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Abstract

Managing modern networks requires collecting and analyzing network traffic from dis-

tributed switches in real time, i.e., performing network-wide telemetry. Telemetry systems

must be flexible and fine-grained to support myriad queries about the security, performance,

and reliability of networks. Yet, they must also scale as the number of queries, link speeds,

and the size of the networks increase. Realizing these goals requires balancing the divi-

sion of labor between high-speed, but resource constrained, network switches and general-

purpose CPUs to support flexible telemetry at scale.

First, we present Sonata, a flexible and scalable network telemetry system that uses the

compute resources of both stream-processing servers and a single Protocol Independent

Switch Architecture (PISA) switch. PISA switches offer both high-speed processing and

limited programmability. We show how to execute Sonata’s high-level queries at line rate

by first compiling them to PISA primitives. Next, we model the resource constraints of

PISA switches to solve an optimization problem that minimizes the load on the stream

processor by executing portions of queries directly in the switch. Sonata can support a

wide range of monitoring queries and reduces the stream processor’s workload by orders

of magnitude over existing telemetry systems.

Second, we present Herd, a system for implementing a subset of Sonata queries dis-

tributed across several switches. Herd determines network-wide heavy hitters, i.e., flows

that consist of many more packets than most others, by counting flows at the switches,

without maintaining per-flow state, and probabilistically reporting to a central coordinator.

Based on these reports, the coordinator adapts parameters at each switch based on the spa-

tial locality of the flows. Simulations using packet traces show that our prototype can detect

network-wide heavy hitters accurately with 17% savings in communication overhead and

38% savings in switch state compared to existing approaches. We then present an algorithm

to tune system parameters in order to maximize detection accuracy under switch memory

and bandwidth constraints.
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Together, Sonata and Herd provide network operators the ability to execute a set of

network-wide telemetry queries from a single interface that combines the strengths of both

programmable data planes and general-purpose CPUs.
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Ankita Pawar, Marco Canini, Nick Feamster, Jennifer Rexford [28] and Walter Willinger.

However, much of the material in Chapter 2 appears in an ACM SIGCOMM paper (2018)

co-authored with Arpit Gupta, Marco Canini, Nick Feamster, Jennifer Rexford and Walter

Willinger. Material presented in Chapter 3 was joint work completed with Shir Landau

Feibish, Arpit Gupta, Ross Teixeira, Shan Muthukrishnan, and Jennifer Rexford.

Talks

1. Sonata: Scalable Streaming Analytics for Network Telemetry. 4th P4 Workshop,

May 2017. North American Network Operators’ Group (NANOG) 70, June 2017.

2. Sonata: Query-Driven Streaming Network Telemetry. ACM SIGCOMM, August

2018.

xv



Chapter 1

Introduction

Every day, millions of devices (e.g., mobile phones and smart devices) connect to the Inter-

net through edge networks to access myriad services that are hosted in far-away data cen-

ters. Dozens of intermediate transit networks forward terabytes of packets to connect these

endpoints by providing best-effort delivery. While edge, data center, and transit networks

each have slightly different goals, the operators of each network must answer a common

and fundamental question in order to maintain them: What is going on in my network?

Answering this important question is the purpose of network telemetry.

1.1 Network Telemetry

Although network operators have been trying to build network telemetry systems for sev-

eral years [87], the primary standards-making body for the Internet has yet to agree on a

definition for what network telemetry is [70]. At its core, a network telemetry system per-

forms collection and analysis to report the state of the network in a timely and fine-grained

fashion [82]. These systems report the state of the network in response to custom queries,

which could, “require...data with arbitrary source, granularity, and precision which are be-

yond the capabilit[ies] of...existing techniques” [70]. To better understand the range of

queries that a telemetry system must support, let us consider a few use cases that highlight
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the diversity of tasks that network telemetry systems should support in edge, transit, and

data center networks.

Detect Compromises. Edge networks are where users and their devices access the Inter-

net. The user-facing nature of these networks makes them a common target for miscreants

seeking to expand their botnets or spread malware. Various traffic attributes, e.g., trans-

port layer ports, or domain names, observed in the network can help identify compromised

devices for remediation. However, rapidly evolving attack vectors and tools requires con-

tinuously updating these signatures and monitoring accordingly [61].

Troubleshoot Service Failures. Data center networks connect the front ends of services

that receive and balance the deluge of inbound requests to an enormous amount of compute

capacity on the back end. Performing a root-cause analysis of service failures in these com-

plex distributed systems can require fine-grained detail about a single packet’s experience

through every interface on each device in the network [6].

Detect Changes in Traffic Patterns. Intermediate transit networks must provision and

configure their networks to handle peak data rates between source and destination network

pairs. When traffic patterns shift, operators must first detect the shift, attribute the shift

to a root cause (e.g., attack, misconfiguration, or failure), and then react to them. Some

traffic shifts occur predictably in diurnal patterns, while others, such as microbursts, occur

on very short timescales.

While each network’s objective in these use cases is slightly different, we can distill

from these use cases some properties that a network telemetry system should have. Net-

work telemetry systems should be: (1) flexible, to support a wide range of queries based on

arbitrary traffic attributes, granularities, and timescales; (2) scalable, to answer the queries

within available resource constraints and as traffic volumes grow large; and (3) network-

wide to support queries both from the vantage point of a single device in the network and
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the combined view from multiple devices. In Sections 1.3 and 1.4, we will describe some of

the challenges in realizing these latter two properties. In the next section, we first describe

a language for expressing telemetry queries in a flexible and extensible way.

1.2 Expressing Telemetry Queries

Declarative query interfaces to complex systems have a long history in the database com-

munity [13]. This type of interface gives system users the ability to express, within the

constraints of the language, all of the system’s capabilities without worrying about how

the system efficiently executes the query. Declarative query interfaces have also shielded

network programmers from the low-level complexities of programming switch flow ta-

bles [25]. Similarly, recent work [27] demonstrated that a declarative query interface can

express a wide-range of network telemetry queries using a familiar, dataflow-like query

language where packets are represented as abstract tuples. This interface gives operators

the flexibility to express a wide-range of telemetry queries as a sequence of transformations

on the entire packet stream observed by the network.

Packets as Tuples. Information contained in packet headers are naturally represented as

key-value pairs (e.g., source and destination IP address, etc.) where the name of the header

field constitutes the key along with its associated value in the packet. This structure also

naturally lends itself to representing the entire collection of packet attributes, including the

payload, as a tuple consisting of each key-value pair. Telemetry queries, however, might

also want details about a packet’s experience in the network, such as, the queue length it

experienced or on which port it arrived. Such metadata can also be represented as key-

value pairs in a tuple. Extending the tuple to include new features requires no change to the

abstraction or to the semantics of the queries; it merely requires extending the set of key

names available in the tuple. With the packet represented as a tuple, we can also relax the

traditional definition of a flow to be any group of packets that share a common key-value

3



Operator Description
filter(p) Filter packets that satisfy predicate p.
map( f ) Transform each tuple with function f .
distinct() Emit tuples with unique combinations of fields.
reduce(k, f ) Emit result of function f applied on key k over the input stream.
join(k, q) Join the output of query q on key field k

Table 1.1: Dataflow Operators. Stateful operators’ semantics are with respect to a notion
of time, or window interval.

attribute, e.g., an exact five tuple or simply a common source-destination pair. This relaxed

definition better aligns the term with the diverse types of queries intended to be supported

by network telemetry.

Dataflow Operators. Many network-monitoring queries require computing aggregate

statistics over a subset of traffic and joining the results from other queries. These queries

can be expressed as a sequential composition of dataflow operators (e.g., filter, map, re-

duce). Many monitoring systems [20, 10, 53] have found this model a natural and familiar

way to express queries. Table 1.1 summarizes some commonly-used dataflow operators.

Stateful dataflow operators are all executed with respect to a query-defined time interval,

or window. For example, applying a reduce operator with the sum function will return

the value at the end of each window.

Example: DNS Reflection Attacks To illustrate the expressiveness of this declarative

interface, let us consider a query to detect a common network attack [61]: DNS reflection.

In this attack, miscreants send a large number of requests to open DNS resolvers with a

false source address, i.e., the victim’s address. Fooled into thinking that the victim sent

these requests, the DNS resolvers all respond and overwhelm the victim. Figure 1.1 shows

how we would express a query to detect the victim of a DNS reflection attack. In line 1, we

start with the keyword pktStream to indicate that all operators following it are applying

transformations on the entire packet stream observed by the network. In line 2, we apply

a filter operator to select only DNS traffic. In lines 3-4, we transform the stream of

4



victimIPs = pktStream
.filter(p => p.udp.sport == 53)
.map(p => (p.dstIP, p.srcIP))
.distinct()
.map((dstIP, srcIP) => (dstIP, 1))
.reduce(keys=(dstIP,), sum)
.filter((dstIP, count) => count > Th)

1
2
3
4
5
6
7

DNS Traffic

From Unique
DNS Servers
To a Single 
Victim
Exceeds a 
Threshold

Figure 1.1: DNS Reflection Query.

packets into a stream of unique destination-source pairs. In line 5, we further transform the

unique destination-source pairs as just the destination and the number 1. In lines 6-7, we

count those pairs to determine which destinations have been sent traffic from a number of

unique DNS servers that exceeds some threshold Th.

1.3 Scaling Query Execution

The declarative interface does indeed provide the flexibility desired in a network telemetry

system and it frees the query author from reasoning about how to efficiently execute a given

query. However, the telemetry system must still be able to scale query execution – a tall

order for a system that provides the abstraction of querying over the entire packet stream. A

strawman execution plan might send all packets observed in the network to a central point

for collection and analysis. However, such a strategy would be both inefficient, because all

traffic is not needed, but also ineffective, because it would be computationally infeasible to

process as the volume of traffic grows large. Determining an execution plan that does not

exhaust available resources and scales as traffic volumes grow large is a non-trivial task.

1.3.1 Challenges

Three current trends create a scalability challenge for network telemetry systems in edge,

data center, and transit networks alike.
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Increasing Number of Endpoints. At the edge, the number of Internet-connected de-

vices had already reached 27 Billion devices by 2017 and that number continues to grow

today [61]. These devices increase the volume of traffic transiting our networks without

a human-in-the-loop when operating as expected; worse yet, these devices can also gen-

erate large volumes of traffic when co-opted as part of a botnet. The increasing number

of endpoints does not just create additional traffic volume in edge networks. These addi-

tional endpoints connect through transit networks to remote services offered in data center

networks, necessarily increasing the traffic volume in all three types of networks. When

coupled with the additional addressing space available in IPv6, the increasing number of

endpoints also creates more unique identifiers and active flows to monitor. Altogether,

these forces make scaling a network telemetry system more challenging.

Increasing Link Speeds. In data centers and transit networks, link speeds continue to

increase. Link speeds of 10 Gbps are now commodity and 100 Gbps links are becoming

more common. For switches to maintain a throughput commensurate with these line rates,

they will have to process packets very quickly. For example, a switch has about 12 ns to

process 64 Byte packets at 40 Gbps.

Increasing Number of Queries. The current goal for network telemetry as stated by the

Internet Engineering Task Force (IETF) should enable, “a smooth evolution toward intent-

driven autonomous networks” [70]. In this vision, the telemetry system itself presents a

view of the network for automated decision-making and control. Realizing this vision will

require simultaneously executing dozens, if not hundreds, of queries to enable machines to

perform the myriad management tasks that humans now do. With each additional query

presented to the system, more resources will be required to support them.
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1.3.2 Resources Needed for Execution

Executing arbitrary queries with fine granularity and in real time means inspecting millions

of packets per second for traffic of interest. After identifying traffic of interest, the system

must perform query-specific computation or aggregation. This process requires two key

resources from devices in the network: computation and memory. In reality, networks

consist of dozens of heterogeneous devices (e.g., routers, switches, firewalls, etc.), each

with varying capabilities which we discuss in Section 1.3.3. If a query requires some

computation that cannot be performed on a device where traffic of interest is observed, the

telemetry system must now divert the original packet or generate a copy of it for another

device with the capabilities demanded by the query [87]. Regardless of whether the packet

is diverted or cloned, a third key resource is consumed to support query execution: network

bandwidth. In scaling query execution, the telemetry system must ensure that it does not

exhaust these available resources.

1.3.3 Diversity of Network Device Resources

As discussed, network devices have heterogeneous capabilities in terms of computation

and memory. However, we can classify network devices into three general classes based on

their computational capabilities and memory capacity. In this case, we will define compu-

tational capability in terms of what parts of the packet the device can inspect, or match, and

what actions the devices can take on a packet. Table 1.2 summarizes the capabilities for

traditional fixed-function switches, general-purpose CPUs, and emerging programmable

switches [12, 11].

Fixed-Function Switches. Fixed-function switches are based on ASICs that can match

on fixed, well-known packet headers. These devices can provide some coarse-grained

statistics at coarse timescales, e.g., link utilization every five minutes, or sampled and ag-

gregate statistics, e.g., IPFiX [16] or sFlow [56], but they fall short of the fine-grained,
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Fixed-function Switches Programmable Switches End-host CPUs
Match Fixed headers Arbitrary headers All headers and payload fields

Actions forward, drop, modify forward, drop, add, subtract,
bitwise operations Arbitrary

Memory MB MB GB
Speed O(ns) O(ns) O(µs)

Table 1.2: Network Device Resource Diversity. Fixed-function switches can process net-
work traffic the most scalably with the least computational capability, whereas CPUs can
perform arbitrary computations and have abundant memory. Programmable switches can
process traffic as scalably as fixed-function switches but with richer computational capac-
ity.

real-time queries we want to support. However, these devices do process traffic at line rate,

allowing them to handle large traffic volumes.

End-Host CPUs. General-purpose CPUs can perform arbitrary computation over the en-

tire packet and payload, but they cannot process traffic at line rate. To scale query execution,

a network telemetry system will need to limit the amount of traffic that must be processed

by end-host CPUs. Some end hosts may have additional computational resources (e.g.,,

Graphical Processing Units (GPU), or Field Programmable Gate Arrays (FPGA)), but we

focus for now on CPUs because they are capable of the most general-purpose computation.

Programmable Switches. Emerging programmable switches combine the strengths of

both fixed-function switches and end-host CPUs. These devices have a programmable

parser that can extract arbitrary and user-defined header fields. These devices can also sup-

port custom packet processing pipelines that match on parsed fields and perform limited

arithmetic, logical, and bitwise operations. They also contain registers for computing val-

ues across successive packets, such as flowlet timeouts [40]. These devices offer the same

scalability properties of fixed-function devices but with additional computing capacity.
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1.3.4 Partitioning to Scale Execution

In order to scale to a large number of queries and high traffic volume, a network telemetry

system should partition the high-level queries across all of the diverse network devices.

Rather than building a solution based solely on a single network device, a network teleme-

try system should combine the strengths of all the device types. We can use fixed-function

switches for simple operations that must be applied to large volumes of traffic, e.g., map

and filter; use programmable switches for more complex, but still high-volume oper-

ations, e.g., reduce; and use general purpose CPUs for the most complex, but lower-

volume operations, e.g., join. By combining the strengths and resources of all available

devices, we can efficiently execute the high-level queries in a scalable way.

1.4 Network-Wide, Scalable Telemetry

Partitioning high-level queries across a diverse set of network devices will help us achieve

the desired scalability of a network telemetry system, but it does not address the challenges

of answering queries from a network-wide perspective. A network-wide perspective could

mean a single packet’s experience traversing all of the links in a network [32, 30]. We

will focus on network-wide measurements that can be calculated by a collection of edge

switches abstracted as one big switch [41]. For example, the aggregate bytes or packet

counts transmitted to a source or from a destination could be a network-wide metric of

interest.

Coordinate for Network-Wide View. In order to calculate a network-wide metric of

interest, the distributed collection of switches must coordinate with a central entity to unify

the disparate perspectives of each individual device. Consider the scenario depicted in

Figure 1.2. Each switch maintains a count for a flow of interest. However, no single switch

has the accurate network-wide count for the flow. To unify the disparate views of the flow’s
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Figure 1.2: Coordinate for Network-Wide View. Here a collection of ingress switches each
count a particular flow of interest. In order to get the network-wide count for this flow, the
switches must unify their disparate views with a central coordinator.

count, each switch must tell a central coordinator the value of their individual counter to

determine that the network-wide count is actually 297. To correctly calculate network-wide

statistics of interest, computation, memory, and bandwidth will again be required.

