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Abstract

Deep learning models have shown great success in a variety of machine learning

benchmarks; however, these models still lack the efficiency and flexibility of humans.

Current deep learning methods involve training on a large amount of data to produce

a model that can then specialize to the specific task encoded by the training data.

Humans, on the other hand, are able to learn new concepts throughout our lives

with comparatively little feedback. In order to bridge this gap, previous work has

suggested the use of meta-learning. Rather than learning how to do a specific task,

meta-learning involves learning how-to-learn and utilizing this knowledge to learn

new tasks more effectively. This thesis focuses on using meta-learning to improve the

data and processing efficiency of deep learning models when learning new tasks.

First, we discuss a meta-learning model for the few-shot learning problem, where

the aim is to learn a new classification task having unseen classes with few labeled

examples. We use a LSTM-based meta-learner model to learn both the initialization

and the optimization algorithm used to train another neural network and show that

our method compares favorably to nearest-neighbor approaches. The second part of

the thesis deals with improving the predictive uncertainty of models in the few-shot

learning setting. Using a Bayesian perspective, we propose a meta-learning method

which efficiently amortizes hierarchical variational inference across tasks, learning a

prior distribution over neural network weights so that a few steps of gradient descent

will produce a good task-specific approximate posterior. Finally, we focus on applying

meta-learning in the context of making choices that impact processing efficacy. When

training a network on multiple tasks, we have a choice between interactive parallelism

(training on different tasks one after another) and independent parallelism (using the

network to process multiple tasks concurrently). For the simulation environment

considered, we show that there is a trade-off between these two types of processing

choices in deep neural networks. We then discuss a meta-learning algorithm for an
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agent to learn how to train itself with regard to this trade-off in an environment with

unknown serialization cost.
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Chapter 1

Introduction

1.1 Deep Learning: Successes and Shortcomings

The goal of machine learning is to train agents that learn how to interact with the

world in an intelligent manner. One form of machine learning that has been very

successful in the past decade has been deep learning [56, 34]. Deep learning in-

volves the use of multi-layer neural networks that utilize hierarchical feature extrac-

tion from given data in order to achieve a certain task. Since the ImageNet Large

Scale Visual Recognition Challenge in 2012, where the deep convolutional network

from Krizhevsky et al. [53] was able to win the competition handily, various vari-

ants of deep learning models have achieved state-of-the-art results in several machine

learning benchmarks: residual networks [39, 40], which allow for the use of thousands

of hidden layers, excel at object recognition; recurrent neural networks, which can

model long-range temporal dependencies, are highly adept at natural language pro-

cessing tasks, such as machine translation [81, 3]; and deep networks trained using

reinforcement learning techniques can learn to play challenging games at human-level

proficiency [62, 80].
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The success of deep learning models, however, is heavily predicated on the use

of large amounts of labeled data (for supervised learning) or training episodes (for

reinforcement learning). For example, ImageNet [21], the aforementioned benchmark

for object recognition, consists of 1.2 million labeled images for 1000 object classes

and was collected using extensive manual human effort coordinated via Amazon Me-

chanical Turk. Because deep networks often have millions of free parameters that

need to be fit, they require training on an extensive amount of data to appropriately

fit those parameters and prevent overfitting, wherein the model displays poor gen-

eralization to data outside of the training set. In addition to costly data collection,

training networks on these large datasets requires a lot of time, as several training

passes through the data must be made. As we look towards having general artificial

agents that can perform a variety of tasks at human-level ability, it does not seem

like this extensive data collection and lengthy training process is scalable. For any

new task that we want our agent to perform, we require a lot of effort and time for

our agent to learn how to master the novel task.

One potential solution that has been proposed is transfer learning [15, 6], where a

network previously trained on a different task is then fine-tuned on the new task we

are interested in. The fine-tuning process involves only updating some of the network

weights (potentially with a small learning rate) because the hope is that the network

weights attained from training on the first task should be somewhat applicable to

the second. Thus, the benefit of transfer learning is that we do not require a lot

of data for the second task because our re-use of the old network weights should

hopefully inhibit overfitting. For example, in Donahue et al. [22], features derived

from a convolutional network trained on ImageNet are then used as input to a simple

classifier, which is then trained on a different object recognition benchmark with a

small number of training examples. It is shown that doing transfer learning in this

way is indeed effective in preventing overfitting for the smaller dataset. However, the
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downside of transfer learning is that it is an ad-hoc process, requiring us to make

decisions such as what network weights to update, what learning rate to use when

updating those weights, and how many iterations the network should be fined-tuned

for. Furthermore, it is not entirely clear when transfer learning will work well, as its

success is highly dependent on the similarity between the old and new task we are

considering [89].

1.2 Human Learning

Compared to current deep learning methods, humans are very flexible and data-

efficient learners. We are capable of learning a new task without an extensive amount

of feedback. For a concrete comparison, consider the deep reinforcement learning

agent from Mnih et al. [62], which required tens of thousands of training episodes to

master a single ATARI game. If we translate the number of training episodes that

the agent needed in terms of human experience, it would be equivalent to a human

playing the game for 40 days with no rest [23]. In comparison, the human player used

as a baseline in Mnih et al. [62] required only 2 hours to master a game.

This begs the question: what is it that allows humans to learn new concepts or

tasks in a much more efficient manner? Previous work has speculated that this is

possible due to our ability to build up prior knowledge and apply it appropriately in

new situations [37, 55]. For example, even children as young as five can quickly infer

the correct meaning of a new word by canceling out spurious possibilities using their

accumulated information about the world [14]. Thus, unlike artificial neural networks

which typically begin training on a new task with randomly initialized weights, we

do not face new problems starting from scratch, but instead put to good use relevant

knowledge we have gathered across our lifetime. Starting from such an advantageous
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position may be the reason why we are able to arrive at good solutions much more

quickly when facing new tasks.

1.3 Meta-Learning

In order to bridge this gap in performance between humans and artificial agents,

previous work has suggested the use of meta-learning [85]. Rather than learning how

to do a specific task, meta-learning involves learning how-to-learn, with the idea being

that this knowledge can be utilized to learn new tasks more quickly and effectively.

Meta-learning has a long history [7, 75, 76, 5, 42] but has grown to prominence

recently as many have advocated for it as key to achieving human-level intelligence in

the future [55]. The ability to learn at two levels (learning within each task presented,

while accumulating knowledge about the similarities and differences between tasks)

is seen as being crucial to improving artificial intelligence and hypothesized to match

the type of learning humans may be doing.

Older work in the meta-learning literature considers the meta-learning problem

as either empirical risk minimization (ERM) or Bayesian inference. The ERM per-

spective involves directly optimizing a meta-learner to minimize a loss across training

datasets with the hope that this model will generalize to a new test dataset [5, 42].

The Bayesian perspective casts meta-learning as learning a prior in a hierarchical

graphical model [82, 26]. Our primary interest in this thesis is to take inspiration

from these older ideas and apply them in the present, when we have vastly improved

computation and more sophisticated networks, to substantially more complex tasks.

1.4 Organization and Contributions of the Thesis

In this thesis, we focus on using meta-learning to improve the data and processing

efficiency of deep learning models when learning new tasks.
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In Chapter 2, we discuss a meta-learning model for the few-shot learning problem,

where the aim is to be able to learn a new classification task having unseen classes with

few labeled examples. This problems reflects our desire to have deep learning models

that can learn new tasks using a small amount of feedback. We use a LSTM-based

meta-learner model to learn both the initialization and the optimization algorithm

used to train another neural network in the few-shot regime and show that our method

compares favorably to nearest-neighbor approaches

In Chapter 3, we consider improving the predictive uncertainty of models in the

few-shot learning setting. Proper predictive uncertainty is key to deploying machine

learning models in the wild, as proper human intervention can be applied when a

model’s prediction is known to be uncertain. This is especially useful in the meta-

learning setting, as a model needs to indicate when its prior knowledge cannot be

applied appropriately when given a new task that greatly differs from the task dis-

tribution the model was trained on. Using a Bayesian perspective, we propose a

meta-learning method which efficiently amortizes hierarchical variational inference

across tasks, learning a prior distribution over neural network weights so that a few

steps of gradient descent will produce a good task-specific approximate posterior

In Chapter 4, we focus on applying meta-learning in the context of making choices

that impact processing efficacy. When training a network on multiple tasks, we

have a choice between interactive parallelism (training on different tasks one after

another) and independent parallelism (using the network to process multiple tasks

concurrently). For the simulation environment we consider, we show that there is a

trade-off between these two types of processing choices in deep neural networks, where

one can learn faster by using interactive parallelism but at the cost of having to do

tasks serially. We then discuss a meta-learning algorithm for an agent to learn how to

train itself with regard to this trade-off in an environment with unknown serialization

cost.
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Finally, in Chapter 5, we provide a review of the work in this thesis and mention

possible interesting avenues for future work.

The main chapters of this dissertation have been published or are in preparation

as the following conference articles:

[Chapter 2] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot

learning. In International Conference on Learning Representations, 2017.

[Chapter 3] Sachin Ravi and Alex Beatson. Amortized bayesian meta-learning. In

International Conference on Learning Representations, 2019.

[Chapter 4] Sachin Ravi, Sebastian Musslick, Maia Hamin, Theodore L. Willke,

and Jonathan D. Cohen. Navigating the trade-off between multi-task learning and

multitasking capability in deep neural networks. In preparation.

Material from the dissertation has been presented at the following scholarly con-

ferences:

Amortized Bayesian Meta-Learning. Sachin Ravi and Alex Beatson. Interna-

tional Conference on Learning Representations (ICLR), 2019.

Amortized Bayesian Meta-Learning. Sachin Ravi and Alex Beatson. Neural

Information Processing Systems (NeurIPS) Workshop on Meta-Learning, 2019.

Optimization as a Model for Few-Shot Learning. Sachin Ravi and Hugo

Larochelle. International Conference on Learning Representations (ICLR), 2017.
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Chapter 2

Optimization as a Model for

Few-Shot Learning

2.1 Introduction

In this chapter, we study the problem of few-shot learning, where we would like to

learn a set of concepts using just a few labeled examples from each class. Naive

gradient-based optimization with deep networks fails in the face of few labeled ex-

amples for several reasons. Firstly, different variants of gradient-based optimization

algorithms, such as momentum [67], Adagrad [24], Adadelta [91], and ADAM [48],

weren’t designed specifically to perform well under the constraint of a set number

of updates. Specifically, when applied to non-convex optimization problems, with a

reasonable choice of hyperparameters these algorithms don’t have very strong guar-

antees of speed of convergence, beyond that they will eventually converge to a good

solution after what could be many millions of iterations. Secondly, for each separate

dataset considered, the network would have to start from a random initialization of

its parameters, which considerably hurts its ability to converge to a good solution

after a few updates. Transfer learning can be applied to alleviate this problem by
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fine-tuning a pre-trained network from another task which has more labelled data;

however, as mentioned in the previous chapter, it has been observed that the benefit

of a pre-trained network greatly decreases as the task the network was trained on

diverges from the target task. What is needed is a systematic way to learn a benefi-

cial common initialization that would serve as a good point to start training for the

set of datasets being considered. This would provide the same benefits as transfer

learning, but with the guarantee that the initialization is an optimal starting point

for fine-tuning.

This chapter presents a method that addresses the weakness of neutral networks

trained with gradient-based optimization on the few-shot learning problem by framing

the problem within a meta-learning setting. We propose a LSTM-based meta-learner

optimizer that is trained to optimize a learner neural network classifier. The meta-

learner captures both short-term knowledge within a task and long-term knowledge

common among all the tasks. By using an objective that directly captures an opti-

mization algorithm’s ability to have good generalization performance given only a set

number of updates, the meta-learner model is trained to converge a learner classifier

to a good solution quickly on each task. Additionally, the formulation of our meta-

learner model allows it to learn a task-common initialization for the learner classifier,

which captures fundamental knowledge shared among all the tasks. We demonstrate

that this meta-learning model is competitive with deep metric-learning techniques for

few-shot learning.

