patients Total Average Cut	off	
ACC Adrenocortical	carcinoma 76 2068 32.1 80
BLCA Bladder	Urothelial	Carcinoma 196 11407 135.7 300
BRCA Breast	invasive	carcinoma 882 10813 27 80

CESC
Cervical	squamous	cell	carcinoma	and	
endocervical	adenocarcinoma 173 6907 63 200

COAD Colon	adenocarcinoma 153 6521 74.4 150
GBM Glioblastoma	multiforme 278 7250 46.8 80
HNSC Head	and	Neck	squamous	cell	carcinoma 435 13048 87.9 200
KICH Kidney	Chromophobe 64 661 11 50
KIRC Kidney	renal	clear	cell	carcinoma 416 9212 40.9 100
KIRP Kidney	renal	papillary	cell	carcinoma 166 5687 47.7 100
LGG Brain	Lower	Grade	Glioma 451 7130 28.8 60
LIHC Liver	hepatocellular	carcinoma 196 7705 67.3 200
LUAD Lung	adenocarcinoma 487 15481 172.8 500
LUSC Lung	squamous	cell	carcinoma 167 12264 212 500
OV Ovarian	serous	cystadenocarcinoma 138 3390 30.7 80
PAAD Pancreatic	adenocarcinoma 124 3228 36.8 100
PCPG Pheochromocytoma	and	Paraganglioma 183 1819 11.7 30
PRAD Prostate	adenocarcinoma 238 4792 28.1 50
READ Rectum	adenocarcinoma 34 1214 40.7 150
SKCM Skin	Cutaneous	Melanoma 329 14748 240.1 1000
STAD Stomach	adenocarcinoma 242 10595 103.5 500
THCA Thyroid	carcinoma 401 2268 7.4 30
UCEC Uterine	Corpus	Endometrial	Carcinoma 155 4282 38.8 100
UCS Uterine	Carcinosarcoma 54 1787 38.9 80

Table A.1: TCGA dataset and statistics. We list the 24 cancer types studied
along with their abbreviations. For each cancer type, we give the total number of
patient samples considered after highly mutated samples are filtered out, the total
number of mutated genes across these samples, the average number of mutated genes
across all samples, and the cutoff on the number of mutated genes within a sample
that was used to filter samples.
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Figure A.1: Fraction of individuals covered as α varies across all cancers.
For each random split of the individuals, we run our algorithm on the training sets for
different values of α, and plot the fraction of covered individuals in the training (blue)
and validation (red) sets. We also give the number of proteins in the uncovered sub-
graphs G′ (orange). For each plotted value, the mean and standard deviation over 100
random splits are shown and the automatically selected α for the missense mutation
data is indicated by a green rhombus. The performances on both the training and
validation sets are much worse when using synonymous mutations compared to when
using missense mutations. Coverage on the validation set for synonymous mutations
is consistently lower for the same values of α across respective cancer types than that
for missense mutations, with maximum possible coverage on the validation set not
exceeding 50% in many cases. Further, it takes significantly more nodes to cover the
same fraction of patients when using synonymous mutations.
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Figure A.2: Robustness of nCOP. (a) To make sure that our method is robust
with respect to the set of labelled cancer genes, instead of the Cancer Gene Census
(CGC) list, we use the list of 413 genes provided by Hofree et al. in [33] which
they obtained by querying the UniprotKB database for the keyword-terms ‘proto-
oncogene,’ ‘oncogene’ and ‘tumoursuppressor’ gene. Log-fold AUPRCs are computed
as described in the main text. The results are consistent with those shown in Figure 3
based on the CGC list and show the superior performance of nCOP as compared to the
other methods in recapitulating known cancer genes. (b) Results using the Vogelstein
et al. list of cancer genes [91]. (c) To assess the robustness of our evaluation,
we compute AUPRCs using the top 50 predicted genes. The results are consistent
with those shown in Figure 3 which use the top 100 predicted genes and show the
superior performance of nCOP as compared to the other methods in deriving known
cancer genes. The results are also consistent when computing AUPRC’s using 150
genes (data not shown). (d) To make sure that our method is robust with respect
to the specific network utilized, we repeat our entire analysis procedure using the
Biogrid network. Our approach nCOP outperforms the network-agnostic methods in
21 out of 24 of the cancer types. (e) Comparison to randomized networks. In the
left panel, we use a classic degree-preserving randomization (edge swapping) and
in the right panel, we use a node label shuffling randomization where the network
structure is maintained but gene names are swapped (thereby genes can have very
different numbers of interactions in the randomizations). For each of the 24 cancers,
we compute the log2 ratio of the area under the precision recall curve using nCOP