Distributed Threshold Detection. In the previous example, only three messages need be

exchanged to determine the network-wide count from the distributed counts. In practice,

we are often interested in determining when a network-wide count exceeds a threshold. For

example, if in Figure 1.2 we were interested in determining when the network-wide count

for a flow of interest exceeds some threshold in real time, we could instead report every

instance of the observed flow to the coordinator. This solution would require no memory

for counters on the distributed switches and would be very accurate, but at an unscalable

bandwidth cost. We could instead report each occurrence of the flows observed at the

switches with some probability, but this sampling technique can yield inaccurate results on

short time scales. To calculate network-wide statistics accurately and scalably, we need an

efficient coordination protocol that consumes as little network bandwidth as possible and

does not grow in proportion to the number of switches in the network.
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Figure 1.3: Network Telemetry Architecture. The system integrates software and hard-
ware processing resources given a workload to answer a set of input queries. The system
does this while considering computation, memory, and bandwidth constraints to provide
maximum accuracy.

1.5 Contributions

This thesis presents an architecture for a network telemetry system that is flexible, scal-

able, and network-wide. We combine query partitioning with efficient coordination to en-

able scalable, network-wide telemetry that can support diverse, fine-grained, and real-time

queries.

1.5.1 Architecture for Network Telemetry Systems

Figure 1.3 shows an overarching architecture for a network telemetry system. Our system

takes as input a set of high-level telemetry queries and a target workload. The system

then must choose which (portions of) queries to execute either in software or in hardware.

The system must then choose a partitioning given the available computation, memory, and

bandwidth resources provided by those devices while maximizing the accuracy of results

returned to the queries.
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1.5.2 Sonata: Expressive Telemetry Queries with PISA Switches

First, we present Sonata, a flexible and scalable network telemetry system that performs

the collection and analysis of network traffic using the compute resources of both stream-

processing servers and a Protocol Independent Switch Architecture (PISA) switch.

Compiling Sonata Queries to PISA Switches. The dataflow programming model, used

by stream processors, and the PISA architecture are fundamentally similar. A dataflow

program is a directed acyclic graph (DAG) of operators applied to structured data, i.e., a

tuple. A PISA program is also a DAG where the operators are match-action tables and the

structured data is a packet. Sonata takes advantage of this similarity to compile portions of

high-level dataflow operators into PISA primitives for execution in the data plane.

Partitioning and Refining Sonata Queries with PISA Switches. Sonata then partitions

the high-level queries into a portion that executes at a scalable stream processor and a por-

tion that executes in a switch data plane. Sonata performs this partitioning by first model-

ing the constraints of PISA switches, such as memory available and number of processing

stages, to solve an optimization problem. Sonata selects the partitioning plan that mini-

mizes the processing load on the stream processor running on general purpose CPUs based

on the set of input queries themselves and representative training data.

1.5.3 Herd: Network-Wide, Continuous Telemetry

A common idiom found in telemetry queries (See Table 2.4) counts flows to determine

whether a specific threshold has been met (e.g., Figure 1.1). Herd is a system for imple-

menting these kind of count-threshold queries distributed over a collection of switches un-

der switch memory and bandwidth constraints. One such kind of count-threshold query de-

termines network-wide heavy hitters, i.e., those flows that exceed some heavy-hitter thresh-

old of packet counts from a network-wide perspective.
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Continuous, Network-Wide Telemetry Herd builds upon existing techniques [18, 23]

to practically implement a network-wide telemetry system. Herd counts flows at distributed

switches without maintaining per-flow state and probabilistically reports them to a central

coordinator. Based on these reports, the coordinator adapts system reporting parameters

based on the distribution of flows among ingress switches. Whereas other monitoring sys-

tems have some interval of time on which they report statistics, Herd’s reporting mechanism

enables continuous network-wide monitoring irrespective of the specific interval chosen.

Flow Taxonomy for Modeling Resource Constraints. The traditional taxonomy of

flows as either mice (i.e., insignificant) or elephants (i.e., sizeable) fails to sufficiently

describe flows in a way that helps us reason about resource consumption. We extend this

traditional taxonomy to reason about which flows affect switch memory usage (moles) and

which flows affect bandwidth consumption (mules). We calculate the size of these sets in

an offline algorithm for various parameter combinations to reason about the effect of those

parameters on resource consumption.

Tunable Accuracy Under Resource Constraints. Performing network-wide telemetry

on distributed switches communicating with a central coordinator involves a large number

of parameters subject to memory and bandwidth constraints. We demonstrate the funda-

mental relationships between system parameters, such as number of nodes and reporting

probability, and provide an offline algorithm to tune system parameters for highest accuracy

subject to analytical bounds on those parameters.

1.6 Summary

Together, Sonata and Herd begin to realize the goal of a flexible, scalable, and network-

wide telemetry system. Sonata gives network operators the ability to execute a set of

telemetry queries from a single interface that combines the strengths of both programmable
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data planes and general-purpose CPUs for flexibility and scalability. Herd efficiently co-

ordinates to execute a subset of Sonata queries across a set of distributed switches contin-

uously, scalably and with a network-wide view. We now explore each of these systems in

more detail.
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Chapter 2

Sonata: Expressive Telemetry Queries

with PISA Switches

This chapter introduces the design, implementation, and evaluation of a flexible and scal-

able network telemetry system, Sonata, that partitions queries expressed in a high-level

dataflow language across both a programmable switch and a stream processor. Sonata opti-

mizes the use of switch resources to scalably execute telemetry queries as both the number

of queries and overall traffic volume increase. For the purposes of exposition, we will refer

to early versions of this system as the Sonata architecture and the early Sonata prototype.

2.1 Overview and Background

Existing telemetry systems can collect and analyze network data in real time, but they

either support a limited set of telemetry tasks [53, 62], or they incur substantial processing

and storage costs as traffic rates and the number of queries increase [20, 85, 10]. This

dichotomy arises, in part, due to the choice of technology that underlies these approaches.
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Figure 2.1: Sonata Architecture.

2.1.1 Existing Approaches: An Apparent Trade-Off

Existing telemetry systems typically trade off scalability for expressiveness, or vice versa.

Telemetry systems that rely solely on stream processors are expressive but not scalable.

For example, systems such as NetQRE [85] and OpenSOC [62] can support a wide range

of queries using stream processors running on general-purpose CPUs, but they incur sub-

stantial bandwidth and processing costs to do so. Large networks can require performing

as many as 100 million operations per second for rates of 1 Tbps and packet sizes of 1 KB.

Scaling to these rates using modern stream processors is prohibitively costly due to the

lower (2–3 orders of magnitude) processing capacity per core [58, 60, 86, 63]. On the other

hand, telemetry systems that rely on programmable switches alone can scale to high traffic

rates, but they give up expressiveness to achieve this scalability. For example, Marple [53]

and OpenSketch [83], can perform telemetry tasks by executing queries solely in the data

plane at line rate, but the queries that they can support are limited by the capabilities and

memory in the data plane.
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2.1.2 Sonata Architecture: Expressive and Scalable Telemetry

Rather than accepting this apparent tradeoff between expressiveness and scalability, prior

work [27, 28] observed that an opportunity exists to combine the strengths of both tech-

nologies into a single telemetry system. Such a system could support expressive queries,

while still operating at line rate for high traffic volumes, when possible. Figure 2.1 shows

the high-level design of the Sonata architecture; it provides a single declarative interface

that can express queries for a wide range of telemetry tasks and also frees the network

operator from reasoning about where or how the query will execute. To scalably execute

these expressive queries, Sonata relies on two techniques: query partitioning, and dynamic

refinement [27].

Query Partitioning

While scalable stream processors can support very expressive queries, they still process

traffic at speeds slower than current (and future) line rates. However, prior work [27]

observed that stream processors do not have to process all of the network traffic flowing

at line rates. Instead, we can reduce the amount of data that the stream processor must

handle by partitioning queries into a portion that can be executed directly in programmable

switches and a portion that can be executed at the stream processor. For example, suppose

a network operator wanted to analyze DNS requests in their network. Even simple, fixed-

function switches could support partitioning this query into two portions: one that runs on

the switch matching packets destined for DNS servers and forwarding them to a stream

processor, and another that performs the remainder of the analysis on a flexible stream

processor. In this case, we avoid processing all non-DNS traffic at the stream processor.

Iterative Refinement

For certain queries and workloads, partitioning a portion of the queries to the switch does

not reduce the workload on the stream processor enough. In these situations, the Sonata ar-
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chitecture relies on dynamic query refinement [27] to further reduce the load on the stream

processor. By rewriting the input queries to start at a coarser level of granularity than spec-

ified in the original query, we can choose to process queries at finer granularities only after

they have satisfied the same query at a coarser granularity. For example, consider the case

where a query computes a statistic for individual IP Addresses. This query would require

computing that statistic for up to 232 addresses. If instead we computed the statistic for en-

tire networks that share the same 8-bit prefix, we would only have to compute the statistic

for 28 different networks. We then consider computing the statistic at finer granularities

(e.g., /16, /24, /32) only within the /8 addresses that satisfy the first stage of analysis.

Early Sonata Prototype and Results

Prior work [27] focused their initial prototype and analysis with a single data-plane target

in mind, i.e., OpenFlow [1] compatible switches. OpenFlow-compatible switches can be

reprogrammed in a limited way, but they can only support filtering and sampling packets.

This focus limited the set of queries that the early Sonata prototype could partition to the

data plane. However, their analysis demonstrated that partitioning and refining queries with

only these two operations available in the data plane could still substantially reduce the load

on the stream processor.

2.1.3 Realizing the Sonata Architecture with PISA Switches

The Sonata architecture [27] first proposed the ideas of query partitioning and refinement

but focused on a limited data-plane target. Later work [28], expanded on these ideas and

proposed to incorporate PISA switches as candidate data-plane targets. We build upon both

of these works to present Sonata: an instantiation of the original Sonata architecture with

PISA switch targets. We present the following contributions.
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Compiling Sonata Queries to PISA Primitives. (Section 2.3) The Sonata architecture

allows queries to be expressed in a high-level dataflow programming language, similar to

those used by stream processors. This dataflow programming paradigm is fundamentally

similar to the PISA programming model. Sonata exploits this similarity by first demon-

strating that several high-level dataflow operators can be compiled to PISA primitives ex-

pressed in the P4 [11] programming language. We then demonstrate how to combine these

primitives into a single P4 program for executing on PISA switches.

Partitioning and Refining Sonata Queries for PISA Switches. (Section 2.4) While we

may be able to compile certain Sonata queries to PISA primitives, we must still choose

how to partition and dynamically refine input queries to reduce the load on the stream

processor. Given the limited resources available in PISA switches, such as switch memory

and processing stages, we model PISA resource consumption and constraints as an Integer

Linear Program (ILP). Sonata’s query planner uses this model to decide how to partition

query execution between the switch and the stream processor. We then extend this model

to incorporate dynamic query refinement and, using representative packet traces, we select

the refinement plan that makes best use of the limited resources while optimally reducing

the load on the stream processor.

Modular and Extensible Software Architecture. (Section 2.5) To support different

types of data-plane and streaming targets, we expand upon the original design [27] for

the Sonata architecture and add support for operations over arbitrary packet fields. The

queries expressed using the Sonata interface are agnostic to the underlying switch and

streaming targets. Our current prototype implements drivers for both hardware (e.g., Bare-

foot Tofino [74]) and software (e.g., BMV2 [75]) protocol-independent switches as well as

the Spark Streaming [73] stream processor. The current prototype parses packet headers

for several common protocols but can be extended to extract other information, such as

queue size [32].
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1 packetStream (W )
2 .filter (p => p .tcp .flags == 2 )
3 .map (p => (p .dIP, 1 ) )
4 .reduce (keys=(dIP, ), f=sum )
5 .filter ( (dIP, count ) => count > Th )

Query 2.1: Detect Newly Opened TCP Connections.

We use real packet traces from operational networks to demonstrate that Sonata’s query

planner reduces the load on the stream processor by as much as seven orders of magnitude

over existing telemetry systems (Section 2.6). We also quantify how Sonata’s performance

gains depend on data-plane constraints and traffic dynamics. To date, our open-source

software prototype has been used by both researchers at a large ISP and in a graduate

networking course [7].

2.2 Example Sonata Telemetry Queries

Many network telemetry queries require computing aggregate statistics over a subset of

traffic and joining the results from multiple queries, which can be expressed as a sequen-

tial composition of dataflow operators (e.g., filter, map, reduce). We now present three

example queries: one that executes entirely in the data plane, a second that involves a join

of two subqueries, and a third that requires parsing packet payloads. Table 2.4 summa-

rizes the queries that we have implemented and released publicly along with the Sonata

software [77].

Computing Aggregate Statistics on a Subset of Traffic Suppose that an operator wants

to detect hosts that have recently opened too many TCP connections, as in a SYN flood

attack. Detection requires parsing each packet’s TCP flags and destination IP address, as

well as computing a sum over the destination IP address field. Query 2.1 first applies a

filter operation (line 2) over the entire packet stream to select TCP packets with just

the SYN flag set. It then counts the number of packets it observed for each host (lines

20



1 packetStream
2 .filter (p => p .proto == TCP )
3 .map (p => (p .dIP,p .sIP,p .tcp .sPort ) )
4 .distinct ( )
5 .map ( (dIP,sIP,sPort ) => (dIP,1 ) )
6 .reduce (keys=(dIP, ), f=sum )
7 .join (keys=(dIP, ), packetStream
8 .filter (p => p .proto == TCP )
9 .map (p => (p .dIP,p .pktlen ) )

10 .reduce (keys=(dIP, ), f=sum )
11 .filter ( (dIP, bytes ) => bytes > Th1 ) )
12 .map ( (dIP, (byte,con ) ) => (dIP, (con /byte ) )
13 .filter ( (dIP, con /byte ) => (con /byte > Th2 )

Query 2.2: Detect Slowloris Attacks.

3–4) and reports the hosts for which this count exceeds threshold Th at the end of the

window (line 5). This query can be executed entirely on the switch, so existing systems

(e.g., Marple [53]) can also execute this type of query at scale.

Joining the Results of Two Queries A more complex query involves joining the results

from two subqueries. To detect a Slowloris attack [69], a network operator must iden-

tify hosts which use many TCP connections, each with low traffic volume. This query

(Query 2.2) consists of two subqueries: the first subquery counts the number of unique

connections by applying a distinct, followed by a reduce (lines 1–6). The second

subquery counts the total bytes transferred for each host (lines 8–11). The query then joins

the two results (line 7) to compute the average connections per byte (line 12) and reports

hosts whose average number of connections per byte exceeds a threshold Th2 (line 13).

Marple [53] cannot support this query as it applies a join after an aggregation operation

(reduce). Also, this query cannot be executed entirely in the data plane as computing

an average requires performing a division operation. Even state-of-the-art programmable

switches (e.g., Barefoot Tofino [74]) do not support the division operation in the data plane.

In general, existing approaches that only use the data plane for query execution cannot sup-

port queries that require computation not available in the data plane. In contrast, Sonata’s
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1 packetStream
2 .filter (p => p .tcp .dPort == 23 )
3 .join (keys=(dIP, ), packetStream
4 .filter (p => p .tcp .dPort == 23 )
5 .map (p => ( (p .dIP,p .nBytes /N ), 1 ) )
6 .reduce (keys=(dIP, nBytes ), f=sum )
7 .filter ( ( ( dIP,nBytes ),cnt1 ) => cnt1 > Th1 ) )
8 .filter (p => p .payload .contains ( ’zorro ’ ) )
9 .map (p => (p .dIP,1 ) )

10 .reduce (keys=(dIP, ), f=sum )
11 .filter ( (dIP, count2 ) => count2 > Th2 )

Query 2.3: Detect Zorro Attacks.

query planner partitions queries for partial execution on the switch and performs more

complex computations at the stream processor.

Note that the second subquery is equivalent to detecting hosts for which the average

bytes per connection is less than a threshold. While Sonata allows a user to express the

query using both operators, the “greater than” condition allows a more efficient query ex-

ecution which we explain in Section 2.4. Ideally, Sonata’s runtime would identify this

optimization and modify queries written in the less-efficient form when possible.

Processing Packet Payloads. Consider the problem of detecting the spread of malware

via telnet [54], which is a common tactic when targeting IoT devices [2]. Here, miscreants

use brute force to gain shell access to vulnerable Internet-connected devices. Upon suc-

cessful login, they issue a sequence of shell commands, one of which contains the keyword

“zorro”. The query to detect these attacks first looks for hosts that receive many similar-size

telnet packets followed by a telnet packet with a payload containing the keyword “zorro”.

The query (Query 2.3) for this task has two subqueries: the first part identifies hosts that

receive more than Th1 similar-size telnet packets rounded off by a factor of N (lines 4–7).

The second part joins (line 3) the output of the first subquery with the other and reports

hosts that receive more than Th2 packets and contain the keyword “zorro” in the payload

(lines 8–11). Since this query requires parsing packet payloads, existing data-plane-based

approaches cannot support it. In contrast, Sonata can support and scale these queries by

22



Deparser

Filter Reduce

Parser
Pktin Pktout

PHVin PHVout

Register

Filter

M A M A M A M A M A M A

Map

Emit

Stage 0 Stage 1 Stage 2 Stage 3

Figure 2.2: Compiling a dataflow query (Query 2.1) to a sequence of match-action tables
for a PISA switch. Each query consists of an ordered sequence of dataflow operators, which
are then mapped to match-action tables in the data plane.

performing as much computation as possible on the switch and then performing the rest at

the stream processor.