2.2 Task Description

We first begin by detailing the meta-learning formulation we use. In the typical

machine learning setting, we are interested in a dataset D and usually split D so

that we optimize parameters φ on a training set Dtrain and evaluate its generalization
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on the test set Dtest. In meta-learning, however, we are dealing with meta-sets D

containing multiple regular datasets, where each D ∈ D has a split of Dtrain and

Dtest.

We consider the k-shot, n-class classification task, where for each dataset D, the

training set consists of k labelled examples for each of n classes, meaning that Dtrain

consists of N = n ·k examples, and Dtest has a set number of examples for evaluation.

We note that previous work [86] has used the term episode to describe each dataset

consisting of a training and test set.

In meta-learning, we thus have different meta-sets for meta-training, meta-

validation, and meta-testing (Dmeta−train, Dmeta−validation, and Dmeta−test, respec-

tively). On Dmeta−train, we are interested in training a learning procedure (the

meta-learner) that can take as input one of its training sets Dtrain and produce

a classifier (the learner) that achieves high average classification performance on

its corresponding test set Dtest. Using Dmeta−validation we can perform hyper-

parameter selection of the meta-learner and evaluate its generalization performance

on Dmeta−test.

For this formulation to correspond to the few-shot learning setting, each training

set in datasets D ∈ D will contain few labeled examples (we consider k = 1 or k = 5),

that must be used to generalize to good performance on the corresponding test set.

An example of this formulation is given in Figure 2.1.
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Figure 2.1: Example of meta-learning setup. The top represents the meta-training
set Dmeta−train, where inside each gray box is a separate dataset that consists of the
training set Dtrain (left side of dashed line) and the test set Dtest (right side of dashed
line). In this illustration, we are considering the 1-shot, 5-class classification task
where for each dataset, we have one example from each of 5 classes (each given a
label 1-5) in the training set and 2 examples for evaluation in the test set. The meta-
test set Dmeta−test is defined in the same way, but with a different set of datasets
that cover classes not present in any of the datasets in Dmeta−train (similarly, we
additionally have a meta-validation set that is used to determine hyper-parameters).

2.3 Model

We now move to the description of our proposed model for meta-learning.

2.3.1 Model Description

Consider a single dataset, or episode, D ∈ Dmeta−train. Suppose we have a learner

neural net classifier with parameters φ that we want to train on Dtrain. The stan-

dard optimization algorithms used to train deep neural networks are some variant of

gradient descent, which uses updates of the form

φt = φt−1 − αt∇φt−1Lt, (2.1)
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where φt−1 are the parameters of the learner after t−1 updates, αt is the learning

rate at time t, Lt is the loss optimized by the learner for its tth update, ∇φt−1Lt

is the gradient of that loss with respect to parameters φt−1, and φt is the updated

parameters of the learner.

Our key observation that we leverage here is that this update resembles the update

for the cell state in an LSTM [41]

ct = ft � ct−1 + it � c̃t, (2.2)

if ft = 1, ct−1 = φt−1, it = αt, and c̃t = −∇φt−1Lt.

Thus, we propose training a meta-learner LSTM to learn an update rule for

training a neural network. We set the cell state of the LSTM to be the parameters of

the learner, or ct = φt, and the candidate cell state c̃t = ∇φt−1Lt, given how valuable

information about the gradient is for optimization. We define parametric forms for it

and ft so that the meta-learner can determine optimal values through the course of

the updates.

Let us start with it, which corresponds to the learning rate for the updates. We

let

it = σ
(
WI ·

[
∇φt−1Lt,Lt, φt−1, it−1

]
+ bI

)
,

meaning that the learning rate is a function of the current parameter value φt−1, the

current gradient ∇φt−1Lt, the current loss Lt, and the previous learning rate it−1.

With this information, the meta-learner should be able to finely control the learning

rate so as to train the learner quickly while avoiding divergence.

As for ft, it seems possible that the optimal choice isn’t the constant 1. Intuitively,

what would justify shrinking the parameters of the learner and forgetting part of its

previous value would be if the learner is currently in a bad local optima and needs a

large change to escape. This would correspond to a situation where the loss is high
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but the gradient is close to zero. Thus, one proposal for the forget gate is to have it

be a function of that information, as well as the previous value of the forget gate:

ft = σ
(
WF ·

[
∇φt−1Lt,Lt, φt−1, ft−1

]
+ bF

)
.

Additionally, notice that we can also learn the initial value of the cell state c0

for the LSTM, treating it as a parameter of the meta-learner. This corresponds to

the initial weights of the classifier (that the meta-learner is training). Learning this

initial value lets the meta-learner determine the optimal initial weights of the learner

so that training begins from a beneficial starting point that allows optimization to

proceed rapidly. Lastly, note that though the meta-learner’s update rule matches the

cell state update of the LSTM, the meta-learner also bears similarity to the GRU [18]

hidden state update, with the exception that the forget and input gates aren’t tied

to sum to one.

2.3.2 Parameter Sharing & Preprocessing

Because we want our meta-learner to produce updates for deep neural networks,

which consist of tens of thousands of parameters, to prevent an explosion of meta-

learner parameters we need to employ some sort of parameter sharing. Thus as in

Andrychowicz et al. [2], we share parameters across the coordinates of the learner

gradient. This means each coordinate has its own hidden and cell state values but

the LSTM parameters are the same across all coordinates. This allows us to use a

compact LSTM model and additionally has the nice property that the same update

rule is used for each coordinate, but one that is dependent on the respective history

of each coordinate during optimization. We can easily implement parameter sharing

by having the input be a batch of gradient coordinates and loss inputs (∇φt−1,i
Lt,Lt)

for each dimension i.
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Because the different coordinates of the gradients and the losses can be of very

different magnitudes, we need to be careful in normalizing the values so that the

meta-learner is able to use them properly during training. Thus, we also found that

the preprocessing method of Andrychowicz et al. [2] worked well when applied to

both the dimensions of the gradients and the losses at each time step:

x→


(

log(|x|)
p

, sgn(x)
)

if |x|≥ e−p

(−1, epx) otherwise

This preprocessing adjusts the scaling of gradients and losses, while also separating

the information about their magnitude and their sign (the latter being mostly useful

for gradients). We found that the suggested value of p = 10 in the above formula

worked well in our experiments.

2.3.3 Training

The question now is how do we train the LSTM meta-learner model to be effective at

few-shot learning tasks? As observed by Vinyals et al. [86], in order to perform well

at this task, it is key to have training conditions match those of test time. During

evaluation of the meta-learning, for each dataset (episode), D = (Dtrain, Dtest) ∈

Dmeta−test, a good meta-learner model will, given a series of learner gradients and

losses on the training set Dtrain, suggest a series of updates for the classifier that

pushes it towards good performance on the test set Dtest.

Thus to match test time conditions, when considering each dataset D ∈

Dmeta−train, the training objective we use is the loss Ltest of the produced classifier

on D’s test set Dtest. While iterating over the examples in D’s training set Dtrain,

at each time step t the LSTM meta-learner receives (∇φt−1Lt,Lt) from the learner

(the classifier) and proposes the new set of parameters φt. The process repeats for
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Figure 2.2: Computational graph for the forward pass of the meta-learner. The
dashed line divides examples from the training set Dtrain and test set Dtest. Each
(Xi,Yi) is the ith batch from the training set whereas (X,Y) is all the elements from
the test set. The dashed arrows indicate that we do not back-propagate through that
step when training the meta-learner. We refer to the learner as M, where M(X;φ)
is the output of learner M using parameters φ for inputs X. We also use ∇t as a
shorthand for ∇φt−1Lt.

T steps, after which the classifier and its final parameters are evaluated on the test

set to produce the loss that is then used to train the meta-learner. The training

algorithm is described in Algorithm 1 and the corresponding computational graph is

shown in Figure 2.2.

Gradient independence assumption

Notice that our formulation would imply that the losses Lt and gradients ∇φt−1Lt

of the learner are dependent on the parameters of the meta-learner. Gradients on

the meta-learner’s parameters should normally take this dependency into account.

However, as discussed by Andrychowicz et al. [2], this complicates the computation

of the meta-learner’s gradients. Thus, following Andrychowicz et al. [2], we make the

simplifying assumption that these contributions to the gradients aren’t important and

can be ignored, which allows us to avoid taking second derivatives, a considerably

expensive operation. We were still able to train the meta-learner effectively in spite

of this simplifying assumption.
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Initialization of Meta-Learner LSTM

When training LSTMs, it is advised to initialize the LSTM with small random weights

and to set the forget gate bias to a large value so that the forget gate is initialized

to be close to 1, thus enabling gradient flow [90]. In addition to the forget gate

bias setting, we found that we needed to initialize the input gate bias to be small

so that the input gate value (and thus the learning rate) used by the meta-learner

LSTM starts out being small. With this combined initialization, the meta-learner

starts close to normal gradient descent with a small learning rate, which helps initial

stability of training.

2.3.4 Batch Normalization

Batch Normalization [43] is a recently proposed method to stabilize and thus speed

up learning of deep neural networks by reducing internal covariate shift within the

learner’s hidden layers. This reduction is achieved by normalizing each layer’s pre-

activation, by subtracting by the mean and dividing by the standard deviation. Dur-

ing training, the mean and standard deviation are estimated using the current batch

being trained on, whereas during evaluation a running average of both statistics cal-

culated on the training set is used. We need to be careful with batch normalization

for the learner network in the meta-learning setting, because we do not want to col-

lect mean and standard deviation statistics during meta-testing in a way that allows

information to leak between different datasets (episodes), being considered. One easy

way to prevent this issue is to not collect statistics at all during the meta-testing

phase, but just use our running averages from meta-training. This, however, has a

bad impact on performance, because we have changed meta-training and meta-testing

conditions, causing the meta-learner to learn a method of optimization that relies on

batch statistics which it now does not have at meta-testing time. In order to keep

the two phases as similar as possible, we found that a better strategy was to collect
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Algorithm 1 Train Meta-Learner

Input: Meta-training set Dmeta−train, Learner M with parameters φ, Meta-Learner
R with parameters θ.

1: φ0 ← random initialization
2:

3: for d = 1, . . . until convergence do
4: Dtrain, Dtest ← random dataset from Dmeta−train
5: φ0 ← c0 . Intialize learner parameters
6:

7: for t = 1, T do
8: Xt,Yt ← random batch from Dtrain

9: Lt ← L(M(Xt;φt−1),Yt) . Get loss of learner on train batch
10: ct ← R((∇φt−1Lt,Lt); θd−1) . Get output of meta-learner using

Equation 2.2
11: φt ← ct . Update learner parameters
12: end for
13:

14: X,Y ← Dtest

15: Ltest ← L(M(X;φT ),Y) . Get loss of learner on test batch
16: Update θd using ∇θd−1

Ltest . Update meta-learner parameters
17:

18: end for

statistics for each dataset D ∈ D during Dmeta−test, but then erase the running statis-

tics when we consider the next dataset. Thus, during meta-training, we use batch

statistics for both the training and testing set whereas during meta-testing, we use

batch statistics for the training set (and to compute our running averages) but then

use the running averages during testing. This does not cause any information to leak

between different datasets, but also allows the meta-learner to be trained on condi-

tions that are matched between training and testing. Lastly, because we are doing

very few training steps, we computed the running averages so that higher preference

is given to the later values.
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2.4 Related Work

While this work falls within the broad literature of transfer learning in general, we

focus here on positioning it relative to previous work on meta-learning and few-shot

learning.

