
Learning and Deploying Local Features

Linguang Zhang

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Computer Science

Adviser: Professor Szymon M. Rusinkiewicz

June 2019

c© Copyright by Linguang Zhang, 2019.

All rights reserved.

Abstract

Many computer vision applications including image matching, image-based recon-

struction and localization rely on extracting and matching robust local features. A

typical local feature pipeline first detects repeatable keypoints in the image (i.e., key-

point detector), and then computes a short vector to uniquely describe each keypoint

(i.e., feature descriptor). Both the keypoint detector and the feature descriptor are

conventionally hand-crafted based on what is intuitive to the designer. For exam-

ple, corners or blobs are popular choices of keypoints, and the image gradient is a

useful clue for descriptors. However, it is often difficult to define these principles to

accommodate various applications. In this thesis, we study data-driven approaches

which can more easily tailor the local feature pipeline for target applications. We start

with a mobile robotics application that leverages local features extracted from ground

texture images to achieve high-precision global localization. The second part of the

thesis addresses the problem that existing keypoint detectors that are optimized for

natural images suffer from sub-optimal performance on texture images. We therefore

learn a keypoint detector specifically for each type of texture using a deep neural net-

work. Our detector automatically learns to identify keypoints that are distinctive in

the target texture rather than relying on a set of pre-defined rules. Finally, we focus

on a non-parametric approach for learning feature descriptors. Many well-performing

local feature descriptors are trained using a triplet loss that includes a tunable mar-

gin, which limits its ability to generalize to other types of data and problems. We

propose to replace the hard margin with a soft margin that self-tunes as learning

progresses. To summarize, we first demonstrate through a novel visual-based local-

ization system where a customized local feature pipeline is critical. Then, we tackle

both the keypoint detector and the feature descriptor with generalizable data-driven

approaches.

iii

Acknowledgements

I would like to express my deepest gratitude to my advisor, Szymon Rusinkiewicz, for

his guidance, patience and encouragement throughout my PhD study. His research

insights, positive attitude, and immense knowledge will continue to inspire me in my

future journeys.

Besides my advisor, I would like to thank the rest of my committee members: Jia

Deng, Adam Finkelstein, Thomas Funkhouser, and Olga Russakovsky, for their time

and insightful feedback.

I am grateful to Adam Finkelstein for his contributions to Chapter 2 and 3, Olga

Russakovsky for her helpful suggestions on Chapter 3, and all anonymous reviewers

for their invaluable comments. I was fortunate to have the opportunities to work with

many fantastic industrial researchers, including Vladlen Koltun, Alejandro Troccoli,

Jan Kautz, Beibei Liu, and Robert Wang. I would like to thank them for generously

sharing their knowledge and making my summer internships both eye-opening and

rewarding. I am indebted to my undergraduate advisor, Chi-Keung Tang, for guiding

me into the field of vision and graphics. He never ceases to inspire and encourage

me during the hard times. I am also thankful to my labmates from the PIXL group.

My past five years at Princeton would not be such a wonderful experience without

them. I thank the coffee/tea squad for helping me keep hydrated. Special thanks go

to Jeffrey Dwoskin for providing the LATEX template, which is used for the creation

of this work. My research is supported by NSF grants IIS1421435, CHS-1617236 and

IIS-1815070.

A very special gratitude goes out to Elaine Zheng for her continuous understand-

ing, care, and encouragement. She has witnessed my ups and downs during my study

and has always been a great listener and companion.

Finally and most importantly, I would like to dedicate this thesis to my parents,

for their endless love and support.

iv

To my parents.

v

Contents

Abstract . iii

Acknowledgements . iv

List of Tables . ix

List of Figures . xi

1 Introduction 1

1.1 Contributions . 6

2 High-Precision Localization Using Ground Texture 8

2.1 Introduction . 8

2.2 Related Work . 12

2.3 Mapping . 17

2.3.1 Hardware Setup and Data Collection 17

2.3.2 Image Stitching . 18

2.3.3 Scaling to Larger Areas . 20

2.3.4 Database Construction . 22

2.4 Localization . 24

2.5 Datasets . 26

2.5.1 Indoor Datasets . 27

2.5.2 Outdoor Datasets . 28

2.6 Evaluation . 29

vi

2.6.1 Impact of Design Decisions . 30

2.6.2 Comparison with Image Retrieval 36

2.6.3 Downward- vs. Outward-Facing Cameras 38

2.6.4 Robustness . 40

2.6.5 Efficiency . 43

2.7 Application: Automatic Path Following 43

2.8 Application: Capture of Foot Placement 45

2.9 Discussion, Limitations, and Future Work 46

3 Learning to Detect Features in Texture Images 51

3.1 Introduction . 51

3.2 Related Work . 54

3.2.1 Hand-Crafted Feature Detectors 55

3.2.2 Learned Feature Detectors . 55

3.3 Approach . 56

3.3.1 Feature Detection by Ranking 57

3.3.2 Optimizing Peakedness of the Response 59

3.3.3 Implementation . 61

3.3.4 Datasets . 61

3.3.5 Training . 62

3.3.6 Feature Detection in a Test Image 63

3.3.7 Computational Efficiency . 63

3.4 Results . 64

3.4.1 Evaluation Protocol . 64

3.4.2 Performance . 64

3.4.3 Impact of Parameters . 67

3.4.4 Cross Evaluation . 70

3.4.5 Effectiveness in Micro-GPS 73

vii

3.5 Conclusion and Future Work . 74

4 Learning Local Descriptors with Dynamic Soft Margin 75

4.1 Introduction . 75

4.2 Related Work . 77

4.3 Learning Local Descriptors . 80

4.3.1 Real-Valued Descriptors . 80

4.3.2 Binary Descriptors . 82

4.4 Dynamic Soft Margin . 83

4.4.1 Behavior of the Triplet Margin Loss 83

4.4.2 Dynamic Triplet Weighting 86

4.5 Experiments . 88

4.5.1 Implementation . 88

4.5.2 UBC PhotoTourism . 89

4.5.3 HPatches . 90

4.5.4 Image Matching on the Oxford Dataset 92

4.6 Ablation Studies . 93

4.6.1 Existing Alternatives to Static Hard Margin 93

4.6.2 Different Ways to Construct the PDF 94

4.7 Conclusion . 95

5 Conclusion and Future Work 96

A Micro-GPS Datasets 102

Bibliography 111

viii

List of Tables

2.1 Performance of Micro-GPS. From left to right: texture type, elapsed

time between capture of database and test sequence, number of test

frames, and success rates using 8- and 16-dimensional descriptors. . . 29

2.2 Descriptor distinctiveness after dimensionality reduction using a fully-

connected perceptron layer (1-fc), using either random or PCA initial-

ization. We find that PCA is superior to both of these approaches.

. 33

2.3 For each type of texture, we evaluate the success rate (in percentage)

by running our system with PCA bases computed from each texture

and the union of all textures. Best numbers are bolded. 34

2.4 Performance of the image retrieval system, tuned to consume the same

storage as Micro-GPS (cf. Table 2.1). From left to right: texture type,

dimensionality of the descriptors used by Micro-GPS (used for setting

the number of features for image retrieval, to ensure equivalent storage),

and retrieval rates achieved using 8-, 16-, and 128-bit binary signatures. 37

2.5 Computational time breakdown for localization using 8- and 16-

dimensional descriptors, measured on the carpet dataset. 43

3.1 Architecture of the proposed scoring network. Note that “Conv3-9”

means repeating the layer for 7 times. 62

ix

3.2 For each method, we show the number of repeatable features detected

(across 20 images, keeping a maximum of 200 features per image), the

total number of detected features and the overall repeatability repre-

sented in percentage. 65

4.1 Evaluation on the UBC PhotoTourism dataset, demonstrating that

both real-valued and binary descriptors trained using our method out-

perform the state of the art. Second column shows the descriptor

dimensionality. Numbers shown are FPR95(%) – lower is better. “+”

and “*” denote training with data augmentation and anchor swap-

ping [10]. DOAP-ST+ represents the DOAP descriptor with a Spatial

Transformer [33] to compensate for geometric noise. 90

4.2 Comparing existing alternatives to Static Hard Margin with our Dy-

namic Soft Margin. 93

4.3 Comparing different ways to construct the PDF. 94

x

List of Figures

1.1 A standard local feature pipeline. 2

1.2 Examples images from different domains. 3

2.1 System overview. Our test robot features an NVIDIA Jetson TX1

development board, which controls a Point Grey mono camera. A

light shield and ring of LEDs around the camera provide controlled

lighting. We first capture database images as a preprocess, and stitch

them into a globally consistent map. Later, to locate the robot, we

extract features from a query image, and they vote for potential image

poses in the map. A peak in the voting map determines inlier features,

from which we recover the pose of the query image. 10

2.2 Image stitching pipeline. (a) Initial stitched map, in which severe drift

can be observed. (b) Loop-closure pairs found by matching neighbor-

ing frames between columns of images. (c) Stitched map after global

optimization. 19

2.3 Region linking. The full map is constructed from four pre-stitched

regions. (a) Initial linking result. (b) After global optimization. (c)

Close-ups of the region marked in red, before and after local refinement. 21

xi

2.4 Top left: A simple strategy would be to vote for the locations of

matched features. Right: We instead employ a “precise” voting strat-

egy in which each feature votes for the location where the origin of the

test image would be located in the map, if that feature were a correct

match. True matches lead to a concentration of votes. Bottom left:

The precise voting leads to a more defined local maximum. 25

2.5 The average performance of different detector + descriptor combina-

tions on both indoor and outdoor datasets. The horizontal axis indi-

cates the dimensionality of descriptors after PCA. 30

2.6 Success rate achieved by varying the number of features that partic-

ipate in voting, as well as the dimensionality of feature descriptors.

. 31

2.7 Comparing matching features using the original 8- and 16-dimensional

descriptors, as well as using visual words (computed from the dataset

itself, a different dataset, or the concatenation of all datasets). . . . 35

2.8 Success rate achieved by varying the scale of the image (horizontal

axis) on which the SIFT detector is run. 36

2.9 Comparison of camera trajectories obtained using our system with

downward-facing cameras (red lines) and a state-of-the-art structure

from motion system using outward-pointing cameras (blue lines). Left:

trajectories on the outdoor asphalt dataset. The distance between the

trajectories is 98.8 mm on average (maximum 211.5 mm) while the

mean angle between camera poses is 0.5 degrees (maximum 1.3 de-

grees). Right: trajectories on the indoor tiles dataset. The mean

distance is 62.9 mm (maximum 197.7 mm) and the mean anglular dif-

ference is 2.2 degrees (maximum 2.5 degrees). 39

xii

2.10 Introducing occlusion and perturbation. First row: introducing occlu-

sion by adding leaves. Second row: introducing occlusion and pertur-

bation by scratching. The green bounding box represents success while

red represents failure . 40

2.11 Left: Success rate achieved by varying the speed of the robot. The two

curves correspond to feature dimensionality of 16 and 8, respectively.

Note that this experiment uses a shutter speed of 10 ms, as opposed

to the 3–5 ms we typically use. Right: Examples of motion-blurred

images captured on the carpet. 41

2.12 Coarse asphalt after rain (compare to Figure A.7). The added specu-

larity causes our localization system to fail. 42

2.13 A demonstration of path following. (a) Micro-GPS is implemented as

a component of a mobile robot. (b) We generate a path by manually

driving the robot. (c) We then use Micro-GPS to repeat the path.

Screen-shots captured under manual and automatic driving modes are

highly consistent. (d) The robot reaches the same ending position with

high accuracy. 44

2.14 Recording footprints. (a) The marker on the shoe is calibrated relative

to the marker on the ground. (b) Captured image after performing

perspective correction. (c) Recorded footprints. 45

2.15 Performance on the wood floor is limited by the lack of SIFT features

(left). As future work, we suggest using (a subset of) the detected

edges instead (right). 47

2.16 Map expansion. Left: Self-consistent map generated by stitching the

test sequence. Right: The updated map generated by registering the

new sub-map to the existing map. 48

xiii

3.1 From each test image, our proposed detector extracts highly repeatable

features, which can be utilized by Micro-GPS to achieve precise global

localization in a pre-built map, such as the asphalt map being shown.

Note that Micro-GPS locates each test image independently in the map

(ignoring temporal coherence). 52

3.2 Illustration of the training pipeline. The network is pretrained with

the ranking loss only, and tuned using both the ranking loss and the

peakedness loss. 57

3.3 From left to right: zoomed-in view of a stain in the asphalt texture,

response map output by the network trained using ranking loss only,

and response map after optimizing the peakedness. The latter response

map is more robust against noise when performing non-maximum sup-

pression. 59

3.4 Illustration of response curves. Left: different response curves can

lead to same ranking. Right: peakedness of the response curve can be

evaluated as the area above the curve; specifically, for the k highest

values in a local window, we sum up the difference between each value

and the maximum. 60

3.5 Left to right: input, response maps (ranking loss only), response maps

(ranking and peakedness loss), top 200 features. 68

3.6 Repeatability gain of detectors tuned with different α. 69

3.7 Repeatability gain of detectors tuned with different w. 69

3.8 Repeatability gain of detectors tuned with different k. 69

3.9 Cross evaluation result of the pretrained detectors. 70

3.10 Cross evaluation result of the tuned detectors. 70

xiv

3.11 Visualization of the response maps generated by networks trained on

specific textures and networks trained on the union of all textures. We

show both the results of the pretrained model (using ranking loss only)

and the tuned model (using both ranking and peakedness loss). . . . 71

3.12 Performance on Micro-GPS. 72

4.1 Scatter plot of (dpos, dneg) for triplets in one batch (1024 samples), using

standard triplet margin loss. The red line is the decision boundary: dneg

is correctly greater than dpos to its upper-left. The blue dotted lines

are potential margins. The (optimal) margin of 0.375 separates points

into two clusters (green and blue), where the blue cluster is considered

“good enough” and is not used for back-propagation. 84

4.2 Varying the margin used by the triplet margin loss. The network is

trained on the Liberty subset of UBC PhotoTourism and evaluated on

the other two subsets. The left and right figures show the performance

on the real-valued and binary descriptors, respectively. For our results,

we keep all other configurations used by the triplet margin loss and

only replace the loss function. 85

4.3 Our scheme for Dynamic Triplet Weighting. We compute dpos − dneg

for each hard-mined triplet, then build a moving histogram (PDF) of

these values and integrate to obtain the CDF. The loss for each triplet

is dpos − dneg, weighted by the corresponding value from the CDF. . . 86

xv

4.4 Evaluation on the HPatches dataset [9]. The evaluation is carried out

on the “full” split of HPatches. The patch retrieval task is evaluated

with the maximum amount of distractors (same setting used in the

original HPatches paper). Top row: real-valued descriptor comparison.

Bottom row: binary descriptor comparison. While both HardNet and

DOAP perform well in easy cases, our descriptor is more robust in

tough cases, leading to state-of-the-art performance overall. 91

4.5 Evaluation on the Oxford Affine dataset, for binary (left) and real-

valued (right) descriptors. All are trained on the UBC Liberty subset

with data augmentation, except the models suffixed with “++”, which

are trained on the union of UBC PhotoTourism and HPatches. . . . 92

5.1 A typical building with nearly identical windows. 99

A.1 Indoor tiles. The map includes 1296 images covering approximately

1.5× 8.5 m. 103

A.2 Indoor carpet. This dataset contains 2014 images covering approxi-

mately 1.5× 11.8 m. 104

A.3 Indoor wood floor. This dataset contains 3826 images covering approx-

imately 8.7× 4.8 m. 105

A.4 Outdoor granite tiles. This dataset contains 1229 images covering ap-

proximately 8.6× 3.2 m. 106

A.5 Outdoor asphalt with fine aggregate, captured under ambient illumi-

nation (sunlight). This dataset contains 2215 images covering approx-

imately 2.6× 7.6 m. 107

A.6 Outdoor asphalt with fine aggregate captured at night under controlled

LED illumination. This dataset contains 2118 images covering approx-

imately the same area as above. 108

xvi

A.7 Outdoor asphalt with coarse aggregate. This dataset contains 2061

images and the dimension is approximately 2.0× 10.6 m. 109

A.8 Outdoor concrete. This dataset contains 3316 images and the dimen-

sion is approximately 7.6× 4.3 m. 110

xvii

Chapter 1

Introduction

Nearly every recently manufactured smartphone is equipped with digital cameras,

and acquiring images has become extremely simple. Many smartphone users enjoy

taking photos to record precious moments and sharing with others via the internet.

In computer vision, being able to further leverage a considerable amount of photos

captured by people from all over the world every day and build new applications is an

important task. The well-known Photo Tourism project [85] utilizes internet photos

and reconstructs the scene in 3D, which allows the user to view the photos while

exploring tourist attractions in 3D. In a typical computer vision application like this,

the first step of processing a large collection of images is to associate them through

visual cues.

Modern smartphone cameras usually store the photos with geographical informa-

tion (i.e., GPS coordinates), which can be used as an initial cue to associate images

captured near the same location, but oftentimes the geographical information is too

coarse to be used in applications that demand higher accuracy. With recent crowd-

sourcing tools such as Amazon Mechanical Turk (MTurk), obtaining detailed human

labels for image contents has become feasible, although the cost may grow dramati-

cally with the labelling difficulty as well as the number of images to be labelled. Due

1

Keypoint Detection

End Applications:
• Reconstruction

• Localization
• Image Retrieval

Feature Descriptor
Computation

Local Image Patch

Image

Figure 1.1: A standard local feature pipeline.

to the above constraints, automatic computational methods that can help establish

the relationships among images are highly preferred. In almost any computer vision

application, the most efficient way to abstract and further process an image is to find

the right “feature”. This thesis studies local features, as opposed to global features

which summarize the entire image. Local features are typically more robust against

geometric transformations as they are often only associated with local image regions.

Therefore, image-based 3D reconstruction systems [85, 103, 79] conventionally rely on

local features to register images taken from multiple views, and estimate their camera

poses. Figure 1.1 shows a standard pipeline of local feature extraction and processing.

Given an input image, we first identify image locations with locally distinctive ap-

pearances (i.e., keypoints). Then we compute the feature descriptor for each detected

keypoint using a local image patch cropped around it. Finally, computer vision appli-

cations such as 3D reconstruction, localization and image retrieval can be driven by

the detected keypoints along with the computed descriptors. In this thesis, we focus

on improving both the keypoint detector and the feature descriptor in addition to a

real-world application that immediately benefits from our improvement.

In most scenarios, a critical property of a good keypoint detector is high repeata-

bility. A keypoint is called repeatable when the 3D location it corresponds to in the

physical world can be detected again when observed from a novel camera view. Since

a high repeatability is desired, existing keypoint detectors usually look for the center

of every local region that is highly distinguishable in comparison to its neighboring

2

(a) natural image1 (b) medical image2 (c) infrared image3

Figure 1.2: Examples images from different domains.

regions. Depending on the application, a keypoint might need to be associated with

a scale to account for the distance from the camera to the physical 3D point. Con-

ventionally, keypoint detectors are handcrafted based on empirical principles, which

assign a “keypointness” score to each pixel. Pixel locations with high scores are

treated as keypoints. For example, corners and blobs are typically regarded as good

keypoints because they are locally distinctive and more likely to be identified when

observed from a different camera view. For a long period of time, these empirical

principles have been proven effective for designing keypoint detectors. While existing

handcrafted keypoint detectors have gained success in many classical computer vision

problems (e.g., structure-from-motion [3], panorama stitching [14]), they are tuned to

work best for “natural images”. In other words, handcrafted keypoint detectors are

mostly designed based on natural image statistics. Figure 1a shows an example of

natural image; it is reasonable to assume that keypoint detectors designed for images

of this kind could work well on many other daily images. Certain real-world computer

vision applications, however, limit themselves to particular usage scenarios (e.g., in-

door/outdoor only) or even specific types of image: Figure 1b and 1c are examples of

medical and infrared images, respectively. Existing keypoint detectors handcrafted

for natural images would not necessarily work properly on these domain-specific im-

ages, since they differ drastically from natural images. One possible solution is to

1Source: https://www.princeton.edu
2Source: https://www.fda.gov
3Source: https://www.scienceabc.com

3

https://www.princeton.edu
https://www.fda.gov
https://www.scienceabc.com

learn a keypoint detector in a data-driven manner if we have access to a sufficient

quantity of images of the domain of interest.