2.3 Compiling Sonata Queries to PISA Switches

A central contribution of Sonata is to use the capabilities of programmable switches

to reduce the load on the stream processor. In contrast to conventional switches,

protocol-independent switch architecture (PISA) switches (e.g., RMT [12], Barefoot

Tofino [34], Netronome [78]) offer programmable parsing and customizable packet-

processing pipelines, as well as general-purpose registers for stateful operations. These

features provide opportunities for Sonata to execute portions of queries on the switch,

reducing the amount of data sent to the stream processor. Section 2.3.1 describes the PISA

architecture and how it relates to Sonata’s dataflow-like query interface. Section 2.3.2

describes how to compile individual operators to elements of a PISA program, and

Section 2.3.3 describes how to compile an entire query to into a complete PISA program.

2.3.1 PISA Processing Model

Figure 2.2 shows how Query 2.1 naturally maps to the capabilities of the packet process-

ing model of a PISA switch. On PISA switches, a reconfigurable parser constructs a packet
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header vector (PHV) for each incoming packet. The PHV contains not only fixed-size stan-

dard packet headers but also custom metadata for additional information such as queue size.

A fixed number of physical stages, each containing one match-action unit (MAU), then pro-

cesses the PHVs. These MAUs each consist of some memory (e.g., SRAM, TCAM) and

arithmetic-logic units (ALU) for consuming PHVs as input and emitting transformed PHVs

as output. If fields in the PHV are matched by the MAU, then a set of custom actions are ap-

plied to the PHV. These actions can be stateless or stateful. Operations that maintain state

across sequences of packets may only read and write back that state in a single physical

stage. Other stages may not access that state with the exception that a copy may be stored

in metadata for reading in subsequent stages. Finally, a deparser serializes the modified

PHV and original payload into a packet before sending it to an output port.

Match-Action Abstraction. Atop this low-level architecture sits the match-action table

abstraction. The match-action table is a logical table that consists of two kinds of columns:

match columns and action columns. Each header field that the table could match on is

a column and a single action column defines which actions could be taken, based on a

corresponding match. At compile time, the structure of this table is known, i.e., which

header fields are match columns, what kind of match they perform (e.g., exact or ternary),

and which actions could be taken on a match. At run time, these tables are populated

with entries, or rows, that contain specific values to match on and which action(s) to take

upon a match. For example, consider a match-action table that performs IPv4 forwarding.

Such a table might be called “Forwarding” and would consist of a single match column,

ipv4.dstIP, and an action column that decides to forward a packet out a specific port

or drop it. An entry in such a table would contain a specific IPv4 prefix to match on, and

which port to send it out.

Match-action tables abstract from the programmer the physical processing stages in the

PISA architecture. These tables represent the resources available in each physical stage,
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i.e., MAUs, however, a logical match-action table may be mapped across several physi-

cal stages [12]. Match-action tables are the fundamental unit of processing in the PISA

architecture. Whole data plane programs (i.e., packet processing pipelines) are expressed

in the P4 language as a sequence of match-action tables, applied conditionally, in a user-

defined control flow. A target-specific compiler maps this program consisting of logical

match-action tables to the physical architecture described above.

Similarity to Dataflow. The PISA processing model aligns well with streaming analyt-

ics platforms, such as, Spark Streaming [86] or Apache Flink [59], that use a dataflow

programming paradigm. The processing pipelines for both models can be represented as a

directed, acyclic graph (DAG) where each node in the graph performs some computation

on an incoming stream of structured data. For stream processors, the nodes in the DAG are

dataflow operators and the stream of structured data consists of tuples. For PISA switches,

the nodes in the DAG are match-action tables and the stream of structured data consists

of packet header vectors. Given this inherent similarity, an ordered set of dataflow query

operators could map to an ordered set of match-action tables in the data plane.

2.3.2 Compiling Individual Operators

Compiling dataflow queries to a PISA switch requires translating each operator in the query

to a component of a P4 program, i.e., a match-action table or logic in the control flow.

Rather than constraining the set of input queries to only those supported directly in the data

plane, Sonata accepts the superset of queries executable both in the data plane and at a

stream processor. Sonata then relies on its query planner to partition all input queries into a

set of dataflow operators that can be executed on the switch and a set that must be executed

at the stream processor. Before Sonata’s query planner can make this partitioning decision,

we must first quantify the resources required to compile individual dataflow operators. We

now consider how each of the operators from Table 1.1 would be executed in the data plane.
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filter(p)

Stream of Elements Elements Satisfying Predicate (p)

(a)

Match Action
tcp.flags

2

.filter(p => p.tcp.flags == 2)2
Compile Time

Run Time

(b)

Figure 2.3: Filter. (a) The filter operator’s high-level behavior. (b) Compiling the filter
operator from Query 2.1 into a match-action table.

Filter

The filter operator takes a stream of elements as input and returns a set of elements that

match some predicate (p), as shown in Figure 2.3a. In the figure, the predicate matches only

red elements and all others are discarded. This operator only requires a single match-action

table to match a set of fields in the PHV. For example, Figure 2.3b shows the match-action

table we generate for line 2 of Query 2.1. The six-bit tcp.flags field becomes a match

column and the value 2 is inserted into the table as a single entry or rule. In general, the

match-action table for a filter operation has a column for each field in the predicate.

A filter predicate with multiple clauses connected by the logical and operator corresponds

to multiple match-columns, one per clause. A filter operator can also be implemented in

the control flow of a P4 program using if-then-else logic. If the predicate (p) cannot be

matched on a PISA switch, e.g., matching on a packet payload, then the operator cannot be

implemented on the switch. However, these operators can still be executed at the stream

processor.
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map(f)

Stream of Elements Function (f) applied to each element

(a)

(b)

Figure 2.4: Map. (a) The map operator’s high-level behavior. (b) Compiling the map
operator from Query 2.1 into a match-action table.

Map

The map operator takes a stream of elements as input and returns the stream of elements

after applying some function ( f ) to each element. As long as the function to be applied

is executable in the data plane, then the map operator can be implemented with a sin-

gle match-action table where the function is applied as an action. For example, line 3 of

Query 2.1 transforms all incoming packets into a tuple consisting of the ipv4.dIP field

from the packet’s header and the value 1. These values are stored in query-specific meta-

data for further processing. Although Sonata’s query interface does not constrain the set

of transformation functions that map might perform over a set of tuples, the operator can-

not be compiled to the data plane if the switch cannot perform that function. Again, any

operators that cannot be compiled to PISA primitives can still be executed at the stream

processor.

Reduce

The reduce operator must maintain state across sequences of packets until a discrete win-

dow of time has elapsed; Sonata uses the PISA register primitive, which is simply an array

of values indexed by some key, to do so. Query-specific metadata fields permit loading and
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reduce(f)

Stream of Elements Function (f) applied over all elements

5

(a)

.reduce(keys=(dIP,), sum)3

Match Action

meta.idx = hash(dIP) 

Match Action

stateful[idx] += meta.field2

(b)

Figure 2.5: Reduce. (a) The reduce operator’s high-level behavior. (b) Compiling the
reduce operator from Query 2.1 into two match-action tables.

storing values from the registers. As a result, stateful operations require two match-action

tables: one for computing the index of the value stored in the array and the other for up-

dating state using arithmetic operators supported by the switch, such as add and bit or.

A corresponding metadata field carries the updated state after applying the arithmetic op-

eration. For example, executing the reduce operator for Query 2.1 in Figure 2.2 requires

a match-action table to compute an index into the register using the dIP header field. A

second table performs the stateful action that increments the indexed value in the register

and stores the updated value. In Section 2.4.2, we describe how Sonata’s query planner

uses representative training data to configure the number of entries for each register.

Distinct

Compiling the distinct operator is very similar to compiling the reduce operator

where the function applied is bit or with the argument 1. It likewise requires two tables,

one for calculating an index into the stateful array and a second to read and update its value.
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1 header_type app_metadata_t {
2 fields {
3 drop_q100 : 1 ;
4 satisfied_q100 : 1 ;
5 report : 1 ;
6 }
7 }
8
9 metadata app_metadata_t app_metadata ;

10
11 header_type metadata_q100_t {
12 fields {
13 qid : 16 ;
14 count : 16 ;
15 dstIP : 32 ;
16 tcp_flags : 8 ;
17 index : 16 ;
18 }
19 }
20
21 metadata metadata_q100_t metadata_q100 ;

Figure 2.4: Additional Metadata for Query 2.1

Join

A join operation is costly to execute in the data plane. In the worst case, this operation

maintains state that grows with the square of the number of packets. Sonata executes join

operations at the stream processor by iteratively dividing the query into a set of subqueries.

For example, Sonata divides Query 2.2 into two subqueries: one that computes the number

of unique connections, and a second that computes the number of bytes transferred for each

host. Sonata independently decides how to execute the two subqueries and ultimately joins

their results at the stream processor.

2.3.3 Compiling Sequences of Operators

After compiling individual operators into match-action tables, Sonata must synthesize an

entire P4 program from those tables. We describe some design considerations with respect

to Query 2.1.
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1 header_type out_header_q100_t {
2 fields {
3 qid : 16 ;
4 ipv4_dstIP : 32 ;
5 index : 16 ;
6 }
7 }
8
9 header out_header_q100_t out_header_q100 ;

Figure 2.5: Reporting Results for Query 2.1

Preserving packet forwarding decisions. Sonata preserves packet forwarding decisions

by transforming only query-specific metadata fields rather than the actual packet contents

that might affect forwarding decisions (e.g., destination address or port). The switch ex-

tracts values from the packets’ original header fields and copies them to auxiliary meta-

data fields before performing any additional processing. This process leaves the original

packet unmodified. Figure 2.4 shows the application level and query-specific metadata that

Sonata’s data-plane driver (Section 3.6) generates while implementing Query 2.1. The vari-

able app metadata has fields that track whether or not to continue processing a packet

for a given query, in this case query 100, and whether or not it has been satisfied to report

to the stream processor. The variable metadata q100 stores a copy of the query-specific

fields needed from the packet to process the query.

Reporting intermediate results to the stream processor. When a query is partitioned

across the stream processor and the switch, the stream processor may need either the origi-

nal packet or just an intermediate result from the switch so that it can perform its portion of

the query. To facilitate this reporting, the switch maintains a one-bit report field in the

metadata for each packet. Each subquery partitioned to the switch marks this field when-

ever a query-specific condition is met that requires the packet be sent to the stream proces-

sor. If this field is set at the conclusion of the entire processing pipeline, the switch sends

to the stream processor all intermediate results needed to complete processing the query,

including the original packet, if needed. If the last operator is stateful (e.g., reduce),
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then the switch sends only one packet for each key to the stream processor. This informs

the stream processor which register indices in the data plane must be polled at the end of

each window to retrieve aggregated values stored in the switch (see Section 2.5 for details).

Figure 2.5, shows the information needed by the stream processor for Query 2.1 stored in

header out header q100.

Putting it All Together. Figure 2.6 shows the overall control flow that implements

Query 2.1. In lines 2-4, the program initializes the application and query-specific meta-

data. In lines 6-18, tables that implement each operator in the query are applied in the same

sequence as specified in the original query. At the conclusion of the query, lines 24-25

look to see if the query was marked as satisfied for reporting to the stream processor. On

line 30, the program checks to determine if a given packet is an original packet to apply

the desired forwarding logic. Otherwise, the packet is a clone that resulted from satisfying

the query and must be reported to the stream processor. On lines 37-39, the data needed by

the stream processor is appended to the packet and sent.

2.4 Executing Sonata Queries with PISA Switches

Now that we know we can implement Sonata queries on PISA switches, we must now

choose which queries to partition across a stream processor and a PISA switch, given avail-

able switch resources, such that it minimizes the processing load on the stream processor.

Section 2.4.1 discusses the constraints of PISA switches that Sonata’s query planner consid-

ers. The planner then solves an optimization problem to partition the query in Section 2.4.2.

We then describe how to extend our optimization problem to account for dynamic query

refinement in Section 2.4.3
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1 control ingress {
2 apply (init_app_metadata ) ;
3 // query q100
4 apply (mapinit_q100_1 ) ;
5 // .filter(p => p.tcp.flags == 2)
6 apply (filter_q100_2 ) ;
7 if (app_metadata .drop_q100 != 1 ) {
8 // .map(p => (p.dIP, 1))
9 apply (map_q100_3 ) ;

10 // .reduce(keys=(dIP,), f=sum)
11 apply (init_reduce_q100_4 ) ;
12 // .filter((dIP, count) => count > Th)
13 if (reduce_q100_4 .value == 40 ) {
14 apply (continue_reduce_q100_4 ) ;
15 }
16 else {
17 apply (drop_reduce_q100_4 ) ;
18 }
19 if (app_metadata .drop_q100 != 1 ) {
20 apply (mark_satisfied_q100 ) ;
21 }
22 }
23 // clone packet for reporting
24 if (app_metadata .report == 1 ) {
25 apply (report_packet ) ;
26 }
27 }
28
29 control egress {
30 if (standard_metadata .instance_type == 0 ) {
31 // original packet, apply forwarding
32 }
33
34 else if (standard_metadata .instance_type == 1 ) {
35 // cloned packet, report to stream processor
36 if (app_metadata .satisfied_q100 == 1 ) {
37 apply (add_out_header_q100 ) ;
38 }
39 apply (add_final_header ) ;
40 }
41 }

Figure 2.6: Control Flow for Query 2.1

2.4.1 Resource Constraints on PISA Switches

Sonata’s query planner must consider the resource constraints of PISA switches for pars-

ing packet header fields, performing actions on packets, executing stateful operations, and

performing all of these operations in a limited number of stages.
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Parser. The cost of parsing increases with the number of fields to extract from the packet.

This cost is quantified as the number of bits to extract and the depth of the parsing tree. The

size of the PHV limits the number of fields that can be extracted for processing. Typically,

PISA switches have PHVs about 0.5–8 Kb [12] in size. Let M denote the maximum storage

for metadata in the PHV.

Actions. Most stream processors execute multiple queries in parallel, where each query

operates over its own logical copy of the input tuple. In contrast, PISA switches transform

raw packets into PHVs and then concurrently apply multiple operations over the PHV in

pipelined stages. These mechanisms suggest that PISA switches would be amenable to

parallel query execution. In practice, there is a limit on how many actions can be applied

over a PHV in one stage, which limits the number of queries that can be supported in the

data plane. Typically, PISA switches support 100–200 stateless and 1–32 stateful actions

per stage [12]; we denote the maximum number of stateful actions per stage as A.

Registers. The amount of memory required to perform stateful operations grows with

the number of packets and the number of queries. Stream processors scale by adding more

nodes for maintaining additional state. In contrast, operations that must maintain state

across packets in PISA switches can be read and written back only in a single physical

stage. The amount of memory for these operations is also bounded for each stage, which

affects the switch’s ability to handle both increased traffic loads and additional queries.

Within a stage, the amount of memory available for a single operation is also bounded.

Typically, PISA switches support 0.1–4 MB memory for each stage [12]. Let B denote the

maximum number of bits available in each stage for stateful operations.

Stages. Match-action tables must be executed in physical stages. If a given stage lacks

the resources to implement a match-action table, that table can be executed in a later stage.
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Switch Constraints
M Amount of metadata stored in switch.
A Number of stateful actions per stage.
B Register memory (in bits) per stage.
S Number of stages in match-action pipeline.

Input from Queries
Oq Ordered set of dataflow operators for query q.
Tq Ordered set of match-action tables for query q.
Mq Amount of metadata required to perform query q.
Zt Indicates whether table t performs a stateful operation.

Input from Workload
Nq,t Number of packets generated after table t of query q.
Bq,t State (bits) required for executing table t of query q.
Output
Pq,t Indicates whether t is the last table partitioned to the switch for query q.

Xq,t,s Indicates whether table t of query q executes at stage s in the switch.
Sq,t Stage id for table t for query q.

Table 2.1: Summary of variables in the query planning problem.

It could also be split across physical stages. PISA switches typically support 1–32 physical

stages [12]; we denote the maximum number of stages as S.