2.4.1 Meta-learning

In Santoro et al. [74], a memory-augmented neural network is trained to learn how

to store and retrieve memories to use for each classification task. The work of

Andrychowicz et al. [2] uses an LSTM to train a neural network; however, they

are interested in learning a general optimization algorithm to train neural networks

for large-scale classification, whereas we are interested in the few-shot learning prob-

lem. This work also builds upon Hochreiter et al. [42] and Bosc [12], both of whom

used LSTMs to train multi-layer perceptrons to learn on binary classification and

time-series prediction tasks. Another related method is the work of Bertinetto et al.

[10], who train a meta-learner to map a training example to the weights of a neu-

ral network that is then used to classify future examples from this class; however,

unlike our method the classifier network is directly produced rather than being fine-

tuned after multiple training steps. The work in this chapter also bears similarity to

that of Maclaurin et al. [59], who tune the hyperparameters of gradient descent with

momentum by backpropagating through the chain of gradient steps to optimize the

validation performance.

2.4.2 Few-shot learning

The best performing methods for few-shot learning have been mainly metric learning

methods. Deep siamese networks [51] involves training a convolutional network to

embed examples so that items in the same class are close while items in different
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classes are far away, according to some distance metric. Matching networks [86] refine

this idea so that training and testing conditions match, by defining a differentiable

nearest neighbor loss involving the cosine similarities of embeddings produced by a

convolutional network.

2.5 Evaluation

In this section, we describe the results of experiments, examining the properties of

our model and comparing our method’s performance against different approaches.

Following Vinyals et al. [86], we consider the k-shot, n-class classification setting

where a meta-learner trains on many related but small training sets of k examples for

each of n classes. We first split the list of all classes in the data into disjoint sets and

assign them to each meta-set of meta-training, meta-validation, and meta-testing. To

generate each instance of a k-shot, n-class task dataset D = (Dtrain, Dtest) ∈ D , we

do the following: we first sample n classes from the list of classes corresponding to the

meta-set we consider. We then sample k examples from each of those classes. These k

examples together compose the training set Dtrain. Then, an additional fixed amount

of the rest of the examples are sampled to yield a test set Dtest. We generally have

15 examples per class in the test sets. When training the meta-learner, we iterate by

sampling these datasets (episodes) repeatedly. For meta-validation and meta-testing,

however, we produce a fixed number of these datasets to evaluate each method. We

produce enough datasets to ensure that the confidence interval of the mean accuracy

is small.

For the learner, we use a simple CNN containing 4 convolutional layers, each of

which is a 3× 3 convolution with 32 filters, followed by batch normalization, a ReLU

non-linearity, and lastly a 2×2 max-pooling. The network then has a final linear layer

followed by a softmax for the number of classes being considered. The loss function L
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is the average negative log-probability assigned by the learner to the correct class. For

the meta-learner, we use a 2-layer LSTM, where the first layer is a normal LSTM and

the second layer is our modified LSTM meta-learner. The gradients and losses are

preprocessed and fed into the first layer LSTM, and the regular gradient coordinates

are also used by the second layer LSTM to implement the state update rule shown

in (2.1). At each time step, the learner’s loss and gradient is computed on a batch

consisting of the entire training set Dtrain, because we consider training sets with only

a total of 5 or 25 examples. We train our LSTM with ADAM using a learning rate

of 0.001 and with gradient clipping using a value of 0.25.

2.5.1 Experiment Results

The miniImageNet dataset was proposed by Vinyals et al. [86] as a benchmark offering

the challenges of the complexity of ImageNet images, without requiring the resources

and infrastructure necessary to run on the full ImageNet dataset. Because the exact

splits used in Vinyals et al. [86] were not released, we create our own version of the

miniImageNet dataset by selecting a random 100 classes from ImageNet and picking

600 examples of each class. We use 64, 16, and 20 classes for training, validation

and testing, respectively. We consider 1-shot and 5-shot classification for 5 classes.

We use 15 examples per class for evaluation in each test set. We compare against

two baselines and a recent metric-learning technique, Matching Networks [86], which

has achieved state-of-the-art results in few-shot learning. The results are shown in

Table 2.1.

The first baseline we use is a nearest-neighbor baseline (Baseline-nearest-

neighbor), where we first train a network to classify between all the classes jointly in

the original meta-training set. At meta-test time, for each dataset D, we embed all

the items in the training set using our trained network and then use nearest-neighbor

matching among the embedded training examples to classify each test example.
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The second baseline we use (Baseline-finetune) represents a coarser version of our

meta-learner model. As in the first baseline, we start by training a network to classify

jointly between all classes in the meta-training set. We then use the meta-validation

set to search over SGD hyperparameters, where each training set is used to fine-tune

the pre-trained network before evaluating on the test set. We use a fixed number

of updates for fine tuning and search over the learning rate and learning rate decay

used during the course of these updates.

For Matching Networks, we implemented our own version of both the basic and

the fully-conditional embedding (FCE) versions. In the basic version, a convolutional

network is trained to learn independent embeddings for examples in the training and

test set. In the FCE version, a bidirectional-LSTM is used to learn an embedding

for the training set such that each training example’s embedding is also a function of

all the other training examples. Additionally, an attention-LSTM is used so that a

test example embedding is also a function of all the embeddings of the training set.

We do not consider fine-tuning the network using the train set during meta-testing

to improve performance as mentioned in Vinyals et al. [86], but do note that our

meta-learner could also be fine-tuned using this data. Note that to remain consistent

with Vinyals et al. [86], our baseline and matching net convolutional networks have

4 layers each with 64 filters. We also added dropout to each convolutional block in

matching nets to prevent overfitting.

For our meta-learner, we train different models for the 1-shot and 5-shot tasks,

that make 12 and 5 updates, respectively. We noticed that better performance for

each task was attained if the meta-learner is explicitly trained to do the set number

of updates during meta-training that will be used during meta-testing.

We attain results that are much better than the baselines discussed and com-

petitive with Matching Networks. For 5-shot, we are able to do much better than

Matching Networks, whereas for 1-shot, the confidence interval for our performance
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Model
5-class

1-shot 5-shot
Baseline-finetune 28.86± 0.54% 49.79± 0.79%

Baseline-nearest-neighbor 41.08± 0.70% 51.04± 0.65%
Matching Network 43.40± 0.78% 51.09± 0.71%

Matching Network FCE 43.56± 0.84% 55.31± 0.73%
Meta-Learner LSTM (OURS) 43.44± 0.77% 60.60± 0.71%

Table 2.1: Average classification accuracies on miniImageNet with 95% confidence
intervals. Marked in bold are the best results for each scenario, as well as other results
with an overlapping confidence interval.

intersects the interval for Matching Networks. Again, we note that the numbers do

not match the ones provided by Vinyals et al. [86] simply because we created our

version of the dataset and implemented our own versions of their model. It is inter-

esting to note that the fine-tuned baseline is worse than the nearest-neighbor baseline.

Because we are not regularizing the classifier, with very few updates the fine-tuning

model overfits, especially in the 1-shot case. This propensity to overfit speaks to the

benefit of meta-training the initialization of the classifier end-to-end as is done in the

meta-learning LSTM.

2.5.2 Visualization of meta-learner

We also visualize the optimization strategy learned by the meta-learner, in Figure 2.3.

We can look at the it and ft gate values in Equation 2.2 at each update step, to try

to get an understanding of how the meta-learner updates the learner during training.

We visualize the gate values while training on different datasets Dtrain, to observe

whether there are variations between training sets. We consider both 1-shot and

5-shot classification settings, where the meta-learner is making 10 and 5 updates,

respectively. For the forget gate values for both tasks, the meta-learner seems to

adopt a simple weight decay strategy that seems consistent across different layers.

The input gate values are harder to interpret to glean the meta-learner’s strategy.

However, there seems to a be a lot of variability between different datasets, indicating
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(a) Forget gate values for 1-shot task. (b) Input gate values for 1-shot task.

(c) Forget gate values for 5-shot task. (d) Input gate values for 5-shot task.

Figure 2.3: Visualization of the input and forget values output by the meta-learner
during the course of its updates. Layers 1 − 4 represent the values for a randomly
selected parameter from the 4 convolutional layers and layer 5 represents the values
for a random parameter from fully-connected layer. The different curves represent
training steps on different datasets.

that the meta-learner isn’t simply learning a fixed optimization strategy. Additionally,

there seem to be differences between the two tasks, suggesting that the meta-learner

has adopted different methods to deal with the different conditions of each setting.

2.6 Conclusion

We described an LSTM-based model for meta-learning, which is inspired from the pa-

rameter updates suggested by gradient descent optimization algorithms. Our LSTM

meta-learner uses its state to represent the learning updates of the parameters of a

classifier. It is trained to discover both a good initialization for the learner’s parame-
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ters, as well as a successful mechanism for updating the learner’s parameters to a given

small training set for some new classification task. Our experiments demonstrate that

our approach outperforms natural baselines and is competitive to the state-of-the-art

in metric learning for few-shot learning.
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Chapter 3

Amortized Bayesian

Meta-Learning

3.1 Introduction

In the previous chapter, we discussed a meta-learning method for training a model

to perform well on on a distribution of meta-training tasks, where each task is a few-

shot learning problem. The model was then applied to an unseen evaluation task to

measure the quality of our learned model. Implicit in this setup was the assumption

that the evaluation task be drawn from a task distribution somewhat similar to the

one used for training. When this distributional assumption holds true, it is likely

that the prior knowledge gained across training tasks will be useful for solving the

evaluation task. Though the model’s performance on the few-shot learning benchmark

was good, it is unclear how well such a method (and other meta-learning methods in

general) would perform in real-world settings, where the relationship between meta-

training and meta-test tasks could be tenuous. For success in the wild, in addition

to good predictive accuracy, it is also important for meta-learning models to have

good predictive uncertainty - to express high confidence when a prediction is likely
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to be correct but display low confidence when a prediction could be unreliable. This

type of guarantee in predictive ability would allow appropriate human intervention

when a prediction is known to have high uncertainty. With such an assurance, we

can measure when a model struggles with a new task because the task is difficult to

solve using the model’s accumulated prior knowledge using the training tasks.

Bayesian methods offer a principled framework to reason about uncertainty, and

approximate Bayesian methods have been used to provide deep learning models with

accurate predictive uncertainty [30, 58]. By inferring a posterior distribution over neu-

ral network weights, we can produce a posterior predictive distribution that properly

indicates the level of confidence on new unseen examples. Accordingly, we consider

meta-learning under a Bayesian view in order to transfer the aforementioned benefits

to our setting. Specifically, we extend the work of Amit and Meir [1], who consid-

ered hierarchical variational inference for meta-learning. The work primarily dealt

with PAC-Bayes bounds in meta-learning and the experiments consisted of data with

tens of training episodes and small networks. In this chapter, we show how the meta-

learning framework defined in the previous chapter can be used to efficiently amortize

variational inference for the Bayesian model of Amit and Meir [1] in order to combine

the former’s flexibility and scalability with the latter’s uncertainty quantification.
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Figure 3.1: Graphical models for meta-learning framework. Dotted lines denote
variational approximations. (a) Original setup in [1] where inference parameters are
learned separately for each episode (b) Proposed initial amortized variational infer-
ence scheme (c) Proposed amortized variational inference scheme with train and test
splits.

3.2 Meta-Learning via Hierarchical Variational In-

ference

We first start by reviewing the hierarchical variational bayes formulation used in

Amit and Meir [1] for meta-learning. Using notation from previous chapter, assume

we observe data from M episodes and assume for now that there is no train-test

split, meaning that the ith episode consists of data D(i) containing N data items i.e.