In Chapter 2, we introduce an image-based global localization system named

Micro-GPS that is accurate to a few millimeters and performs reliable localization

both indoors and outside. The key idea is to capture and index distinctive local

keypoints in ground textures. This is based on the observation that ground textures

including wood, carpet, tile, concrete, and asphalt may look random and homoge-

neous, but all contain cracks, scratches, or unique arrangements of fibers. These

imperfections are persistent, and can serve as local features. Our system incorpo-

rates a downward-facing camera to capture the fine texture of the ground, together

with an image processing pipeline that locates the captured texture patch in a com-

pact database constructed offline. We demonstrate the capability of our system to

robustly, accurately, and quickly locate test images on various types of outdoor and

indoor ground surfaces.

One drawback to the Micro-GPS system is that the reliability is limited by the

performance of existing feature detectors on textures, as opposed to natural images.

In Chapter 3, we propose an effective and scalable method for learning feature detec-

tors for textures, which combines an existing “ranking” loss with an efficient fully-

convolutional architecture as well as a new training-loss term that maximizes the

“peakedness” of the response map. We demonstrate that the learned detector is more

repeatable than existing methods, leading to improvements in the Micro-GPS system.

The next step after keypoint detection is feature description. Centered on each

detected keypoint, a small image patch with the radius proportional to the scale is

cropped and used to compute the feature descriptor. A feature descriptor is often

represented as a short real-valued vector, which can be used to compare the similar-

ity between image patches, typically via the Euclidean distance. Storing real-valued

vectors and computing the Euclidean distance, however, can be expensive for real-

4

time applications or embedded systems. Alternatively, one can represent the feature

descriptor as a compact binary string, which leverages the Hamming distance to com-

pare, but is often less effective than a real-valued descriptor of the same length. A

well performing feature descriptor normally satisfies the following condition: image

patches associated with the same physical 3D point should be consistently described

although they could appear differently due to the variation of viewpoint and illumina-

tion. Feature descriptors are also conventionally handcrafted. For instance, in order

to gain robustness against illumination changes, some descriptors leverage image gra-

dient directions instead of raw pixel values.

In recent years, descriptors based on machine learning techniques have significantly

outperformed their handcrafted competitors in situations where the test data shares

similar statistics with the training data. Since the training data often only consists of

image patches which are relatively easy to obtain in advance, data-driven approaches

are highly practical in real applications. The general idea of performing such training

is to encourage the descriptors of matching patches to be similar while forcing those of

non-matching patches to be different. One of the most commonly used loss function

that exercises this idea is the triplet loss. The triplet loss utilizes a hyper-parameter

called margin to select only “hard” datapoints for training. The margin, however, is

often empirically chosen or determined through computationally expensive validation,

and stays unchanged during the entire training session. In Chapter 4, we propose a

simple yet effective method to overcome the above limitations. The core idea is to

replace the hard margin with a non-parametric soft margin, which is dynamically

updated. The major observation is that the difficulty of a triplet can be inferred from

the cumulative distribution function of the triplets’ signed distances to the decision

boundary. We demonstrate through experiments on both real-valued and binary local

feature descriptors that our method leads to state-of-the-art performance on popular

benchmarks, while eliminating the need to determine the best margin.

5

1.1 Contributions

We summarize the contributions of this thesis by chapter:

Chapter 2: High-Precision Localization Using Ground Texture

• Describing a low-cost global localization system based on ground textures.

• Capturing and making available datasets of seven indoor and outdoor ground

textures.

• Describing an architecture for building a global map of commonplace texture,

then expanding it at a later date to incorporate new data.

• Investigating the design decisions necessary for practical matching in texture-

like images, as opposed to natural images. This includes the choice of keypoint

detector, feature descriptor, strategies for reducing storage costs, and a robust

voting procedure that can find inliers with high reliability.

• Demonstrating real-world applications of precise localization, including captur-

ing the locations of footsteps as well as an autonomous vehicle that can use

Micro-GPS to record a path and then follow it with sub-centimeter accuracy.

Chapter 3: Learning to Detect Features in Texture Images

• Designing a fully-convolutional network architecture that can be efficiently ap-

plied on a full-sized image without separate evaluation on each pixel.

• Describing a method to maximize the peakedness of the response map and

proving that it is critical to improving the repeatability of the learned detector.

• Demonstrating on Micro-GPS that the learned detector is more effective than

a handcrafted alternative.

6

Chapter 4: Learning Local Descriptors with Dynamic Soft Margin

• Proposing a novel loss function based on dynamic soft margin that can serve as

a drop-in replacement for the existing triplet loss without user-tunable param-

eters.

• Unifying the real-valued and binary descriptor learning pipelines to adopt the

same loss function for training.

• Demonstrating that the proposed loss advances the state of the art on both

real-valued and binary descriptor learning.

7

Chapter 2

High-Precision Localization Using

Ground Texture

2.1 Introduction

The Global Positioning System (GPS) receiver has become an essential component of

both hand-held mobile devices and vehicles of all types. Applications of GPS, however,

are constrained by a number of known limitations. A GPS receiver must have access

to unobstructed lines of sight to a minimum of four satellites, and obscured satellites

significantly jeopardize localization quality. Indoors, a GPS receiver either is slow to

obtain a fix, or more likely does not work at all. This makes it impractical to depend

on GPS for determining the room of a building in which a receiver is located, let alone

the location within that room. Even outdoors, under optimal circumstances, accuracy

is limited to a few meters (or perhaps a meter with modern SBAS systems). These

limitations make GPS insufficient for fine-positioning applications such as guiding a

car to a precise location in a parking lot, or guiding a robot within an indoor room or

warehouse. To overcome the robustness and accuracy limitations of GPS, alternative

localization technologies have been proposed, which are either less accurate than GPS

8

(e.g., triangulation of cellphone towers and WiFi hotspots), or too expensive and/or

cumbersome to deploy (e.g., RFID localization or special-purpose sensors embedded in

the environment). Inertial navigation and odometry, which are often used in robotics

for fine-positioning tasks, require a known initial position, drift over time, and lose

track (requiring manual re-initialization) when the device is powered off.

This chapter proposes a system that provides millimeter-scale localization, both

indoors and outside on land. The key observation behind our approach is that

seemingly-random ground textures exhibit distinctive features that, in combination,

provide a means for unique identification. Even apparently homogeneous surfaces

contain small imperfections – cracks, scratches, or even a particular arrangement of

carpet fibers – that are persistently identifiable as local features. While a single fea-

ture is not likely to be unique over a large area, the spatial relationship among a

group of such features in a small region is highly likely to be distinctive, at least up

to the uncertainty achievable with coarse localization methods such as GPS or WiFi

triangulation. Inspired by this observation, we construct a system called Micro-GPS

that includes a downward-facing camera to capture fine-scale ground textures, and

an image processing unit capable of locating that texture patch in a pre-constructed

database within a few hundred milliseconds.

The use of image features for precise localization has a rich history, including works

in graphics such as Photo Tourism [85] and Computational Re-Photography [8]. Thus,

a main contribution of our work is observing that some of the algorithms used for

feature detection and matching in “natural” images, as used by previous work, can

also be used for “texture-like” images of the ground. In exploring to find a particular

combination of known methods that can robustly work in this way, we also exploit

two key advantages of ground-texture images. First, the ground can be photographed

from much closer range than typical features in the environment, leading to order-

9

Light
Shield

Jetson
TX1

LED Monochrome
Camera Feature

Query

Voting Localization

Figure 2.1: System overview. Our test robot features an NVIDIA Jetson TX1 devel-
opment board, which controls a Point Grey mono camera. A light shield and ring
of LEDs around the camera provide controlled lighting. We first capture database
images as a preprocess, and stitch them into a globally consistent map. Later, to
locate the robot, we extract features from a query image, and they vote for potential
image poses in the map. A peak in the voting map determines inlier features, from
which we recover the pose of the query image.

of-magnitude improvement in precision. Second, the statistics of texture-like images

lead to a greater density of features, leading to greater robustness over time.

Our system consists of two phases: an offline database construction phase, and an

online localization phase (Figure 2.1). We begin by collecting ground texture images

and aligning them using global pose optimization. We extract local features and

store them in a database, which is subsequently compressed to a manageable size.

Next, during the localization phase, we find features in a query image and search the

database for candidate matches using approximate nearest neighbor matching. We

find that in typical textures more than 90% of the matches are spurious. We therefore

use a voting method to reject outliers, based on the observation that inlier matches

will vote for a consistent location whereas outliers distribute their votes randomly.

10

Finally, we use the remaining inlier matches to precisely calculate the location of the

query image.

The major contributions of this work are:

• Describing a low-cost global localization system based on ground textures and

making relevant code and instructions available for reproduction.

• Capturing and making available datasets of seven indoor and outdoor ground

textures.

• Describing an architecture for building a global map of commonplace texture,

then expanding it at a later date to incorporate new data.

• Investigating the design decisions necessary for practical matching in texture-

like images, as opposed to natural images. This includes the choice of descriptor,

strategies for reducing storage costs, and a robust voting procedure that can

find inliers with high reliability.

• Demonstrating real-world applications of precise localization, including captur-

ing the locations of footsteps as well as an autonomous vehicle that can use

Micro-GPS to record a path and then follow it with sub-centimeter accuracy.

Knowing the precise location of a footstep both indoors and outside offers a range

of HCI and IoT applications, in addition to the more obvious use in performance

capture. Moreover, the ability to localize a vehicle or robot precisely has the potential

for far-reaching applications. A car could accurately park itself (or guide the driver to

do so) in any location it recognizes from before, avoiding obstacles mere centimeters

away. A continuously-updated map of potholes could be used to guide drivers to turn

slightly to the left or right to avoid them. The technology applies equally well to

vehicles smaller than cars, such as Segway, electric wheelchairs, and mobility scooters

for the elderly or disabled, any of which could be guided to precise locations or around

11

hard-to-see obstacles. Indoor applications include guidance of warehouse robots and

precise control over assistive robotics in the home.

This chapter is derived from a conference preprint [111], which was accepted for

presentation prior to the completion of this thesis.

2.2 Related Work

Feature Detectors and Descriptors: There is considerable research on finding

interest points, estimating canonical scales and orientations, and computing discrimi-

native fixed-dimensional descriptors; these are all well-investigated problems and have

inspired many feature-based computer vision applications.

A seminal strategy for detection of interest points is the use of image corners,

found for example by the corner detector of Harris and Stephens [25]. Instead of

detecting corners, one can alternatively detect “blobs” in the images. The SIFT

detector [49], which detects extrema over space and scale, has shown great success in

terms of robustness and repeatability. The original SIFT approximates the Laplacian

of Gaussian (LoG) filter with a Difference of Gaussians (DoG), while SURF [12]

accelerates the process further by approximating LoG with a box filter. SIFT assigns

an orientation to each interest point based on the dominant gradient orientation in

its local image window. The scale and rotation invariance properties of SIFT make it

popular in the domain of structure from motion [87, 103], where a particular feature

is typically observed with different scales and orientations in different images.

Discriminative feature descriptors are crucial for uniquely identifying an image

patch. SIFT [49] computes histograms of gradient orientations and is robust against

modest pose and illumination changes. Several subsequent descriptors offer faster

computation, including SURF [12], DAISY [91] and binary descriptors [71, 11]. A

more recent approach named HardNet [59] learns a discriminative descriptor using a

12

convolutional neural network with online hard negative mining, and outperform SIFT

on some natural image benchmarks.

Although feature descriptors are designed to be discriminative, the problem be-

comes more challenging for feature matching in large databases ; a descriptor computed

from a small image patch surrounding an interest point might not be discriminative

enough. Von Hundelshausen and Sukthankar [97] therefore construct a network using

SIFT keypoints, and the descriptors are computed as sampled intensity values along

network edges. Compared with local patch-based descriptors, such descriptors are ex-

pected to be more globally unique. In contrast, our approach addresses this problem

by gathering votes from multiple features in an area, which collectively discriminate

the location. This approach is similar to the work on Implicit Shape Models [41],

which votes for the object center by leveraging a pre-trained database of visual words

along with displacement vectors.

Our system relies on SIFT for feature detection and description. While they have

been employed extensively in research and practice, prior systems have generally

applied SIFT to natural images. Since natural images have different statistics from

the texture-like images studied in this work, it is not obvious that that SIFT should

perform well for our application. However, Liu [48] showed that SIFT descriptors

are sufficiently unique and discriminative to be used for matching in textures like the

ones we investigate. We build upon this work by constructing a scalable system that

incorporates dimensionality reduction and, most crucially, multi-feature voting, to

robustly localize within such textures. Section 2.6.1 offers a comparison of different

combinations of feature detector and descriptor, and shows that SIFT outperforms

the others for our datasets.

Textures for Tracking and Localization: Textures such carpet, wood grain,

concrete or asphalt all have bumps, grooves, and variations in color from location

13

to location, and we typically use the overall pattern or statistics of this variation

to recognize a particular material. Indeed computer-based modeling and recogni-

tion of textures traditionally proceeded along statistical lines [19, 43]. Moreover, re-

searchers have successfully synthesized new texture by example using parametric [29]

and non-parametric [20] models. However, when we study the particular arrangement

of bumps and variations present at any location in real-world textures, we find that

it is unlikely to be repeated elsewhere.

Kelly et al. [38] introduce a warehouse automation system in which a downward

facing camera installed on each robot is used to help track the robot. They observe

that ground surfaces usually exhibit cracks and scratches, and it is possible to track

the motion of the camera over a pre-constructed visual map. This work, however,

still assumes a known initial location and surface textures are leveraged only for

pairwise (local) frame matching, much as is done in an optical mouse. Fang et al. [21]

adopts a similar idea and uses ICP to align the test frame with the best map frame,

but this system still relies on odometry to determine a target map frame and refine

positioning. In contrast, our approach performs global localization, which could be

used to initialize tracking systems such as these. Clarkson et al. [17] demonstrate

that seemingly-random textures can provide a means for unique identification. The

authors observe that the fine-scale variations in the fibers of a piece of paper can be

used to compute a “fingerprint” that uniquely identifies the piece of paper. Our work

demonstrates that ground textures, including man-made ones such as carpet, share

similar properties at sufficiently fine scales, and thus may be used for localization.

Relocalization: Structure from motion allows reconstruction of a large scale 3D

point cloud offline, but relocating a newly captured image in the reconstructed point

cloud without any initial guess about the camera position is challenging. Previous

works explore direct 2D-to-3D matching [76] to estimate the 6 DoF pose of a photo

14

with respect to a reconstructed point cloud. Li et al. [44] proposes a method to

leverage a co-occurrence prior for RANSAC and achieves relocalization on a larger

georegistered 3D point cloud within a few seconds. Kendall et al. [39] trains a con-

volutional neural network (PoseNet) to regress the input RGB image to the 6-DoF

camera pose. Relocalization is an essential module of modern SLAM systems, such

as ORB-SLAM [63], which uses a bag-of-words model for matching. Researchers have

also explored using skylines from omni-images to perform relocalization [68].

All the above approaches except PoseNet involve large-scale feature matching,

which triggers a large amount of false matches and becomes the bottleneck of improv-

ing efficiency. To speed up feature matching, more compact models can be constructed

by selecting a subset of stable 3D points from the original models [45, 16]. An effective

approach to handle a high outlier ratio is voting [109]. This has also proven success-

ful in the field of image retrieval, where spatial verification is commonly applied to

rerank the retrieved list of images, and variants of Hough voting have been proposed

to improve efficiency and robustness [6, 105, 80]. With more sensors available, one

can utilize the gravity direction [89] as an additional constraint. Baatz et al. [7] lever-

ages both gravity direction and a 3D scene model to rectify images, transforming the

6-DOF pose estimation problem into a 3-DOF problem.

Mobile devices are ideal deployment platforms for a relocalization system. Lim

et al. [46] achieve localization on a micro aerial vehicle at interactive framerates by

distributing feature extraction over multiple frames. Middelberg et al. [54] achieve

real-time performance by combining online camera tracking and an external localiza-

tion server. Irschara et al. [32] and Wendel et al. [99] demonstrate that GPUs, which

are now widely available on mobile processors, can be used to accelerate localization.

Memory consumption quickly becomes an issue in relocalization when the offline

database grows. Sattler et al. [75] address this problem by quantizing descriptors

into a visual vocabulary so that only visual word IDs need to be stored. Approaches

15

based on visual vocabulary, however, have a nontrivial “sunk cost” to store the visual

words [58]. An alternative solution to descriptor compression is to project descriptors

into a low-dimensional space. Philbin et al. [67], for example, project the descriptor

into a 32-D space while maintaining good performance on image retrieval. PCA-

SIFT [36], despite its name, applies Principal Components Analysis (PCA) to a nor-

malized patch to obtain a 36-dimensional descriptor. Nevertheless, Lynen et al. [52]

show that aggressively compressed descriptors are weaker, although still sufficient for

camera tracking.

Almost all of the above relocalization techniques rely on landmarks, such as build-

ings, that are normally positioned at least a few meters from the camera. This

distance, combined with finite image resolution and inherent uncertainty in camera

intrinsics, means that even a small error in feature localization results in a large un-

certainty in estimated camera pose. This inaccuracy can be ameliorated by increasing

the field of view of the camera [78, 5], because as more features are detected, more

constraints can be introduced to improve pose estimation. Further uncertainty comes

from the ambiguity in landmark identification, since it is not unusual to find build-

ings or parts of buildings (such as windows) that appear the same from a significant

distance. Moreover, natural images used by the above systems suffer from perspec-

tive foreshortening, which brings difficulties to feature matching. Many features are

not “time-invariant” in highly dynamic scenes. Thus, it is necessary to update the

database frequently. Finally, these systems can be affected by changes in lighting. In

contrast with these systems, our work positions the camera close to the texture being

imaged and uses controlled lighting, leading to higher precision and robustness.

16

2.3 Mapping

This section describes the offline phase of our pipeline, including data collection, image

stitching and database construction. Section 2.4 will describe the online phase – the

process of locating a new frame in the pre-built map without knowing the prior frames.

We begin by describing our hardware setup, then describe the process of building a

database of features and locations.

2.3.1 Hardware Setup and Data Collection

Our imaging system consists of a PointGrey CM3 grayscale camera pointed down-

wards at the ground (Figure 2.1a). A shield blocks ambient light around the portion

of the ground imaged by the camera, and a set of LED lights arranged symmetrically

around the lens provides rotation-invariant illumination. The distance from the cam-

era to the ground is set to 260 mm for most types of textures we have experimented

with. Our system is insensitive to this distance, as long as a sufficient number of

features can be detected.