Effect of Constraints on Query Planning Consider a switch with S = 4 stages, B =

3,000 Kb, and A = 4 stateful actions per stage. These constraints are more strict than Bare-

foot’s Tofino switch [74], but they illustrate how the data-plane resource constraints affect

query planning. Sonata runs Query 2.1 over a one-minute packet trace from CAIDA [21]

to compute that the switch requires 2,500 Kb to count the number of TCP SYN packets

per host (Figure 2.8). Since 2,500 Kb < B, Sonata can execute the entire query on the

switch, sending only the 77 tuples that satisfy the query to the stream processor. If B or

S were smaller, Sonata could not execute the reduce operator on the switch and would

need to execute the rest of the query at the stream processor. We now describe how Sonata

considers these resource constraints to partition queries across the switch data plane and

stream processor.
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2.4.2 Query Partitioning as an Integer Linear Program

Sonata’s query planner solves an Integer Linear Program (ILP) that minimizes the num-

ber of packet tuples processed by the stream processor, based on a partitioning plan and

subject to switch constraints, as summarized in Table 2.2. Our approach is inspired by

previous work on a different problem that partitions multiple logical tables across physical

tables [37]. Table 2.1 summarizes the variables in the query planning problem. To select

a partitioning plan, the query planner determines the capabilities of the underlying switch,

estimates the data-plane resources needed to execute individual queries, and estimates the

number of packets sent to the stream processor given a partitioning of operators on the

switch.

Input. For the set of input queries (Q), Sonata interacts with the switch to compile the

ordered set of dataflow operators in each query (Oq) to an ordered set of match-action

tables (Tq) that implement the operators on the switch. In some cases, more than one

dataflow operator can be compiled to the same table. For instance, the filter operator

that checks the threshold after the reduce in Query 2.1 can be compiled to the same table

as the reduce operator. Zt indicates to the query planner whether a given table contains a

stateful operator.

Using training data in the form of historical packet traces, the query planner estimates

the number of packet tuples (Nq,t) sent to the stream processor and the amount of state

(Bq,t) required to execute table t for query q on the switch. The planner applies all of the

packets in the historical traces to each query q. After applying each table t that contains a

stateful operator, the planner estimates the amount of state required to perform the stateful

operation based on the total number of keys processed in the historical traces. It also

estimates the number of packets sent to the stream processor (Nq,t) after table t processes

the packets from the historical traces. The planner divides the historical traces into time
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Goal
min(N = ∑

q
∑

t
Pq,t ·Nq,t)

Constraints

C1 : ∀s : ∑
q

∑
Tq

Xq,t,s ·Bq,t ≤ B

C2 : ∀s : ∑
q

∑
Tq

Zt ·Xq,t,s ≤ A

C3 : ∀q, t : Sq,t < S
C4 : ∀q, i < j, i, j ∈ Tq : Sq, j > Sq,i

C5 : ∀q : ∑
q

Mq ≤M

Table 2.2: ILP formulation for the query partitioning problem.

windows of size W , computes Bq,t and Nq,t per window, and inputs the median value across

all intervals to the ILP.

Objective. The objective of Sonata’s query planning ILP is to minimize the number of

tuples processed by the stream processor. The query planner models this objective by

introducing a binary decision variable Pq,t that captures the partitioning decision for each

query; Pq,t = 1 if t is the last table for query q that is executed on the switch. For each

query, only one table corresponding to one operator can be set as the last table on the

switch: ∑Tq Pq,t ≤ 1. The total number of packets processed by the stream processor is then

the sum of all packets emitted by the last table processed on the switch for all queries.

Switch constraints. To ensure that Sonata respects the constraints from Section 2.4.1, we

introduce variables X and S. Xq,t,s is a binary variable that reflects stage assignment: Xq,t,s =

1 only if table t for query q executes at stage s in the match-action pipeline. Similarly, Sq,t

returns the stage number where table t for query q is executed. These two variables are

related: if Xq,t,s = 1, then Sq,t = s for a given stage. We will now summarize how Sonata’s

query planner models various data-plane constraints.
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C1: Register Memory per stage (B). For each stage, the amount of state allocated for

Sonata’s packet processing cannot exceed B. Since PISA targets can only configure tables

with stateful operations in a single stage, the amount of state required to execute query q at

stage s is ∑Tq Xq,t,s ·Bq,t . This sum over all queries captures the total memory required for

each stage s.

C2: Number of Actions per stage (A). For each stage, the total number of stateful

operations cannot exceed A. We can again use the X variable to model this constraint. The

expression ∑Tq Zt ·Xq,t,s captures the number of stateful operations performed at stage s for

query q. This sum over all queries captures the total number of stateful actions for each

stage s.

C3: Number of Stages (S). The total number of stages required to execute a query in

the data plane cannot exceed S. The variable Sq,t represents the stage where table t for

query q is executed. For every table of each query, this variable should always be less than

S because the last stage is reserved to determine which packet needs to be reported to the

stream processor.

C4: Intra-Query Ordering. We can also use S to express intra-query ordering con-

straints. For example, in the Slowloris query (Query 2.2), the tables for the reduce op-

erator can only be executed after the distinct operator has been applied in a previous

stage. For each query q and any two indices (i, j) in the ordered set of tables Tq where

(i < j), Sq, j is always greater than Sq,i.

C5: Total Metadata (M). Finally, since the PHV consists of a fixed-size, (M) represents

the maximum space available in the PHV to add query-specific metadata fields. The total

metadata used for all queries must then be less than M, i.e., ∑q Mq ≤M.

Accounting for Traffic Dynamics. The query planner uses training data to decide how

to configure the number of entries (n) for each register, and how many registers (d) to use

for each stateful operation. It is possible that the training data might underestimate the
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Figure 2.6: Relationship between collision rate and number
of unique incoming keys.

number of expected keys (k) for a stateful operation due to variations in traffic patterns. In

Figure 2.6, we show how the collision rates increase as the number of unique keys grows

beyond the original estimated number of rows (n) in each of a sequence of (d) registers.

Here, the x-axis is the number of incoming keys and y-axis is the collision rate—both

normalized with respect to n. The collision rate increases as the number of incoming keys

increases and decreases as d increases.

Since collision rates are predictable, we choose values of (n) and (d) to keep collision

rates low but still high enough to send a signal to Sonata’s runtime when the switch is

storing many more unique keys than originally expected. Sonata’s query planning ILP takes

into consideration both the number of additional packets processed by the stream processor

and the additional switch memory while computing the optimal query partitioning plans.

2.4.3 Dynamic Refinement as an Integer Linear Program

We now focus on extending our existing Integer Linear Program to also account for dyan-

mic query refinement. Sonata’s query planner modifies the input queries to start at a coarser

level of granularity than specified in the original query (Section 2.4.3). It then chooses a

sequence of finer granularities that reduces the load on the stream processor. This pro-

cess introduces additional delay in detecting the traffic that satisfies the input queries. The

38



specific levels of granularity chosen and the sequence in which they are applied constitute

a refinement plan. To compute an optimal refinement plan for the set of input queries,

Sonata’s query planner estimates the cost of executing different refinement plans based on

historical training data. Sonata’s query planner then solves an extended version of the ILP

from Section 2.4.2 that determines both partitioning as well as refinement plans to mini-

mize the workload on the stream processor (Section 2.4.3).

Dynamic query refinement example. Sonata’s query planner applies the augmented

queries over the training data to generate Figure 2.8 for Query 2.1. This figure shows

the costs to execute Query 2.1 with refinement key dIP and refinement levels R ={8, 16,

32} over the training data. It shows the number of packets sent to the stream processor

depending on which refinement level (ri+1) is executed after level ri. If only the filter

operation is executed on the switch, then N1 packets are sent to the stream processor. If the

reduce operation is also executed on the switch, then N2 packets are sent, but then B bits

of state must also be maintained in the data plane. For simplicity of exposition, we assume

that these counts remain the same for three consecutive windows.

Modifying Queries for Refinement

Identifying refinement keys. A refinement key is a field that has a hierarchical structure

and is used as a key in a stateful dataflow operation. The hierarchical structure allows

Sonata to replace a more specific key with a less specific version without missing any

traffic that satisfies the original query. This applies to all queries that filter on aggregated

counts greater than a threshold. For example, dIP has a hierarchical structure and is used

as a key for aggregation in Query 2.1. As a result, the query planner selects dIP as a

refinement key for this query. Other fields that have hierarchical structure can also serve

as refinement keys, such as dns.rr.name and ipv6.dIP. For example, a query that

detects malicious domains might count the number of unique IP addresses resolved for
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Figure 2.7: Query augmentation for Query 2.1. The query planner adds the operators
shown in red to support refinement. Query 2.1 executes at refinement level ri = /8 during
window T and at level ri+1 =/16 during window (T +W ). The dashed arrow shows the
output from level ri feeding a filter at level ri+1.

each domain [9], and such a query can use the field dns.rr.name as a refinement key. In

this case, a fully-qualified domain name is the finest refinement level and the root domain

(.) is the coarsest. A query can contain multiple candidate refinement keys and Sonata

independently selects refinement keys for each query. Also, note that expressing the second

subquery in Query 2.2 as the one that reports flows for which the average connections per

byte exceeds the threshold ensures that it can benefit from iterative refinement. Replacing a

more specific key with a less specific one will not miss any traffic that satisfies the original

query.

Enumerating refinement levels. After identifying candidate refinement keys, the query

planner enumerates the possible levels of granularity for each key. Each refinement key

consists of a set of levels R = {r1 . . .rn} where r1 is the coarsest level and rn is the finest.

The inequality r1 > rn means that r1 is coarser than rn. The semantics of the nth refinement

level is specific to each key; n = 32 would correspond to a /32 IP prefix for the key dIP

and n = 2 would correspond to second-level domain for the key dns.rr.name.

Augmenting input queries. To ensure that the finer refinement levels only consider the

traffic that has already satisfied coarser ones, Sonata’s query planner augments the input
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queries. For example, Figure 2.7 shows how it augments Query 2.1 with refinement key

dIP and R ={8, 16, 32} to execute the query at level ri+1 = 16 after executing it at level

ri = 8. The query planner first adds a map at each level to transform the original reduction

key into a count bucket for the current refinement level. For example, ri and ri+1 rewrite

dIP as dIP/8 and dIP/16, respectively. By transforming the reduction key for each

refinement level, the rest of the original query can remain unmodified. At refinement level

ri+1, the query planner also adds a filter. At the conclusion of the first time window,

the runtime feeds as input to the filter operator the dIP/8 addresses that satisfy the

query at ri = 8. This filtering ensures that refinement level ri+1 only considers traffic that

satisfies the query at ri.

Sonata’s query planner also augments queries to increase the efficiency of executing

refined queries. Since counting at coarser refinement levels (e.g., /8) will result in larger

sums than at finer levels (e.g., /32), using the original query’s threshold values at coarser

refinement levels would still be correct but inefficient. Sonata’s query planner instead uses

training data to calculate relaxed threshold values for coarser refinement levels that do not

sacrifice accuracy (e.g., Th/8 > Th/16 in Figure 2.7). For each query and for each refine-

ment level, the planner selects a relaxed threshold that is the minimum count for all keys

satisfying the original query aggregated at that refinement level.

Note that by its very nature, dynamic refinement introduces additional delay (D) in

detecting the traffic that satisfies the original input queries. In the worst case, Sonata can

only identify network events lasting at least W × |R| seconds for each query. Here, W is

the interval size and |R| is the total number of refinement levels considered. However,

by specifying an upper bound on the acceptable delay (Dq), the network operator can force

Sonata to consider fewer refinement levels and reduce the delay to detect traffic that satisfies

the original query.

Consider an approach, Fixed-Refinement, that applies a fixed refinement plan for all

input queries. In this example, the query planner augments the original queries to always
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Figure 2.8: The N and B cost values for executing Query 2.1 at refinement level ri+1 after
executing it at level ri.

run at refinement levels 8, 16, and 32. The runtime updates the filter for the query at level

16 with the output from level 8 and the filter of level 32 with the output from 16. The

costs of this plan are shown in rows *→ 8, 8→ 16, and 16→ 32 of Figure 2.8. If the

switch only supported two stateful operations (A = 2), the reduce operator could only be

performed on the switch for the first two refinement levels. This would result in sending 33

packets (N2 for *→ 8) at the end of the first window, 98 packets (N2 for 8→ 16) at the

end of the second window, and 450,000 (N1 for 16→ 32) packets at the end of the third

window to the stream processor. Compared to the solution without any refinement from the

beginning of Section 2.4.2, Fixed-Refinement reduces the number of tuples reported to the

stream processor from 570 K to 450 K at the cost of delaying two additional time windows

to detect traffic that satisfies the query.

In contrast, Sonata’s query planner uses the costs in Figure 2.8 combined with the

switch constraints to compute the refinement plan * → 8 → 32. Executing the query at

refinement level * → 8 requires only 6 Kb of state on the switch and sends 33 packet

tuples to the stream processor at the end of the first window. Each packet represents an

individual dIP/8 prefix that satisfies the query in the first window. Sonata then applies

the original input query (dIP/32) over these 33 dIP/8 prefixes in the second window

interval, processing 526,000 packets (N1 for 8 → 32) and consuming only 1900 Kb on
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Goal
min(N = ∑

q
∑
r2

Lq,t,r2 ·Nq,t,r2)

Nq,t,r2 = Iq,r2 ·∑
r1

Fq,r1,r2 ·Nq,t,r1,r2

Constraints

C1 :

∀s : ∑
q

Xq,s,t ·Bq,t ≤ Bmax

Bq,t = ∑
r2

Iq,r2 ∑
r1

Fq,r1,r2 ·Bq,r2,t

C2 :

∀s : ∑
q

∑
t

Xq,t,s ≤Wmax

Xq,t,s = ∑
r

Iq,r ·Xq,t,s,r

C3 : ∀q, t,r : Sq,t,r ≤ Smax−1
C4 : ∀q,r, i < j : Sq, j,r < Sq,i,r

C5 : ∀q : ∑
q

∑
r

Iq,r ·Mq,r ≤M

C6 : ∀qi,q j,r : Iqi,r = Iq j ,r

C7 : ∀q : ∑
r

Iq,r ≤ Dq

Table 2.3: Extended ILP to support dynamic refinement.

the switch. At the end of the second window, the switch reports 77 dIP/32 addresses to

the stream processor. This refinement plan sends 110 packet tuples to the stream processor

over two window intervals, significantly reducing the workload on the stream processor

while costing only one additional window of delay.

Extended ILP for Dynamic Refinement. The ILP for jointly computing partitioning and

refinement plans is an extension of the ILP from Section 2.4.2. Table 2.3 presents the full

version of the extended ILP, including these new constraints. The objective is the same,

but the query planner must also compute the cost of executing combinations of refined

queries (i.e., Nq,t,r and Bq,t,r) to estimate the total cost of candidate query plans. We add

new decision variables Iq,r and Fq,r1,r2 to model the workload on the stream processor in

the presence of refined queries. Iq,r is set to one if the refinement plan for query q includes

level r. Fq,r1,r2 is set to one if level r2 is executed after r1 for query q. These two variables

are related by ∑r1 Fq,r1,r2 = Iq,r2 . We also augment X and S variables with subscripts to

account for refinement levels.
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Figure 2.9: Sonata’s Design and Implementation: red arrows show compilation control
flow and black ones show packet/tuple data flow

Additional constraints. For queries containing join operators, the query planner can

select refinement keys for each subquery separately, but it must ensure that both subqueries

use the same refinement plan. We then add the constraint ∀q,r and ∀qi,q j ∈ q : Iqi,r =

Iq j,r. The variables qi and q j represent subqueries of query q containing a join operation.

The query planner also limits the maximum detection delay for each query, ∀q : ∑r Iq,r ≤

Dq. Here, Dq is the maximum delay query q can tolerate expressed as a number of time

windows.

2.5 Design and Implementation

Figure 2.9 illustrates the design for Sonata’s implementation. For each query, the core

generates partitioned and refined queries and drivers compile the parts of each query to

the appropriate component. When packets arrive at the PISA switch, Sonata applies the

packet-processing pipelines and mirrors the appropriate packets to a monitoring port, where

a software emitter parses the packets and sends the corresponding tuples to the stream
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processor. The stream processor reports the results of the queries to the runtime, which

then updates the switch, via the data-plane driver, to perform dynamic refinement.

Core. The core has two modules: (1) the query planner and (2) the runtime. Upon ini-

tialization or re-training, the runtime polls the data-plane driver over a network socket to

determine which dataflow operators the switch is capable of executing, as well as the val-

ues of the data-plane constraints (i.e., M, A, B, S). It then passes these values to the query

planner which uses Gurobi [29] to solve the query planning ILP offline and to generate

partitioned, refined queries. The runtime then sends partitioned and refined queries to the

data-plane and streaming drivers. It also configures the emitter by specifying the fields to

extract from each packet for each query, and each query is identified by a corresponding

query identifier (qid). When the switch begins processing packets, the runtime receives

query output from the stream processor at the end of every window. It then sends updates

to the data-plane driver, which in turn updates table entries in the switch according to the

dynamic refinement plan. When it detects too many hash collisions, the runtime triggers

the query planner to re-run the ILP with new data.