D(i) =
{(

x(i,j),y(i,j)
)}N

j=1
. We assume a hierarchical model with global latent variable

θ and episode-specific variables φi, i = 1, . . .M (see Figure 3.1).
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Hierarchical variational inference can then be used to lower bound the likelihood

of the data:

log

[
M∏
i=1

p(D(i))

]
= log

[∫
p(θ)

[
M∏
i=1

∫
p(D(i)|φi)p(φi|θ) dφi

]
dθ

]

≥ Eq(θ;ψ)

[
log

(
M∏
i=1

∫
p(D(i)|φi)p(φi|θ) dφi

)]
−KL(q(θ;ψ)‖p(θ))

= Eq(θ;ψ)

[
M∑
i=1

log

(∫
p(D(i)|φi)p(φi|θ) dφi

)]
−KL(q(θ;ψ)‖p(θ))

≥ Eq(θ;ψ)

[
M∑
i=1

Eq(φi;λi)
[
log p(D(i)|φi)

]
−KL(q(φi;λi)‖p(φi|θ))

]
−KL(q(θ;ψ)‖p(θ))

= L(ψ, λ1, . . . , λM).

Here, ψ and λ1, . . . , λM are the variational parameters of the approximate posteriors

over the global latent variables θ and the local latent variables φ1, . . . , φM , respec-

tively.

Thus, variational inference involves solving the following optimization problem:

arg max
ψ,λ1...,λM

Eq(θ;ψ)

[
M∑
i=1

Eq(φi;λi)
[
log p(D(i)|φi)

]
−KL(q(φi;λi)‖p(φi|θ))

]

−KL(q(θ;ψ)‖p(θ)) (3.1)

≡ arg min
ψ,λ1...,λM

Eq(θ;ψ)

[
M∑
i=1

−Eq(φi;λi)
[
log p(D(i)|φi)

]
+ KL(q(φi;λi)‖p(φi|θ))

]

+ KL(q(θ;ψ)‖p(θ)) (3.2)

Amit and Meir [1] solve this optimization problem via mini-batch gradient descent

on the objective starting from random initialization for all variational parameters.

They maintain distinct variational parameters λi for each episode i, each of which

indexes a distribution over episode-specific weights q(φi;λi). While they only consider

problems with at most 10 or so training episodes and where each φi is small (the
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weights of a 2-layer convolutional network), this approach is not scalable to problems

with large numbers of episodes - such as few-shot learning, where we can generate

millions of episodes by randomizing over classes and examples - and requiring deep

networks.

3.3 Amortized Bayesian Meta-Learning

3.3.1 Scaling Meta-Learning with Amortized Variational In-

ference

Learning local variational parameters λi for a large number of episodes M becomes

difficult asM grows due to the costs of storing and computing each λi. These problems

are compounded when each φi is the weight of a deep neural network and each λi

are variational parameters of the weight distribution (such as a mean and standard

deviation of each weight). Instead of maintaining M different variational parameters

λi indexing distributions over neural network weights φi, we compute λi on the fly

with amortized variational inference (AVI), where a global learned model is used to

predict λi from D(i). A popular use of AVI is training a variational autoencoder [49],

where a trained encoder network produces the variational parameters for each data

point. Rather than training an encoder to predict λi given the episode, we show that

inference can be amortized by finding a good initialization, a la MAML [28]. We

represent the variational parameters for each episode as the output of several steps

of gradient descent from a global initialization.

Let LD(i)(λ, θ) = −Eq(φi;λ)
[
log p(D(i)|φi)

]
+KL(q(φi;λ)‖p(φi|θ)) be the part of the

objective corresponding to data D(i). Let the procedure SGDK(D,λ(init), θ) represent

the variational parameters produced after K steps of gradient descent on the objective

LD(λ, θ) with respect to λ starting at the initialization λ(0) = λ(init) and where θ is

held constant i.e.:
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1. λ(0) = λ(init)

2. for k = 0, . . . , K − 1, set

λ(k+1) = λ(k) − α∇λ(k)LD(λ(k), θ)

We represent the variational distribution for each dataset qθ(φi|D(i)) in terms of the

local variational parameters λi produced after K steps of gradient descent on the loss

for dataset D(i), starting from the global initialization θ:

qθ(φi|D(i)) = q(φi;SGDK(D(i), θ, θ)).

Note that θ here serves as both the global initialization of local variational parameters

and the parameters of the prior p(φ | θ). We could pick a separate prior and global

initialization, but we found tying the prior and initialization did not seem to have

a negative affect on performance, while significantly reducing the number of total

parameters necessary. With this form of the variational distribution, this turns the

optimization problem of (3.2) into

arg min
ψ

Eq(θ;ψ)

[
M∑
i=1

−Eqθ(φi|D(i))

[
log p(D(i)|φi)

]
+ KL(qθ(φi|D(i))‖p(φi|θ))

]

+ KL(q(θ;ψ)‖p(θ)).

(3.3)

Because each qθ(φi|D(i)) depends on ψ via θ (the initialization for the variational

parameters before performing K steps of gradient descent), we can also backpropagate

through the computation of q via the gradient descent process to compute updates

for ψ. Though this backpropagation step requires computing the Hessian, it can be

done efficiently with fast Hessian-vector products, which have been used in past work

involving backpropagation through gradient updates [59, 47]. This corresponds to

learning a global initialization of the variational parameters such that a few steps
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of gradient descent will produce a good local variational distribution for any given

dataset.

We assume a setting where M >> N , i.e. we have many more episodes than data

points within each episode. Accordingly, we are most interested in quantifying uncer-

tainty within a given episode and desire accurate predictive uncertainty in qθ(φi|D(i)).

We assume that uncertainty in the global latent variables θ should be low due to the

large number of episodes, and therefore use a point estimate for the global latent

variables, letting q(θ;ψ) be a dirac delta function q(θ) = 1{θ = θ∗}. This removes

the need for global variational parameters ψ and simplifies our optimization problem

to

arg min
θ

[
M∑
i=1

−Eqθ(φi|D(i))

[
log p(D(i)|φi)

]
+ KL(qθ(φi|D(i))‖p(φi|θ))

]
+ KL(q(θ)‖p(θ)),

(3.4)

where θ∗ is the solution to the above optimization problem. Note that KL(q(θ)‖p(θ))

term can be computed even when q(θ) = 1{θ = θ∗}, as KL(q(θ)||p(θ)) = − log p(θ∗).

3.3.2 Amortized Variational Inference using only Training

Set

As mentioned in the previous chapter, In the few-shot learning problem we must

consider train and test splits for each dataset in each episode. Using notation from

previous chapter, we will call the training examples in each dataset Dtrain and the

test examples in each dataset Dtest . Thus, D(i) = D
(i)
train ∪ D

(i)
test, where D

(i)
train ={(

x
(i,j)
tr ,y

(i,j)
tr

)}N
j=1

and D
(i)
test =

{(
x
(i,j)
test ,y

(i,j)
test

)}N ′
j=1

, and the assumption is that dur-

ing evaluation, we are only given D
(i)
train to determine our variational distribution q(φi)

and measure the performance of the model by evaluating the variational distribution
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on corresponding D
(i)
test. In order to match what is done during training and evalua-

tion, we consider a modified version of the objective of (3.4) that incorporates this

training and test set split. This means that for each episode i, we only have access to

data D
(i)
train to compute the variational distribution, giving us the following objective:

arg min
θ

[
M∑
i=1

−E
qθ

(
φi

∣∣∣D(i)
train

) [log p(D(i)|φi)
]

+ KL
(
qθ

(
φi

∣∣∣D(i)
train

)∥∥∥p(φi|θ))]

+ KL(q(θ)‖p(θ)),

(3.5)

where qθ

(
φi

∣∣∣D(i)
train

)
= q

(
φi;SGDK

(
D

(i)
train, θ, θ

))
. Note that the objective in this

optimization problem still serves as a lower bound to the likelihood of all the episodic

data because all that has changed is that we condition the variational distribution q on

less information (using only the training set vs using the entire dataset). Conditioning

on less information potentially gives us a weaker lower bound for all the training

datasets, but we found empirically that the performance during evaluation was better

using this type of conditioning since there is no mismatch between how the variational

distribution is computed during training vs evaluation.

3.3.3 Application Details

With the objective (3.5) in mind, we now give details on how we implement the

specific model. We begin with the distributional forms of the priors and posteriors.

The formulation given above is flexible but we consider fully factorized Gaussian

distributions for ease of implementation and experimentation. We let θ = {µθ,σ2
θ},

where µθ ∈ RD and σ2
θ ∈ RD represent the mean and variance for each neural network

weight, respectively. Then, p(φi|θ) is

p(φi|θ) = N (φi;µθ,σ
2
θI),
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and qθ

(
φi

∣∣∣D(i)
train

)
is the following:

{
µ

(K)
λ ,σ2(K)

λ

}
= SGDK

(
D

(i)
train, θ, θ

)
qθ

(
φi

∣∣∣D(i)
train

)
= N

(
φi;µ

(K)
λ ,σ2(K)

λ

)
.

We let the prior p(θ) be

p(θ) = N (µ; 0, I) ·
D∏
l=1

Gamma(τl; a0, b0),

where τl = 1
σ2

l
is the precision and a0 and b0 are the alpha and beta parameters for

the gamma distribution. Note that with the defined distributions, the SGD process

here corresponds to performing Bayes by Backprop [11] with the learned prior p(φi|θ).

Optimization of (3.5) is done via mini-batch gradient descent, where we average

gradients over multiple episodes at a time. The pseudo-code for training and eval-

uation is given in Algorithms 1 and 2 in the appendix. The KL-divergence terms

are calculated analytically whereas the expectations are approximated by averaging

over a number of samples from the approximate posterior, as has been done in pre-

vious work [49, 11]. The gradient computed for this approximation naively can have

high variance, which can significantly harm the convergence of gradient descent [50].

Variance reduction is particularly important to the performance of our model as we

perform stochastic optimization to obtain the posterior qθ

(
φ|D(i)

train

)
at evaluation-

time also. Previous work has explored reducing the variance of gradients involving

stochastic neural networks, and we found this crucial to training the networks we use.

Firstly, we use the Local Reparametrization Trick (LRT) [50] for fully-connected lay-

ers and Flipout [88] for convolutional layers to generate fully-independent (or close to

fully-independent in the case of Flipout) weight samples for each example. Secondly,

we can easily generate multiple weight samples in the few-shot learning setting simply
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by replicating the data in each episode since we only have a few examples per class

making up each episode. Both LRT and Flipout increase the operations required in

the forward pass by 2 because they require two weight multiplications (or convolu-

tions) rather than one for a normal fully-connected or convolutional layer. Replicating

the data does not increase the run time too much because the total replicated data

still fits on a forward pass on the GPU.

3.4 Related Work

The Bayesian inference perspective of meta-learning [82, 26] casts it as Bayesian

inference in a hierarchical graphical model [52]. This approach provides a principled

framework to reason about uncertainty. However, hierarchical Bayesian methods once

lacked the ability to scale to complex models and large, high-dimensional datasets due

to the computational costs of inference. Recent developments in variational inference

[49, 11] allow efficient approximate inference with complex models and large datasets.

These have been used to scale Bayesian meta-learning using a variety of approaches.

Edwards and Storkey [25] infer episode-specific latent variables which can be used as

auxiliary inputs for tasks such as classification. As mentioned before, Amit and Meir

[1] learn a prior on the weights of a neural network and separate variational posteriors

for each task.

Our method is very closely related to Finn et al. [28] and recent work proposing

Bayesian variants of MAML. Grant et al. [36] provided the first Bayesian variant

of MAML using the Laplace approximation. In concurrent work, Kim et al. [46]

and Finn et al. [29] propose Bayesian variants of MAML with different approximate

posteriors. Finn et al. [29] approximate MAP inference of the task-specific weights φi,

and maintain uncertainty only in the global model θ. Our paper, however, considers

tasks in which it is important to quantify uncertainty in task-specific weights - such
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as contextual bandits and few-shot learning. Kim et al. [46] focus on uncertainty

in task-specific weights, as we do. They use a point estimate for all layers except

the final layer of a deep neural network, and use Stein Variational Gradient Descent

to approximate the posterior over the weights in the final layer with an ensemble.

This avoids placing Gaussian restrictions on the approximate posterior; however, the

posterior’s expressiveness is dependant on the number of particles in the ensemble,

and memory and computation requirements scale linearly and quadratically in the

size of the ensemble, respectively. The linear scaling requires one to share parameters

across particles in order to scale to larger datasets.