The camera output is processed by an NVIDIA Jetson TX1 development board,

which was chosen for both its GPU computation capabilities (256 CUDA cores) as

well as its general-purpose specifications (quad-core ARM Cortex-A57 processor, 4 GB

RAM). This processor has been used in tablets such as Google Pixel C, and it achieves

computation speed within an order of magnitude of typical desktop machines despite

being mobile and battery-powered.

Our prototype has the imager and development board mounted on a mobile cart,

which may be moved manually or can be driven with a pair of computer-controlled

motorized wheels. The latter capability is used for the “automatic path following”

demonstration described in Section 2.7. For initial data capture, however, we manu-

ally move the cart to ensure that an area can be fully covered. This process could be

17

automated by putting more engineering effort or even through crowd-sourcing when

there are more users. When capturing the data, we follow a zig-zag path so that many

loop closures can be detected for global optimization. Unlike many 3D reconstruction

problems, in which the user has to carefully move the camera and receive live feed-

back to guarantee full coverage, our capture process is simple and easily mastered by

non-experts.

One limitation of our prototype system is the potential for blur caused by vibration

of the cart over rough terrain. While we use relatively short exposures (3-5 ms) to

address this challenge (as well as motion blur caused by high-speed motion) we expect

that future systems may ameliorate the vibration problem with hardware suspension

and stabilization systems. Although we use a short shutter speed, the frame rate is

set to 5 fps to save disk space.

We have also tested our system on images captured on an Apple iPhone 6 to

verify that the system also works for inexpensive smartphone cameras. We use the

slow-motion mode with 240 fps, which is equivalent to a high shutter speed. In our

experiments, we found vibration to be a more critical problem for the iPhone camera,

so we put foam earplugs under the iPhone to reduce vibration.

2.3.2 Image Stitching

After data collection the next step is to construct a global map. We assume that the

surface is planar, even though this is not strictly true for most outdoor surfaces. Fortu-

nately, most ground surfaces are locally planar, making our planar surface assumption

still valid for image stitching. Our image stitching pipeline consists of frame-to-frame

matching followed by global optimization, following the general approach of Brown

and Lowe [14]. Since the computation becomes significantly more expensive as the

area grows, we use a fast method to scale image stitching to larger areas without

compromising the quality too much.

18

a b c

Figure 2.2: Image stitching pipeline. (a) Initial stitched map, in which severe drift can
be observed. (b) Loop-closure pairs found by matching neighboring frames between
columns of images. (c) Stitched map after global optimization.

Frame-to-Frame Matching: Since the image sequence is captured continuously

by following a zig-zag path, we are able to obtain an initial alignment of images cap-

tured. For each pair of adjacent frames, we follow a standard approach of extracting

SIFT features from both frames, computing their SIFT descriptors, matching the

descriptors using approximate nearest neighbors, and using RANSAC to obtain a set

of consistent matches and estimate a 2D rigid transformation. In this way, we obtain

an initial global pose for each frame, but these can be inaccurate due to accumulation

of frame-to-frame error (Figure 2.2a). We therefore need to use global optimization

to correct the drift.

Global Optimization: During capture, we ensure that every two consecutive

columns of images are overlapping, which provides many potential loop closure pairs

for global optimization. In particular, for each frame we find the ten closest frames

that were not adjacent in the image sequence, given the initial global poses. We align

each candidate “loop closure” pair using the method above. If the number of inlier

feature pairs was below a threshold we discard the match; otherwise, we keep the

matching features to use during global optimization. Figure 2.2b shows an example

of all the loop closure pairs detected.

We perform a single global optimization, taking into account all the detected loop

closure pairs as well as the frame-to-frame pairs. The optimization minimizes the

19

total re-projection error of all the matched correspondences from all the matched

pairs:

E = min
{[R|t]}

∑
(i,j)

∑
(xki ,x

k
j)

∥∥xki − [R|t]−1
i [R|t]j · xkj

∥∥2
(2.1)

where (i, j) are the indices of a pair of well-matched frames, (xki , x
k
j) is the k-th pair of

matched correspondences in (i, j), and {[R|t]} is the set of global poses of all frames.

We minimize the above energy function using the Ceres solver [2].

The final stitched image after global optimization is shown in Figure 2.2c. Most

of the errors in the initial stitched image are fixed due to the added loop closure

pairs and we almost never see blurred regions, implying that the stitching quality is

acceptable.

2.3.3 Scaling to Larger Areas

We have found that the above pipeline is sufficient for mapping areas up to several

square meters. Beyond this, however, it becomes challenging both to capture the

data in one continuous session and to perform the global optimization in a reasonable

time. Therefore, we propose a method to capture small portions of the map at a time,

compute correspondences between these regions, and link them together into a single

global coordinate system.

Our method first asks the user to manually specify all regions that neighbor each

other. For each pair of neighboring regions, we obtain a rough initial rigid transforma-

tion by asking the user to click on two correspondences between the maps. Although

these correspondences could also be found by using the Micro-GPS localization sys-

tem itself, as demonstrated in Section 2.9, in our experience asking the user takes

only a few seconds. These initial correspondences can be rough, since they will be

automatically refined later.

20

a

b c

Figure 2.3: Region linking. The full map is constructed from four pre-stitched regions.
(a) Initial linking result. (b) After global optimization. (c) Close-ups of the region
marked in red, before and after local refinement.

Initial Linking: We treat each pre-stitched region as a large image and our first

step is to compute the initial global poses of the regions. We fix one region as

the reference and compute the shortest path in the region-adjacency graph from

the reference to all the other regions. This is to minimize the number of pairwise

transformations being concatenated so that drift can be reduced. Figure 2.3a shows

an example of the full map after initial linking.

Global Optimization: We adopt the same global optimization method we use in

image stitching. For each pair of neighboring regions, we match every pair of images

across the two regions such that the distance between the image origins is within

a threshold. We then compute a global pose for each region, taking the computed

feature matches into account. Note that at this stage, the poses of images within

each already-stitched region are constant, and we solve for only a single rigid-body

transform per region.

As shown in Figure 2.3b, although the initial linking result is far from perfect, our

global optimization is able to correctly align the pre-stitched regions relative to each

21

other. However, we notice some remaining misalignments in the overlaps between

regions, which we fix with a local refinement step.

Local Refinement: We re-optimize for the optimal pose for each frame that over-

laps two regions. These poses are optimized based on the region-to-region corre-

spondences computed in the above global optimization step, as well as intra-region

correspondences. Specifically, let Ri and Rj be overlapping regions, and let f be a

frame in Ri that overlaps some frames in Rj. The pose [R|t]f of f is optimized based

on correspondences between f and those frames in Rj that it overlaps, as well as

overlapping frames in Ri. Note that the poses of frames that do not overlap the other

region are held fixed. Figure 2.3c shows a comparison of zoom-in views after global

optimization and local refinement.

Output: After global alignment, we subsample the set of images to reduce both

storage and computational costs. We remove as many images as possible, while still

ensuring that the image-space overlap between the images we keep is at least 30%.

The final output of the image stitching pipeline is composed of the selected images

and their optimized global poses. For the dataset shown in Figure 2.3, the size of the

area is around 12.75m2, and 1296 images are selected to achieve approximately full

coverage.

2.3.4 Database Construction

The final stage in building a map is extracting a set of features from the images and

constructing a data structure for efficiently locating them. There are many design

decisions – which feature descriptors to use, how many features to keep, and how

much dimensionality reduction to perform – all having a strong impact on computa-

tional efficiency, the size of the database, and the success rate of matching. Here we

22

describe our actual implementation, while some of the key decisions will be evaluated

in Section 2.6.

Feature Database: We use the SIFT scale-space DoG detector and gradient ori-

entation histogram descriptor [49], since we have found it to have high robustness

and (with its GPU implementation) reasonable computational time. For each image

in the map, we typically find 1000 to 2000 SIFT keypoints, and randomly select 50

of them to be stored in the database. This limits the size of the database itself, as

well as the data structures used for accelerating nearest-neighbor queries.

To further speed up computation and reduce the size of the database, we apply

PCA to the set of SIFT descriptors and project each descriptor onto the top k princi-

pal components. As described in Section 2.6, for good accuracy we typically use k = 8

or k = 16 in our implementation, and there is minimal cost to using a “universal”

PCA basis constructed from a variety of textures, rather than a per-texture basis.

Each SIFT keypoint is associated with the image it came from (for which we know

the global pose), as well as the keypoint coordinates (x, y), orientation θ, and scale s.

The feature’s pose in image coordinates can be found from (x, y, θ), and then trans-

formed into global coordinates by composing with the image pose. A feature located

in the overlap between two images can potentially have two copies, one extracted

from each image. We detect this situation and keep only the feature that was closer

to the center of its image.

Building the Search Index: One of the major advantages of our system is that

the height of the camera is fixed, so that the scale of a particular feature is also fixed.

This means that when searching for a feature with scale s in the database, we only

need to check features with scale s as well. In practice, to allow some inconsistency,

we quantize scale into 10 buckets and divide the database into 10 groups based on

scale. Then we build a search index for each group using FLANN [60]. During testing,

23

given a feature with scale s, we only need to search for the nearest neighbor in the

group to which s belongs.

2.4 Localization

The input to our online localization phase is a single image. We assume that the

height of the camera above the ground is the same as during mapping (or that the

ratio of heights is known), so that the image scale is consistent with the images in

the database.

Feature Computation and Matching: We first extract SIFT features from the

test image as in database construction. Then we use the same principal components

computed during database construction to reduce the descriptors to dimension k. For

each descriptor, we search for the nearest neighbor using the search index we have

built (for the appropriate scale, as mentioned previously).

Precise Voting: Recall that we only keep 50 features per database image. There-

fore, we expect only a small subset of the features found in the test image to have a

correct match in the database. Finding this small set of inliers is challenging, given

that standard methods such as RANSAC do not work well if outliers highly outnum-

ber inliers. Instead, we adopt a voting approach.

Our method is based on the observation that, due to the randomness of ground

textures, false matches are usually evenly distributed in the map. Fortunately, since

true matches usually come from one or two images, they are concentrated in a small

cluster. Figure 2.4, top left, shows a heat map of feature matches in a database,

with red indicating high density, green intermediate, and blue indicating low density.

While this might appear promising, and indeed we are able to build a system with

24

Test Image Map

A B C

D

A

C

B
D

Feature

True Origin

Inlier

Outlier

Map of feature locations

Precise voting map

Figure 2.4: Top left: A simple strategy would be to vote for the locations of matched
features. Right: We instead employ a “precise” voting strategy in which each feature
votes for the location where the origin of the test image would be located in the map,
if that feature were a correct match. True matches lead to a concentration of votes.
Bottom left: The precise voting leads to a more defined local maximum.

modest success rates based on this principle, the relative concentration of correct

matches is still insufficiently high relative to the density of outliers.

The problem with voting based on feature location is that the correct features are

distributed throughout the entire area corresponding to the test image. This leads

to only a moderately-high density of votes in the map near the location of the test

image. The solution is to concentrate the votes: we want all of the true features to

vote for the same point in the map, leading to a much greater difference between the

peak corresponding to the true location and the background density of outliers.

In particular, each feature casts a vote for the origin of the test image by assuming

that nearest neighbors are true matches (see Figure 2.4, right). Denote a feature

extracted from the test image as ft and its nearest neighbor in the database as fd.

If the feature pair {ft, fd} is a true match, we can compute the pose of the test

image T in world coordinates, denoted [R|t]WT , by composing the pose of fd in world

25

coordinates and the pose of ft in the test image:

[R|t]WT = [R|t]Wfd [R|t]fdft [R|t]ftT , (2.2)

where [R|t]fdft is assumed to be the identity. We then vote for the location of the origin

of the test image, which is the translational component of [R|t]WT .

Using this strategy, implemented via voting on a relatively fine spatial grid, we

find a much tighter peak of votes, relative to the uniform background of outliers, as

shown in Figure 2.4, bottom left.

Final Refinement: After voting, the cell with the highest score is very likely to

contain the true origin of the test image. We select all of the features in that peak

as likely inliers, and perform RANSAC just on them to obtain a final estimate of the

pose of the image.

2.5 Datasets

We have experimented with a variety of both indoor and outdoor datasets, covering

ground types ranging from ordered (carpet) to highly stochastic (granite), and includ-

ing both the presence (concrete) and absence (asphalt) of visible large-scale variation

(see Appendix A for details). While we believe that our system is applicable to a

wide range of floor and ground materials, localization is of course only possible in

the presence of unique and stable textures. We believe that our system would not

work in areas containing, for example, snow, high-pile carpet, or vinyl flooring with

highly-repeating printed texture. When a reliable ground surface is absent, leveraging

subsurface features, such as what has been demonstrated in LGPR [18], could be a

feasible solution.

26

2.5.1 Indoor Datasets

Tiles: This is a dataset of man-made indoor tiles containing colored chips in a white

binder. While the tiles as a whole have a regular shape, the patterns on the tiles are

random. We captured this dataset (shown in Figure A.1) in color, using the camera

of the iPhone 6. The color of the overall map is not consistent, because the map

is stitched from four individual regions captured on different days and because we

intentionally captured the lower part of the map with no extra illumination, to test

the robustness of our system. Note that the grid lines in the stitched map are straight,

demonstrating good alignment. The accompanying video shows the robustness of

localization in this dataset, despite the variation in color and contrast.

Carpet: This dataset contains a commercial low-pile carpet, typical of that found

in many office buildings. We captured the dataset (shown in Figure A.2) using the

PointGrey camera with ambient light blocked and illumination from the ring of LEDs.

A challenging aspect of this material is that it has a pattern that is close to repeating,

potentially making feature matching difficult. Nevertheless, with high resolution there

is sufficient uniqueness everywhere to enable feature-based localization. Moreover, as

shown in Section 2.6.4, it remains robust to our attempts to perturb the carpet.

Wood: This is a dataset of a stained hardwood floor, as commonly used in both

residential and commercial applications (Figure A.3). Although the wood contains

significant texture, this texture consists mostly of elongated elements, unlike the

“blob-like” elements found in our other datasets. Since this is not a situation for

which the SIFT detector was designed, we detect an order of magnitude fewer features

in these images. As discussed in Section 2.9, this decreases the performance of our

system. In an attempt to regain some of this lost performance, we index 100, instead

of 50, features for each database image.

27

2.5.2 Outdoor Datasets

Granite: This is an outdoor dataset of large slabs of granite laid to form a sidewalk

(Figure A.4). The surface of the granite is rough, leading to variability in shading

from hour to hour and day to day, unless ambient light is blocked.

Asphalt with Fine Aggregate: Road surfaces and sidewalks are often coated

with asphalt containing aggregate – stones with a particular size distribution. This

dataset is of asphalt with fine aggregate on a roadway, as shown in Figure A.5. This

dataset was captured near a loading zone where trucks are parked every day, which

explains the presence of long cracks. In our stitched map, these cracks are faithfully

recovered.

In order to test the robustness of our system under different lighting, we captured

two versions of this dataset: under directional sunlight, with the cart’s light shield

removed (shown in Figure A.5) and at night, using LED illumination (Figure A.6).

The results of this experiment are described in Section 2.6.4.

Asphalt with Coarse Aggregate: This dataset, shown in Figure A.7, differs in

many ways from the previous one. First, it is relatively new, meaning that there

is little large-scale variation from place to place. Therefore, localization can only

leverage fine-scale texture. Second, the coarse surface caused significant vibration in

our cart, leading to occasional motion blur during capture. Nevertheless, due to our

use of a short shutter speed, our reconstructed map is sharp almost everywhere.

Concrete: Figure A.8 shows our concrete dataset. Stains on the ground can be

clearly seen in the reconstructed map. The straight lines dividing the concrete also

gives a sense of the quality of the reconstructed map.

28

Table 2.1: Performance of Micro-GPS. From left to right: texture type, elapsed time
between capture of database and test sequence, number of test frames, and success
rates using 8- and 16-dimensional descriptors.

Texture Elapsed # frames Rate-8 Rate-16

fine asphalt 16 days 651 76.04% 95.24%
carpet 30 days 1179 99.49% 99.92%
coarse asphalt 17 days 771 97.54% 99.09%
concrete 26 days 797 83.31% 93.35%
granite tiles 6 days 862 79.47% 94.43%
tiles 18 days 1621 93.83% 98.40%
wood 0 days 311 59.48% 77.49%

2.6 Evaluation

In order to evaluate the accuracy and robustness of a localization system, a typical

approach would be to obtain ground-truth location and pose using a precise external

measurement setup. However, this is impractical in our case due to the large areas

mapped and the precision with which we are attempting to localize. Moreover, we

are more interested in repeatability, rather than absolute accuracy, given that most

of the applications we envision will involve going to (or avoiding) previously-mapped

locations.

We therefore adopt an evaluation methodology based on comparing the query

image against an image captured during mapping. Using the pose predicted by Micro-

GPS, we find the closest image in the database, and compute feature correspondences

(using all SIFT keypoints in the image, not just the 50 used for the database). If there

are insufficiently many correspondences, we mark the localization result as a failure.

We then compute a best-fit relative pose using those features. If the pose differs by

more than 30 pixels (4.8 mm) in translation or 1.5◦ in rotation from the pose output

by Micro-GPS, we again mark the result as a failure. Finally, given a sequence of

consecutive poses that should be temporally coherent, we detect whether the poses

of any frames differ significantly from their neighbors.

29

4 8 16 32 64 128
descriptor dimensionality

0

20

40

60

80

100

su
cc

es
s r

at
e

(%
)

indoor

SIFT+SIFT
SIFT+HardNet(natural)
SIFT+HardNet(texture)
SIFT+SURF
SURF+SIFT
ORB+SIFT
SURF+SURF

4 8 16 32 64 128
descriptor dimensionality

0

20

40

60

80

100

su
cc

es
s r

at
e

(%
)

outdoor

SIFT+SIFT
SIFT+HardNet(natural)
SIFT+HardNet(texture)
SIFT+SURF
SURF+SIFT
ORB+SIFT
SURF+SURF

Figure 2.5: The average performance of different detector + descriptor combinations
on both indoor and outdoor datasets. The horizontal axis indicates the dimensionality
of descriptors after PCA.

The performance of our system, implementing the pipeline described in Section 2.4,

is shown in Table 2.1. The two columns at right show performance with 8-dimensional

and 16-dimensional descriptors, respectively. The correct pose is recovered over 90%

of the time for most datasets (with independent per-frame localization and no use of

temporal coherence), with the exception of the wood floor. This is because relatively

few SIFT features are available in this dataset – see discussion in Section 2.9.

The following sections evaluate the impact of various design decisions, compare to

image retrieval, and investigate the effect of deliberate attempts to introduce difficult

matching conditions on the accuracy of the system.