Drivers. Data-plane and streaming drivers compile the queries from the runtime to target-

specific code that can run on the switch and stream processor respectively. The data-plane

drivers also interact with the switch to execute commands on behalf of the runtime, such

as updating filter tables for iterative refinement at the end of every window. The

Sonata implementation currently has drivers for two PISA switches: the BMV2 P4 software

switch [75], which is the standard behavioral model for evaluating P4 code; and the Bare-

foot Wedge 100B-65X (Tofino) [74] which is a 6.5 Tbps hardware switch. The data-plane

driver communicates with these switches using a Thrift API [3]. The current implemen-

tation also has a driver for the Apache Spark [73] streaming target for processing packet

tuples in user-space and reporting the output of each query to Sonata’s runtime.
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Lines of Code
# Query Sonata P4 Spark
1 Newly opened TCP Conns. [85] 6 367 4
2 SSH Brute Force [36] 7 561 14
3 Superspreader [83] 6 473 10
4 Port Scan [39] 6 714 8
5 DDoS [83] 9 691 8
6 TCP SYN Flood [85] 17 870 10
7 TCP Incomplete Flows [85] 12 633 4
8 Slowloris Attacks [85] 13 1,168 15
9 DNS Tunneling [10] 11 570 12
10 Zorro Attack [54] 13 561 14
11 DNS Reflection Attack [42] 14 773 12

Table 2.4: Implemented Sonata Queries. We report lines of code considering the same:
(1) refinement plan; (2) partitioning plan, i.e., executing as many dataflow operators in the
switch as possible.

Emitter. The emitter consumes raw packets sent to the data-plane monitoring port, parses

the query-specific fields in the packet, and sends the corresponding tuples to the stream

processor. The emitter uses Scapy [76] to extract the unique query identifier (qid) from

packets. It uses this identifier to determine how to parse the remainder of the query-specific

fields embedded in the packet based on the configuration provided by the runtime. As

discussed in Section 2.3.3, the emitter immediately sends the output of stateless operators

to the stream processor, but it stores the output of stateful operators in a local key-value

data store. At the end of each window interval, it reads the aggregated value for each key

in the local data store from the data-plane registers before sending the output tuples to the

stream processor.

2.6 Evaluation

In this section, we first demonstrate that Sonata is expressive (Table 2.4). We then use

real-world packet traces to show that it reduces the workload on the stream processor by
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3–7 orders of magnitude (Figure 2.10) and that these results are robust to various switch

resource constraints (Figure 2.11).

2.6.1 Setup

Telemetry applications. To demonstrate the expressiveness of Sonata’s query interface,

we implemented eleven different telemetry tasks, as shown in Table 2.4. We show how

Sonata makes it easier to express queries for complex telemetry tasks by comparing the

lines of code needed to express those tasks. For each query, Sonata required far fewer lines

of code to express the same task than the code for the switch [11] and streaming [73] targets

combined. Not only does Sonata reduce the lines of code, but also the queries expressed

with Sonata are platform-agnostic and could execute unmodified with a different choice of

hardware switch or stream processor, e.g., Apache Flink.

Packet traces. We use CAIDA’s anonymized and unsampled packet traces [64], which

were captured from a large ISP’s backbone link between Seattle and Chicago. We evaluate

over a subset of this data containing 600 million packets and transferring about 360 GB of

data over 10 minutes. This data contains no layer-2 headers or packet payloads, and the

layer-3 headers were anonymized with a prefix-preserving algorithm [24].

Query planning. For query planning, we consider a maximum of eight refinement lev-

els for all queries (i.e., R = {4,8, ...,32}) because additional levels offered only marginal

improvements. We replay the packet traces at 20x speed to evaluate Sonata on a simulated

100 Gbps workload (i.e., about 20 million packets per second) that might be experienced

at a border switch in a large network. We use a time window (W ) of three seconds. In

general, selecting a shorter time interval is desirable; however, for very short time intervals

the overhead of updating the filter rules in the data plane at the end of each window can in-

troduce significant errors. Our choice of three seconds strikes a balance between achieving
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Query Plan Description Telemetry
Systems

All-SP Mirror all incoming packets to the
stream processor

Gigascope[20],
OpenSOC[62],
NetQRE[85]

Filter-DP Apply only filter operations on the
switch EverFlow[87]

Max-DP Execute as many dataflow opera-
tions as possible on the switch

Univmon[44],
OpenSketch[83]

Fix-REF Iteratively zoom-in one refinene-
ment level at a time DREAM[48]

Table 2.5: Telemetry systems emulated for evaluation.

a tolerable detection delay and minimizing the errors introduced by the data-plane update

overhead. Sonata’s query planner processed around 60 million packets for each time inter-

val to estimate the number of packet tuples (N) and the register sizes (B). We observed that

while the ILP solver was able to find near-optimal query plans in 10-20 minutes, it took the

solver typically several hours to determine the optimal plans. Since running the ILP solver

for longer durations had diminishing returns, we selected a time limit of 20 minutes for the

ILP solver to report the best (possibly suboptimal) solution found in that period.

Targets. Since switches have fixed resource constraints, we choose to evaluate Sonata’s

performance with simulated PISA switches. This approach allows us to parameterize the

various resource constraints and to evaluate Sonata’s performance over a variety of poten-

tial PISA switches. Unless otherwise specified, we present results for a simulated PISA

switch with sixteen stages (S = 16), eight stateful operators per stage (A = 8), and eight

Mb of register memory per stage (B = 8 Mb). Within each stage, a single stateful operator

can use up to four Mb.

Comparisons to existing systems. We compare Sonata’s performance to that of four

alternative query plans. Each plan is representative of groups of existing systems, such as

Gigascope [20], OpenSOC [63], EverFlow [87], OpenSketch [83], and DREAM [48], as
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Figure 2.10: Reduction in workload on the stream processor running: (a) one query at a
time, (b) concurrently running multiple queries.

shown in Table 2.5. Rather than instrumenting each of these systems, we emulate them

by modifying the constraints on Sonata’s query-planning ILP. For example to emulate the

Fix-REF plan, we add the constraint ∀q,r : Iq,r = 1.

2.6.2 Load on the Stream Processor

We perform a trace-driven analysis to quantify how much Sonata reduces the workload on

the stream processor. To enable comparisons with prior work, we evaluate the top eight

queries from Table 2.4; these queries process only layer 3 and 4 header fields. Fix-REF

queries use all eight refinement levels, while Sonata may select a subset of all eight levels

in its query plans.

Single query performance. Figure 2.10a shows that Sonata reduces the workload on the

stream processor by as much as seven orders of magnitude. Filter-DP is efficient for the

SSH brute-force attack query, because this query examines such a small fraction of the

traffic. Filter-DP’s performance is similar to All-SP for queries that must process a larger

fraction of traffic, such as detecting Superspreaders [83]. For some queries, such as the

SSH brute-force attack, Max-DP matches Sonata’s performance. In many other cases, large

amounts of traffic are sent to the stream processor due to a lack of resources. For example,

the Superspreader query exhausts stateful processing resources. Fix-REF’s performance
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matches Sonata’s for most cases but uses up to seven additional windows to detect traffic

that satisfies the query.

Multi-query performance. Figure 2.10b shows how the workload on the stream pro-

cessor increases with the number of queries. When executing eight queries concurrently,

Sonata reduces the workload by three orders of magnitude compared to other query plans.

These gains come at the cost of up to three additional time windows to detect traffic that

satisfies the query. The performance of Fix-REF degrades the most because the available

switch resources, such as metadata and stages, are quickly exhausted when supporting a

fixed refinement plan for several queries. We have also considered query plans with fewer

refinement levels for Fix-REF and observed similar trends. For example, when considering

just two refinement levels (dIP/16 and dIP/32) for all eight queries, we observed that

the load on the stream processor was two orders of magnitude greater than Sonata.

As the number of queries increases, the number of tuples will continue to increase and

eventually be similar to All-SP. Although Sonata makes the best use of limited resources

for a given target, its performance gains are bounded by the available switch resources. It

is important to differentiate the limitations on Sonata’s performance from the limitations

imposed by existing hardware switches. While today’s commodity hardware switches can

support tens of network monitoring applications, we envision that the next-generation of

hardware switches will enable Sonata to support hundreds of queries, if not more.

Effect of switch constraints. We study how switch constraints affect Sonata’s ability to

reduce the load on the stream processor. To quantify this relationship, we vary one switch

constraint at a time for the simulated PISA switch. Figure 2.11a shows how the workload

on the stream processor decreases as the number of stages increases. More stages allow

Sonata to consider more levels for dynamic refinement. Additional stages slightly improve

the performance of Fix-REF as it can now support stateful operations for the queries at

finer refinement levels on the switch. We observe similar trends as the number of stateful
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Figure 2.11: Effect of switch constraints.

actions per stage (Figure 2.11b), memory per stage (Figure 2.11c), and total metadata size

(Figure 2.11d) increase. As expected, Max-DP slightly reduces the load on the stream

processor when more memory per stage is available for stateful operations. Increasing the

total metadata size also allows Fix-REF to execute more queries in the switch—reducing

the load on the stream processor.

Overhead of dynamic refinement. When running all eight queries concurrently, as many

as 200 filter table entries are updated after each time window during dynamic refine-

ment. Micro-benchmarking experiments with the Tofino switch [74] show that updating

200 table entries takes about 127 ms, and resetting registers takes about 4 ms. The total

update time took 131 ms which is about 5% of the specified window interval (W = 3s).
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2.7 Related Work

Network telemetry. Existing telemetry systems that process all packets at the stream

processor such as Chimera [10], Gigascope [20], OpenSOC [62], and NetQRE [85] can

express a wide-range of queries but can only support lower packet rates because the stream

processor ultimately processes all results. These systems also require deploying and config-

uring a collection infrastructure to capture packets from the data plane for analysis, incur-

ring significant bandwidth overhead. These systems can benefit from horizontally scalable

stream processors such as Spark Streaming [86] and Flink [59], but they also face scaling

limitations due to packet parsing and cluster coordination [63].

Everflow [87], UnivMon [44], OpenSketch [83], and Marple [53] rely on programmable

switches to execute queries entirely in the data plane. These systems can process queries at

line rate but can only support queries that can be implemented on switches. Trumpet [50]

and Pathdump [72] offload query processing to end-hosts (VMs in data center networks) but

not to switches. Gupta et al. [27] proposed a telemetry system that can coordinate queries

across a stream processor and switch, but the work considered only switches with fixed-

function chipsets for single queries and required network operators to explicitly specify

the refinement and partitioning plans. In contrast, Sonata supports programmable switches

and employs a sophisticated query planner to automatically partition and refine multiple

queries. We also quantify the performance gains and overhead with realistic packet traces

and a programmable hardware switch.

Query planning. Database research has explored query planning and optimization exten-

sively [57, 51, 5]. Gigascope performs query partitioning to minimize the data transfer from

the capture card to the stream processor [20]. Sensor networks have explored the query par-

titioning problems that are similar to those that Sonata faces [57, 51, 5, 45, 46, 71]. How-

ever, these systems face different optimization problems because they typically involve

lower traffic rates and involve special-purpose queries. Path Queries [52] and SNAP [4]
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facilitate network-wide queries that execute across multiple switches; in contrast, Sonata

currently only compiles queries to a single switch, but it addresses a complementary set of

problems, such as unifying data-plane and stream processing platforms to support richer

queries and partitioning sets of queries across a data-plane switch and a stream processor.

Query-driven dynamic refinement. Autofocus [22], ProgME [84], and DREAM [48],

SCREAM [49], MULTOPS [26], and HHH [38] all iteratively zoom in on traffic of interest.

These systems either do not apply to streaming data (e.g., ProgME requires multiple passes

over the data [84]) they use a static refinement plan for all queries (e.g., HHH zooms in one

bit at a time), or they do not satisfy general queries on network traffic (e.g., MULTOPS is

specifically designed for bandwidth attack detection). These approaches all rely on general-

purpose CPUs to process the data-plane output, but none of them permit additional parsing,

joining, or aggregation at the stream processor, as Sonata does.
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Chapter 3

Herd: Network-Wide, Continuous

Telemetry

This chapter introduces the design, implementation, and evaluation of Herd, a system that

allows operators to perform continuous, network-wide telemetry for a subset of queries that

can be expressed with Sonata’s query interface. While Sonata supports a wide-range of

queries partitioned across a stream processor and a single switch, Herd enables executing

queries that seek to monitor a global threshold distributed over several switches. While

many queries (see Table 2.4) look for traffic of interest that exceeds a threshold, one specific

example of this kind of telemetry query detects network-wide heavy-hitters. Herd combines

an extension of existing theoretical work with a memory-efficient data structure to provide

network-wide telemetry at a bandwidth cost that does not grow in proportion to the number

of switches in the network.

3.1 Motivation and Overview

To effectively manage their networks, operators continuously monitor their traffic to detect

attacks, performance bottlenecks, and failures—i.e., they continuously perform network

telemetry. In many of these telemetry tasks, the operators seek to detect heavy-hitters
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Figure 3.1: Herd Architecture. The coordinator aggregates the partial information observed
at each switch to identify network-wide elephants.

by separating the elephant flows from the mouse flows. Elephants are the relatively few

flows that significantly contribute to the overall traffic volume and mouse flows are the

more numerous but smaller flows. To distinguish flows into these two categories, network

operators must choose between measuring the flows in the network devices themselves,

which have both limited memory and computational capacity, or sending a subset of traffic

to general purpose CPUs for analysis. In the latter case, the operator is limited both in how

much traffic can be sent across the network but also by the fact that general-purpose CPUs

process data far slower than line rate. Existing solutions, such as NetFlow/sFlow [15, 56],

seek to reduce the data required to detect heavy hitters using general-purpose CPUs by

sampling packets at coarse-grained time scales. Other solutions [83, 44] use streaming

algorithms and compact data structures, such as the count-min sketch [19], to detect heavy

hitters directly on the resource-constrained network devices.

These existing techniques provide mechanisms to perform heavy-hitter detection from

a single device with limited resources; however, they do not help us detect network-wide

heavy hitters. Some flows generate a large volume of traffic for the network in total but

are not heavy at any single ingress point 1. For example, if a host inside the network is

1Here, we relax the definition of a flow to something more coarse-grained than a five-tuple, such as,
source/destination IP address pair
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the victim of a denial-of-service attack, and monitoring is performed at the network ingress

switches, it is possible that each ingress switch will only observe moderate amounts of traf-

fic to the victim host, yet aggregating the analysis over all switches will indicate that a high

volume attack is occurring. Furthermore, when attacks of this magnitude begin to converge

at a network choke point or at the victim, network devices can become unresponsive which

may prevent further measurement from being performed and stymie root-cause analysis.

Therefore, it is necessary and proper to place the monitoring upstream of convergence,

at multiple locations which are able to handle fractions of the overall attack. Worse yet,

existing techniques only provide reasonable accuracy for large timescales, leaving tem-

poral “blind spots” which allow short-lived network conditions, e.g., TCP incast [14] or

microbursts, to go undetected.

Detecting network-wide heavy-hitters reduces to a distributed monitoring problem

among edge switches, i.e., the entry points of traffic into the network, and a centralized

coordinator. The coordinator aggregates the partial information observed at each switch to

identify flows whose aggregate count exceeds a global threshold. Deciding when a switch

should report to the coordinator and what the switch should report determines how much

communication is required and, ultimately, the accuracy of the results. For example, a

strawman solution might “report” every packet header of a flow to the coordinator; such a

solution would be highly accurate but could not scale to high load or large network size.

One could reduce the data sent to the coordinator by instead sampling every n packets,

but packet sampling is less accurate over short timescales or at low data rates [87]. Other

solutions that aggregate information about many flows in a compact data structure and send

the entire structure [43] to a central collector are inherently coupled to a fixed monitoring

interval, and the shorter this interval is, the communication overhead will increase. The

Continuous Distributed Monitoring (CDM) model provides a communication-efficient

alternative for reporting local conditions, as-needed, to continuously track the heavy hitters

without respect to a fixed interval. However, this model assumes the ability to store per-
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flow state, which has hindered its adoption in real systems [17]. While this technique has

provable accuracy bounds, we adapt the base algorithm to reflect the realities of modern

networks and implement it in modern commodity switches.

We present Herd (depicted in Figure 3.1), a practical monitoring system for detecting

network-wide heavy hitters in real time, with high accuracy, and under communication

and state constraints. We extend the standard taxonomy of mice and elephant flows to

more accurately describe the costs of performing heavy-hitter detection in a network-wide

setting. Herd instructs each switch to probabilistically identify and report flows from this

new taxonomy while accounting for the locality of flows to minimize communication. Our

solution extends probabilistic reporting techniques presented in [81] and combines them

with the sample-and-hold algorithm [23], to report measurements of individual flows in

real time. Herd tunes the system parameters using representative traffic observed by the

network to achieve the best accuracy possible within the available memory and bandwidth.