Moreover, there has been other recent work on Bayesian methods for few-shot

learning. Neural Processes achieve Gaussian Process-like uncertainty quantification

with neural networks, while being easy to train via gradient descent [32, 33]. How-

ever, it has not been demonstrated whether these methods can be scaled to bigger

benchmarks like miniImageNet. Gordon et al. [35] adapt Bayesian decision theory to

formulate the use of an amortization network to output the variational distribution

over weights for each few-shot dataset. Both Kim et al. [46] and Gordon et al. [35]

require one to specify the global parameters (those that are shared across all episodes

and are point estimates) vs task-specific parameters (those that are specific to each

episode and have a variational distribution over them). Our method, however, does

not require this distinction a priori and can discover it based on the data itself. For

example, in Figure 3.5, which shows the standard deviations of the learned prior, we

see that many of the 1st layer convolutional kernels have standard deviations very

close to 0, indicating that these weights are essentially shared because there will be

a large penalty from the prior for deviating from them in any episode. Not needing

to make this distinction makes it more straightforward to apply our model to new

problems, like the contextual bandit task we consider.
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3.5 Evaluation

We evaluate our proposed model on experiments involving contextual bandits and

involving measuring uncertainty in few-shot learning benchmarks. We compare our

method primarily against MAML. Unlike our model, MAML is trained by maximum

likelihood estimation of the test set given a fixed number of updates on the training

set, causing it to often display overconfidence in the settings we consider. For few-

shot learning, we additionally compare against Probabilistic MAML [29], a Bayesian

version of MAML that maintains uncertainty only in the global parameters.

3.5.1 Contextual Bandits

The first problem we consider is a contextual bandit task, specifically in the form of

the wheel bandit problem introduced in Riquelme et al. [71]. The contextual bandit

task involves observing a context Xt from time t = 0, . . . , n and requires the model to

select, based on its internal state and Xt, one of the k available actions. Based on the

context and the action selected at each time step, a reward is generated. The goal

of the model is to minimize the cumulative regret, the difference between the sum of

rewards of the optimal policy and the model’s policy.

The wheel bandit problem is a synthetic contextual bandit problem with a scalar

hyperparameter that allows us to control the amount of exploration required to be

successful at the problem. The setup is the following: we consider a unit circle in

R2 split up into 5 areas determined by the hyperparameter δ. At each time step,

the agent is given a point X = (x1, x2) inside the circle and has to determine which

arm to select among k = 5 arms. For ‖X‖≤ δ (the low-reward region), the optimal

arm is k = 1, which gives reward r ∼ N (1.2, 0.012). All other arms in this area give

reward r ∼ N (1, 0.012). For ‖X‖> δ, the optimal arm depends on which of the 4

high-reward regions X is in. Each of the 4 regions has an assigned optimal arm that
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gives reward r ∼ N (50, 0.012), whereas the other 3 arms will give r ∼ N (1.0, 0.012)

and arm k = 1 will always give r ∼ N (1.2, 0.012). The difficulty of the problem

increases with δ, as it requires increasing amount of exploration to determine where

the high-reward regions are located. We refer the reader to Riquelme et al. [71] for

visual examples of the problem.

Thompson Sampling [83] is a classic approach to tackling the exploration-

exploitation trade-off involved in bandit problems which requires a posterior

distribution over reward functions. At each time step an action is chosen by sampling

a model from the posterior and acting optimally with respect to the sampled reward

function. The posterior distribution over reward functions is then updated based on

the observed reward for the action. When the posterior initially has high variance

because of lack of data, Thompson Sampling explores more and turns to exploitation

only when the posterior distribution becomes more certain about the rewards. The

work of Riquelme et al. [71] compares using Thompson Sampling for different models

that approximate the posterior over reward functions on a variety of contextual

bandit problems, including the wheel bandit.

We use the setup described in Garnelo et al. [33] to apply meta-learning methods

to the wheel bandit problem. Specifically, for meta-learning methods there is a pre-

training phase in which training episodes consist of randomly generated data across δ

values from wheel bandit task. Then, these methods are evaluated using Thompson

sampling on problems defined by specific values of δ. We can create a random training

episode for pre-training by first sampling M different wheel problems {δi}Mi=1, δi ∼

U(0, 1), followed by sampling tuples of the form {(X, a, r)}Nj=1 for context X, action

a, and observed reward r. As in Garnelo et al. [33], we use M = 64 and N = 562

(where the training set has 512 items and the test set has 50 items). We then evaluate

the trained meta-learning models on specific instances of the wheel bandit problem

(determined by setting the δ hyperparameter). Whereas the models in Riquelme et al.
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[71] have no prior knowledge to start off with when being evaluated on each problem,

meta-learning methods, like our model and MAML, have a chance to develop some

sort of prior that they can utilize to get a head start. MAML learns a initialization of

the neural network that it can then fine-tune to the given problem data, whereas our

method develops a prior over the model parameters that can be utilized to develop

an approximate posterior given the new data. Thus, we can straightforwardly apply

Thompson sampling in our model using the approximate posterior at each time step

whereas for MAML we just take a greedy action at each time step given the current

model parameters.

The results of evaluating the meta-learning methods using code made available

by Riquelme et al. [71] after the pre-training phase are shown in Table 3.1. We also

show results from NeuralLinear, one of the best performing models from Riquelme

et al. [71], to display the benefit of the pre-training phase for the meta-learning

methods. We vary the number of contexts and consider n = 80, 000 (which was

used in Riquelme et al. [71]) and n = 2, 000 (to see how the models perform under

fewer time steps). We can see that as δ increases and more exploration is required to

be successful at the problem, our model has a increasingly better cumulative regret

when compared to MAML. Additionally, we notice that this improvement is even

larger when considering smaller amount of time steps, indicating that our model

converges to the optimal actions faster than MAML. Lastly, in order to highlight the

difference between our method and MAML, we visualize the learned prior p(φ | θ) in

Figure 3.2 by showing the expectation and standard-deviation of predicted rewards

for specific arms with respect to the prior. We can see that the standard deviation

of the central low-reward arm is small everywhere, as there is reward little variability

in this arm across δ values. For the high-reward arm in the upper-right corner, we

see that the standard deviation is high at the edges of the area in which this arm can

give high reward (depending on the sampled δ value). This variation is useful during
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δ 0.5 0.7 0.9 0.95 0.99
n = 80,000
Uniform 100 ± 0.08 100 ± 0.09 100 ± 0.25 100 ± 0.37 100 ± 0.78

NeuralLinear 0.95 ± 0.02 1.60 ± 0.03 4.65 ± 0.18 9.56 ± 0.36 49.63 ± 2.41

MAML 0.20 ± 0.002 0.34 ± 0.004 1.02 ± 0.01 2.10 ± 0.03 9.81 ± 0.27

Our Model 0.22 ± 0.002 0.29 ± 0.003 0.66 ± 0.008 1.03 ± 0.01 4.66 ± 0.10

n = 2,000
Uniform 100 ± 0.25 100 ± 0.42 100 ± 0.79 100 ± 1.15 100 ± 1.88

MAML 1.79 ± 0.04 2.10 ± 0.04 6.08 ± 0.47 16.80 ± 1.30 55.53 ± 2.18

Our Model 1.36 ± 0.03 1.59 ± 0.04 3.51 ± 0.17 7.21 ± 0.41 35.04 ± 1.93

Table 3.1: Cumulative regret results on the wheel bandit problem with varying δ
values. Results are normalized with the performance of the uniform agent (as was
done in Riquelme et al. [71]) and results shown are mean and standard error for
cumulative regret calculated across 50 trials

exploration as this is the region in which we would like to target our exploration to

figure out what δ value we are faced with in a new problem. MAML is only able to

learn the information associated with expected reward values and so is not well-suited

for appropriate exploration but can only be used in a greedy manner.

(a)

(b)

Figure 3.2: Visualization
of arm rewards according
to prior distribution of our
model. (a) expectation and
standard-deviation of low-
reward arm (computed by
sampling weights from the
prior) evaluated on points
on unit circle. (b) expecta-
tion and standard-deviation
of one of the high-reward
arms computed in same way
as for low-reward arm.
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3.5.2 Few-shot Learning

We consider two few-shot learning benchmarks: CIFAR-100 and miniImageNet,

where both datasets consist of 100 classes and 600 images per class and where CIFAR-

100 has images of size 32×32 and miniImageNet has images of size 84×84. We split

the 100 classes into separate sets of 64 classes for training, 16 classes for validation,

and 20 classes for testing for both of the datasets (using the same split from as

the previous chapter for miniImageNet, while using our own for CIFAR-100 as a

commonly used split does not exist). For both benchmarks, we use the convolutional

architecture used in Finn et al. [28], which consists of 4 convolutional layers, each

with 32 filters, and a fully-connected layer mapping to the number of classes on top.

For the few-shot learning experiments, we found it necessary to downweight the inner

KL term for better performance in our model.

While we focus on predictive uncertainty, we start by comparing classification

accuracy of our model compared to MAML. We consider 1-shot, 5-class and 1-shot, 10-

class classification on CIFAR-100 and 1-shot, 5-class classification on miniImageNet,

with results given in Table 3.2. For both datasets, we compare our model with our own

re-implementation of MAML and Probabilistic MAML. Note that the accuracy and

associated confidence interval for our implementations for miniImageNet are smaller

than the reference implementations because we use a bigger test set for evaluation

episodes (15 vs 1 example(s) per class) and we average across more evaluation episodes

(1000 vs 600), respectively, compared to Finn et al. [28]. Because we evaluate in a

transductive setting [68], the evaluation performance is affected by the test set size,

and we use 15 examples to be consistent with previous work. Our model achieves

comparable to a little worse on classification accuracy than MAML and Probabilistic

MAML on the benchmarks.

To measure the predictive uncertainty of the models, we first compute reliability

diagrams [38] across many different test episodes for both models. Reliability dia-

39



CIFAR-100 1-shot
5-class 10-class

MAML (ours) 51.6 ± 0.74 36.2 ± 0.46

Prob. MAML (ours) 52.8 ± 0.75 36.6 ± 0.44

Our Model 49.5 ± 0.74 35.7 ± 0.47

miniImageNet 1-shot, 5-class
MAML (ours) 47.0 ± 0.59

Prob. MAML (ours) 47.8 ± 0.61

Our Model 45.0 ± 0.60

Table 3.2: Few-shot classification accuracies with 95% confidence intervals on CIFAR-
100 and miniImageNet.

grams visually measure how well calibrated the predictions of a model are by plotting

the expected accuracy as a function of the confidence of the model. A well-calibrated

model will have its bars align more closely with the diagonal line, as it indicates

that the probability associated with a predicted class label corresponds closely with

how likely the prediction is to be correct. We also show the Expected Calibration

Error (ECE) and Maximum Calibration Error (MCE) of all models, which are two

quantitative ways to measure model calibration [65, 38]. ECE is a weighted average

of each bin’s accuracy-to-confidence difference whereas MCE is the worst-case bin’s

accuracy-to-confidence difference. Reliability diagrams and associated error scores are

shown in Figure 3.3. We see that across different tasks and datasets, the reliability

diagrams and error scores reflect the fact that our model is always better calibrated

on evaluation episodes compared to MAML and Probabilitic MAML.