2.6.1 Impact of Design Decisions

Selection of Feature: We first evaluate the impact on accuracy of using different

combinations of feature detector and descriptor. While SIFT [49] has been popu-

lar since its introduction more than a decade ago, more recent alternatives such as

SURF [12], ORB [71] have been shown to achieve similar performance at lower com-

putational cost. Even more recently, convolutional neural networks have been used in

learned descriptors [90, 59, 28, 114, 51, 37] to achieve much better matching perfor-

30

descriptor dimensionality
2 4 8 16 32 64 128

s
u

c
c
e

s
s
 r

a
te

 (
%

)

0

10

20

30

40

50

60

70

80

90

100
carpet

all NNs
1600 best NNs
800 best NNs
400 best NNs
200 best NNs

descriptor dimensionality
2 4 8 16 32 64 128

s
u

c
c
e

s
s
 r

a
te

 (
%

)

0

10

20

30

40

50

60

70

80

90

100
fine asphalt

all NNs
1600 best NNs
800 best NNs
400 best NNs
200 best NNs

Figure 2.6: Success rate achieved by varying the number of features that participate
in voting, as well as the dimensionality of feature descriptors.

mance than SIFT. In all of these cases, however, the performance has been optimized

for natural, rather than texture-like, images. To evaluate the effectiveness of a learned

descriptor on texture images, we select the recent well-performing HardNet [59] as

our backbone network and learn a texture descriptor (HardNet-texture) using patches

cropped from our dataset. During training, we also perform non-uniform intensity

scaling to account for possible changes in exposure. Figure 2.5 compares the accu-

racy of different combinations of feature detector and descriptor. The SIFT detector

outperforms both SURF and ORB, while both SIFT and HardNet-texture perform

better than alternative descriptors. Because the SIFT descriptor can withstand more

aggressive dimension reduction, it is the best choice for our current deployment. How-

ever, we observe that HardNet-texture shows significant improvement compared to

the original HardNet optimized for natural images [101]. This suggests that domain-

specific training may hold the promise for future improvements in the quality of

learned descriptors.

Number of Features for Voting: We next evaluate the impact of restricting

the number of features used for voting. Specifically, we limit voting to only the n

feature matches having the smallest L2 distance between the query and database

31

descriptors. As before, we run our experiments while retaining different numbers of

PCA dimensions.

Given the results in Figure 2.6, we observe that our system achieves nearly per-

fect performance on the carpet dataset by using only 8 dimensions. The asphalt

dataset requires higher descriptor dimensionality (16) to perform robustly. The num-

ber of nearest neighbors we include in the testing phase does not seem to have a

significant influence on the performance when the descriptor dimensionality is large

enough. Including more nearest neighbors, however, improves the success rate when

the descriptor dimensionality is not sufficient (e.g. using 8 dimensions for the fine

asphalt dataset). In all cases, we found that restricting the number of features to use

for voting made little difference to computation time, since the majority of time was

spent on computing the descriptors and performing nearest-neighbor lookups.

Method of Dimension Reduction: The effectiveness of Micro-GPS largely relies

on the global distinctiveness of the descriptor, which can be evaluated by observing

whether the true match of a descriptor can be found in a large collection of descriptors.

Specifically, given n pairs of descriptors, we first search for the two nearest neighbors

of every descriptor. We count the number of times (ntrue) the second-nearest neighbor

is a true match. The distinctiveness of the descriptor can be computed as ntrue/2n.

Unlike natural images used by most previous relocalization systems, our data seldom

suffers from perspective foreshortening, making the feature matching process less

noisy.

Dimensionality reduction must be efficient since it needs to be performed on every

online frame. Therefore we limit our consideration to linear dimensionality reduc-

tion methods, which can be performed with just a matrix multiplication. Principal

Components Analysis (PCA) is an obvious first choice, but we investigate whether

a better set of bases for dimensionality reduction can be obtained through learning.

32

Table 2.2: Descriptor distinctiveness after dimensionality reduction using a fully-
connected perceptron layer (1-fc), using either random or PCA initialization. We
find that PCA is superior to both of these approaches.

Dimension 1-fc 1-fc (PCA) PCA original

128 - - - 57.01%
32 34.06% 45.56% 58.72% -
16 29.31% 43.91% 55.72% -
8 22.24% 30.79% 31.00% -

Specifically, we train one fully-connected layer to reduce dimensionality, following

the Siamese configuration as described in the Deep Descriptor [82]. We first extract

pairs of matched SIFT descriptors and separate them into training and test sets. The

loss function of the network minimizes the distance between matched descriptors and

maximizes the distance between non-matched descriptors:

L(di, dj) =

∥∥f(di)− f(dj)

∥∥
2
, (i, j) is a match

max
(
0, C −

∥∥f(di)− f(dj)
∥∥

2

)
, (i, j) is a non-match

(2.3)

where (di, dj) is a pair of descriptors, f(.) is the dimension reduction function, and

C = 4 is the maximum loss of a non-match pair. The batch size is set to 256, in which

128 are positive pairs and the other 128 are negative pairs. After pre-training, we

also adopt hard negative mining: we only backpropagate the largest 32 losses, which

correspond to the hardest 32 pairs of descriptors.

We experimented with both random initialization and initializing the fully con-

nected layer with the parameters computed via PCA. Table 2.2 shows that PCA out-

performs the learning-based method, even when the fully connected layer is initialized

with principal components. This is partially because the loss function only penalizes

based on pairwise distance, which does not account for global distinctiveness.

33

Table 2.3: For each type of texture, we evaluate the success rate (in percentage) by
running our system with PCA bases computed from each texture and the union of
all textures. Best numbers are bolded.

Basis
Texture asphalt carpet coarse concrete granite tiles wood union

asphalt 95.24 95.39 95.24 94.32 95.08 95.70 94.32 94.47
carpet 100 99.92 100 100 100 99.92 100 100
coarse 99.09 99.35 99.09 99.35 99.09 99.35 98.83 98.83
concrete 91.84 93.73 92.72 93.35 93.22 93.22 91.72 92.85
granite 94.43 93.85 94.08 93.62 94.43 94.08 93.16 93.97
tiles 98.27 98.40 97.90 98.27 98.09 98.40 97.59 97.78
wood 76.85 78.78 78.14 77.81 77.81 78.78 77.49 77.49

Choice of PCA Basis: We next investigate whether the PCA basis used for dimen-

sionality reduction should be specific to each dataset, or whether a “universal” basis

computed from the union of different textures achieves similar performance. Table

2.3 shows localization performance for each combination of texture and PCA basis,

including a basis computed from the union of all datasets. The difference caused by

switching PCA basis is negligible, and we conclude that there is no drawback of using

a single PCA basis computed from all of the datasets.

Quantization Using Visual Words: An alternative solution to speeding up

nearest-neighbor search when the database becomes large is to quantize descriptors

using visual words. Visual words can be viewed as Voronoi cells, and descriptors

belonging to the same cell are assumed to be matched.

We generate 216 visual words by applying k-means clustering to descriptors ex-

tracted from all the database images in a single dataset. We also compare to visual

words computed from a completely different dataset, and from the union of all the

datasets. In the results shown in Figure 2.7, we observe that using visual words com-

puted from each dataset itself (fourth column at left, third column at right) leads to

better performance than using visual words from the other dataset (third column at

34

0

25

50

75

100

Carpet Asphalt

Direct NN-8 Direct NN-16 VW-128-asphalt
VW-128-carpet VW-128-universal

Figure 2.7: Comparing matching features using the original 8- and 16-dimensional
descriptors, as well as using visual words (computed from the dataset itself, a different
dataset, or the concatenation of all datasets).

left, fourth column at right), while a universal dictionary (fifth column) is somewhere

in between. Nevertheless, directly using PCA dimension-reduced descriptors (first

two columns) still shows better performance with less dependence on the dataset.

Resolution: The final design decision we evaluate is what impact image resolution

has on localization performance. We expect that for most datasets there will be a

“sweet spot” of resolution: using images that are too coarse will capture only large-

scale features, which might not be discriminative enough. Conversely, using too fine

a resolution might populate the database with tiny features that are easily disturbed

over time.

To find out the best resolution to work on, we downsample the images with dif-

ferent ratios and evaluate the performance by extracting SIFT features from the

downsampled images. The performance on different datasets is shown in Figure 2.8.

We report both the downsampling rate and actual physical resolution in mm per

pixel. In most cases, the performance is maximized when the resolution is 0.318mm

per pixel (corresponding to 0.5× downsampling relative to our original capture resolu-

tion), and some datasets exhibit a dropoff in performance at higher resolution. Since

downsampling the image by half can significantly speed up feature extraction, reduce

35

0.10(1.590) 0.20(0.795) 0.30(0.530) 0.40(0.397) 0.50(0.318) 0.60(0.265) 0.70(0.227)

image scale (mm/pixel)

0

20

40

60

80

100

s
u

c
c
e

s
s
 r

a
te

 (
%

)

coarse aspahlt

fine asphalt

carpet

fine asphalt (controlled light)

concrete

Figure 2.8: Success rate achieved by varying the scale of the image (horizontal axis)
on which the SIFT detector is run.

noise, and maximize accuracy, we apply this downsampling as a standard component

of our pipeline.

2.6.2 Comparison with Image Retrieval

One alternative to our feature-voting method is image retrieval: finding the nearest

image to the query in the database, and performing image-to-image alignment after-

wards. We compare Micro-GPS to a state-of-the-art image retrieval system [92] while

taking storage, efficiency, and performance into account.

The retrieval system leverages visual words to avoid storing the original SIFT

descriptors. In our experiments, we first generate 216 visual words by clustering the

descriptors using k-means. Descriptors assigned to the same visual word are then

discriminated by a binary signature computed through Hamming Embedding. The

length of the binary signature is the same as the length of the original descriptor

(i.e., 128 if SIFT is used). This results in both low storage requirements and high

efficiency in matching. Given the SIFT descriptors computed from the test image,

binary signatures are computed and matched against the database. Each matched

36

Table 2.4: Performance of the image retrieval system, tuned to consume the same
storage as Micro-GPS (cf. Table 2.1). From left to right: texture type, dimensionality
of the descriptors used by Micro-GPS (used for setting the number of features for
image retrieval, to ensure equivalent storage), and retrieval rates achieved using 8-,
16-, and 128-bit binary signatures.

Texture
Micro-GPS Success rate
Equivalent 8-bit 16-bit 128-bit

carpet
8-dim 74.39% 98.81% 99.07%

16-dim 96.27% 99.92% 99.92%

fine asphalt
8-dim 26.57% 80.65% 90.63%

16-dim 48.85% 94.16% 97.54%

wood
8-dim 33.44% 54.98% 59.16%

16-dim 31.83% 54.02% 57.56%

signature votes for the image index with which it is associated. The image receiving

the most votes is considered the “match.”

Storing the binary signature as well as the location used for pose estimation for

every descriptor, costs a non-trivial amount of storage. To ensure a fair comparison

against our approach, we also apply PCA dimension reduction to the visual words

and randomly sample features from each image so that the system consumes the same

amount of storage as Micro-GPS. The dictionary of visual words also consumes some

storage, but we ignore this because the cost is fixed and does not grow with the size

of the map. The retrieval system is able to sample many more features when Micro-

GPS uses high-dimensional descriptors. Micro-GPS nevertheless often only needs

low-dimensional descriptors to achieve good performance, and the retrieval system

does not show a strong advantage in storage in this case.

Table 2.4 shows the performance of the retrieval system. The retrieval system

achieves the best performance when the full 128-bit binary descriptor is used, even

though this requires the use of fewer features. In other words, given a fixed size

of storage, the retrieval system prefers better features to more, but lower-quality,

features. The performance of the retrieval system is comparable to that of Micro-

37

GPS on the carpet and asphalt datasets, but is considerably worse on the wood. This

is due to the significantly smaller amount of features that can be detected on wood.

In the retrieval system, votes from correct matches are often distributed to more than

one database image, which can trigger failure when the number of features is small.

In contrast, Micro-GPS utilizes all correct matches to estimate the pose.

The system runs in single-threaded Matlab on a server, and the average com-

putational time on a typical dataset such as the carpet is 348ms, excluding feature

extraction and final pose estimation. While an image retrieval system offers satisfac-

tory performance on common datasets, our voting-based system appears to be both

more accurate and faster for localization.

2.6.3 Downward- vs. Outward-Facing Cameras

Many existing systems focus on localization in natural images captured by an outward-

facing camera. To compare our system with this approach to localization, we add

an outward-facing camera (identical to the one used for Micro-GPS) to our setup

and we trigger both cameras simultaneously. We use the state-of-the-art VisualSFM

structure from motion system [103, 104] to recover the 3D trajectory of the outward-

facing camera. In order to compare the resulting trajectory to ours, we need to

project it onto 2D (which we do by estimating the plane that the trajectory lies in

using least squares), and to recover the relative global scale, rotation, and translation

(which we do by minimizing least-squares distance between points taken at the same

timestamps).

Figure 2.9 compares both trajectories for two different environments, outdoors

(with asphalt ground texture) and indoors (with the “tiles” texture). Ground truth

trajectories that are accurate up to a few millimeters are not easy to obtain, especially

outdoors. However, we observe that the trajectory of VisualSfM (in blue) is much

noisier than that of Micro-GPS, with discrepancies of many centimeters. In contrast,

38

-3000

-2000

-1000

 0

 1000

 2000

 3000

-400 -300 -200 -100 0 100 200 300 400

Y
 P

os
iti

on
 (

m
m

)

X Position (mm)

Position Comparison (Outdoor - Asphalt)

Our Method
VisualSFM

-3000

-2000

-1000

 0

 1000

 2000

 3000

-200 -100 0 100 200 300

Y
 P

os
iti

on
 (

m
m

)

X Position (mm)

Position Comparison (Indoor - Tiles)

Our Method
VisualSFM

Figure 2.9: Comparison of camera trajectories obtained using our system with
downward-facing cameras (red lines) and a state-of-the-art structure from motion
system using outward-pointing cameras (blue lines). Left: trajectories on the out-
door asphalt dataset. The distance between the trajectories is 98.8 mm on average
(maximum 211.5 mm) while the mean angle between camera poses is 0.5 degrees
(maximum 1.3 degrees). Right: trajectories on the indoor tiles dataset. The mean
distance is 62.9 mm (maximum 197.7 mm) and the mean anglular difference is 2.2 de-
grees (maximum 2.5 degrees).

the difference in estimated orientations is small (usually below 1 degree), suggesting

that both methods were able to recover orientation successfully.

One factor that critically affects the performance of both systems is the number of

SIFT features that can be detected. Our downward-facing camera detects an average

of 1319 features per frame in the (outdoor) asphalt sequence and 2114 features in

the (indoor) tile sequence, while the outward-facing camera detects only 637 and 256

features in the same settings. More detected features typically leads to more matched

features, and hence greater localization accuracy.

Nevertheless, outward-facing cameras are commonly used for tracking and, at

the same speed of motion, are less susceptible to motion blur than downward-facing

cameras. We conclude that our system can be used in conjunction with a tracking

39

Figure 2.10: Introducing occlusion and perturbation. First row: introducing occlusion
by adding leaves. Second row: introducing occlusion and perturbation by scratching.
The green bounding box represents success while red represents failure

system based on an outward-facing camera, with comparable additional hardware

and software costs.

2.6.4 Robustness

In the following section, we investigate the robustness of the proposed system by

stress-testing under different real-world application scenarios.

Delay Between Mapping and Localization: Ground textures are unlikely to

completely remain unchanged, especially for those outdoors. Since the database of

our system might not be updated very frequently, it is important to test whether the

system still works for test images captured a few days or even a few weeks after the

database is constructed. Table 2.1 shows the performance of our system on different

types of textures. It shows that our system is robust against changes in the scene.

Occlusion and Perturbation: Two particular ways in which ground texture can

change over time are occlusion (e.g., dirt, leaves, etc.) and perturbation of soft

materials (e.g., walking on carpet). Figure 2.10, top, shows frames from a sequence

in which more and more leaves are piled on a patch of concrete. Frames outlined in

green represent success, while frames outlined in red represent failure of localization.

Note that our voting procedure is robust against a substantial amount of occlusion.

40

robot speed (mm/s)
0 100 200 300 400 500 600

su
cc

e
ss

 r
a

te
 (

%
)

10

20

30

40

50

60

70

80

90

100

dimensionality = 16
dimensionality = 8

95 mm/s 190 mm/s

380 mm/s 570 mm/s

Figure 2.11: Left: Success rate achieved by varying the speed of the robot. The two
curves correspond to feature dimensionality of 16 and 8, respectively. Note that this
experiment uses a shutter speed of 10 ms, as opposed to the 3–5 ms we typically use.
Right: Examples of motion-blurred images captured on the carpet.

At bottom, we show frames from a sequence in which we scratch the carpet by

hand. All frames in this sequence resulted in successful localization. Note, however,

that this was a heavy-duty low-pile commercial carpet; we expect that high-pile

residential carpet may exhibit worse performance.

Motion Blur: Motion blur can easily happen when there is vibration or the camera

is moving too fast. This perturbs both the feature detection and the computed

feature descriptors, making localization less accurate. To evaluate how motion blur

can affect the performance of our system, we use a robot which can run at a roughly-

constant speed and evaluate performance by varying the speed. Unlike the previous

experiments, we set the shutter speed to 10 ms (2 to 3 times longer than usual) to

deliberately introduce more motion blur. Examples of images captured under different

speeds are shown in Figure 2.11, right.

Figure 2.11, left, shows the performance of our system under different robot speeds.

When lower-dimensional descriptors are used, we find that the performance drops

quickly as the speed increases. However, if we are willing to increase the feature

dimensionality, the system can handle more motion blur.

41

Figure 2.12: Coarse asphalt after rain (compare to Figure A.7). The added specularity
causes our localization system to fail.

Effectiveness at Night: As opposed to differences in intensity in the image as

a whole, as considered in the previous experiment, we have observed that changing

the pattern of illumination results in a dramatic decrease in localization performance.

In particular, we conducted an experiment in which we captured a dataset (fine

asphalt) under direct illumination from sunlight (i.e., without the light shield shown in

Figure 2.1), then captured our testing dataset at night, with illumination provided by

LEDs. Because of the difference between directional sunlight and LED illumination,

the features that were extracted in the two datasets were completely different, since

a majority of the features in this surface are due to shading, not color variation. As

a result, we were able to find almost no matches between the query images and the

database.

To resolve this issue, we captured a second map (Figure A.6) with the light shade

in place and using LEDs to illuminate the ground all the time, even during daylight.

Comparing this dataset to Figure A.5, we see a significant difference in the appearance

of small-scale features in the closeup at lower left. Localizing our nighttime-captured

test set in our daytime-captured but light-controlled map, we achieve a localization

success rate of 94.50%, showing that blocking the environment light is an effective

way to guarantee the consistency of test images and database images.

Wet Surfaces: Another change that can cause dramatic differences between fea-

tures extracted at different times is wetting of the surface. Figure 2.12 shows the

42

Table 2.5: Computational time breakdown for localization using 8- and 16-
dimensional descriptors, measured on the carpet dataset.

Operation Time-8 (ms) Time-16 (ms)

SIFT extraction 61.30 67.52
NN Search 109.64 119.64
Voting 18.69 18.68
Pose Estimation 10.44 12.09
Others 45.51 43.63

Total 245.58 261.56

same surface as Figure A.7, but captured after a rainfall. The difference in surface

specularity, combined with the bumpiness of the surface, caused completely different

features to be detected, leading to almost complete failure of our system. (In contrast,

we obtained very good results matching wet concrete to a dry-concrete database.)

2.6.5 Efficiency

Our system is implemented on a battery-powered mobile platform having computing

power an order of magnitude lower than a desktop computer. In our implementation,

we use SiftGPU [102] to speed up the extraction of SIFT features. We evaluate the

efficiency on NVIDIA Jetson TX1, and the computational time breakdown is shown

in Table 2.5. Although the system does not run in real time, it nevertheless delivers

localization in under a second. This is sufficient to correct drift in odometry, and to

re-localize the system when tracking or odometry is lost.