We summarize our contributions as follows:

Communication-efficient coordination. We developed a new coordination protocol for

detecting network-wide heavy hitters that uses adaptive thresholds to account for flow local-

ity. This protocol probabilistically reports when switches observe a non-trivial contribution

from a monitored flow and infers network-wide heavy hitters at the coordinator from these

reports. Our analysis shows that this protocol reduces the communication cost by 17% for

achieving 97% accuracy compared to sampling.

Memory-efficient switch data structure. We developed a data structure that efficiently

stores locality parameters and counters for flows that show a non-trivial contribution to a

network-wide count. This data structure probabilistically determines the subset of flows

to monitor at the switch from a larger traffic stream. We demonstrate that this data struc-

ture can be implemented in modern programmable switches for line-rate execution. Our
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evaluation shows that our solution requires 40% less switch memory at the expense of 3%

degradation in detection accuracy when compared to counting all of the flows.

Parameter-tuning algorithm for high accuracy. While our solution consists of well-

known algorithmic [18] and data-structure [23] building blocks, combining these building

blocks to produce accurate results within resource constraints is challenging. We present

an algorithm that relates the parameters of both the protocol and the data structure to the

taxonomy of flows to be monitored and how those parameters affect Herd’s performance

in terms of accuracy, communication, and state. We describe a heuristic for achieving high

accuracy under communication and state constraints.

To demonstrate the deployability of Herd, we present the implementation of both the

coordination protocol and switch data structure on a Protocol Independent Switch Archi-

tecture (PISA) switch [11] in approximately 750 lines of P4 code.

In Section 3.2, we summarize Herd’s architecture and describe a new taxonomy of

flows for network-wide heavy hitter detection. We present the design of the coordination

protocol in Section 3.3, and the switch data structure in Section 3.4. In Section 3.5, we

present an algorithm for configuring various system parameters. We present our prototype

in Section 3.6, evaluation in Section 3.7, and related work in Section 3.8.

3.2 Herd Architecture

We can reduce detecting network-wide heavy-hitters to a distributed monitoring problem

among ingress switches and a centralized coordinator as shown in Figure 3.1. The coor-

dinator aggregates the partial information observed at each switch to identify flows whose

aggregate count exceeds a threshold. By counting locally at each switch and periodically

reporting to the coordinator, we can reduce the communication cost, but the memory at

switches is limited which also affects accuracy. Here we define accuracy in terms of both

precision and recall to quantify false positives and false negatives in the results, respec-
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tively. In this section, we first describe the taxonomy of flows in the network that affects

how much state and communication is required to perform network-wide heavy-hitter de-

tection and then we describe the mechanisms we use to distinguish flows in that taxonomy.

3.2.1 Who’s Who in the Zoo

Classifying flows simply as mice or elephants at a single switch alone is insufficient for

designing a system to detect network-wide heavy hitters within communication and state

constraints. What might be classified as an elephant on one switch, might be classified as

a mouse on another. We need a taxonomy that allows us to classify flows both locally and

globally. Additionally, we need to be able to relate the sizes of these classes to the amount

of memory and communication required to perform the network-wide detection.

Local moles and mules. Global elephants. We extend the traditional taxonomy of flows

by introducing two new classes: moles and mules (see Figure 3.2). At each switch, a large

number of flows will have no local or global significance which is the traditional class

of mice; we seek to allocate no scarce resources for these flows. However, a smaller set

of flows will have some significance locally, but a switch will not know if these flows

matter globally. Switches will have to maintain state for these flows to determine whether

or not they might have global significance; we call these flows moles. However, when a

mole reaches a local threshold that could significantly impact a global count, a switch is

obligated to inform the central coordinator; we call these flows mules.

Mules are, inherently, tracked both locally and globally. A single switch that determines

a flow is a mule and reports it to the central coordinator, which then tracks the flow as a

mule globally. However, one switch may observe a mule flow that another does not. Based

on the reports sent by the switches for each of their mule flows, the central coordinator

determines when a mule flow has become a network-wide elephant.
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flow count

f1 40
f3 2
f5 1

flow count

f1 80
f2 200
f3 99
f4 10

C

A B

flow count

f1 120
f2 200
f3 80

mule >20

mole <20

mice <5

Local

Global

Elephant >100

Figure 3.2: Example zoo. Switches A and B communicate with a coordinator C to deter-
mine the network-wide heavy hitters.

Who’s in the zoo determines resource allocation. Naı̈vely maintaining state for all

flows at the switch scales poorly for large networks and could require keeping counters

for tens of millions of flows. For such large networks, the memory required (O(GB)) far

exceeds the memory available in state-of-the-art programmable switches (O(MB)) [74].

This extended taxonomy allows us to better reason about the resources required to perform

network-wide heavy-hitter detection. With a known upper bound on the state per switch,

we focus our effort on ensuring that the number of moles at each switch does not exceed

the upper bound. Similarly, if we know the allowed communication rate for each switch,

we must ensure that the number of mules and their reporting frequency does not send too

many reports to the coordinator. In the next section, we discuss the mechanisms Herd uses

to distinguish among these classes of flows.

Example. Figure 3.2 shows a simple example where two switches (A and B) commu-

nicate with a central coordinator (C) to determine the network-wide elephants. In this

example, we use thresholds of 5 and 20 to distinguish mole from mouse flows and mule

from mole flows, respectively; we set the threshold for network-wide elephants at 100. The

tables below each switch show the actual counts observed for flows f1- f5 at each switch.
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At switch A, we avoid maintaining state for mouse flows f3 and f5, but store the counts for

the local mule flow f1. At switch B, we store counters for f1- f4, but we do not report f4

to the coordinator because it is only a local mole. The coordinator is aware of all mules

( f1- f3) from both switches, but determines that only f1 and f2 are global, network-wide

elephants. In the case of f3, notice how both switches and the coordinator all have different

views of the total count for this flow. Since f3 is a mouse at switch A, the switch actually

has no information about the flow’s count at all. At switch B, flow f3 is a mule locally, but

since the switch reports to the coordinator only once every 20 counts (the mule threshold),

the coordinator believes the global count of f3 is only 80. In fact, the global count of f3

meets the network-wide threshold of 100, but our taxonomy of flows and their reporting

requirements would not identify f3 as a network-wide elephant; this is by design.

3.2.2 Probabilistic Counting and Reporting

Based on the above taxonomy, we must distinguish mice from moles and moles from mules.

Once differentiated, we must also determine how frequently to update the coordinator with

local information about the mules. In this section, we describe the techniques Herd uses

for doing so.

Distinguishing moles from mice. Many existing techniques for storing flow counters

with small state focus on accurately detecting only the local heaviest flows. For example,

using a count-min sketch does not eliminate storing state for small flows, but it does pro-

vide bounds on the error incurred by doing so. Using a count-min sketch would both violate

our goal of maintaining no state for mice, but we would also need a very large sketch to

overcome the error incurred by storing the small but numerous mouse flows. Similarly,

the space-saving algorithm [47] works well for storing local elephants, but that algorithm

would allow local mice to evict moles from the data structure, which would lead to inaccu-

rate results.

61



To avoid maintaining state for small flows, we use a data structure that relies on the

sample-and-hold technique [23] to pick the flows that are moles. In this technique, the

switch checks whether each incoming packet belongs to the set of moles. If so, it updates

the counter; otherwise, the switch chooses to start counting the flow with some sampling

probability (s). Effectively, this approach defines the set of moles as those whose count

is greater than (1/s), in expectation. We show how to choose s such that it reduces the

memory footprint without compromising the detection accuracy in Section 3.4.1.

Distinguishing mules from moles. Only a subset of the mole flows sampled will ever

become large enough to impact the global count for a given flow. We set a local threshold

(τ) for local flow counts such that 1/s < τ . This ensures that the set of mule flows is strictly

smaller than the set of mole flows. When a local mole flow’s count reaches τ , the switch

promotes the flow to a mule locally and reports to the central coordinator.

Reporting Mules. A network-wide, elephant flow might exceed this local threshold at

multiple switches. Requiring all switches to send reports each time (τ) packets are ob-

served for all mule flows to the coordinator would limit our system’s ability to support

large networks with many ingress switches. Rather than sending a report for each mule ev-

ery time τ packets are observed, we build on the theoretical approach first described in [81]

and report to the coordinator with probability (r) each time (τ) packets are observed for

a mule. The coordinator identifies a mule as a network-wide heavy hitter if it receives R

reports for this flow from any of the switches. We could choose to report very frequently

(e.g., r = 1) for high accuracy, or we could choose a lower value of r to lower the coordi-

nation overhead. In Section 3.3.1, we show how to select values for τ , r, and R that strike

a balance between detection accuracy and communication cost.
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3.3 Coordination Protocol

The coordination protocol must allow the edge switches to efficiently communicate to the

coordinator when they have observed counts that could be significant network-wide. The

protocol must therefore determine which flows are mule flows and when to report them

to the coordinator. In this section, we describe a protocol that sets the threshold for each

mole flow to become a mule, and then uses the reports about the mules to determine the

network-wide elephant flows. We then describe an extension to this protocol that leverages

the spatial-locality of network traffic to reduce the communication cost of the protocol.

3.3.1 When to Report Which Flows

Separating the Mules from Moles

Because heavy hitters represent a tiny fraction of the total number of flows, reporting coun-

ters for all flows to the coordinator is wasteful. To reduce the communication cost, we

design the coordination protocol such that switches can locally differentiate between moles

and mule flows, and only report mule flows to the coordinator. In distinguishing mule from

mole flows, the switch determines when the local contribution from a mole flow could sig-

nificantly impact a global count—answering which flows to report. The switch can perform

this discrimination by comparing the count of a mole to a local threshold (τ) set by the co-

ordinator. Once a mule flow is identified, the switch reports to the coordinator, each time a

bundle of τ packets is observed at the switch—answering when to report.

Scaling to Large Networks

However, the downside of the above technique is that it will not scale as the number of

switches in the network grows. Because a switch only reports a flow once for every τ

packets it observes, it will often have residual flow counts smaller than τ which have not
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Algorithm 1: Switch Algorithm
Input: Local Threshold (τ), Report Probability (r)
Func ProcessPacket(pkt):

f ← ExtractFlow(pkt)
exceeds← UpdateAndCheck(f,D)
if exceeds

if Flip(r)
Report(f)

D[ f ]← 0

yet been reported. In aggregate, these residual counts represent a “blind spot” for the

coordinator and necessarily cause inaccuracies in the global count it maintains.

As τ increases or the number of switches grows, the inaccuracy of the final results will

increase. One possible way to reduce the inaccuracy is to significantly lower τ . How-

ever, that would significantly increase communication, since the switch will produce many

more reports for each mule flow. Prior work [18] proposed a probabilistic reporting ap-

proach that scales with the number of switches in the network and proved its efficiency.

However, implementing this technique has proven to be challenging, and has yet to be im-

plemented [17]. We adapt this technique to account for flow locality and enable execution

on modern programmable switches.

Probabilistically Separating Elephants and Mules

Our algorithm for probabilistically reporting mule flows to the coordinator is described

in Algorithm 1. The function ProcessPacket processes every packet received by the

switch and ExtractFlow extracts from the packet the fields that identify flow f . The

function UpdateAndCheck updates the counter for this flow and compares it with a

local threshold (τ). In Section 3.4, we describe this function in more detail. If the updated

count exceeds τ , then the switch reports the flow to the coordinator with probability r.

Here D is just a simple key-value store and a single r and τ apply to all flows. By reporting

with probability r, each bundle reported now represents a count of τ/r in expectation,
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Algorithm 2: Coordinator Algorithm
Input: Reporting Threshold (R)
Output: Heavy Hitter Set (H)
Func HandleReport(f):

Reports f ← Reports f +1
if Reports f ≥ R

H← H ∪{ f}

which reduces the total number of reports that must be sent. The coordinator executes

Algorithm 2; after receiving a report for flow f , if the number of reports received for f

exceeds threshold R, the coordinator determines that this mule flow is now an elephant.

Configuring Parameters

Configuring the parameters (τ , r, and R) to strike a balance between accuracy and com-

munication cost is non-trivial. For example, we want to set τ high enough such that it

can effectively differentiate between the mule and mole flows without affecting the detec-

tion accuracy, but low enough that it does not increase the number of flows classified as

mules by the switch and, consequently, the communication cost, too significantly. Previ-

ous work [18] demonstrated tight bounds on communication and error by selecting specific

values of r = 1/k (k is the number of switches) and τ by introducing an approximation

factor (ε). Their results show that this approach can achieve high accuracy with modest

communication overhead that does not grow proportionally to the number of switches in

the network. We generalize the results from prior work by setting r = 1/k, τ = εT/k,

for 0 < ε < 1; the coordinator then determines that a flow is an elephant after receiving

R = kr/ε reports. When r = 1/k this threshold simplifies to R = 1/ε , but in Section 3.5

we describe how we might vary the value of r when tuning all of the Herd’s parameters

together.

Example. Let us consider an example topology with k = 10 switches, global threshold

T = 2500 and we choose an approximation factor of ε = 0.1. In this case, switches would
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report every τ = 25 packets to the coordinator with probability r = 0.1. The coordinator

would therefore declare any mule an elephant after receiving R = 10 reports. At this point,

a single τ and r apply to all flows at all switches in the network.

3.3.2 Locality-aware Reporting Parameters

The protocol we described in the previous section implicitly assumes that all of the k

switches in the network are equally likely to observe a portion of the traffic for a given

flow. This assumption results in lower local thresholds (τ) as networks grow large. A

smaller τ will result in the switch determining that more mole flows are mules, and, ulti-

mately, increase the communication cost. However, in practice, most flows exhibit spatial

locality, i.e., only a subset of edge switches observe traffic for a given flow. If a flow is only

observed at l << k locations, then we should configure the parameters based on this smaller

number of switches. Accounting for this locality would increase τ , which, in turn, ensures

that fewer moles are unnecessarily promoted to mules, thus reducing the communication

cost.

Configuring Parameters

We now require an additional parameter l f to account for the spatial locality. Here, l f de-

notes the number of switches that observe flow f . For now, we can assume that we know

the locality parameters for all flows a priori because forwarding state can be used to infer

this information. Accounting for this locality parameter, we adjust the local threshold as

τ = εT/l f and reporting probability as r = 1/l f for each flow at the switch. The coordi-

nator reports flow f as a heavy hitter when it receives R = 1/ε reports from the switches.

Returning to Algorithm 1, we must augment the key-value store D to maintain l f for each

flow. The values for τ and r are then calculated based on looking up D[ f ].l.
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Algorithm 3: Coordinator Algorithm for Learning l f

Func HandleHello (hello):
f ,s← ExtractFlow(hello)
if s /∈ S f

S f ← S f ∪ s
if |S f | ≥ 2l f

l f ← |S f |
Send(x ∈ S f , l f)

else
Send(s,l f)

Example. Let us return to our example with k = 10 switches, global threshold T = 2500,

and an approximation factor of ε = 0.1. Let us now consider that a particular flow f is

observed only at l f = 2 switches in the network. We now can increase both our bundle size

to τ f = 125 and reporting probability to r f = 0.5. The coordinator would still declare a

mule an elephant after receiving R = 10 reports for the flow, but there are now fewer mules

sending reports to the coordinator due to the larger bundle size. Now, the threshold (τ) and

reporting probability (r) can vary based on how many switches actually observe the flow.

Tracking Spatial Locality

In reality, the locality of flows in a network changes due to routing updates, misconfigu-

ration, and failure; l f must be tracked dynamically. Thus, Herd introduces a protocol that

independently tracks changes in the spatial locality for flows directly in the data plane. At

all times, a switch has knowledge of which flows it expects to observe (more on this in

Section 3.4.2). When a switch receives a packet it is not expecting, the switch sends a

Hello message to the coordinator. As shown in Algorithm 3, the coordinator extracts the

flow ( f ) and switch identifier (s) from the Hello message and looks up the value of l f . It

also updates a data structure (S f ) that maintains a mapping of flows to switches. Finally, it

sends the updated parameter to all switches in S f . To avoid updating the parameter due to

spurious or transient conditions, we choose to update the locality parameter for a flow only

when the set of switches actually observing the flow (S f ) doubles in size.
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3.4 Switch Data Structure

The coordination protocol described in the previous section assumed that switches could

store a counter and l f for each flow. Although modern programmable switches enable

flexible packet processing directly in the data plane, the amount of memory available for

stateful operations is orders of magnitude smaller than what the coordination protocol de-

scribed earlier requires. In this section, we again exploit the observations that (1) only a few

flows are heavy hitters, and (2) flows exhibit spatial locality to reduce the memory footprint

on the switches. We first describe how we avoid maintaining state for the many mice flows,

and then how we decouple storing the locality parameter from the flow counters,

3.4.1 Separating Mice from Moles

To reduce the memory footprint, we need a data structure that can avoid consuming re-

sources for local mice flows, which are too small to significantly contribute to a network-

wide elephant. This requires designing a data structure that can effectively and efficiently

separate mole flows from mouse flows.