on the real network and on the randomized network and show the average over 10
different randomizations. Performance, as expected, is worse for both randomizations
across all cancers. We note that significant cancer-relevant information is retained in
these randomized networks. In particular, in both types of network randomizations,
we maintain the relationships between genes and the patients that they are found
to be somatically mutated in. Thus, some highly mutated CGC genes may still be
output by nCOP when running on randomized networks.
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Figure A.3: Comparison between nCOP and Hotnet2. For each cancer type, we
compute the precision and recall of the genes returned by nCOP and Hotnet2. For
nCOP, we choose a single threshold to select predicted cancer genes, corresponding to
those genes that occur in at least 25% of the runs. While Hotnet2 achieves slightly
greater recall due to the larger number of genes it highlights, nCOP’s precision using
this threshold is superior. nCOP uncovers fewer but potentially more relevant cancer
genes.
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Figure A.4: Novel genes uncovered by nCOP are not due to patients with
many mutations. Plotted for each cancer type are the total number of missense
mutations for patients having missense mutations only in known CGC genes and not
in novel genes (left) and the total number of missense mutations for patients having
missense mutations only in novel genes and not in CGC genes (right). The novel
genes uncovered by nCOP are not due to patients with large numbers of mutations.
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Figure A.5: The predictive power of nCOP increases with more data. For
each cancer type, we repeatedly sample a fraction of the patients (20%, 40%, 60%,
and 80%), rerun our method on the reduced data set, compute the ratio between
the AUPRC using the sampled data set and the full data set, and plot the median
ratio across 50 samples per fraction. As nCOP uses more data, its predictive power
increases and becomes similar to the one on the full data set.
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Figure A.6: uKIN identifies rarely mutated genes. To illustrate uKIN’s ability
to pull genes from the long tail of the mutational distribution, we run uKIN with
α = 0.5 and with 20 genes as prior knowledge 100 times. For each gene, its final score
is averaged across the runs. For each of the top 100 genes, we consider the rank of
its mutational rate (y-axis). Known CGC genes are in red and novel predictions in
blue. The top predictions consist of many heavily mutated genes (i.e., those with low
ranks), but uKIN is also able to uncover known cancer genes with very low mutational
ranks (red dots towards the top).
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Figure A.7: Comparison between uKIN and Hotnet2. For each cancer type, we
compute the precision and recall of the genes returned by uKIN and Hotnet2. For
uKIN, we choose the same number of genes as highlighted by Hotnet2. uKIN clearly
demonstrates both higher precision and recall than Hotnet2 across all 24 cancer types.
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Figure A.8: Robustness of uKIN. (a) To make sure that uKIN is robust with re-
spect to the set of labelled cancer genes H, instead of randomly sampling 400 genes
from the Cancer Gene Census (CGC) list, we form H using genes from other sources.
Specifically, we aggregate the cancer genes provided by Hofree et al. in [33] (which
they obtained by querying the UniprotKB database for the keyword-terms ‘proto-
oncogene,’ ‘oncogene’ and ‘tumoursuppressor’ gene) and Vogelstein et al. [91], ex-
cluding any genes present in the set of prior knowledge K. Log-fold AUPRCs are
computed as described in the main text. The results are consistent with those shown
in Figures 3.2 and 3.3 based on the CGC list and show the superior performance of
uKIN as compared to the other methods in recapitulating known cancer genes. (b)
To assess the robustness of our evaluation, we compute AUPRCs using the top 50
predicted genes. The results are consistent with those shown in Figures 3.2 and 3.3
which use the top 100 predicted genes and show the superior performance of uKIN
as compared to the baselines and other methods in deriving known cancer genes.
The results are also consistent when computing AUPRC’s using 150 genes (data not
shown). (c) To make sure that our method is robust with respect to the specific
network utilized, we repeat our entire analysis procedure using the Biogrid network.
The results are consistent with those shown in Figures 3.2 and 3.3, based on the
HPRD network. (d) Comparison to randomized networks. In the left panel, we use
a classic degree-preserving randomization (edge swapping) and in the right panel, we
use a node label shuffling randomization where the network structure is maintained
but gene names are swapped (thereby genes can have very different numbers of inter-
actions in the randomizations). For each of the 24 cancers, we compute the log2 ratio
of the area under the precision recall curve using uKIN on the real network and on
the randomized network and show the average over 10 different randomizations. Per-
formance, as expected, is worse for both randomizations across all cancers. We note
that significant cancer-relevant information is retained in these randomized networks.
In particular, in both types of network randomizations, we maintain the relationships
between genes and the samples that they are found to be somatically mutated in.
Thus, some highly mutated CGC genes may still be output by uKIN when running
on randomized networks.
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