2.7 Application: Automatic Path Following

Our system provides a simple, inexpensive solution to achieve fine absolute position-

ing, and mobile robots having such a requirement represent an ideal application. In

43

Manual

Auto

NVIDIA Jetson TX1

MicrocontrollerCamera

Manual

Auto

a b c d

Figure 2.13: A demonstration of path following. (a) Micro-GPS is implemented as a
component of a mobile robot. (b) We generate a path by manually driving the robot.
(c) We then use Micro-GPS to repeat the path. Screen-shots captured under manual
and automatic driving modes are highly consistent. (d) The robot reaches the same
ending position with high accuracy.

practice, we believe that indoor service robots, human-free warehouse robots, and

self-driving cars performing fine positioning tasks can benefit from our system.

To demonstrate the practicality of this approach, we build a robot that is able to

follow a designed path exactly without any initialization of the position. Our robot

(shown in Figure 2.13a) has a differential drive composed of two 24 V DC geared

motors with encoders for closed-loop control of the motors. A Teensy Arduino board

is used for the motion control. Using the encoder readings, we implemented dead-

reckoning odometry on board so that it is feasible to track the position of the robot

at reasonable accuracy within a short distance.

The drift in odometry is corrected using Micro-GPS running on the on-board

NVIDIA Jetson TX1 computer, which communicates with the microcontroller via a

USB connection. When a video frame is captured, the microcontroller is notified to

save its current estimate of position, and to continue tracking the robot using dead

reckoning. When Micro-GPS computation is finished, the ground-truth location of

the frame is communicated to the microcontroller, which can update the estimate of

its current location by applying the intervening tracking results to that ground-truth

position.

44

a b c

Figure 2.14: Recording footprints. (a) The marker on the shoe is calibrated rela-
tive to the marker on the ground. (b) Captured image after performing perspective
correction. (c) Recorded footprints.

To test the repeatability of navigation using this strategy, we first manually drive

the robot along a particular path (shown in Figure 2.13b), and mark its final location

on the ground using a piece of tape. We then send the robot back to its starting

position, and ask it to re-play that same path. The sequences of the manual driving

and automatic re-play are shown in the accompanying video; screen-shots from the

video are compared in Figure 2.13c. As shown in Figure 2.13d, the robot ends up in

almost exactly the same position after automatic path following as it did after the

manual driving.

2.8 Application: Capture of Foot Placement

The applicability of our system is not limited to the field of robotics. Micro-GPS

can enable many more applications when tiny, lightweight, wearable cameras foretold

by GoPro become prevalent. One of the possibilities is precise recording of foot

placement, for performance capture as well as a range of HCI and IoT applications.

We attach an iPhone low on a person’s leg to capture ground images around the

foot (Figure 2.14a). An ArUco marker [62] is fixed on the shoe to help in estimating

45

the orientation of the camera. We calibrate the intrinsics of the camera and its pose

relative to another marker on the ground.

We record video at normal shutter speed while the person walks. The camera

pose and metric scale of each frame can be estimated via the captured marker on the

shoe. We warp the image to remove perspective foreshortening and match the scale

of the database images (Figure 2.14b). Note that this correction cannot be performed

when the person is moving, because the calibration is for a foot placed on the ground.

Finally, Micro-GPS can be directly applied to the warped images, and Figure 2.14c

shows that every foot step is successfully localized (to millimeter-level accuracy) in

the map.

2.9 Discussion, Limitations, and Future Work

We present a low cost texture-based global positioning system that can provide

millimeter-level precision. Our system does not require adding infrastructure to the

environment, and we demonstrate that it can be implemented on a low-power plat-

form such as those embedded in mobile vehicles. A variety of applications that require

fine global positioning can benefit from the proposed approach.

Scalability: To accommodate larger working areas, we would need to increase the

volume of the database, which could degenerate the robustness of our system due to

noisier feature matching. Also, performing matching within a large database could

raise the issue of efficiency. However, our system could work together with existing

systems that provide coarse localization (e.g., GPS) to narrow down the working area.

Limitations in Feature Extraction: We have found (Table 2.1) that using SIFT

features in the proposed system results in robust performance in most cases. One ex-

ception is the wood dataset, in which features are more difficult to find. In particular,

46

Figure 2.15: Performance on the wood floor is limited by the lack of SIFT features
(left). As future work, we suggest using (a subset of) the detected edges instead
(right).

the number of extracted features per frame in the wood dataset can be as low as 81

(Figure 2.15a), as compared to over 2000 on the carpet dataset. This is because the

textures on wood are mainly composed of stripes, not “blobs.”

This difficulty in feature detection leads to lower performance. Although we report

a success rate of 75% in Table 2.1, we have determined by hand that this is an under-

estimate due to not having enough features for verification – the true success rate is

88%. Still, as future work we would like to explore combining the SIFT detector with

others, such as those based on Canny edges (Figure 2.15b).

Accuracy: The actual localization in global space is determined by the alignment of

the database images. Most of the maps we have obtained are visually plausible and of

high quality because of the global optimization process which utilizes a large number

of loop-closure pairs. However, even with global optimization, the alignment can still

drift slightly as the map grows. A solution to that is to put sparse visual anchors in

the map and incorporate these anchors into optimization as hard constraints. On the

other hand, in most applications it is sufficient to locate the live frame in the pre-built

map, even though the pre-built map does not perfectly match the real world. For

example, when a warehouse robot is asked to navigate to a shelf in the map, driving

47

Figure 2.16: Map expansion. Left: Self-consistent map generated by stitching the
test sequence. Right: The updated map generated by registering the new sub-map
to the existing map.

the robot until it reaches the destination in the map is more important than knowing

the location of the shelf in the real world.

Map Expansion: A long-term goal of this work is to enable crowdsourced building

and updating of large-scale maps. Although it will be difficult to apply the existing

global registration methods at global scale, this is not necessary if any rough location

estimate is available. For example, outdoors it should be possible to obtain a GPS

estimate accurate to, say, 10 m under almost all circumstances. Indoors, WiFi tri-

angulation can be used to obtain an initial position estimate accurate to a few tens

of meters. Therefore, each “map” need only cover an area of a few hundred square

meters, which is well within the practical range of our system given that we perform

dimensionality reduction on features and accelerate nearest-neighbor queries.

The remaining challenge is therefore a systems-building one: developing a back-

end that will enable newly-acquired images to be incorporated into the database. We

have conducted an initial experiment to evaluate the practicality of aligning a new set

of images and optimizing their poses relative to an existing database, as long as there

is some overlap between the new dataset and the existing map. Figure 2.16 shows

a demonstration on the concrete dataset. We first use the image stitching pipeline

48

detailed in Section 2.3 to obtain a new globally consistent map (shown at left) of only

the newly-acquired data. We then run Micro-GPS on each test image and register

the new map to the existing map once Micro-GPS confirms a successful localization.

Lastly, we find more correspondences between the existing map and the new map and

optimize the test image poses again. The updated map after registering the new map

to the original map is shown in Figure 2.16, right.

Efficiency: SIFT feature extraction makes our system far from real-time when im-

plemented on a mobile platform, even with the GPU implementation. Replacing

SIFT with a much more efficient feature detector can probably help. In particular,

we would like to investigate deep-network-based approaches that are specialized to

the domain of texture-like images, as opposed to the existing work on natural images.

Robustness: While we have shown that our system is robust to perturbations in

both image capturing and changes to the texture, it does not work well with wet

surfaces because the appearances of wet surfaces often change significantly. Features

extracted from wet surface images can be completely different from those extracted

from dry surface images, which is an even worse case than severe occlusion. A possible

future direction is to capture the geometry (i.e., normal maps) of the ground texture

in a manner similar to the previous work on fingerprinting blank paper [17]. Another

possibility would be to use cross-polarized lighting to eliminate the specular reflections.

In case a reliable ground surface is absent, leveraging subsurface features, such as what

has been demonstrated in LGPR [18], could be a feasible solution.

In our current pipeline, we build our database by randomly selecting 50 features

from each database image. However, some of the features might be non-repeatable

and cannot be observed again. Note that features with higher LoG response are not

necessarily highly repeatable features: they are just as likely to be due to noise, dust,

etc. Intuitively, features with medium responses are likely to be highly repeatable.

49

Hartmann et al. [26] train a classifier to select repeatable SIFT features, but we have

found that the correlation between a SIFT descriptor and its repeatability score using

this method is not strong on our “texture-like” images. In the future, we would like to

investigate predicting repeatable features based on the image patches, and to include

only those in the database.

50

Chapter 3

Learning to Detect Features in

Texture Images

3.1 Introduction

Many computer vision tasks require computing local features as the first step. These

tasks include but are not limited to image alignment [115, 14], image retrieval [72, 34],

image-based localization and reconstruction [86, 87]. A pipeline used for computing

local features given a single input image typically consists of a feature detector

and a feature descriptor, which are often performed sequentially. For both of

these two important components, there is a substantial amount of work on designing

hand-crafted solutions, and some of the best-performing hand-crafted pipelines such

as SIFT [50] have become gold standards in real applications. Nevertheless, nearly

all existing hand-crafted solutions are optimized for and evaluated on natural images.

There are, however, many more types of images that are outside the scope of natural

images, but also require a well-performing feature pipeline. In Chapter 2, we have

demonstrated in the Micro-GPS project that precise global localization can exploit

textures (such as those present on ground surfaces ranging from carpet to asphalt),

51

Localization
in the Map
(Asphalt)Trajectory

Ground Texture Image Detected Features

Figure 3.1: From each test image, our proposed detector extracts highly repeatable
features, which can be utilized by Micro-GPS to achieve precise global localization in
a pre-built map, such as the asphalt map being shown. Note that Micro-GPS locates
each test image independently in the map (ignoring temporal coherence).

because textures globally exhibit many distinctive and persistent features that can

be used for unique identification. While a hand-crafted feature pipeline such as SIFT

indeed works properly in most of the textures demonstrated in the Micro-GPS system,

its robustness varies on different textures. We observe that different textures consist

of different “basic elements” that are not always ideal for a particular feature detector.

For example, a typical blob or corner detector will find few features on the stripes

present in a wood texture. In this work, we propose a learning-based feature detector

optimized for texture images, and demonstrate its effectiveness in the Micro-GPS

system(Figure 3.1).

In recent years, machine learning techniques have shown success in improving

feature pipelines. Most of this previous work, however, focuses on learning feature

descriptors [84, 24, 83, 110], which we argue is a more straightforward problem than

learning a feature detector. While it is difficult to obtain ground-truth labels for

both feature detection and feature description, learning a feature descriptor often re-

52

lies on self-supervision, which is usually achieved by training with corresponding and

non-corresponding image patches. Exploiting such self-supervision is more natural

for learning a feature descriptor, because it exactly matches how a descriptor is eval-

uated — minimizing the distance between corresponding descriptors and maximizing

the distance between non-corresponding descriptors. In contrast, it is less obvious

how to perform similar self-supervision when learning a feature detector, because the

criteria used for evaluating a detector are very different. In general, a detector is

considered well-performing if the interest points output by the detector 1) can be

repeatedly detected even when the image undergoes certain transformations such as

rotation; 2) are locally distinctive, which means that they cannot be easily confused

with other nearby points; and 3) are sufficiently numerous to be useful in applications

such as retrieval, registration, and localization. The combination of these criteria can-

not be easily translated into a loss function to be used in (self-supervised) training.

Recent work has demonstrated that a feature detector can indeed be learned in an

unsupervised manner [42, 77] without using existing feature detectors for supervision.

Specifically, these methods attempt to output a “response map” with each pixel

indicating how interesting the pixel is, and the only constraint used in these methods

is that the response map should be consistent under certain criteria when the image

undergoes transformations. Because this leads to only weak constraints, some work

has proposed to add supervision by, for example, constraining the response map to

fire on points output by a hand-crafted detector [113]. Although this approach was

shown to work, it is limited by the effectiveness of the underlying TILDE detector [96],

which our experiments show has only moderate performance for the texture images

on which we focus.

We propose an approach to feature detection that retains self-supervision, aug-

menting the goal of consistency (as expressed by the “ranking loss” of Savinov et

al. [77]) with the desire to make the response map as “peaked” as possible. This

53

leads to more localized local extrema in the response map, which in turn boosts the

repeatability of the detector. Our detector also utilizes a fully-convolutional network

architecture with a large receptive field, leading to both high efficiency and suitabil-

ity for a wide variety of textures. Finally, and most crucially, we demonstrate that

textures are sufficiently varied that optimal performance for each type of texture can

be achieved by training on that texture alone. While we do evaluate the repeatability

of detectors trained on one texture and tested on another, our main focus is on an-

swering: given sufficient amount of images of a specific texture, is it possible to learn

a “perfect” feature detector for this texture alone?

The major contributions of this work are:

• Proposing a fully-convolutional network architecture that can be efficiently ap-

plied on a full-sized image without separate evaluation on each pixel.

• Describing a method to maximize the peakedness of the response map and

proving that it is critical to improving the repeatability of the learned detector.

• Evaluating design choices, demonstrating that maximal effectiveness requires a

large receptive field but is relatively insensitive to the tuning of other parame-

ters.

• Demonstrating on Micro-GPS that the learned detector is more effective than

a handcrafted alternative.

The materials in this chapter were publicly presented [112] prior to the completion

of this thesis.

3.2 Related Work

While classic features detectors were hand-crafted using a human-specified definition

of “interestingness”, recent ones use learning to improve performance. These either

54

select a subset of points output by a hand-crafted detector or learn a definition of

“interestingness” from scratch.

3.2.1 Hand-Crafted Feature Detectors

There is extensive work on designing a feature detector that performs well on natural

images. Detecting corners is one of the earlier strategies [25, 56]. Alternatively, one

can detect “blobs”. The SIFT detector [50] uses Differences of Gaussians (DoG) to

approximate the Laplacian-of-Gaussian (LoG) filter, and looks for local extrema over

scale and space. SIFT has shown great robustness in real-world applications and

remains a gold standard. A major limitation of SIFT is its speed. While one can

use GPUs to accelerate SIFT [102], SURF [13] approximates LoG using a box filter

and significantly speeds up detection. As an alternative to SIFT, MSER [53] detects

blobs by extracting covariant regions from the image and fitting ellipses to these

regions. In addition to detecting blobs, SFOP [22] also detects junctions. WADE [73]

demonstrates that salient symmetries can be leveraged to detect repeatable interest

points even in images related to untextured objects, which are difficult cases for a

corner or blob detector.

3.2.2 Learned Feature Detectors

FAST [70] achieves fast corner detection, and machine learning techniques are applied

to accelerate detection. By minimizing the pose estimation error for stereo visual

odometry, one can learn a convolutional filter (LCF) for feature detection [69]. A

classifier can be learned from SIFT features surviving matching tasks, and combining

the classifier with the original SIFT detector helps achieve better matchability [26].

TILDE [96] uses stack of pre-aligned images undergoing drastic brightness changes

and learns a detector to predict highly repeatable SIFT keypoints across images.

Similarly, LIFT [106] also uses patches corresponding to SIFT keypoints to train

55

their feature detector. Lenc and Vedaldi [42] show that it is possible to train a

feature detector using the covariant constraint only, by forcing the network to output

covariant transformations given an image patch and its transformed version. This

work was extended by using features detected by TILDE as guidance [113].

Savinov et al. [77] propose to learn a detector by ranking image patches. This

method is based on the assumption that if a patch has a higher score than another

patch in the response map, this ranking relationship should remain unchanged when

the image is transformed. While this method shows improvement over previous detec-

tors, and we incorporate its ranking loss into our work, it has two major limitations.

First, the network is underconstrained because only ranking loss is used. Guarantee-

ing a low ranking loss does not necessarily imply high repeatability of the detector,

and we show that this is data-dependent. Second, all network architectures demon-

strated in the original paper are constrained by a small receptive field (17×17 kernel

in their work). The small receptive field is inadequate for many of the textures we

consider. In addition, the deep convolutional architecture, which shows the best per-

formance in the cross-modal detection task, requires per-pixel traversal in the test

image. We ameliorate these problems by incorporating a peakedness loss term that

effectively improves repeatability, and using an efficient fully-convolutional network

that can be directly applied to the test image.

3.3 Approach

Defining the desired appearance of a feature in texture images is a non-trivial task

because even humans cannot reliably label repeatable features. Hand-crafted detec-

tors have one definition of “feature,” and fail to work when textures do not fit that

definition. For example, wood textures often contain stripes that cannot be identified

by a blob detector or a corner detector. Since there is no obvious way to obtain labels

56

shared
weights

..
.

..
.

..
.

..
.

Ranking
Loss

Peakedness Loss

P 1
a P 2

aP 1
b P 2

b

Figure 3.2: Illustration of the training pipeline. The network is pretrained with the
ranking loss only, and tuned using both the ranking loss and the peakedness loss.

to enable supervised learning, we choose to perform unsupervised training, following

the basic idea of Savinov et al. [77].

3.3.1 Feature Detection by Ranking

The network we train will take as input an image, and produce as output a response

map. Each value in the response map indicates how likely this pixel is to be a

distinctive interest point. Specifically, we would like the deep-neural-network to learn

a scoring function F(.) that maps the input image patch to a single-valued score.

We want this score to be consistent under transformations: if one point is more

“interesting” than another, then it should still be more interesting when the image

is transformed. That is, given any pair of patches {P 1
a , P

1
b } and their randomly

transformed versions {P 2
a , P

2
b }, we want the scoring function to satisfy either of the

57

following two cases:

F(P 1

a) > F(P 1
b) and F(P 2

a) > F(P 2
b)

F(P 1
a) < F(P 1

b) and F(P 2
a) < F(P 2

b)

. (3.1)

Combining into a single inequality:

R =
(
F(P 1

a)−F(P 1
b)
)(
F(P 2

a)−F(P 2
b)
)
> 0. (3.2)

This inequality ensures consistent ranking of Pa and Pb, and we apply a hinge loss

to obtain our ranking loss term:

Lrank(P 1
a , P

2
a , P

1
b , P

2
b) = max(0,Mrank −R), (3.3)

where Mrank is the margin and correlates to the confidence of ranking consistency. We

set Mrank = 1.0 throughout our experiments. In each training iteration, the network

takes in two pairs of corresponding image patches which are randomly rotated. An

illustration of the ranking network is shown in Figure 3.2.

In selecting an appropriate architecture for the ranking network, we take into

consideration both performance and efficiency. Performance is strongly affected by

the size of the receptive field. While one could let the network see a larger area by

downsampling the original image, significant downsampling erases subtle details. We

show that while a small window can indeed work in some “easy” texture images, a

larger window is critical to better adaptability. Our network has a receptive field of

65×65, leading to improved performance relative to the original networks of Savinov

et al. [77], which have a receptive field of size 17×17. When considering efficiency, we

notice that the best-performing architecture (Deep convolutional network) used by

Savinov et al. requires per-pixel traversal of the input image. We instead use a fully-

58

Figure 3.3: From left to right: zoomed-in view of a stain in the asphalt texture,
response map output by the network trained using ranking loss only, and response
map after optimizing the peakedness. The latter response map is more robust against
noise when performing non-maximum suppression.

convolutional network containing only convolutional layers and rectified linear units

(ReLU), with no pooling or padding. This architecture is efficient because the trained

model can be directly applied to the whole image, yielding a complete response map.