Why not just use sketches? In order to separate mice from moles, we could use a count-

min sketch to estimate the size of all flows, and then only allocate an exact counter when a

flow exceeds some minimum threshold (τ ′ < τ). Conventionally, approximate data struc-

tures, such as count-min sketches, have been used to monitor heavy hitters with bounded

memory and error. [19, 83, 43, 44] Unfortunately, these data structures were designed for

tracking single-site elephants, and are therefore normally used for identifying flows which

take up a large portion of the traffic at a single switch. Using a count-min-sketch to accu-

rately estimate both mouse and mole flows instead would require much larger sketches to

achieve acceptable accuracy.

For example, a count-min sketch that uses b bits per row with r rows and processes N

packets will produce an estimate that errs at most 2N/b with probability at least 1− (1/2)r
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Algorithm 4: Sample and Hold Switch Algorithm
Func UpdateAndCheck( f ,D):

if f ∈ D
l f ← D[ f ].l
τ f ← εT/l f
D[ f ].count← D[ f ].count +1
if D[ f ].count ≥ τ f

D[ f ].count← 0
return True

else
if Flip(s)

D[ f ].count← v
return False

from the true count. Assuming 100M packets are processed by the switch in a monitoring

interval, setting b = 10K will result in an error of at most 20K and we would need to

allocate b = 100K to get an error of at most 2,000. For the task of counting small flows,

count-min-sketches do not strike the right balance between state and accuracy.

Sample and Hold the Moles. Although mice flows comprise a large portion of the to-

tal flows in a network, these flows are few in total packet count. Therefore, we can use

sampling to effectively filter out those flows whose count is less than the inverse of the

sampling probability, in expectation. For flows that we do sample, however, we store an

exact counter so that we can separate mules from moles as described in Section 3.3.1.

While this technique will not prevent all mouse flows from erroneously being promoted to

moles, it does eliminate enough mouse flows to store the sampled mole flows in the limited

switch memory.

We now describe in more detail the UpdateAndCheck function in Algorithm 4 using

a key-value store D of limited size. For each incoming packet belonging to a flow f , the

switch first checks if f is currently in the key-value store D. If not, the switch inserts f into

D with probability s. If the switch decides to insert the flow, it initializes the count in D

to an initial value (v = 1
s ). We discuss how to set sampling rates and initial values in more
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Figure 3.3: Herd Switch Data Structures for locality. We separate the groups for which we
track locality parameters from the flows that we are counting.

detail in Section 3.5. If the flow is in D, the switch first looks up the l f parameter stored

in D to calculate τ f and r f . The switch then updates the count and checks to see if it will

report this bundle of counts to the coordinator.

We can reduce the memory footprint of D by using a low sampling probability. How-

ever, we want a sampling probability high enough such that when sampled, the initial value

does not exceed (τ) automatically promoting all moles to mules. By selecting a sampling

probability greater than 1
τ

ensures that moles will not automatically be promoted to mules.

3.4.2 Locality-aware Data Structure

As we discussed in Section 3.3.2, a locality-aware coordination protocol ensures that

switches can use a higher reporting threshold τ f based on the locality parameter l f . How-

ever, the forces that affect flow locality (e.g., Internet routing) can operate at a granularity

independent of the granularity at which we may want to monitor flows. We must account

for this disparity in the locality-aware data structure.

Storing Parameters at the Granularity of Locality

So far, we have assumed that switches can calculate per-flow parameters such as report-

ing probability (r f ), and reporting threshold (τ f ) based on the locality parameter l f . The

overhead of maintaining these parameters at the flow-level of granularity could outweigh

the benefits of locality awareness both in terms of communication and memory costs. For-

tunately, the granularity at which flows exhibit spatial locality is much coarser than that
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Algorithm 5: Switch Algorithm
Input: See Table 3.1
Func ProcessPacket(pkt):

f ← ExtractFlow(pkt)
lg← GetLFromGroup(f)
τg,rg← τ = εT/lg, 1

lg
exceeds← UpdateAndCheck(f,D,τg)
if exceeds

if Flip(rg)
Report(f)

required for monitoring. For example, forwarding decisions are usually made at the gran-

ularity of source and/or destination IP prefixes, affecting where flows will display local-

ity. On the other hand, network operators might be interested in detecting heavy hitters at

the five-tuple or source-destination pair address granularity. We will now show how we

leverage this observation to reduce the memory footprint and communication overhead for

maintaining locality-aware parameters.

To leverage this observation, we define a group (gsrc,dst) based on source-destination IP

prefix pairs, such that gsrc,dst = { f | f .srcIP ∈ src, f .dstIP ∈ dst}. As shown in Figure 3.3,

rather than maintaining and updating the locality parameter on a per-flow basis, a switch

maintains the locality parameter based on the group that displays this locality. We store a

group (g) at a switch if at least one flow f ∈ gsrc,dst is observed at the switch. Algorithm 1

is modified so that the switch extracts the locality parameter lg for a flow f based on the

group to which the flow belongs. The switch then calculates the parameters τg and rg and

supplies τg as an additional parameter to UpdateAndCheck. The updated Algorithm 5

shows the small changes needed from the original switch algorithm. Algorithm 3 is also

modified slightly such that all variables indexed by f are now indexed by g.
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3.5 Tuning System Parameters

So far, we have discussed how we designed the coordination protocol and switch data

structure to achieve high accuracy with limited communication and memory costs. How-

ever, when configuring the parameters for each (e.g., sampling and reporting probability,

local threshold, etc.) in isolation, we may actually choose values for these parameters

that worsen performance under resource constraints. Given the operational constraints on

switch memory S and the communication overhead C, we now describe an algorithm for

determining the optimal parameter configuration such that the system achieves high detec-

tion accuracy within the constraints. In this section, we use representative packet traces to

first set the sampling rate based on the switch memory bounds (Section 3.5.1). We then

show how to set reporting parameters (Section 3.5.2) based on bandwidth constraints. Fi-

nally, we describe a heuristic algorithm that maximizes the detection accuracy for a given

bandwidth and memory budget (Section 3.5.3) by choosing “good” values of parameters

based on fundamental bounds (Section 3.5.4). In this section, we assume a single flow

group for the sake of clarity since the same process can be applied to multiple flow groups.

3.5.1 Sampling Based on State Constraints

If we had unlimited memory in the switch, we could maintain exact counters for all of

the flows by setting the sampling probability to s = 1. However, the available memory is

finite, and Herd needs to account for this limitation. Given the operational constraints on

a switch’s memory is S, our goal is to determine the highest sampling probability s that

satisfies this constraint given the workload.

If P denotes the number of packets observed by the switch, then we expect the memory

usage to be (sP). Therefore, the maximum sampling probability the switch data structure

could support is S
P for a given bound on switch memory S. However, if the flow size distri-

bution is known a priori, we can select a higher sampling probability, based on the number
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Symbol Meaning

Given

T Global threshold
C Communication budget per switch
S Memory budget per switch (# counters)
k Total number of ingress switches
l Number of switches which observe a flow
D Training Data

Determine

ε Approximation Factor
τ Local (Mule) threshold
M Set of moles observed at switch
U Set of mules at a switch
r Reporting probability to coordinator
s Sampling probability at a switch

Table 3.1: Network-Wide Heavy Hitter Parameters

of moles that the switch can maintain. The GetSampling function in Algorithm 6 shows

how we use the given data (D) to empirically determine the highest possible sampling prob-

ability, given the memory constraint S. Let M denote the set of mole flows observed at the

switch. The CalculateMoles function is used to calculate M, given the workload D

and sampling probability s; the function iteratively searches for the largest set M that the

switch can support.

Since we want to ensure that the actual set of moles sampled at the switch contains

true mules, we must carefully choose the sampling probability. Since mule flows have true

counts strictly greater than mole flows, then we must ensure that we sample with probability

greater than 1
τ

in order to ensure that the count of the sampled flows is strictly less than

the mule threshold τ , in expectation. In summary, the local mule threshold determines

the lower bound for sampling probability, and the available switch memory sets its upper

bound.
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3.5.2 Reporting Based on Communication Constraints

If we had unlimited bandwidth, we could set ε as small as needed to achieve the desired

accuracy and incur the resulting communication overhead. However, communication re-

sources are also constrained so we need to adjust the system parameters accordingly. Given

the communication bound C, we must configure the reporting probability.

In section 3.3.1, we calculate the reporting probability as 1
l to achieve good accuracy

and grow to large size networks. However, we must adjust the local threshold (τ), reporting

probability (r), and global reporting threshold (R) for high accuracy given communication

constraints. The function DeriveReporting configures these parameters based on a

given value of (ε). A switch sends T
τ

reports to the coordinator for each mule flow when r =

1. We denote U to be the set of mule flows observed at a switch. The CalculateMules

function is used to determine U , given the set of moles and the local threshold as input.

Finally, the algorithm uses the set of mule flows and the communication budget to calculate

the reporting probability. The total number of reports sent to the coordinator is bound by

the total number T |U |r
τ

, in expectation. For a given bound on communication overhead C,

the upper bound on reporting probability is, therefore, C·τ
T |U | .

3.5.3 Tuning for High Accuracy

Once we have set the sampling rate and given a mechanism for determining the reporting

probability, we can now find an optimal local threshold. Since the local threshold can be

tuned with the approximation factor ε , we describe an algorithm that searches for an opti-

mal value based on the given parameters of the system. In the TuneAccuracy function,

the algorithm uses representative packet traces to empirically compute the moles and mules

and set the parameters of the system as described above. After calculating all parameters,

the algorithm calls the GetAccuracy function to determine the accuracy of the System

using this parameter configuration. The algorithm then iteratively searches for a value of ε
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Algorithm 6: Algorithm for tuning parameters.
Func GetSampling(S,D,mole tau):

s← 1
mole tau

M← CalculateMoles(D, s)
// Section 3.5.1

while |M|< S do
mole tau← mole tau−1
M← CalculateMoles(D, s)

end
return mole tau

Func DeriveReporting(C,ε, l,s):
τ ← εT

l // Section 3.5.2
M← CalculateMoles(D, s)
U ← CalculateMules(M, τ)

r← C·τ
T |U |

R← l·r
T

return R,U,r,τ

Func TuneAccuracy(T,S,C,D, l):
Amax← 0 // Section 3.5.3
mole tau← GetSampling(S,D,T)
s← 1

mole tau
while ε ∈ [εmax . . .εmin] do

R,U,r,τ ← DeriveReporting(C,ε, l,s)
A← GetAccuracy(D, R, T, U, r, s, τ,)
if A≥ Amax

εmax← ε

ε ← ε−σ // Section 3.5.4
Amax← A

else
break

end

that is at least εmin where the accuracy of a succeeding iteration is less than the preceding

iteration and then terminates.

3.5.4 Selecting the Right Values of ε

Näively choosing values of ε without regard to the other parameters can actually result in

poor system performance. By wisely selecting values of ε , we can both reduce the range
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of possible values for ε that Algorithm 6 has to explore and avoid the detrimental effects

that can occur when discretizing parameters. For example, although ε is a real number,

it is used to calculate integer thresholds for the local switches (τ) and the global number

of reports (R). When determining these discrete values based on a continuous calculation,

rounding can significantly degrade System performance, which we describe and show later

in Section 3.7.2. To reduce this error, we can select values of ε that result in whole integer

values for other parameters. First, we begin by asserting that there are maximum (εmax)

and minimum values (εmin) that we wish to explore shown here in Theorems 1, 2.

Theorem 1 (εmin) For all k, l,T , where k ≥ l, there exists an εmin such that τ ≥ 1.

T ε

max(k, l)
= τ

T εmin

max(k, l)
≥ 1

T εmin

k
≥ 1

εmin ≥
k
T

Since we also know that as the local threshold on the switch grows too large, the accuracy

of the system degrades. Consequently, we can ignore values of ε that would result in local

thresholds larger than (T/k), shown here in Theorem 2.

Theorem 2 (εmax) For all k, l,T , where k ≥ l and τ ≤ T
k , there exists an εmax.

T εmax

min(k, l)
≤ T

k

εmax

l
≤ 1

k

εmax ≤
l
k
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Intuitively, we also know that, εmax ≥ εmin and whenever that condition does not hold,

we cannot use our algorithm to find the best value of ε . We can use Theorems 1 and 2 to

determine in what combination of compatible parameters this condition will hold.

Theorem 3 (Parameter Compatibility) By Theorem 1,2, for all k, l,T , where k ≥ l, pa-

rameters are compatible when εmax ≥ εmin.

l
k
≥ εmax ≥ εmin ≥

k
T

l
k
≥ k

T

1≥ k2

T · l

T ≥ k2

l

To minimize quantization error when selecting values of ε , we should seek to ensure

that the calculated local threshold is a whole integer without rounding. To achieve this, we

select a quantization step (σ = l
T ) and set ε as an integer factor of this step to ensure that

all values of τ are whole integers.

Theorem 4 (Quantization Factor (σ )) For all k, l,T,ε,τ , where σ = l
T there exists an

integer factor (n) that ensures τ is a whole integer.

ε = σn

τ =
T ε

l

τ = n
T σ

l

τ = n
T
l
· l

T

τ = n

77



Finally, we can use Theorems 1, 2 and 4 to determine the values of nmin and nmax.

σ ·nmin ≥ εmin ≥
k
T

l
T
·nmin ≥

k
T

nmin ≥
k
l

σ ·nmax ≤ εmax ≤
l
k

l
T
·nmax ≤

l
k

nmax ≤
T
k

In this section, we have showed how to tune Herd’s parameters for best accuracy given

resource constraints. We used an offline algorithm to empirically determine the mole and

mule flows for a combination of system parameters. The size of these sets determined the

sampling probability (s) and reporting probability (r) based on resource constraints. We

also analytically showed how to best configure the approximation parameter (ε) to reduce

the search space of our algorithm and appropriately discretize system parameters to reduce

quantization error.

3.6 P4 Prototype

We now describe our P4 prototype that is subject to the same constraints as described in

Section 2.3.1 and implements both the coordination protocol and switch data structure pre-

viously described. In this section, we first describe the overall structure of our P4 prototype

and then describe the challenges that we faced while implementing our prototype in this

architecture.
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3.6.1 The Life of a Packet

When a packet enters the PISA pipeline, we first determine to which group (gsrc,dst) the

packet belongs. The group identifier is then used to match a rule in a match-action table

(Section 3.6.2), in order to determine the local threshold (τg), and reporting probability (rg)

for that group. Next, two independent but biased coin flips (Section 3.6.3) are performed;

the first coin flip is based on the sampling probability (s) and the second based on the

reporting probability (r). Both results are stored as packet metadata values f lip1 and f lip2,

respectively, for use later in the pipeline. Finally, we must check if the flow is stored in the

hash tables that implement the key-value store D (Section 3.6.4). If the flow is found,

its counter is incremented. If the counter is greater than τg, the counter is reset to 0; if

f lip2 == true as well, a report is then sent for this flow. If the flow was not found and

f lip1 == true, then the flow is sampled and stored in the hash table. If no empty space

is found in the hash table, then the packets in the flow are sent to the coordinator—trading

communication cost for accuracy.

3.6.2 Storing Locality Parameters with Match-Action Tables

So far, our presentation of the switch data structure assumed that the switch could com-

pute the local threshold (τg), and reporting probability (rg) by itself if it knew lg. However

in practice, such computations require floating point arithmetic that is currently not sup-

ported in PISA switches. Since both parameters are specific to each locality group, we

can store both parameters in a match-action table as shown in Figure 3.3. However, in-

stead of storing lg itself, we can precompute the values of (τg) and (rg) and store them

instead. The function GetLFromGroup and the subsequent calculation using lg in Al-

gorithm 5 is actually implemented as a single lookup in the match-action table where τg

and rg are stored. These values are then copied to the packet’s metadata field for use in

the UpdateAndCheck and Flip functions. Our implementation intentionally deviates
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from Algorithm 5 to demonstrate how seemingly simple algorithms must be altered in order

implement them on (today’s) PISA switches.

3.6.3 Flipping Coins with Hashes

The Flip function, used in Algorithms 2, 4, and 5, requires flipping a biased coin in the

switch. A naı̈ve implementation of Flip also requires support for floating point arithmetic

on the switch. Instead, we represent floating point values (0< i≤ 1.0) as unsigned integers,

which is similar to how other works [8] have implemented probabilistic techniques with

PISA switches. We then use a combination of a packet’s timestamp and other header fields

to compute a 32-bit hash value. A Flip operation returns True if the computed hash is

less than
⌈
232i

⌉
. This approach introduces a small quantization error since we can only

represent probabilities as multiples of 1
232 .