Another way we can measure the quality of the predictive uncertainty of a model is

by measuring its confidence on out-of-distribution examples from unseen classes. This

tests the model’s ability to be uncertain on examples it clearly does not know how

to classify. One method to visually measure this is by plotting the empirical CDF of

a model’s entropies on these out-of-distribution examples [58]. A model represented

by a CDF curve that is towards the bottom-right is preferred, as it indicates that

the probability of observing a high confidence prediction from the model is low on
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(a)

CIFAR-100: 1-shot, 5-class CIFAR-100: 1-shot, 10-class miniImageNet: 1-shot, 5-class

(b)

(c)

Figure 3.3: Reliability diagrams for MAML and our model on various tasks across
datasets. Relibiality diagrams are computed by gathering predicted probabilities for
test set examples across many episodes, where the same set of evaluation episodes are
used for both models. (a) MAML (b) Probabilistic MAML (c) Our model.

an out-of-distribution example. We can plot the same type of curve in our setting by

considering the model’s confidence on out-of-episode examples for each test episode.

Empirical CDF curves for both MAML-based models and our model are shown in

Figure 3.4. We see that in general our model computes better uncertainty estimates

than the comparison models, as the probability of a low entropy prediction is always

smaller.

Lastly, we visualize the prior distribution p(φ|θ) that has been learned in tasks

involving deep convolutional networks. We show the standard deviations of randomly

selected filters from the first convolutional layer to the last convolutional layer from

our CIFAR-100 network trained on 1-shot, 5-class task in Figure 3.5. Interestingly,
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the standard deviation of the prior for the filters increases as we go higher up in the

network. This pattern reflects the fact that across the training episodes the prior can

be very confident about the lower-level filters, as they capture general, useful lower-

level features and so do not need to be modified as much on a new episode. The

standard deviation for the higher-level filters is higher, reflecting that fact that these

filters need to be fine-tuned to the labels present in the new episode. This variation

in the standard deviation represents different learning speeds across the network on a

new episode, indicating which type of weights are general and which type of weights

need to be quickly modified to capture new data.

CIFAR-100: 1-shot, 5-class CIFAR-100: 1-shot, 10-class

miniImageNet: 1-shot, 5-class

Figure 3.4: Comparison of empirical CDF of entropy of predictive distributions on
out-of-episode examples on various tasks and datasets. Data for CDF comes from
computing the entropy on out-of-episode examples across many episodes, where out-
of-episode examples are generated by randomly sampling classes not belonging to
the episode and randomly sampling examples from those classes. The same set of
evaluation episodes are used for both models.
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Figure 3.5: Standard deviation of prior for convolutional kernels across layers of
network. The x-axis indexes different filters in each layer whereas the y-axis indexes
across positions in the 3× 3 kernel.

3.6 Conclusion

We described a method to efficiently use hierarchical variational inference to learn a

meta-learning model that is scalable across many training episodes and large networks.

The method corresponds to learning a prior distribution over the network weights so

that a few steps of Bayes by Backprop will produce a good approximate posterior.

Through various experiments we show that using a Bayesian interpretation allows

us to reason effectively about uncertainty in contextual bandit and few-shot learning

tasks. The proposed method is flexible and future work could involve considering

more expressive prior (and corresponding posterior) distributions to further improve

the uncertainty estimates.
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3.7 Appendix

3.7.1 Pseudocode

In algorithms 1 and 2 we give the pseudocode for meta-training and meta-evaluation,

respectively. Note that in practice, we do not directly parameterize variance param-

eters but instead parameterize the standard deviation as the output of the softplus

function as was done in Blundell et al. [11] so that it is always non-negative.

Algorithm 2 Meta-training

Input: Number of update steps K, Number of total episodes M , Inner learning rate

α, Outer learning rate β

1: Initialize θ =
{
µθ,σ

2
θ

}
2: p(θ) = N (µ; 0, I) ·

∏D
l=1 Gamma(τl; a0, b0)

3: for i = 1 to M do

4: D(i) =
{
D

(i)
train, D

(i)
test

}
5: µ

(0)
λ ← µθ; σ

2(0)

λ ← σ2
θ

6: for k = 0 to K − 1 do

7: λ(k) ←
{
µ

(k)
λ ,σ

(k)
λ

}
8: µ

(k+1)
λ ← µ

(k)
λ − α∇µ(k)

λ
L
D

(i)
train

(
λ(k), θ

)
9: σ2(k+1)

λ ← σ2(k)

λ − α∇σ2(k)
λ
L
D

(i)
train

(
λ(k), θ

)
10: end for

11:

12: λ(K) ←
{
µ

(K)
λ ,σ2(K)

λ

}
13: q(θ) = 1{µ = µθ} · 1{σ2 = σ2

θ}

14: µθ ← µθ − β∇µθ
[
LD(i)(λ(K), θ) + 1

M
KL(q(θ)‖p(θ))

]
15: σ2

θ ← σ2
θ − β∇σ2

θ

[
LD(i)(λ(K), θ) + 1

M
KL(q(θ)‖p(θ))

]
16: end for
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Algorithm 3 Meta-evaluation

Input: Number of update steps K, Dataset D = {Dtrain, Dtest},

Parameters θ =
{
µθ,σ

2
θ

}
,

Inner learning rate α

1: µ
(0)
λ ← µθ; σ

2(0)

λ ← σ2
θ

2: for k = 0 to K − 1 do

3: λ(k) ←
{
µ

(k)
λ ,σ

(k)
λ

}
4: µ

(k+1)
λ ← µ

(k)
λ − α∇µ(k)

λ
LDtrain

(
λ(k), θ

)
5: σ2(k+1)

λ ← σ2(k)

λ − α∇σ2(k)
λ
LDtrain

(
λ(k), θ

)
6: end for

7:

8: qθ (φ |Dtrain) = N
(
φ;µ

(K)
λ ,σ2(K)

λ

)
9: Evaluate Dtest using Eqθ(φ |Dtrain) [p(Dtest |φ)]
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3.7.2 Hyperparameters

Contextual Bandits

n = 2, 000 n = 80, 000

Number of NN Layers 2 2
Hidden Units per Layer 100 100
ts (mini-batches per training step) 100 100
tf (frequency of training) 20 100
Optimizer Adam Adam
Learning rate 0.001 0.001

Table 3.3: Hyperparameters for contextual bandit experiments. These hyperparame-
ters were used for both MAML and our model when comparing them. Hyperparam-
eters tf and ts were used as defined in Riquelme et al. [71] .

Few-Shot Learning

CIFAR-100 miniImageNet

Inner Learning Rate 0.1 0.1
Outer Learning Rate 0.001 0.001
Gradient steps for q (training) 5 5
Gradient steps for q (evaluation) 10 10
Number of samples to compute expectation
for updating q

5 5

Number of samples to compute expectation
for outer-loss

2 2

Number of samples to compute expectation
for evaluation

10 10

a0 for hyper-prior 2 1
b0 for hyper-prior 0.2 0.01

Table 3.4: Hyperparameters for our model for few-shot learning experiments.
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Chapter 4

Navigating the Trade-off Between

Multi-Task Learning and

Multitasking Capability in Deep

Neural Networks

4.1 Introduction

Many recent advances in machine learning can be attributed to the ability of neural

networks to learn and to process complex representations by simultaneously taking

into account a large number of interrelated and interacting constraints - a property

often referred to as parallel distributed processing [60]. Here, we refer to this sort

of parallel processing as interactive parallelism. However, this type of parallelism

stands in contrast to the ability of a network architecture to carry out multiple pro-

cesses independently at the same time. The latter can be referred to as independent

parallelism and is heavily used, for example, in computing clusters to distribute in-

dependent units of computation appropriately so as to speed up the total required
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compute time. Most applications of neural networks have exploited the benefits of

interactive parallelism [9]. For instance, in the multi-task learning paradigm, learning

of a task is facilitated by training a network on various related tasks one after an-

other [16, 20, 44, 45]. This learning benefit has been hypothesized to arise due to the

development of shared representation between tasks [4, 16]. However, the capacity of

such networks to execute multiple tasks simultaneously1 (what we call multitasking)

has been less explored.

Recent work [63, 64] has hypothesized that the trade-off between these two types

of computation is critical to certain aspects of human cognition. Specifically, though

interactive parallelism allows for quicker learning and greater generalization via the

use of shared representations, it poses the risk of cross-talk, thus limiting the number

of tasks that can be executed at the same time (i.e multitasking). The navigation of

this trade-off by the human brain may explain why we are able to multitask some

tasks in daily life (such as talking while walking) but not others (for example, doing

two mental arithmetic problems in our head at the same time). Musslick et al.

[64] have shown that this trade-off is also faced by artificial neural networks when

trained to perform simple synthetic tasks. This previous work demonstrates both

computationally and analytically that the improvement in learning speed through the

use of shared representation comes at the cost of limitations in conurrent multitasking.

While these studies were informative, they were limited to shallow networks and

simple task environments. Moreover, an important question that arises from this work

remains unanswered: how would an agent optimally trade-off the efficiency of multi-

task learning against multitasking capability? In this chapter, we: (a) show that

this trade-off also arises in deep convolutional networks used to learn more complex

tasks; (b) demonstrate that this trade-off can be managed by using single-task vs

multitask training to control whether representations are shared or not; (c) propose

1Here we refer to the simultaneous execution of multiple tasks in a single feed-forward pass.
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and evaluate a meta-learning algorithm that can be used by a network to regulate its

training and manage the trade-off between multi-task learning and multitasking in

an environment with unknown serialization costs.

4.2 Background: Trade-off Between Multi-task

Learning and Multitasking Capability

4.2.1 Definition of Tasks and Multitasking

Consider an environment in which there are multiple stimulus input dimensions (e.g.

corresponding to different sensory modalities) and multiple output dimensions (corre-

sponding to different response modalities). Given an input dimension I (e.g. an im-

age) and an output dimension O (e.g. object category) of responses, a task T : I → O

represents a mapping between the two (e.g. mapping set of images to set of object

categories), such that the mapping is independent of any other. Thus, given N dif-

ferent input dimensions and K possible output dimensions, we have a total of NK

possible tasks that our network can learn to perform. Finally, multitasking refers to

the simultaneous execution of multiple tasks i.e. within one forward-pass from the

inputs to the outputs of a network.

Figure 4.1: Neural network architec-
ture from [63].

Figure 4.2: Network structure for minimal ba-
sis set (left) and tensor product (right) repre-
sentations and the effects of multitasking in
each.
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4.2.2 Processing Single and Multiple Tasks Based on Task

Projections

We focus on a network architecture that was been used predominantly in previous

work [19, 13, 64] (shown in Figure 4.1). Here, in addition to the set of stimulus

inputs, there is also an input dimension to indicate which task the network should

perform. This task vector is projected to the hidden units and output units using

learned weights. The hidden unit task projection biases the hidden representation to

calculate the specific representation for each task, whereas the output unit projection

biases the outputs to only allow the output that is relevant for the task. The functional

role of the task layer is inspired by the notion of cognitive control in psychology and

neuroscience, that is, the ability to flexibly guide information processing according to

current task goals [79, 70, 19]. Assuming that the task representations used to specify

different tasks are orthogonal to one another (e.g., using a one hot code for each),

then multitasking can be specified by a superposition (sum) of the representations

for the desired tasks on the task input layer. The weights learned for the projections

from the task input units to units in the hidden layers, together with those learned

within the rest of the network, co-determine what type of representation (shared or

separate) the network uses.

4.2.3 Minimal Basis Set vs Tensor Product Representations

Previous work [27, 63, 64] has established that, in the extreme, there are two ways

that different tasks can be represented in the hidden layer of a two-layer network. The

first representational scheme is the minimal basis set (shown on the left in Figure 4.2),

in which all tasks that rely on the same input encode the input in the same set of

hidden representations. The second scheme is the tensor product (shown on the right

in Figure 4.2), in which each task separately encodes its input in its own set of hidden
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representations. Thus, the minimal basis set maximally shares representations across

tasks whereas the tensor product uses separate representations for each task.