3.3.2 Optimizing Peakedness of the Response

Detection purely by ranking has several limitations due to its unconstrained nature.

First, the the loss is unchanged if the ranking of image patches is flipped. In theory,

this is not a problem because we can consider both local maxima and local minima as

good candidates for features. In practice, however, we observe that each training run

results in a network in which either maxima or minima yield better (and more visually

plausible) results. Therefore, we use a validation set to evaluate the repeatability of

both maxima and minima, and we negate the response map if the minima perform

better. In other words, we always end up with a response map whose local maxima

are the features we use.

Another, more serious, limitation of a ranking network is that there are many

functions that all result in the same relative rankings of different pixels, while yielding

different repeatability in matching. For example, consider the patch in Figure 3.3.

The response map shown at center is broad, meaning that the feature was not localized

59

A

C

B1

B2

B3

Score

Area Above
the Curve

Score

Figure 3.4: Illustration of response curves. Left: different response curves can lead to
same ranking. Right: peakedness of the response curve can be evaluated as the area
above the curve; specifically, for the k highest values in a local window, we sum up
the difference between each value and the maximum.

precisely. In contrast, the response map at right is more “peaky,” which ultimately

results in more accurate matching across images.

In order to encourage the network to learn the response map at right, we include

a peakedness term in our training loss. This is based on looking at all the responses

in a patch, and encouraging only a few of them to be large. For example, if we look at

the responses within the neighborhood of a maximum, sorted from lowest to highest,

different networks might produce any of the three curves in Figure 3.4, left. We

prefer the lowest curve, since it has the most-peaked response. This is accomplished

by maximizing the area above the curve (Figure 3.4, right): this forces the values in

the neighborhood to be as small as possible.

Specifically, during training we consider not just 65×65 input patches (which

would result in a single output value per patch), but rather patches P̂ of size

(64+w)×(64+w). Because our scoring network F is fully convolutional, this results

in an output response map of size w × w, where w =7 in our experiments. We sort

the scores in this map to obtain a response curve F̃(P̂). The peakedness of the patch

is computed as the difference between the maximum and the average of the largest

k scores:

γ(P̂) = max
(
F̃(P̂)

)
− 1

k

k∑
i

F̃(P̂)i. (3.4)

60

The peakedness loss function forces the peakedness to be above a certain margin:

Lpeak(P̂) = max
(
0,Mpeak − γ(P̂)

)
, (3.5)

where Mpeak is the desired peakedness (3.0 in our experiments). We compute the

total training loss by averaging the peakedness loss of the four input patches, and

combining with the ranking loss:

Ltotal(P̂
1
a , P̂

2
a , P̂

1
b , P̂

2
b) = Lrank(P 1

a , P
2
a , P

1
b , P

2
b) +

α · 1
4

(
Lpeak(P̂ 1

a) + Lpeak(P̂ 1
b) + Lpeak(P̂ 2

a) + Lpeak(P̂ 2
b)
)
, (3.6)

where {P 1
a , P

2
a , P

1
b , P

2
b } are the center 65×65 patches of {P̂ 1

a , P̂
2
a , P̂

1
b , P̂

2
b } and α is

a weighting parameter used to balance the ranking loss and the peakedness loss.

Note that within each batch, not all the patches strongly correlate to good features,

thus it can be harmful to maximize the peakedness for patches with relatively weak

responses. Therefore we exclude the 25% of patches with the smallest maximal scores

when computing the peakedness loss.

3.3.3 Implementation

3.3.4 Datasets

The datasets used in Micro-GPS consist of texture images densely captured along

overlapping paths and registered to each other. Previous works usually train their

networks using patches cropped around SIFT features that survive a structure-from-

motion pipeline [106], because this is perhaps the most efficient way to generate corre-

sponding image patches. Savinov et al. [77] use the DTU Robot Image Dataset [1], for

which ground truth 3D points are available, but such a dataset is difficult to acquire

61

Table 3.1: Architecture of the proposed scoring network. Note that “Conv3-9” means
repeating the layer for 7 times.

Layer Conv
Filter

Input
Size

Input
Channels

Output
Channels

Activation Stride

Conv1 9×9 65 1 16 ReLU 1
Conv2 7×7 57 16 32 ReLU 1
Conv3-9 7×7 51 32 32 ReLU 1
Conv10 9×9 9 32 32 ReLU 1
Conv11 1×1 1 32 32 ReLU 1
Conv12 1×1 1 32 1 ReLU 1

and its size is small considering the broad space of natural images. The advantage of

the texture datasets we use is that generating a pair of corresponding patches is as

simple as cropping around any point in the overlapping region, and, more importantly,

these patches are not biased to any existing feature detector. We use one region in

each texture for training and the others for validation and testing. We only crop

image patches from image pairs with an overlapping area over 40%. For training, we

randomly crop 512k pairs of corresponding image patches with random orientations,

which aims to make the scoring network rotation-invariant. In each training iteration,

the quadruple used is constructed by randomly combining two pairs of corresponding

patches.

3.3.5 Training

Our network consists of 12 convolutional layers, with no padding or pooling: detailed

architecture can be found in Table 3.1. We train our network on an NVIDIA M40

GPU using the PyTorch framework [65], using the Adadelta algorithm [108] to mini-

mize loss. The batch size is 256 and the network is trained using only the ranking loss

for 10000 iterations. The network is then tuned with both ranking and peakedness

loss for 2000 iterations. We observe that this schedule leads to better performance

than training from scratch with both losses. We also observe that batch normalization

62

blurs the response map and lowers repeatability, so we omit it. Training the network

typically takes three hours.

3.3.6 Feature Detection in a Test Image

Given a test image of arbitrary size H×W, we first reflection-pad the image by 32

pixels on each side, because this is how much our network removes from each border.

Applying the network to the padded image results in an output response map of size

H×W. We then follow the general interest point localization pipeline detailed in [50].

Gaussian blurring with σ =2 is performed before non-maximum suppression, which

effectively prevents multiple detections in a small neighborhood. To limit the number

of output interest points, we simply select the n largest local maxima based on score.

Finally, we apply sub-pixel localization based on the second-order Taylor expansion

of the scoring function to refine the integer-valued interest point locations.

3.3.7 Computational Efficiency

The proposed architecture is efficient, as compared to state-of-the-art methods that

require evaluating each pixel separately (i.e., running the network on the neighbor-

hood around every pixel, independently). Our full pipeline runs at 2.5fps (1288×964).

In comparison, QuadNet [77] (our implementation) runs at 0.00775fps with batch pro-

cessing, while our network computed independently per pixel (as opposed to over the

entire image at once) would run at 0.00408fps due to a larger receptive field. Hand-

crafted detectors such as SIFT are faster: the detector portion of SiftGPU [102] runs

at 25fps.

63

3.4 Results

3.4.1 Evaluation Protocol

The test set we used for evaluating repeatability is generated by randomly sampling

pairs of overlapping images with an overlap area above 50%. However, the images

in the texture dataset tend to have similar orientation, which is not sufficient for

evaluating rotation-invariant feature detectors. We therefore randomly rotate one

image in each pair and recompute the transformation between the two images. Given

two images and the transformation matrix between them, we run the feature detector

on each image, select features in the overlapping region, and count detected features

as “repeatable” if they are found in both images, within 5 pixels after applying the

transformation.

For a fair evaluation, we must ensure that methods are not rewarded for finding

too many features (in which case finding a matching feature by chance would be too

easy) or too few (in which case the matching percentage may be high even though

the number of detected features may be too low for many applications). We therefore

keep only the 200 strongest features (if that many exist) in the overlapping region

for each image, similarly to what has been done in Zhang et al. [113]. We perform

bidirectional matching to prevent multiple features from matching to the same feature

in the other image. Finally, we report the number of matches, rather than the fraction

of matching features, to penalize methods that could not detect at least 200 features

(in original images of resolution 1288×964 and 1280×720).

3.4.2 Performance

We compare our detector to hand-crafted detectors including SIFT [50], SURF [13],

MSER [53], WADE [73], SFOP [22], Harris Laplace [56] (HarrLap), Hessian

Laplace [56] (HessLap), Harris Affine [56] (HarrAff) and Hessian Affine [56] (Hes-

64

Table 3.2: For each method, we show the number of repeatable features detected
(across 20 images, keeping a maximum of 200 features per image), the total number
of detected features and the overall repeatability represented in percentage.

indoor-carpet indoor-tile indoor-wood
Method # rep # det per (%) # rep # det per (%) # rep # det per (%)

HarrAff [56] 394 4000 9.85 706 4000 17.65 34 82 41.46
HarrLap [56] 390 4000 9.75 702 4000 17.55 35 83 42.17
HessAff [56] 447 4000 11.18 84 4000 2.10 507 4000 12.68
HessLap [56] 444 4000 11.10 126 4000 3.15 490 4000 12.25
MSER [53] 590 4000 14.75 1556 4000 38.90 68 115 59.13
FAST [70] 1708 4000 42.70 2276 4000 56.90 1017 4000 25.42
SIFT [50] 2022 4000 50.55 1510 4000 37.75 610 1648 37.01
SURF [13] 2451 4000 61.27 2271 4000 56.77 1455 3974 36.61
LCF [69] 811 4000 20.28 1068 4000 26.70 740 4000 18.50
SFOP [22] 2504 4000 62.60 2328 4000 58.20 1074 3474 30.92
WADE [22] 2898 4000 72.45 1230 1946 63.21 20 61 32.79
TILDE-P24 [96] 2029 4000 50.72 2770 4000 69.25 2380 4000 59.50
TILDE-P [96] 1777 4000 44.42 2625 4000 65.62 2182 4000 54.55
Linear17 [77] 3550 4000 88.75 2730 4000 68.25 1567 4000 39.17
DCNN17 [77] 3589 4000 89.72 2650 4000 66.25 2260 4000 56.50

Pretrained 3290 3681 89.38 3383 4000 84.58 1892 3961 47.77
Tuned 3715 4000 92.88 3397 4000 84.92 2906 4000 72.65

outdoor-asphalt outdoor-granite outdoor-concrete outdoor-coarse
Method # rep # det per (%) # rep # det per (%) # rep # det per (%) # rep # det per (%)

HarrAff [56] 350 4000 8.75 223 4000 5.58 495 4000 12.38 466 4000 11.65
HarrLap [56] 351 4000 8.77 224 4000 5.60 494 4000 12.35 468 4000 11.70
HessAff [56] 247 4000 6.17 233 4000 5.83 149 4000 3.72 799 4000 19.98
HessLap [56] 249 4000 6.22 230 4000 5.75 150 4000 3.75 803 4000 20.08
MSER [53] 475 4000 11.88 404 4000 10.10 952 4000 23.80 799 4000 19.98
FAST [70] 1524 4000 38.10 1574 4000 39.35 1802 4000 45.05 1583 4000 39.57
SIFT [50] 1474 4000 36.85 1385 4000 34.62 1869 4000 46.73 1456 4000 36.40
SURF [13] 2879 4000 71.97 2496 4000 62.40 2738 4000 68.45 2125 4000 53.12
LCF [69] 779 4000 19.48 817 4000 20.42 795 4000 19.88 1093 4000 27.32
SFOP [22] 1831 4000 45.77 1993 4000 49.83 2219 4000 55.47 1989 4000 49.73
WADE [22] 2296 4000 57.40 2254 4000 56.35 1870 2775 67.39 1992 4000 49.80
TILDE-P24 [96] 2185 4000 54.62 2607 4000 65.18 3244 4000 81.10 2093 4000 52.33
TILDE-P [96] 1869 4000 46.73 2329 4000 58.23 3039 4000 75.98 1975 4000 49.38
Linear17 [77] 3106 4000 77.65 3143 4000 78.57 3304 4000 82.60 3182 4000 79.55
DCNN17 [77] 3304 4000 82.60 3079 4000 76.98 3006 4000 75.15 2755 4000 68.88

Pretrained 3332 4000 83.30 3384 4000 84.60 2716 4000 67.90 3188 4000 79.70
Tuned 3344 4000 83.60 3431 4000 85.78 3607 4000 90.18 3314 4000 82.85

65

sAff). We also compare our detector to learned detectors including FAST [70],

LCF [69], TILDE [96] (TILDE-P, TILDE-P24), and Quad-networks [77] (Linear17,

DCNN17). The TILDE detector is trained using time-lapse image sequences, thus

we directly use their trained model. TILDE-P24 is an approximation of TILDE-P.

Linear17 stands for the one-convolutional-layer network that regresses a 17×17 patch

to a single-valued score. DCNN17 stands for the deep-convolutional network which

was originally designed for cross-modal detection; it requires per-pixel traversal of

the input image.

We also attempted to retrain the covariant detector [42] and its extended version

assisted by “standard patches” using the publicly available code [113], but training

did not converge, even on the relatively simple carpet texture. This might be due to

the significant difference between natural images used by their methods and texture

images. We observe that the image patches cropped from natural images have obvious

variations in appearance, but the patches cropped from texture images appear similar

to each other.

Table 3.2 shows the total number of repeatable features detected using the above

detectors and the corresponding repeatability (in percentage). Each detector is ap-

plied to 20 pairs of images for each type of texture, which means that at most 4000

repeatable features can be retained. As expected, none of the hand-crafted detectors

perform consistently well on all types of textures, which motivates the need for a

texture-specific detector. Similarly to the original Quad-network detectors, our pre-

trained detectors also suffer from the drawbacks of using only ranking loss. However,

on textures which contain large elements, such as the colored chips in the tile texture,

our pretrained detector outperforms Quad-network detectors since our architecture

has a much larger receptive field. After tuning our detectors by introducing the

peakedness loss, our detectors outperform all other detectors on every texture, with

particular gains on difficult textures such as wood. It is also worth pointing out that

66

the TILDE detectors, which are trained using natural images, achieve reasonably

good performance on all textures although surprisingly they perform worse on the

easiest carpet texture.

The good performance of our tuned detectors can be better understood through

the response maps shown in Figure 3.5. Although training using the ranking loss is

sufficient on “easy” textures, the network tends to output smooth response maps for

challenging textures such as wood and concrete. Adding the peakedness loss forces

the network to output a sharper response map, making feature localization more

robust to noise. Also note that the response map is reversed on the concrete texture,

which explains the significant repeatability gain.

3.4.3 Impact of Parameters

There are three major parameters that can influence the performance of the detec-

tor: the weight assigned to the peakedness loss (α), the size of the window used to

compute the peakedness loss (w), and the number of pixels used to compute the area

above the curve (k). We investigate the effects of these parameters by, without loss

of generality, beginning with α=0.5, w=7, and k=20, then varying each parameter

independently around this configuration. For each parameter setting, we report how

much repeatability the detector gains after the tuning stage.

Varying α: The weight assigned to the peakedness loss influences how much the

network is willing to increase the ranking loss in order to improve the peakedness

of the response function. Figure 3.6 shows that the tuned detector typically reaches

the best performance when the weight is set to 0.5. Beyond this, repeatability often

decreases because the detector starts to overlook the ranking loss.

Varying w: The network must see a sufficiently-large local window in order to

learn to maximize local peakedness. Increasing window size too far, however, makes

67

ca
rp

et
a
sp

h
a
lt

gr
an

it
e

ti
le

co
n

cr
et

e
co

ar
se

w
o
o
d

Figure 3.5: Left to right: input, response maps (ranking loss only), response maps
(ranking and peakedness loss), top 200 features.

68

carpet asphalt wood tile granite concrete coarse average

R
e

p
e

a
ti
b

lit
y

G
a

in
e

d
(%

)

0

5

10

15

20

25

w = 0.125 w = 0.25 w = 0.5 w = 1 w = 2

Figure 3.6: Repeatability gain of detectors tuned with different α.

carpet asphalt wood tile granite concrete coarse average

R
e

p
e

a
ti
b

lit
y

G
a

in
e

d
(%

)

-5

0

5

10

15

20

win = 5 win = 7 win = 13

Figure 3.7: Repeatability gain of detectors tuned with different w.

carpet asphalt wood tile granite concrete coarse average

R
e

p
e

a
ti
b

lit
y

G
a

in
e

d
(%

)

0

5

10

15

20

k = 5 k = 10 k = 20 k = 40

Figure 3.8: Repeatability gain of detectors tuned with different k.

it more likely that the window will contain multiple peaks. We observe that using

w=7 results in the best repeatability gain on average (Figure 3.7).

Varying k: It is often not a good idea to use all the pixels in a local window for

computing the area above the curve. This is because the sorted scores only change

drastically in the first k pixels. In Figure 3.8, we observe that using 10 or 20 pixels

results in the best repeatability gain on average. Note that when using 20 pixels, the

detector trained on the concrete texture yields superior repeatability.

69

Test on
carpet asphalt wood tile granite concrete coarse average

R
e

p
e

a
ta

b
ili

ty
 (

%
)

30

40

50

60

70

80

90

100
train on carpet
train on asphalt

train on wood
train on tile

train on granite
train on concrete

train on coarse
train on union

Figure 3.9: Cross evaluation result of the pretrained detectors.

Test on
carpet asphalt wood tile granite concrete coarse average

R
e

p
e

a
ta

b
ili

ty
 (

%
)

30

40

50

60

70

80

90

100
train on carpet
train on asphalt

train on wood
train on tile

train on granite
train on concrete

train on coarse
train on union

Figure 3.10: Cross evaluation result of the tuned detectors.

3.4.4 Cross Evaluation

An important question one may ask is: how does a detector trained on one texture

perform on a completely different texture? Another interesting question is: can we

train a good “universal” detector using the union of all texture images? Below we

show the cross evaluation result of both the pretrained models (Figure 3.9) and the

tuned models (Figure 3.10). The universal model trained using the ranking loss only

is close to unusable. This is likely because the network cannot find a consistent rank-

ing across various textures. However, with the peakedness loss which only requires

the universal detector to optimize local maxima, the detector is able to achieve rea-

70

input texture-specific
pretrained

texture-specific
tuned

universal
pretrained

universal tuned

Figure 3.11: Visualization of the response maps generated by networks trained on
specific textures and networks trained on the union of all textures. We show both the
results of the pretrained model (using ranking loss only) and the tuned model (using
both ranking and peakedness loss).

71

carpet asphalt wood tile granite concrete coarse

S
u

c
c
e

s
s
 R

a
te

 (
%

)

0

20

40

60

80

100

20-ours 20-sift 50-ours 50-sift original

Figure 3.12: Performance on Micro-GPS.

sonably good repeatability, although the wood texture is still too challenging. The

poor performance of the universal detector can be better understood through visual-

izing the response maps. From Figure 3.11, we can observe that the response maps

produced by the pretrained universal detector are often overly smoothed. On textures

besides the carpet, there exist grid structure which might be learned from the carpet

texture. The tuned universal detector, although makes the response map more frag-

mented, also makes local maxima more “peaky”, which explains the improvement in

performance. Another interesting finding is that the detector trained on the granite

texture performs much better than the universal detector on all types of textures.

We observe that both local maxima and local minima found in the response map

of the granite texture correspond to very good interest points, which implies that

the detector trained on the granite texture potentially has better adaptability. This

experiment partially explains why hand-crafted features are still preferred to learned

features in real applications in the domain of natural images [74, 81]: using more

data for training does not necessarily help learning-based methods generalize well,

and using a smaller set of representative data might be a better solution.