3.6.4 Key-Value Store with Hash Tables

The UpdateAndCheck function (detailed in Algorithm 4) for updating the counters of

mole flows requires implementing the key-value data store D. We can implement this

data store as a hash-indexed register array within a single stage. However, these hash-

indexed arrays will likely encounter collisions in a single stage. To address this problem,

we implement D as a multi-stage hash-table. When inserting a value into D, we insert the

value in the first hash table that contains no collision. Though this approach ensures that

a switch can maintain counters for a large number of mole flows, the limited memory per

stage and number of stages ensures that collisions are inevitable as the number of flows

grows large.
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3.7 Evaluation

In this section, we quantify how Herd makes efficient use of limited communication and

state resources to detect network-wide heavy hitters with as high accuracy as possible. We

use real-world packet traces to demonstrate how combining probabilistic counting with

probabilistic reporting reduces Herd’s memory footprint by 38% and bandwidth footprint

by 17% to report network-wide heavy hitters with 97% accuracy.

3.7.1 Setup

To quantify Herd’s performance, we run a simple network-wide heavy-hitter query to de-

termine which flows (based on the standard five-tuple of source/destination IP address,

source/destination port, and transport protocol) send a number of packets greater than a

global threshold (T ) during a rolling time window (W ).

Simulation experiments. For our experiments, we monitor at the edge switches of the

network where the number of edge switches (k) is 10 — representative of a wide-area

network connecting multiple data centers for cloud providers [35]. For all experiments,

each flow shows affinity for two ingress switches, i.e., l = 2, based on the source IP address.

We choose a global threshold that corresponds to the 99.99th percentile flow count in the

packet trace.

Packet traces. To emulate real-world traffic distributions, we used CAIDA’s anonymized

Internet traces from 2016 [64]. These traces consist of all the traffic traversing a single OC-

192 link between Seattle and Chicago within a major ISP’s backbone network. Each minute

of the trace consists of approximately 64 million packets. For our experiments, we use a

time window (W ) of five seconds resulting in around 5 million packets per window, which

translates to around 270K unique flows per window.
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Technique Prob.
Counting

Prob.
Reporting

State
Required

Strawman 7 7 345K
RLA 7 3 345K
Sampling 7 3 N/A
Herd 3 3 211K

Table 3.2: Comparison with other Heavy-Hitter detection techniques. Herd combines both
probabilistic counting and reporting where other approaches use only one.

Since the packet traces are collected from a single link only, we associate packets from

the trace with a given ingress switch based on a hash of the source IP address. For each

source IP address, we assign an affinity for a specific ingress switch with probability p.

Packets from a given source IP are, therefore, processed at a “preferred” switch with prob-

ability p and at the other switches with probability (1− p). For the case of l = 2, this

distribution simulates a primary/alternate relationship on ingress for a single source and

p = 0.95.

3.7.2 Baseline Herd Performance

To demonstrate the benefits of combining probabilistic counting and reporting, we quantify

the amount of state and communication overhead for Herd and compare it with the existing

heavy-hitter detection techniques that either employ probabilistic counting or reporting, but

not both.

Alternative Approaches. First, we consider a strawman solution that makes use of nei-

ther probabilistic counting or reporting; each switch maintains counters for every flow (all

flows are moles) and reports all the counters to a central coordinator at the end of a window.

Second, we consider a solution based on the randomized reporting technique [18]; where

the switch still treats all flows as moles, but it probabilistically reports mules to the coordi-

nator with parameters that ignore locality. Finally, we consider a solution based on packet
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Figure 3.4: Communication vs. Accuracy. Herd can achieve accurate results with compa-
rably lower communication overhead than existing approaches.

sampling technique [56], which probabilistically samples packets based on a sampling rate

and reports all of those samples to the coordinator.

Communication and State Savings. We quantify the state overhead as the number of

stateful counters required at the switch and the communication overhead as kilobytes sent

to the coordinator for each window interval. We quantify accuracy in terms of both pre-

cision (PR) and recall (RE) and present them as a single F1 score calculated as 2×PR×RE
PR+RE .

In Table 3.2, we see that Herd achieves 38% savings in the state required for alternate ap-

proaches. In Figure 3.4, we compare how much communication is needed to reach a certain

level of accuracy. We see that to achieve an F1 score of 97%, Herd communicates 17% less

than sampling packets with a probability of 0.075.

Sensitivity to Heavy-Hitter Threshold. We see in Figure 3.4, that Herd can achieve

higher accuracy for less bandwidth compared to existing approaches. As the threshold for

heavy-hitters decreases, this advantage becomes more pronounced. In Figure 3.5, we show

the communication/accuracy tradeoff compared with sampling for three different heavy-

hitter thresholds ranging from the 99.99th percentile to the 99th percentile threshold. In

each case, we see that Herd performs strictly better than the sampling approach except
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Figure 3.5: Accuracy vs. Communication Cost and Threshold. Each line shows the cost
(communication) to achieve a given (a) precision/(b) recall for a given heavy-hitter thresh-
old (99.99th percentile to 99th percentile). Each point on the line is a particular sampling
rate or value of ε .

in the 99.99th percentile threshold and the sampling probability is greater than 0.05 – an

unrealistically-high sampling probability for modern data centers.

3.7.3 Tuning for Resource Constraints

So far, we have demonstrated that combining probabilistic counting with reporting reduces

both the memory and bandwidth footprint for detecting network-wide heavy hitters. We

will now show the relationship between Herd’s performance (accuracy) and configuration

parameters (ε) for different operational constraints. These relationships guide the design

of our tuning algorithm.

Unconstrained Performance. We first show the relationship between accuracy and con-

figuration parameters (derived from ε) for the unconstrained case. Figure 3.6, shows both

precision and recall for Herd while varying ε without any resource constraints. As we

choose a smaller epsilon, the accuracy of the results improves at the cost of additional

communication. However, we do see that this relationship is not strictly monotonic. We

observe the bands of decreasing precision when ε is very large or very small. These bands

are caused by the the quantization errors introduced when discretizing system parameters

84



10−3 10−2 10−1 100

(psilRn

20

40

60

80

100

A
cc

ur
ac

y 
(%

)

Recall
3recisiRn

(a) Un-quantized Values of ε

10−2 10−1 100

Epsilon

20

40

60

80

100

Ac
cu

rac
y (

%)

Recall
Precision

(b) Quantized Values of ε

Figure 3.6: Precision and recall as we vary ε without resource constraints, (a) with unquan-
tized values of ε and (b) with properly quantized values of ε .

such as τ and R (discussed in Section 3.5.4). For example, in the bands of decreasing pre-

cision on the right of Figure 3.6a, each data point corresponds to a single global reporting

threshold (R) but a range of local thresholds (τ) that can vary by up to a thousand. On the,

left side of the graph, the opposite is true; a single local threshold uses a range of global

reporting thresholds. By properly quantizing values of epsilon as shown in Section 3.5.4,

we do not observe these artifacts as shown in Figure 3.6b.

Constrained State. Here, we limit the number of counters each switch can store. By

choosing the sample-and-hold technique for storing counters at switches, we expect that

for a given state capacity (S) and sampling probability (s), the data structure will contain

a mixture of both small and heavy flows. However, as we increase S and s, we will count

more small flows in expectation. As shown in Figure 3.7a, increasing S and s improves the

precision of the results, but the improvement diminishes as S grows large.

Constrained Communication. We expect that as we decrease ε , we should increase

communication and increase the accuracy of the results. Algorithm 6, shows us how to ad-

just the reporting probability based on the available communication capacity (C), however,

as we decrease the reporting probability and the reporting threshold to cope with the com-
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Figure 3.7: Precision for various ε (a) constrained in state, but unconstrained by communi-
cation, and (b) constrained in communication, but unconstrained by state.

munication bound, too many false positives are generated as shown in Figure 3.7b. This

trend is not reflected in the unconstrained case.

These results show that the relationship between accuracy and ε is non-monotonic,

though communication and state costs do monotonically decrease as ε increases. These

observations guided the design of our tuning algorithm that empirically tries to find the

largest value of ε that achieves the highest detection accuracy.

Tuning Efficacy. To determine the effectiveness of our tuning algorithm, we varied both

state and communication constraints and let Algorithm 6 find the best value of ε . In Fig-

ure 3.8a, we see the performance of our tuning algorithm when both state and communi-

cation constraints are imposed, shown on the x and y-axes, respectively. We see that as

resource constraints are relaxed, the system finds a smaller value of ε . In Figure 3.8b, we

see the system’s accuracy under the same constraints using the best value of ε determined

by the system. Herd is able to produce more accurate results as the constraints are relaxed,

but Herd also provides good accuracy even under strict memory and bandwidth constraints.
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Figure 3.8: Efficacy of tuning. State constraints in (KB) are shown on the x-axes and
communication constraints are on the y-axes. The value depicted in the heatmap reflects
(a) the best value of ε after tuning, and (b) the best accuracy that is achieved using the best
epsilon. Here, accuracy is the average of the precision and recall.

3.8 Related Work

Single-switch heavy hitters with limited state. Prior work showed how to use compact

data structures (e.g., count-min sketch [19] and Space-Saving [47]) to compute heavy hit-

ters on a single switch. However, Sivaraman et al. [68] showed that implementing such

algorithms with state-of-the-art programmable switches is difficult. Similarly, other tech-

niques such as Cuckoo [55] and d-left [79] hashing can detect heavy hitters with small

state, but they prove to be impossible or impractical to implement in modern programmable

switches [12]. Recent work, such as ElasticSketch [80], offers a technique to avoid main-

taining state for mouse flows in the data plane by offloading the computation to the control

plane. Our approach, based on the sample-and-hold [23] technique, uses sampling to filter

out mice flows completely in the data plane and only maintains per-flow state for potential

heavy hitters.

Scalable measurement techniques. NetFlow [15] was the first standardized approach

for both storing flow counters on switches and communicating them to a collector from

network switches. However, Netflow incurs significant CPU overhead or specialized hard-

ware to run efficiently. Packet sampling [56] emerged as the de facto technique to cope
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with both the memory and communication limitations for detecting heavy hitters. How-

ever, packet sampling can introduce significant inaccuracy to detecting heavy hitters, espe-

cially on small time scales [56]. FlowRadar [43] reduces the memory and communication

overhead of implementing a NetFlow-like monitoring system, using a novel encoding of

flow counters. However, it focuses on providing full visibility into all flows all the time

rather than the heavy hitters. Similarly, CSamp [67] provides a sampling mechanism for

network-wide measurements. While both of these works are general-purpose solutions for

performing network-wide measurement of most flows, we offer a tailored solution for con-

tinuous, network-wide monitoring of a global threshold distributed across several switches.

Furthermore, SketchVisor [33] provides a technique for local and network-wide measure-

ments, yet they do so using software packet processing which limits its ability to handle

very high data rates. Our work focuses on extending the formal definition of the problem

and how to implement a solution within the constraints of programmable switches.

Network-wide heavy hitters with limited communication. Detecting network-wide

heavy hitters is an instance of the continuous distributed monitoring (CDM) problem [17].

This formulation of the problem has enabled theoretical analyses that demonstrated upper

and lower bounds on the communication complexity [18, 81] for both deterministic and

randomized solutions. In our work, we extend the basic model from these theoretical

works to account for the realities of flow affinity in modern networks [66, 65], as well as

the capabilities of programmable switches to support these protocols. Recent work [31]

showed that using adaptive local thresholds to account for flow locality could reduce com-

munication overhead for computing network-wide heavy hitters exactly, but that solution

does not scale as the number of nodes increases and requires much more communication

overhead than our approach. In contrast, our work accounts for flow locality in the CDM

model and the communication costs do not scale in proportion to the number of switches

in the network. Our solution also offers tunable accuracy based on bandwidth constraints.
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Chapter 4

Conclusion

4.1 Scalable, Network-Wide Telemetry

The need for scalable, network-wide telemetry exists now and will only intensify as the

Internet-of-Things grows to over 100 billion connected devices in the coming years [61].

This dissertation has provided an architecture and two systems that help realize scalable,

network-wide telemetry. The systems presented in this dissertation balanced the need to

perform flexible and fine-grained telemetry queries with the memory, compute and band-

width resources available to execute them with high accuracy. We leveraged the power

of PISA switches both to achieve scale and to implement novel algorithms not previously

implemented in hardware. Taken together, these systems can scalably execute a flexible

range of queries on a single switch and provide network-wide view for a narrower range of

queries in a scalable way.

4.1.1 Flexible and Scalable Telemetry with Sonata

Sonata combines the best of hardware and software query processing to achieve scalable

execution for a high-level and flexible query language. Sonata models the resource con-

straints of modern PISA hardware, compiles high-level query operators to PISA primitives,
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and solves an optimization problem that partitions high-level queries across the hardware

and software resources given resource constraints and a representative workload. Our im-

plementation and evaluation show that we can reduce the processing load on a software

stream processor by up to seven orders of magnitude.

4.1.2 Scalable, Continuous, Network-wide Telemetry with Herd

While Sonata enables partitioning flexible queries across a single switch and stream proces-

sor cluster, Herd enables the accurate execution of a subset of these queries in a network-

wide setting. Herd performs continuous distributed monitoring to enforce a global thresh-

old on flow packet counts across a distributed set of switches with a cost that does not grow

in proportion to the number of switches in the network. We use well-known algorithmic

building blocks and model the relationship between their parameters to cope with memory

and bandwidth constraints while providing high accuracy under those constraints.

4.2 Lessons Learned

Through the design and implementation of both Sonata and Herd, we make the following

observations for building future network telemetry systems.

4.2.1 Federating Systems for Network Telemetry

In building Sonata, we faced a scalability challenge to answer packet-level queries about

the state of the network. To handle this scalability challenge, we used PISA switches

to partition queries and reduce the amount of processing by general-purpose CPUs (Sec-

tion 2.4). Using PISA switches in this way is one example of federating all available

computing resources, each having different strengths and weaknesses, to achieve scale. As

we generate, process, and transmit more and more data each day, federating all available

computing resources to scale network telemetry will become even more important. By fed-
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erating disparate computing resources, telemetry systems will begin to look more and more

like distributed systems. As these distributed systems become even more mission-critical

to network management and network security, network operators will simultaneously de-

mand that they also be highly available and fault tolerant. These new requirements will

likely profoundly change the way we design and build networks to provide the computa-

tional capacity, in the right places, needed to make network telemetry a first-class citizen.

4.2.2 Reconciling Advances in Theory and Constraints in Practice

In addition to using heterogeneous compute resources to handle the scalability challenges

inherent to network telemetry, we will continue to rely on algorithms that are amenable to

distribution across a federation of devices. However, these algorithms must not only of-

fer provable bounds on paper, they must be practically deployable on a range of different

devices given the resources and constraints of those devices. In the design and implemen-

tation of Herd, we had to discount several candidate data structures because of the resource

limitations on the PISA switches. Additionally, we had to modify existing algorithms in

order to eliminate errors induced when translating theoretical results into practice (Sec-

tion 3.5.4). Building network telemetry systems that can federate all available computa-

tional resources will rely on bridging the gap between the assumptions made in theoretical

work with the practical constraints imposed by the myriad devices supporting the system.

4.3 Future Directions in Network Telemetry

While Sonata and Herd make important advances toward realizing a fully top-down net-

work telemetry system, there are still substantial advances to be made in future work, es-

pecially if we seek to achieve intent-driven and automated network control.
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4.3.1 Online Cost Modeling and Prediction

Both Sonata and Herd rely on offline mechanisms to estimate the costs of executing queries

with a particular set of system parameters. While effective, this approach limits both sys-

tems by the availability, fidelity, and stationarity of the data supporting the offline analysis.

Being able to model query costs in an online manner or by learning a model to predict

query costs would eliminate this dependency and enhance both systems’ effectiveness.

4.3.2 Supporting Additional Network Views

While Herd enables executing a particular subset of Sonata queries distributed across a

collection of ingress switches, telemetry systems should also support distributing query

execution for other kinds of network views, such as along a specific network path [52]

or in arbitrary aggregates. However, some types of queries just cannot be executed in a

distributed fashion, e.g., performing a reduce operation with a function that is not com-

mutative or associative. Extending Sonata and Herd to support queries along a path or with

arbitrary aggregation will require an extensive query planner that accounts for the distri-

bution and coordination costs of these queries and incorporates them into our optimization

problem along with partitioning and refinement.

4.3.3 Federating Additional Computing Resources

While Sonata itself already has a modular architecture for incorporating heterogeneous

switch targets, additional processing resources that do not fit into the current optimization

problem should be accounted for. Application specific integrated circuits (ASICs), field-

programmable gate arrays (FPGAs), and Network Processing Units (NPUs), could all offer

additional computational resources to which portions of queries could be partitioned. How-

ever, each of these devices has a slightly different processing and cost model that, to date,

is not accounted for in Sonata’s query planner. However, these additional computing re-
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sources should fit within our optimization framework of compiling high-level operators into

each architecture’s low-level primitives while accounting for the costs of those primitives.
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