These two representational schemes pose a fundamental trade-off. The minimal

basis set provides a more efficient encoding of the inputs, and allows for faster learning

of the tasks because of the sharing of information across tasks. However, it prohibits

executing more than one task at a time (i.e. any multitasking). This is because, with

the minimal basis set, attempting to execute two tasks concurrently causes the implicit

execution of other tasks because of the representational sharing between tasks. In

contrast, while the tensor product network scheme is less compact, multitasking is

possible since each task is encoded separately in the network, so that there is no

cross-talk from any other task that is not being executed (see Figure 4.2 for an

example of multitasking and its effects in both types of networks). However, learning

the tensor product representation takes longer since it cannot exploit the sharing of

representations across tasks.

In order to control what type of the representation the networks learns (primarily

via the task projection weights), we can vary the type of task-processing we train

the network on. Single-task training (what is referred to in the literature as multi-

task training), which involves training on tasks one after another, induces shared

representations whereas multitask training, which involves training on multiple tasks

concurrently, produces separate representations. The reason this occurs is that using

shared representations when multitasking causes interference and thus error in task

execution. In order to minimize this error and the cross-talk that is responsible for it,

the network learns task projection weights that lead to separate representations for

the tasks. In single-task training, there is no such pressure, as there is no potential

for interference when only executing one task at a time, and so the network can use

shared representations. Thus, the crux of the trade-off is that single-task training

leads us to learn the tasks faster but doesn’t allow us to multitask after, whereas
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explicit multitask training leads to slower learning but allows us to multitask. The

above conclusions were established both theoretically and experimentally for shallow

networks with one hidden-layer trained to perform simple synthetic tasks [63, 64].

Below, we report results suggesting that they generalize to deep neural networks

trained on more complex tasks.

4.3 Meta-Learning for Optimal Agent

The trade-off associated with the use of shared representations begs the following

question: how can an agent manage it to be successful in an environment with un-

known properties. That is, how does an agent decide whether to pursue single-task or

multitask training in a new environment so that it can learn the tasks most efficiently

while maximizing the rewards it receives?

Suppose an agent must learn how to optimize its performance on a given set of

tasks in an environment over τ trials. At trial t, for each task, the agent receives a

set of inputs X = {xk}Kk=1 and is expected to produce the correct labels Y = {yk}Kk=1

corresponding to the task. Assuming that each of the tasks is classification-based, the

agent’s reward for the task is its accuracy on the task inputs i.e. Rt = 1
K

∑K
k=1 1ŷk=yk

where ŷk is the predicted label by the agent for each input xk. On each trial, the agent

must perform all the tasks, and it can choose to do so either serially (i.e. by single-

tasking) or simultaneously (i.e. by multitasking). After completion of the task and

observation of the rewards, the agent also receives the correct labels Y for the tasks

in order to train itself to improve task performance. Finally, assume that the agent’s

performance is measured across these trials through the entire course of learning and

its goal is to maximize the sum of these rewards across all tasks.

To encode the time cost of single-tasking execution, we assume the environment

has some unknown serialization cost c that determines the cost of performing tasks
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serially i.e. one at a time. We assume that the reward for each task when done

serially is Rt
1+c

where Rt is the reward as defined before. The serialization cost therefore

discounts the reward in a multiplicative fashion for single-tasking. We assume that

0 ≤ c ≤ 1 so that c = 0 indicates there is no cost enforced for serial performance

whereas c = 1 indicates that the agent receives half the reward for all the tasks by

performing them in sequence. Note that the training strategy the agent picks, not

only affects the immediate rewards it receives, but also affects the future rewards, as

it influences how effectively the agent learns the tasks to improve its rewards in the

future. Thus, depending on the serialization cost, the agent may receive lower reward

in this way for picking single-tasking but gains a benefit in learning speed that may or

may not make up for it over the course of the entire learning episode. This question

is at the heart of the trade-off the agent must navigate to make the optimal decision.

We note that this is one simple but intuitive way to encode the cost of doing tasks in

serial fashion but other mechanisms could also be designed.

4.3.1 Optimal Bayesian Agent

We assume that, on each trial, the agent has the choice between two training strategies

to execute and learn the given tasks - via single-tasking or via multitasking. The

method we describe involves, on each trial, the agent modeling the reward dynamics

under each training strategy for each task and picking the strategy that is predicted to

give the highest discounted total future reward across all tasks. To model the reward

progress under each strategy, we first define the reward function for each strategy.

The reward function fA,i(t) gives the reward for a task i under strategy A assuming

strategy A has been selected t times. The reward function captures the effects of

both the strategy’s learning dynamics and unknown serialization cost (if it exists for

the strategy). Here, A ∈ {S,M} where S represents the single-tasking strategy and

M represents the multitasking strategy.
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We can use the reward function to get the reward for a task i at trial t′ when

selecting strategy A. Let a1, a2, . . . , at′−1 be the strategies picked at each trial until

trial t′. Then,

R
(A,i)
t′ = fA,i

(
t′−1∑
t=1

1at=A

)
.

is the reward for task i at trial t′ assuming we pick strategy A.

Given the reward for each task, the agent can get the total discounted future

reward for a strategy A from trial t′ onward assuming we repeatedly select strategy

A:

R
(A)
≥t′ =

τ∑
t=t′

µ(t)

(
N∑
i=1

R
(A,i)
t

)
,

where µ(t) is the temporal discounting function, N is the total number of tasks, and

τ is the total number of trials the agent has to maximize its reward on the tasks.

We now discuss how the agent maintains its estimate of each strategy’s reward

function for each task. The reward function is modeled as a sigmoidal function, the

parameters of which are updated on each trial. Specifically, for a strategy A and task

i, using parameters θA,i = {w1, b1, w2, b2}, we model the reward function as

fA,i(t) = σ(w2 · σ(w1 · t+ b1) + b2).

We place a prior over the parameters p(θA,i) and need to compute the posterior

at each trial t′ over the parameters p(θA,i|Dt′) where Dt′ is the observed rewards

until trial t′ using strategy A on task i. Because the exact posterior is difficult to

compute, we calculate the approximate posterior q(θA,i|Dt′) using variational inference

[87]. Specifically, we use Stein variational gradient descent (SVGD) [57], which is a

deterministic variational inference method that approximates the posterior using a

set of particles that represent samples from the approximate posterior. The benefit

of using SVGD is that it allows one to select the appropriate number of particles used

54



so as to increase the complexity of the approximate posterior, while ensuring that the

time it takes to compute this approximation is feasible.

At each trial t′, the agent needs to use its estimate of the total discounted future

reward for single-tasking and multitasking (R
(S)
≥t′ and R

(M)
≥t′ , respectively) to decide

which strategy to use. This can be thought of as a two-armed bandit problem, in which

the agent needs to adequately explore and exploit to decide which arm, or strategy,

is better. Choosing the single-tasking training regimen may give initial high reward

(because of the learning speed benefit) but choosing multitasking may be the better

long-term strategy because it does not suffer from any serialization cost. Thompson

sampling [83, 17] is an elegant solution to the explore-exploit problem, involving

sampling from the posterior over the parameters and taking decisions greedily with

respect to the sample. It provides initial exploration as the posterior variance tends

to be large at the start because of a lack of data and then turns to exploitation when

the posterior becomes more confident due to seeing enough data. On each trial, we

use Thompson sampling to pick between the training strategies by sampling from

the approximate posterior over parameters for each strategy, calculating the total

discounted future reward for each strategy according to the sampled parameters, and

picking the strategy corresponding to the higher reward. Note that in practice we do

not re-estimate the posterior in each trial (as one additional reward will not change

the posterior significantly) but instead do it periodically when enough new rewards

for a strategy have been observed.

4.4 Related Work

This chapter considers ideas that sit at the intersection of cognitive psychology, neuro-

science and machine learning. The human ability to execute some tasks concurrently

but not others is a puzzle that any explanation of human cognition must address. The
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“multiple-resource” hypothesis explains this phenomenon by suggesting that multi-

tasking limitations arise due to cross-talk caused by use of the same local resources

[61, 66, 73] and that a control system serves to limit the number of active task pro-

cesses so that this interference is minimized [19, 13]. Thus, the belief is that many

task-processes in the brain share representations and that it is the job of cognitive

control to limit their concurrent processing. This begs the questions: if shared rep-

resentations impose such limitations, why would a neural system prefer to use them?

Previous work in the context of artificial neural networks has highlighted the benefit

of using such shared representations. Multi-task learning has shown that using shared

representations between tasks leads to faster learning and better generalization [16].

This suggests a fundamental trade-off - sharing representations leads to a benefit

in learning but causes limitations in multitasking ability - which we explore in this

paper.

As mentioned before, we build on previous work studying the trade-off of learning

speed vs multitasking ability in artificial neural networks [27, 63, 64]. Additionally,

our meta-learning algorithm is similar to the one proposed in Sagiv et al. [72]. How-

ever, we explicitly use the model’s estimate of future rewards under each strategy to

also decide how to train the network, whereas the meta-learner in Sagiv et al. [72]

was not applied to a neural network’s learning dynamics. Instead, the actual learning

curve for each strategy A was defined according to pre-defined synthetic function.

Our algorithm is thus applied in a much more complex setting in which estimation

of each strategy’s future rewards directly affects how the network is trained. Fur-

thermore, our method is fully Bayesian in the sense that we utilize uncertainty in the

parameter posterior distribution to control exploration vs exploitation via Thompson

sampling. Sagiv et al. [72] use logistic regression combined with the ε-greedy method

to perform this trade-off, which requires hyper-parameters to control the degree of

exploration. Lastly, we assume that the serialization penalty is unknown and model

56



its effects on the future reward of each strategy whereas Sagiv et al. [72] make the

simplifying assumption that the penalty is known. Modeling the effects of an un-

known serialization penalty on the reward makes the problem more difficult but is a

necessary assumption when deploying agents that need to make such decisions in a

new environment with unknown properties.

4.5 Experiments

4.5.1 Task Environment

We create a synthetic task environment using AirSim [78], an open-source simulator

for autonomous vehicles built on Unreal Engine. To create our synthetic environment,

we were motivated by the SnotBot project [69], which involves using drones to monitor

the health of whales in the ocean by collecting the mucus exhaled from whales’ lungs.

We assume a drone-agent that has two stimulus-inputs: (1) a GPS-input through

which we can give the drone location-relevant information; (2) an image-input that

corresponds to what the agent can see (e.g. through a camera). The agent also has

two outputs: (1) A location-output that corresponds to a location in the input image;

(2) An object-output that corresponds to what object the agent believes is present in

different situations. Based on the definition of a task as a mapping from one input

to one output, this give us the following 4 tasks that the agent can perform:

Task 1 (GPS-localization): given a GPS location, output where in the image the

agent has to go to get to that location.

Task 2 (GPS-classification): given a GPS location, output what type of object the

agent believes to be present in that area based on its experience.

Task 3 (Image-localization): given an image from agent’s input, output the location

of the object in the image.
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Figure 4.3: Neural network architecture used to learn tasks for simulation data.

Task 4 (Image-classification): given an image from agent’s input, output what type

of object is present in the image.

Using AirSim, we simulate an ocean-based environment with a set of different

possible objects (such as whales, dolphins, orcas, and boats). We create training ex-

amples for the agent by randomizing the location of the agent within the environment,

the type of object present in the agent’s image input, and the GPS location provided

to the agent. Thus, each training instance contains a set of randomized inputs and a

label for each of the tasks with respect to the specific inputs. The agent can execute

each task using either single-tasking (one after another) or multitasking (in which it

can execute Tasks 1 and 4 together or Tasks 2 and 3 together).

4.5.2 Neural Network Architecture

The GPS-input is processed using a single-layer neural network, whereas the image-

input is processed using a multi-layer convolutional neural network. The encoded

inputs are then mapped via fully-connected layers to each output. We allow the task

input to modify each hidden, or convolutional, layer using a learned projection of the

task input specific to each layer.
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More formally, the task-specific projection for the ith layer ci is computed using

a matrix multiplication with learned task projection matrix Wt,i and task-input xt,

followed by a sigmoid:

ci = σ(Wt,ixt − β),

where β is a positive constant. The subtraction by β > 0 means that task representa-

tions are by default “off”. For a fully-connected layer, the task projection ci modifies

the hidden units for the ith layer hi through multiplicative gating to compute the

hidden units hi+1:

hi+1 = g ((Wh,ihi + bi)� ci) ,

where Wh,i and bi are the typical weight matrix and bias for the fully-connected

layer, and g is the non-linearity. For the hidden units, we let g be the rectified

linear activation function (ReLU) whereas for output units it is the identity function.