72

3.4.5 Effectiveness in Micro-GPS

In the Micro-GPS system we have presented in Chapter 2, the number of features

stored in the database can affect the matching performance because because as the

feature space becomes denser, matching becomes not only slower but also more in-

accurate due to the larger number of false positives. In the previous SIFT-based

implementation, we observe that keeping 50 SIFT features per image is sufficient to

guarantee reasonably good performance on across all types of textures. Therefore fur-

ther improvement of Micro-GPS is mainly constrained by feature detection. Due to

the setup of Micro-GPS, there are only three requirements that the feature detector

needs to satisfy: high repeatability, rotation invariance, and global distinctiveness.

Scale or lighting invariance is not required here, because the images used by Micro-

GPS are captured at a constant height (constant scale) and with generally stable

illumination.

We combine our detector with the SIFT descriptor [50] and plug into the Micro-

GPS pipeline with the compressed descriptor dimensionality set to 16. The feature

orientation required by SIFT descriptor is also computed using the orientation es-

timator of the SIFT pipeline. We compare the SIFT detector and our detector by

sampling 50 and 20 features according to the response from each database image, re-

spectively, to build the feature database. The success rate of the system demonstrates

the usefulness (distinctiveness and repeatability) of the selected features. Figure 3.12

shows performance under different configurations. The original Micro-GPS clusters

features based on their scales, and feature matching is performed within each scale

group, which effectively improves the system performance (last bar in each column of

Figure 3.12). For a fair comparison, the feature scale detected by SIFT is not used,

and the descriptor is computed for both SIFT and our detector using a fixed scale of

6.0. Our learned detector is a clear winner even with feature scale absent.

73

3.5 Conclusion and Future Work

We present a pipeline for training a feature detector specialized in detecting locally

distinctive features in texture images. Explicitly defining what a good feature should

look like in texture images is challenging, and so we choose to learn the scoring

function in an unsupervised manner. We demonstrate that learning the scoring net-

work purely through a simple ranking loss makes the response curve highly under-

constrained, because the response curve corresponding to a desired ranking is not

unique. We propose to tune the network by maximizing local peakedness, which sig-

nificantly improves the repeatability on challenging textures. Moreover, the network

architecture we use allows the network to see a much larger area than previous work

while guaranteeing testing efficiency by avoiding pixel traversal. Lastly, we show that

our detector outperforms SIFT in the “Micro-GPS” texture-based global localization

application.

In the future, several immediate directions can be pursued. First, we would like

to extend our approach to scale space using a spatial transformer [33]. We exper-

imented with an approach from previous work based on image pyramids [77] and

found that some apparently-good features are suppressed by failing to become local

extrema in scale space. Second, a locally-distinctive interest point does not imply

that the descriptor computed using the point is also sufficiently globally-distinctive

for applications that involve feature matching. We believe that a feature descriptor

can be introduced to guide feature detection.

74

Chapter 4

Learning Local Descriptors with

Dynamic Soft Margin

4.1 Introduction

Efficient image matching is a fundamental problem in computer vision, robotics, and

graphics. Generally, image matching is a two-step procedure consisting of extracting

repeatable local keypoints using an interest point detector, followed by matching of

feature descriptors corresponding to those points. For example, the simplest way

to describe a local feature is to serialize a local image patch around the detected

keypoint, then compare the resulting vectors using Euclidean distance. While this

simple descriptor is sufficient in some highly-constrained scenarios, it fails if the illu-

mination or viewpoint is significantly changed. Matching “long” descriptors like this

also poses a computational efficiency challenge for many applications, especially those

requiring real-time performance. To solve this problem, researchers have attempted

to design “short” descriptors. One representative example is SIFT [49], which has

proven successful in a variety of applications.

75

With the development of deep-learning techniques, recent advancements to feature

descriptors have been mainly learning-based, as opposed to handcrafted descriptors.

These learned descriptors are often designed to have the same length (e.g., 128 floats,

as with SIFT), but have higher matching performance. Further reduction in storage

and matching costs can be achieved by binary descriptors, which are interpreted as

bit vectors and are compared using Hamming instead of Euclidean distance.

In this chapter, we demonstrate that a common architecture (based on L2-Net [90])

and training procedure (based on HardNet [59]) can be modified to learn not only

floating-point but also binary descriptors. The modified network advances the state

of the art in descriptor performance, but it also highlights a frequently-encountered

problem: the matching accuracy depends on hyperparameter tuning.

In particular, many well-performing learned descriptors are trained using the same

loss function: a triplet loss that encourages the distance between a negative pair to

exceed the distance between a positive pair by some margin. The purpose of the mar-

gin is to force the network to update its weights using the gradients computed from

“harder” triplets, while excluding training samples classified as “easy” by the mar-

gin. While modern approaches improve performance by incorporating hard negative

mining [10, 59] or regularization [40, 114], the effectiveness of training fundamentally

depends on the setting of the margin. Because the optimal margin is problem- and

often dataset-dependent, in practice the margin is either specified by hand based on

an educated guess or exhaustively tuned at great computational expense.

In this work, we propose a novel triplet loss function that has three major features:

1) We use a soft instead of hard margin to fully utilize each mini-batch. 2) The

soft margin dynamically adapts to the current state of training. 3) The method is

parameter-free: the two goals above are accomplished without the need for any user-

tunable hyperparameters. In short, as opposed to the Static Hard Margin used

76

in the traditional triplet loss, we think of our method as an instance of a Dynamic

Soft Margin strategy that could be applied to a variety of learning problems.

The traditional triplet loss makes a binary decision of whether a triplet should

contribute to the gradient, using the hard margin as a constant threshold. We instead

make the margin soft by using all the triplets in each mini-batch, while following the

simple intuition that “difficult” triplets should receive greater weight than “easy”

ones. In contrast to previous approaches that use soft margins (such as SVMs with

slack variables), our formulation does not require a separate user-tunable parameter

for the “softness” of the margin. The dynamic nature of our method is obtained

by maintaining a moving Probability Density Function (PDF) of the difference of

distances between the positive and negative pairs in each triplet. This may be thought

of as the signed distance of each triplet to the decision boundary. Weights are assigned

based on the integral of this PDF, in essence weighting each datapoint proportionally

to the probability that it is more difficult to classify than other recently encountered

datapoints. Therefore the weighting function is continuously updated as training

progresses.

4.2 Related Work

There is a large volume of previous work on designing local feature descriptors. We

focus on reviewing descriptors that are widely being used or have recently achieved

state-of-the-art performance. Local feature descriptors can be generally categorized

into real-valued descriptors and binary descriptors.1

Real-valued Descriptors: Probably the most successful handcrafted feature de-

scriptor is SIFT [49], which computes smoothed histograms using the gradient field

1The field of image retrieval also uses this terminology, but they emphasize category-level match-
ing instead of instance matching.

77

of the image patch. Instead of computing the histogram, PCA-SIFT [36] applies

principal component analysis directly to the image gradient. DAISY [91] addresses

efficiency and is fast enough to support dense matching. Recently, learning-based

methods have started to demonstrate effectiveness. Simonyan et al. [84] formulate

feature learning as a convex optimization problem. DeepDesc [83] uses paired im-

age patches and adopts a Siamese network to learn a discriminative descriptor while

performing hard mining to boost performance. DeepCompare [107] develops a two-

stream network with one stream focusing on the central part of the image. TFeat [10]

learns the descriptor using a triplet loss and applies an in-triplet hard mining method

named anchor swapping. More recently, Tian et al. have proposed L2-Net [90], which

adopts a deeper network and designs a new loss function requiring the true matches

to have the minimal `2 distances in the batch. HardNet [59] further simplifies the idea

by looking for hard negatives in each batch and achieves state-of-the-art performance

using a single triplet margin loss. Instead of using the triplet margin loss as the

proxy, DOAP [28] directly optimizes the ranking-based retrieval performance metric

and achieves more competitive results using the same network architecture. Keller et

al. [37] propose a mixed-context loss that combines triplet and Siamese loss, which

performs better than using either one alone. GeoDesc [51] further leverages geometric

constraints from multi-view reconstruction and demonstrates significant improvement

on 3D reconstruction tasks.

Binary Descriptors: Although real-valued descriptors demonstrate good perfor-

mance and applicability, they expose challenges to both storage and matching. Pop-

ular real-valued descriptors (such as SIFT) and recent learning-based descriptors use

128 floating point numbers, or 512 bytes. While the storage requirement could be

aggressively reduced by quantizing the floating point values [95, 100] or applying

principal component analysis (PCA) [100, 35] to reduce the length of the descriptor,

78

comparing the shortened real-valued descriptors still requires computing a real-valued

Euclidean distance. Efficient handcrafted binary descriptors ameliorate these prob-

lems by directly building a binary string using the input image patch. The metric

used to evaluate the distance between two binary descriptors is the Hamming dis-

tance, which is the number of set bits after performing the XOR operation. Efficient

computation of Hamming distance can exploit specialized instructions on supported

hardware. Popular binary descriptors include BRIEF [15] and rotated BRIEF used

by ORB [71], which typically rely on intensity comparisons using a predefined pattern.

This significantly lowers the computation cost, although this also implies that these

binary descriptors are less robust against drastic illumination changes. D-BRIEF [94]

learns from corresponding image patches a set of discriminative projections, which

can be further decomposed into fast small filters that can be computed using integral

images. DOAP [28] demonstrates that a good binary descriptor can also be learned

by optimizing the average precision on the retrieval task. Some recent real-valued

descriptors can be trivially converted to binary descriptors by taking the sign of each

dimension, and L2-Net has already shown promising results in generating binary de-

scriptors by doing this. There exist more sophisticated ways to convert floating-point

vectors into binary strings, such as LSH [23] or LDAHash [88].

While most existing works address either real-valued or binary descriptors, we

show that our approach is applicable to both. To the best of our knowledge, among

recent papers only DOAP shares this feature; but their formulation differs vastly

from the triplet loss that many methods are based on, implying that their method is

unlikely to be a drop-in replacement like ours.

Replacing Static Hard Margin: Instead of setting a hard margin, DeepDesc [83]

back-propagates the hardest 1/8 of samples, which can be interpreted as a Dynamic

Hard Margin. Person re-identification is a related topic that also uses the triplet

79

margin. Wang et al. [98] apply two separate hard margins for positive and negative

pairs. The margins are dynamically adjusted using a hand-crafted function with

cross-validated, but highly unintuitive, hyper-parameters (µ = 8 and γ = 2.1). Their

loss function still classifies training samples by making binary decisions, thus is yet

another case of Dynamic Hard Margin. Hermans et al. [30] use the softplus function to

mimic the soft margin. However, this function is fixed throughout the entire training

session and we view it as an instance of Static Soft Margin. Moreover, softplus has

an implicit scale hyper-parameter: 1/β · log(1+exp(βx)), where β controls smoothness

and is 1.0 by default. Section 4.6.1, includes comparisons against these alternatives

to demonstrate the effectiveness of our Dynamic Soft Margin.

4.3 Learning Local Descriptors

Our goal is to examine the effectiveness of the proposed Dynamic Soft Margin strategy,

and we are motivated by the application of learning real-valued and binary local

feature descriptors. As background, we first revisit the original triplet margin loss,

together with the network architecture and hard-negative mining method used by

state-of-the-art methods such as HardNet [59]. Next, we introduce a modified training

procedure that can learn high-quality binary descriptors.

4.3.1 Real-Valued Descriptors

A Siamese network with two streams sharing the same deep architecture and weights

is one of the natural choices for learning a descriptor. Most recent works adopt

L2-Net [90] as the backbone network due to its good performance. We also use L2-

Net in this work and only replace the loss function to show the effectiveness of our

method. L2-Net, denoted as F(·), takes an image patch x as input and produces a k-

dimensional descriptor. Given two input image patches x and x′, the distance between

80

them in descriptor space is written as D(F(x),F(x′)), where D is a distance metric.

For real-valued descriptors, the Euclidean distance is often used as the distance metric.

While evaluating the Euclidean distances among a large number of descriptors can

be expensive, the computational cost can be reduced if the feature vectors are unit-

length (i.e., ‖F(x)‖ = 1). Since the Euclidean distance between two unit vectors can

be computed using the dot product:

DEuclidean

(
F(x),F(x′)

)
=
√

2− 2F(x)TF(x′), (4.1)

it becomes possible to compute the pair-wise distance matrix of a batch of descriptors

with a single matrix multiplication. To leverage this nice property, L2-Net normalizes

the network output into a unit-length descriptor. Given N pairs of matching image

patches, where each pair corresponds to a unique 3D point in the physical world,

HardNet [59] computes a pair-wise distance matrix from the descriptors output by

the Siamese network. The diagonal elements in the distance matrix correspond to

the distances between matching pairs. HardNet mines the hardest negative for each

matching pair in its row and column from the non-diagonal elements in the distance

matrix. Note that this mining is a different process from the weighting of triplets by

our soft margin, as described below. For more details, we refer the readers to the

original paper.

If we denote the distance between a matching pair as dpos and the distance be-

tween the corresponding hardest non-matching pair as dneg, HardNet trains using the

standard triplet margin loss with margin µ = 1.0:

Ltriplet = max(0, µ+ dpos − dneg). (4.2)

The triplet margin loss simply forces the network to learn to increase the difference

between dneg and dpos until the condition dneg − dpos > µ is satisfied. If µ is set

81

sufficiently large that dneg − dpos > µ is never satisfied,
∂Ltriplet
∂dpos

= 1 and
∂Ltriplet
∂dneg

= −1,

where µ is no longer relevant. Though µ = 1.0 is shown to perform well for HardNet,

it remains a question whether there exists a µ that works better.

4.3.2 Binary Descriptors

Real-valued descriptors are potentially costly to store and compute with, due to

the fact that they are usually represented using 32-bit floating-point numbers. On

the other hand, binary descriptors are both more compact to store and faster to

compare (using Hamming distance), and hence are popular in real-time applications.

Unfortunately, HardNet [59] only addresses real-valued descriptor learning. Below,

we propose how to adapt it for binary descriptor learning, which is inherently non-

differentiable.

At testing time, it is easy to convert a real-valued L2-Net output to a binary

descriptor: we simply use the sign function to convert the output to a length-k vector

of the values −1 and 1. This reduces the Hamming distance between two descriptors

to a dot product:

DHamming

(
F(x),F(x′)

)
=
(
k −F(x)TF(x′)

) /
2. (4.3)

Therefore, as with real-valued descriptors, the pair-wise Hamming distance matrix of

a list of binary descriptors can be computed using a single matrix multiplication.

The gradient of the sign function, however, is undefined at the origin and zero

everywhere else. So, we need a differentiable proxy for training purposes. Therefore

instead of normalizing the output of L2-Net, we use a hyperbolic tangent function

(tanh) to compress the output of each element into the range (−1, 1). During training,

we use tanh whenever we need the Hamming distance to be differentiable, and use

sign in other cases that require full binarization. For instance, the descriptors are

82

fully binarized before computing the distance matrix, because we need to mine the

hard negatives as if the current batch were being tested.

Given the mined hard negatives and the distance metric, we can still use a triplet

loss to learn the binary descriptor. Selecting an optimal margin becomes even more

challenging this time: the difference between dneg and dpos can be as large as the

maximum Hamming distance, which is the descriptor length k. It is difficult to

determine a proper margin without running a few training/validation sessions. In

fact, we have determined that for k = 256 the optimal margin is the unintuitive value

µ = 32.

4.4 Dynamic Soft Margin

In this section, we discuss how we replace the triplet margin loss used by state-of-

the-art descriptor learning methods with our dynamic-weighted triplet loss. We first

analyze the training behavior of the triplet margin loss and explain with an example

why choosing a good margin is important for optimal performance. Then, we explain

how our method eliminates the margin while improving performance.

4.4.1 Behavior of the Triplet Margin Loss

Let us first analyze how the triplet margin loss behaves when learning a real-valued

descriptor. For a unit-length real-valued descriptor, the largest difference between

dneg and dpos is 2.0 (dneg = 2.0 and dpos = 0). Setting the margin larger than or

equal to 2.0 simply transforms the triplet margin loss into a basic triplet loss (i.e.,

without margin), where no triplet is affected by truncation. In practice, a margin

smaller than 2.0 is expected to improve performance, since the “easiest” triplets,

having larger dneg− dpos, are not involved in back-propagation. To better understand

this behavior, we take a pretrained HardNet model (trained on UBC PhotoTourism -

83

0.2 0.4 0.6 0.8 1.0 1.2 1.4
dpos

0.2

0.4

0.6

0.8

1.0

1.2

1.4

d n
eg

margin=0.375

margin=1.0

decisi
on boundary

Figure 4.1: Scatter plot of (dpos, dneg) for triplets in one batch (1024 samples), using
standard triplet margin loss. The red line is the decision boundary: dneg is correctly
greater than dpos to its upper-left. The blue dotted lines are potential margins. The
(optimal) margin of 0.375 separates points into two clusters (green and blue), where
the blue cluster is considered “good enough” and is not used for back-propagation.

Liberty) and visualize all triplets in a sample batch of data by plotting (dpos, dneg) as

scattered points in 2D (Figure 4.1).

In the case of a perfect descriptor, dpos is expected to be smaller than dneg. This

corresponds to the region to the upper-left of the decision boundary shown in red. A

straightforward approach to optimize F(·) is to maximize the signed distance from

the point (dpos, dneg) to the decision boundary, which is equivalent to minimizing the

basic triplet loss: Ltriplet = dpos − dneg. The triplet margin loss sets a margin so that

points that are sufficiently far on the correct side of the decision boundary (shown in

blue, for a hypothetical margin µ = 0.375) are excluded from optimization. By doing

this, we force the network to focus on harder triplets (near to, or on the wrong side of,

the decision boundary) without having the gradients influenced by the easy triplets.

However, Figure 4.1 shows that a margin of 1.0, as recommended by the HardNet

paper, would have almost no effect because all triplets are still within the margin.

84

0.125 0.25 0.375 0.5 0.625 0.75 0.875 1.0
margin

1.0

1.1

1.2

1.3

1.4

1.5
av

er
ag

ed
 F

PR
95

 (%
)

Real-valued Descriptor
HardNet-Lib+
Ours-Lib+

16 32 48 64 96 128 160 192 224 256
margin

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0
Binary Descriptor

HardNet-Lib+
Ours-Lib+

Figure 4.2: Varying the margin used by the triplet margin loss. The network is
trained on the Liberty subset of UBC PhotoTourism and evaluated on the other two
subsets. The left and right figures show the performance on the real-valued and binary
descriptors, respectively. For our results, we keep all other configurations used by the
triplet margin loss and only replace the loss function.

To investigate whether there is a “sweet-spot” for the margin, we vary it across

a wide range and re-train the real-valued descriptor (always training on Liberty and

evaluating the false positive rate at 95 percent recall – FPR95 – on the other two sub-

sets of the UBC PhotoTourism dataset [101]). As demonstrated by the blue curve of

Figure 4.2, left, there indeed exists a better choice of margin. As shown in Figure 4.1,

µ = 0.375 excludes a substantial number of easy triplets and lets the network focus

on the harder cases. Figure 4.2, right, shows the corresponding graph for our new

binary descriptor. Note that the shapes of the curves are different, and the optimal

margin is problem-dependent. Of course, it is possible that even better margins could

be found at greater computational cost by increasing the precision of the search.

We conclude that finding the best margin is a non-trivial job in practice and may

require extensive validation. In the following section, we introduce our dynamic triplet

weighting method, which avoids setting a hard threshold and weights the triplets in

a mini-batch based on the training status of the network. Results produced by our

approach are displayed as the red dotted lines in Figure 4.2.