Similarly, for a convolutional layer the feature maps hi+1 are computed from hi as:

hi+1 = g ((hi ∗Wh,i + bi)� ci) ,

where Wh,i is now the convolutional kernel. Note that we use multiplicative biasing

via the task projection whereas previous work [63, 64] used additive biasing. We

found multiplicative biasing to work better for settings in which the task projection

matrix needs to be learned. A visual example of the network architecture is shown

in Figure 4.3.

Training in this network occurs in the typical supervised way with some modi-

fications. To train for a specific task, we feed in the stimulus-input and associated

task-input, and train the network to produce the appropriate label at the output

associated with the task. For outputs not associated with the task, we train the net-

work to output some default value. In this chapter, we focus on classification-based

tasks for simplicity and so the network is trained via cross-entropy loss computed
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(a)

(b)

(c)

Figure 4.4: Effect of varying representational overlap. (a) Comparison of learning
speed of the networks. (b) Comparison of the error in performance when multi-
tasking compared to single-tasking averaged over all the data. (c) Correlation of
convolutional layer representations between Tasks 3 and Tasks 4 computed using the
average representation for each layer across all the data. We study learning speed
and correlation for the tasks involving the convolutional network, as those tasks see
the biggest benefit from sharing representations.

using the softmax over the network output logits and the true class label. To train

the network on multitasking, we feed in the stimulus-input and the associated task-

input (indicating which set of tasks to perform concurrently) and train the network

on the sum of losses computed at the outputs associated with the set of tasks. Note

that we consider the localization-based tasks as classification tasks by outputting a

distribution over a set of pre-determined bounding boxes that partition the image

space.

4.5.3 Effect of Sharing Representations on Learning Speed

& Multitasking Ability

First, we consider the effect of the degree of shared representations on learning speed

and multitasking ability. We control the level of sharing in the representations used
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by the network by manipulating the task-associated weights Wt,i, which implement,

in effect, the control signal for each task. The more similar the control signals are

for two tasks, the higher the level of sharing because more of the same hidden units

are used for the two tasks. We vary Wt,i to manipulate what percent of hidden units

overlap for the tasks. Thus, 100% overlap indicates that all hidden units are used by

all tasks; 50% overlap indicates that 50% of the hidden units are shared between the

tasks whereas the remaining 50% are split to be used independently for each task; and

0% overlap indicates that the tasks do not share any hidden units in a layer. Note

that in this experiment, during training task-associated weights are frozen based on

the initialization that results in the specific overlap percentage, but the weights in the

remainder of the network are free to be learned. Based on previous work [63, 64], we

measure the degree of sharing at a certain layer between two task representations by

computing the correlation between the mean representation for the tasks, where the

mean is computed by averaging the activity at the layer across all training examples

for a given task.

The results of the experiment manipulating the level of overlap are shown in Fig-

ure 4.4. This shows that as the overlap is increased, sharing of representations across

tasks increases (as evidenced by the increase in correlations), which is associated with

an increase in the learning speed. However, this is associated with a degradation in

the multitasking ability of the network, as a result of the increased interference caused

by increased sharing of the representations.

4.5.4 Effect of Single-task vs Multitask Training

Having established that there is a trade-off in using shared representations in the

deep neural network architecture described, we now focus on how different training

regimens - single-tasking vs multitasking training - impact the representations used

by the network and the network’s learning speed. We compare different networks
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that vary on how much multitasking they are trained to do, from 0%, in which the

network is given only single-task training, to 90%, in which the network is trained

most of the time to do multitasking. Note that here the task-associated weights Wt,i

are initialized to be uniform across the tasks, meaning that the overlap percentage is

initially high, and all the weights (including task weights) are then learned based on

the training regimen encountered by the network.

The results of this experiment are shown in Figure 4.5. We see that as the net-

work is trained to do more multitasking, the learning speed of the network decreases

and the correlation of the task representations also decreases. Because the network

is initialized to use a high overlap percentage, we see that a multitasking training

regimen clearly forces the network to move away from this initial starting point. The

effect is stronger in the later layers, possibly because these layers may contribute more

directly to the interference caused when multitasking.

4.5.5 Meta-Learning

Lastly, having established that the trade-off between single-task and multitask train-

ing, we now evaluate the meta-learning algorithm to test its effectiveness in optimizing

this trade-off. In order to test whether the algorithm is effective at picking the correct

training regimen when interacting with an environment with unknown serialization

cost, we compare it against always picking single-task or multitask training. We fix

the total number of trials for evaluation to be τ = 5000 and evaluate each of the

methods on varying serialization costs. For the meta-learner, we average the per-

formances over 15 different runs in order to account for the randomness involved in

its sampling choices and measure its confidence interval. We fix the order in which

data is presented for the tasks for all options when comparing them. Note that the

meta-learner does not know the serialization cost and so has to model its effects as

part of the received reward. We create two different environments to induce different
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Figure 4.5: Effect of single-task vs multitask training. (a) Comparison of learning
speed of the networks. (b) Comparison of the error in performance when multitasking
compared to single-tasking averaged over all the data (the lack of a bar indicates no
error). (c) Correlation of convolutional layer representations between Tasks 3 and
Tasks 4 computed using the average representation for each layer across all the data.
We study learning speed and correlation for the tasks involving the convolutional
network, as those tasks see the biggest benefit from sharing representations.

trade-offs for rewards between single-tasking and multitasking. The first is the normal

environment whereas in the second we add noise to the inputs. Adding noise to the

inputs makes the tasks harder and seems to give bigger benefit to the minimal basis

set (and single-task training). We hypothesize that this is the case because sharing

information across tasks becomes more valuable when noisy information is provided

for each task.

The results of this evaluation are shown in Figure 4.6. Figures 4.6a and 4.6b show

that the meta-learning algorithm achieves a reward rate that closely approximates the

one achieved by that the strategy that yields the greatest value for a given serialization

cost. Additionally, note that in the extremes of the serialization cost, the meta-

learner seems better at converging to the correct training strategy, while it achieves

a lower reward when the optimal strategy is harder to assess. This difference is

made even clearer when we study the percent of trials for which the meta-learner
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(a) (b)

(c)

Figure 4.6: Evaluation of meta-learning algorithm. (a) Comparison of all methods on
trade-off induced in original environment. (b) Comparison of all methods on trade-off
induced in environment where noise is added to inputs. (c) Percent of trials for which
meta-learner picks to do single-tasking in both trade-offs.

picks to do single-task training as a function of the serialization cost in Figure 4.6c.

We see that the meta-learning algorithm is well-behaved, in that as the serialization

cost increases, the percent of trials in which it selects to do single-tasking smoothly

decreases. Additionally, at the points at which the optimal strategy is harder to

determine, the meta-learner achieves reward closer to the worst strategy because it

needs more time to explore and try out both strategies before settling on one.
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4.6 Discussion

In this chapter we study the trade-off between using shared vs separate representations

in deep neural networks. We experimentally show that using shared representations

leads to faster learning but at the cost of degraded multitasking performance. We

additionally propose and evaluate a meta-learning algorithm to decide which training

strategy is best to use in an environment with unknown serialization penalty. A

promising direction for future studies involves application of this meta-learner to more

complex tasks. As we add more tasks, the potential for interference increases across

tasks; however, as tasks become more difficult, the minimal basis set becomes more

desirable, as there is even bigger benefit to sharing representations. Furthermore,

in this more complicated setting, we would also like to expand our meta-learning

algorithm to decide explicitly which set of tasks should be learned so that they can

be executed in multitasking fashion and which set of tasks should only be executed

one at a time. This requires a more complicated model, as we have to keep track of

many possible strategies in order to see what will give the most reward in the future.

65



4.7 Appendix

4.7.1 Predictive Distribution of Meta-Learner

In Figure 4.7, we visualize the predictive distribution of rewards at various trials when

varying amount of data has been observed. We see that the predictive distribution is

initially uncertain when observing a small amount of rewards for each strategy (which

is useful for exploration) and grows certain as more data is observed (which is utilized

to be greedy).

(a)

(b)
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(c)

Figure 4.7: Visualization of actual rewards and predictive distribution of rewards for
a specific task. Shaded areas correspond to ±3 standard deviations around mean.
For each of (a), (b), and (c), we show the actual rewards accumulated over trials for
each strategy (on top) and the predictive distribution over reward data computed
using samples from the posterior distribution over parameters for each strategy given
the reward data (on bottom).
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Chapter 5

Conclusion

In order for machine learning methods to be as flexible and efficient as humans in

learning and mastering new tasks, it is critical that they have some ability to build

up prior knowledge and apply it appropriately. The goal of this thesis was to study

techniques that allow models to learn new tasks efficiently via intelligent application

of prior information.

In this thesis, we study meta-learning, or learning-to-learn, methods as a means to

improve the efficiency of neural networks with regard to data-samples and processing

choices. The first two chapters consider ideas to accumulate prior knowledge (mainly

in the form of an initialization of a neural network) and use it effectively so that a

model is able to learn concepts in a new dataset with very few labeled examples. In the

first work, the adaptation process is gradient descent on a cross-entropy loss whereas

in the second it is gradient descent on a variational inference objective. The third

chapter proposes a method where, rather than using explicit experience to build up a

prior, we use the Thompson sampling algorithm as a sort of prior to solve a problem

involving exploitation vs exploration - that of selecting how to train oneself to learn

a set of tasks in an environment with unknown properties.
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As machine learning methods have begun mastering specific tasks at human-level

ability, the question has now arisen of how we can quicken this process of learning so

that artificial agents can learn to perform a variety of tasks in a feasible way. Meta-

learning methods (like the ones discussed in this thesis and many of the related work)

have shown that there is a benefit to setting up a two-level problem, in which the

first-level involves learning within a specific experience and the second-level involves

learning useful information across different experiences. Though some progress has

been made by applying ideas from the older literature on meta-learning in this era of

large datasets and powerful compute, there is still a long way to proceed.

Firstly, meta-learning has been, for the most part, successfully applied to problems

where the train and test tasks match highly in similarity of distribution [54, 86]. The

true test of the ability to build up knowledge and apply it usefully is its effectiveness

in situations that differ highly from the ones a model was trained on. Such evaluation

requires a model to build on its prior information but also to successfully generalize

far beyond what it initially knows. It is certainly indicative of the type of learning

humans are able to perform. Benchmarks and datasets that reflect this ability would

also be useful in pushing work in this area further.

Furthermore, though parts of this thesis focus on few-shot learning, it would be

valuable to study models that can transition successfully from receiving a small num-

ber of examples to larger amounts of feedback. More specifically, we need machine

learning methods that can improve over time on a certain task and be directly in-

volved in the process of improvement akin to a student’s interaction with a teacher.

This would involve the model using the initial given training set to decide what new

examples should be labeled so as to most improve the model’s proficiency at the task.

We would like the entire process of data-collection and re-training to be free of any

hyper-parameters or manual tuning so that it can be applied straightforwardly and

cyclically. Such a method would allow for the efficient use of human labor to quickly
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improve model performance on a new task over time. Ideas from the active learning

[77, 31], lifelong learning [84], and curriculum learning [8] literature would certainly

be useful in pursuing such a problem.

Ultimately, the objective of machine learning is to design truly intelligent artificial

agents. Though work in the past decade has shown a lot of promise towards this end,

there are still major shortcomings that need to be overcome, some of which we have

highlighted here. The hope is that ideas involving meta-learning (examples of which

have been presented in this thesis) will be useful in closing the current gap between

human and machine intelligence.
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