85

hard-mined negative

F() F() F()

dpos � dneg Look up
weight

×
Build PDF

anchorpositive

dpos− dneg

CD
F

dpos− dneg

PD
F

Integrate

Figure 4.3: Our scheme for Dynamic Triplet Weighting. We compute dpos − dneg for
each hard-mined triplet, then build a moving histogram (PDF) of these values and
integrate to obtain the CDF. The loss for each triplet is dpos − dneg, weighted by the
corresponding value from the CDF.

4.4.2 Dynamic Triplet Weighting

Our approach shares the same motivation as the triplet margin loss, in that the

“harder” triplets in a mini-batch are more useful for training. In other words, “easy”

triplets should be suppressed in the loss function because the network’s performance

on these triplets is already likely to be saturated. The concept of emphasizing harder

training examples is also the major reason why hard negative mining has become

recognized as vital to good performance in recent learned descriptors.

The key observation of this work is that we can directly measure how hard a

triplet is compared to other triplets in the same mini-batch, by seeing how its signed

distance to the decision boundary (dpos − dneg) compares to the distribution of these

distances. To measure this, we would like to know the Probability Distribution Func-

tion (PDF) of signed distances, which in practice we discretize into a histogram.

To make the aggregated histogram more accurate, we compute dpos − dneg for each

triplet, and then linearly allocate it into two neighboring bins in the histogram. In

our implementation, since a temporally stable PDF is preferred, we maintain it as an

86

exponentially-decaying moving histogram, similarly to other neural network modules

that utilize moving averages (e.g., batch normalization [31]). An example of the PDF

is shown in Figure 4.3, bottom left.

Given the distribution of difficulty in recent batches, the relative difficulty of a

particular triplet corresponds to the fraction of triplets that have a lower dpos − dneg.

This is just the integral of the PDF, or the Cumulative Distribution Function (CDF),

shown in Figure 4.3, bottom right. The hardest triplet in a mini-batch results in a

CDF of 1.0, while the easiest triplet corresponds to ≈ 0. More generally, a triplet

with a CDF value of k% means that it is empirically “harder” than k% of triplets

within recent batches.

Because these CDF values have an intuitive interpretation as difficulty, we use

them directly as weights. Given a mini-batch of size N , we define our weighted

triplet loss (without a hard margin) as:

L =
1

N

∑
i

wi · (d ipos− d ineg), (4.4)

wi = CDF(d ipos− d ineg). (4.5)

This loss function automatically rejects “easy” triplets by assigning them low

weights. One may wonder how the loss function behaves when the variance of dpos −

dneg is very small, so that the CDF is close to a step function. In fact, when such a

case happens, the loss function weights all triplets nearly equally and the optimization

continues. This is not always possible for the original triplet margin loss because the

optimization would stop when every triplet satisfies dneg − dpos > µ (though this

scenario rarely happens in practice). The red lines in Figure 4.2 show that our

method consistently leads to better performance than the triplet margin loss on both

the real-valued and binary descriptors.

87

4.5 Experiments

We have experimented with three benchmarks: UBC PhotoTourism [101], HPatches [9],

and the Oxford Affine benchmark [57]. UBC PhotoTourism is a classic patch-based

dataset that is mainly evaluated on the patch verification task, which can be quickly

computed and is effective for preliminary analysis of the descriptor performance.

The patch verification task is often not sufficient for estimating the performance of

a descriptor in practical applications where patch retrieval is a more important task.

HPatches is a more comprehensive benchmark that contains a much larger collection

of image patches and evaluates a descriptor on three different tasks: patch verifica-

tion, image matching, and patch retrieval. The Oxford Affine benchmark contains

image sequences with different types of distortion, which is useful for understanding

the robustness of a descriptor when the input images are less than ideal.

4.5.1 Implementation

We adopt a training configuration as similar as possible to that used by previous

work, to ensure that our new loss function is the major factor in the final results.

For training, we use the UBC PhotoTourism dataset [101]. Each of its three subsets,

known as Liberty, Yosemite, and Notre Dame, consists of more than 400k image

patches, cropped to 64 × 64 and re-oriented using Difference-of-Gaussians (DoG)

keypoints [49]. We train one model using each subset and test on the other two

subsets. We downsample each patch to a 32× 32 input, which is required by L2-Net.

Each patch is then normalized by subtracting the mean pixel value and dividing by

the standard deviation. Online data augmentation is achieved by random flipping

and rotating the patch by 90, 180 or 270 degrees. The UBC PhotoTourism dataset

assigns each patch with its 3D point ID, which is used to identify matching image

patches. Each 3D point ID is associated with a list of patches that are assumed to

88

be matching. To form a mini-batch of size N for training, we randomly select N 3D

points without replacement and select two patches for each chosen 3D point.

We use Stochastic Gradient Descent (SGD), with momentum and weight decay

equal to 0.9 and 10−4, respectively, to optimize the network. Inspired by HardNet

and DOAP, the network is trained for 50k iterations, with the learning rate linearly

decaying from 0.1 to 0. The batch size is set to 1024 for all experiments to match

the publicly available implementations of HardNet and DOAP. To facilitate future

research, we package our implementation as a standalone PyTorch [66] module that

could be easily deployed in other contexts.

4.5.2 UBC PhotoTourism

Each of the UBC PhotoTourism subsets includes a test split containing 100k pairs of

image patches, with half of them being true matches and the rest being false matches.

We adopt the commonly used false positive rate at 95% true positive recall (FPR95)

to evaluate how well the proposed descriptor classifies patch pairs. We compare with

a collection of existing real-valued descriptors including both handcrafted (SIFT [49]

and root-SIFT [4]) and learned (DeepDesc [83], TFeat [10], GOR [114] PCW [61],

L2-Net [90], HardNet [59], DOAP [28]). GeoDesc [51] is not evaluated because it is

trained on a custom dataset. We also compare against existing binary descriptors

including ORB [71], BinBoost [93], LDAHash [88], DeepBit [47], L2-Net [90], and

DOAP [28]. The results are shown in Table 4.1. Our approach outperforms all

existing methods under the same configuration. DOAP-ST+ uses a larger input

(42×42) to augment DOAP+ with the Spatial Transformer [33], which noticeably

improves the performance by correcting geometric noise. Note that our method also

surpasses DOAP-ST+ in most cases even without the Spatial Transformer. Compared

to HardNet, our method automatically produces better performance that otherwise

89

Table 4.1: Evaluation on the UBC PhotoTourism dataset, demonstrating that both
real-valued and binary descriptors trained using our method outperform the state
of the art. Second column shows the descriptor dimensionality. Numbers shown are
FPR95(%) – lower is better. “+” and “*” denote training with data augmentation and
anchor swapping [10]. DOAP-ST+ represents the DOAP descriptor with a Spatial
Transformer [33] to compensate for geometric noise.

Descriptor
Train → Notredame Yosemite Liberty Yosemite Liberty Notredame

Mean
Test → Liberty Notredame Yosemite

Real-valued Descriptors

SIFT [49] 128 29.84 22.53 27.29 26.55
DeepDesc [83] 128 10.9 4.40 5.69 7.0
TFeat-M* [10] 128 7.39 10.31 3.06 3.80 8.06 7.24 6.64
TL+GOR* [114] 128 4.80 6.45 1.95 2.38 5.40 5.15 4.36
PCW [61] 128 7.44 9.84 3.48 3.54 5.02 6.56 5.98
L2-Net+ [90] 128 2.36 4.70 0.72 1.29 2.57 1.71 2.23
CS-L2-Net+ [90] 256 1.71 3.87 0.56 1.09 2.07 1.30 1.76
HardNet+ [59] 128 1.49 2.51 0.53 0.78 1.96 1.84 1.52
DOAP+ [28] 128 1.54 2.62 0.43 0.87 2.00 1.21 1.45
DOAP-ST+ [28] 128 1.47 2.29 0.39 0.78 1.98 1.35 1.38
Ours+ 128 1.21 2.01 0.39 0.68 1.51 1.29 1.18

Binary Descriptors

ORB [71] 256 59.15 54.57 54.96 56.23
BinBoost [93] 64 20.49 21.67 16.90 14.54 22.88 18.97 19.24
LDAHash [88] 128 49.66 51.58 52.95 51.40
DeepBit [47] 256 32.06 34.41 26.66 29.60 57.61 63.68 40.67
L2-Net+ [90] 128 7.44 10.29 3.81 4.31 8.81 7.45 7.02
CS-L2-Net+ [90] 256 4.01 6.65 1.90 2.51 5.61 4.04 4.12
DOAP+ [28] 256 3.18 4.32 1.04 1.57 4.10 3.87 3.01
DOAP-ST+ [28] 256 2.87 4.17 0.96 1.76 3.93 3.64 2.89
Ours+ 256 2.70 4.01 0.93 1.44 3.69 2.98 2.63

would have required fine-tuning the margin, or even manually adjusting the margin

at different stages of training.

4.5.3 HPatches

The recently-introduced HPatches benchmark of Balntas et al. [9] evaluates descrip-

tors in a more sophisticated setting. Different amounts of geometric noise are intro-

90

EASY HARD TOUGH

DIFFSEQ SAMESEQ

0 20 40 60 80 100

RESZ

MSTD

BRIEF
RSIFT

ORB
SIFT

BBOOST

DC-S
+SIFT

+RSIFT
DC-S2S
DDESC

+DC-S
+DDESC

TF-M
TF-R

+TF-M
+DC-S2S

+TF-R 83.24%
83.03%
82.69%
81.92%
81.90%
81.65%
81.63%
79.51%
78.23%
76.70%
74.35%
70.04%
66.67%
65.12%
60.15%
58.53%
58.07%
48.75%
48.11%

Patch Verification mAP [%]

VIEWPT ILLUM

0 20 40 60 80 100

MSTD

RESZ

BRIEF
BBOOST

ORB
DC-S
SIFT

RSIFT
DC-S2S
DDESC

TF-R
+DC-S

+DC-S2S
TF-M

+SIFT
+TF-M
+TF-R

+DDESC

+RSIFT 36.77%
35.44%
34.37%
34.29%
32.76%
32.64%
32.34%
31.65%
30.61%
28.05%
27.69%
27.22%
25.47%
24.92%
15.32%
14.77%
10.50%
7.16%
0.10%

Image Matching mAP [%]
0 20 40 60 80 100

MSTD

RESZ

BRIEF
ORB

BBOOST

SIFT
RSIFT

DC-S2S
DC-S
TF-R

+DC-S2S
TF-M

+DC-S
DDESC

+TF-M
+TF-R
+SIFT

+RSIFT
+DDESC 44.55%

43.84%
40.36%
40.23%
40.02%
39.83%
39.68%
39.40%
38.23%
37.69%
34.84%
34.76%
33.56%
31.98%
22.45%
18.85%
16.03%
13.12%
1.20%

Patch Retrieval mAP [%]

Figure 4. Verification, matching and retrieval results. Colour of the marker indicates EASY, HARD, and TOUGH noise. The type of the
marker corresponds to the variants of the experimental settings (see section 6.2). Bar is a mean of the 6 variants of each task. Dashed bar
borders and + indicate ZCA projected and normalised features.

difference in performance for EASY and TOUGH geometric
distortions, as well as for the illumination changes, is up to
30%, which shows there is still scope for improvement in
both areas.

The performance of deep descriptors and SIFT varies
across the tasks although +DDESC [30] is close to the top
scores in each category, however it is the slowest to cal-
culate. In matching and retrieval, ZCA and normalisation
bring the performance of SIFT to the top level. Compared
to some deep descriptors, SIFT seems less robust to high
degrees of geometric noise, with large spread for EASY and
TOUGH benchmarks. This is especially evident on the patch
verification task, where SIFT is outperformed by most of
the other descriptors for the TOUGH data.

The binary descriptors are outperformed by the origi-
nal SIFT by a large margin for the image matching and
patch retrieval task in particular, which may be due to its
discriminative power and better robustness to the geomet-
ric noise. The binary descriptors are competitive only for
the patch verification task. However, the binary descriptors
have other advantages, such as compactness and speed, so
they may still be the best choice in applications where ac-
curacy is less important than speed. Also +TF perform rel-
atively well, in particular when considering their efficiency.

Post-processing normalisation, in particular square root,
has a significant effect. For most of the descriptors, the nor-
malised features perform much better than the original ones.

Finally, patch verification achieves on average much
higher mAP score compared to the other tasks. This can
be seen mainly from the relatively good performance of the
trivial MSTD descriptor. This confirms that patch verifica-
tion task is insufficient on its own and other tasks are crucial

in descriptor evaluation.

7. Conclusions

With the advent of deep learning, the development of
novel and more powerful local descriptors has accelerated
tremendously. However, as we have shown in this paper, the
benchmarks commonly used for evaluating such descriptors
are inadequate, making comparisons unreliable. In the long
run, this is likely to be detrimental to further research. In or-
der to address this problem, we have introduced HPatches,
a new public benchmark for local descriptors. The new
benchmark is patch-based, removing many of the ambi-
guities that plagued the existing image-based benchmarks
and favouring rigorous, reproducible, and large scale exper-
imentation. This benchmark also improves on the limited
data and task diversity present in other datasets, by consid-
ering many different scene and visual effects types, as well
as three benchmark tasks close to practical applications of
descriptors.

Despite the multitask complexity of our benchmark
suite, using the evaluation is easy as we provide open-
source implementation of the protocols which can be used
with minimal effort. HPatches can supersede datasets such
as PhotoTourism and the older but still frequently used Ox-
ford matching dataset, addressing their shortcomings and
providing a valuable tool for researchers interested in local
descriptors.

Acknowledgements Karel Lenc is supported by ERC
677195-IDIU and Vassileios Balntas is supported by
FACER2VM EPSRC EP/N007743/1. We would like to
thank Giorgos Tolias for help with descriptor normalisation.

EASY HARD TOUGH

DIFFSEQ SAMESEQ

0 20 40 60 80 100

RESZ

MSTD

BRIEF
RSIFT

ORB
SIFT

BBOOST

DC-S
+SIFT

+RSIFT
DC-S2S
DDESC

+DC-S
+DDESC

TF-M
TF-R

+TF-M
+DC-S2S

+TF-R 83.24%
83.03%
82.69%
81.92%
81.90%
81.65%
81.63%
79.51%
78.23%
76.70%
74.35%
70.04%
66.67%
65.12%
60.15%
58.53%
58.07%
48.75%
48.11%

Patch Verification mAP [%]

VIEWPT ILLUM

0 20 40 60 80 100

MSTD

RESZ

BRIEF
BBOOST

ORB
DC-S
SIFT

RSIFT
DC-S2S
DDESC

TF-R
+DC-S

+DC-S2S
TF-M

+SIFT
+TF-M
+TF-R

+DDESC

+RSIFT 36.77%
35.44%
34.37%
34.29%
32.76%
32.64%
32.34%
31.65%
30.61%
28.05%
27.69%
27.22%
25.47%
24.92%
15.32%
14.77%
10.50%
7.16%
0.10%

Image Matching mAP [%]
0 20 40 60 80 100

MSTD

RESZ

BRIEF
ORB

BBOOST

SIFT
RSIFT

DC-S2S
DC-S
TF-R

+DC-S2S
TF-M

+DC-S
DDESC

+TF-M
+TF-R
+SIFT

+RSIFT
+DDESC 44.55%

43.84%
40.36%
40.23%
40.02%
39.83%
39.68%
39.40%
38.23%
37.69%
34.84%
34.76%
33.56%
31.98%
22.45%
18.85%
16.03%
13.12%
1.20%

Patch Retrieval mAP [%]

Figure 4. Verification, matching and retrieval results. Colour of the marker indicates EASY, HARD, and TOUGH noise. The type of the
marker corresponds to the variants of the experimental settings (see section 6.2). Bar is a mean of the 6 variants of each task. Dashed bar
borders and + indicate ZCA projected and normalised features.

difference in performance for EASY and TOUGH geometric
distortions, as well as for the illumination changes, is up to
30%, which shows there is still scope for improvement in
both areas.

The performance of deep descriptors and SIFT varies
across the tasks although +DDESC [30] is close to the top
scores in each category, however it is the slowest to cal-
culate. In matching and retrieval, ZCA and normalisation
bring the performance of SIFT to the top level. Compared
to some deep descriptors, SIFT seems less robust to high
degrees of geometric noise, with large spread for EASY and
TOUGH benchmarks. This is especially evident on the patch
verification task, where SIFT is outperformed by most of
the other descriptors for the TOUGH data.

The binary descriptors are outperformed by the origi-
nal SIFT by a large margin for the image matching and
patch retrieval task in particular, which may be due to its
discriminative power and better robustness to the geomet-
ric noise. The binary descriptors are competitive only for
the patch verification task. However, the binary descriptors
have other advantages, such as compactness and speed, so
they may still be the best choice in applications where ac-
curacy is less important than speed. Also +TF perform rel-
atively well, in particular when considering their efficiency.

Post-processing normalisation, in particular square root,
has a significant effect. For most of the descriptors, the nor-
malised features perform much better than the original ones.

Finally, patch verification achieves on average much
higher mAP score compared to the other tasks. This can
be seen mainly from the relatively good performance of the
trivial MSTD descriptor. This confirms that patch verifica-
tion task is insufficient on its own and other tasks are crucial

in descriptor evaluation.

7. Conclusions

With the advent of deep learning, the development of
novel and more powerful local descriptors has accelerated
tremendously. However, as we have shown in this paper, the
benchmarks commonly used for evaluating such descriptors
are inadequate, making comparisons unreliable. In the long
run, this is likely to be detrimental to further research. In or-
der to address this problem, we have introduced HPatches,
a new public benchmark for local descriptors. The new
benchmark is patch-based, removing many of the ambi-
guities that plagued the existing image-based benchmarks
and favouring rigorous, reproducible, and large scale exper-
imentation. This benchmark also improves on the limited
data and task diversity present in other datasets, by consid-
ering many different scene and visual effects types, as well
as three benchmark tasks close to practical applications of
descriptors.

Despite the multitask complexity of our benchmark
suite, using the evaluation is easy as we provide open-
source implementation of the protocols which can be used
with minimal effort. HPatches can supersede datasets such
as PhotoTourism and the older but still frequently used Ox-
ford matching dataset, addressing their shortcomings and
providing a valuable tool for researchers interested in local
descriptors.

Acknowledgements Karel Lenc is supported by ERC
677195-IDIU and Vassileios Balntas is supported by
FACER2VM EPSRC EP/N007743/1. We would like to
thank Giorgos Tolias for help with descriptor normalisation.

EASY HARD TOUGH

DIFFSEQ SAMESEQ

0 20 40 60 80 100

RESZ

MSTD

BRIEF
RSIFT

ORB
SIFT

BBOOST

DC-S
+SIFT

+RSIFT
DC-S2S
DDESC

+DC-S
+DDESC

TF-M
TF-R

+TF-M
+DC-S2S

+TF-R 83.24%
83.03%
82.69%
81.92%
81.90%
81.65%
81.63%
79.51%
78.23%
76.70%
74.35%
70.04%
66.67%
65.12%
60.15%
58.53%
58.07%
48.75%
48.11%

Patch Verification mAP [%]

VIEWPT ILLUM

0 20 40 60 80 100

MSTD

RESZ

BRIEF
BBOOST

ORB
DC-S
SIFT

RSIFT
DC-S2S
DDESC

TF-R
+DC-S

+DC-S2S
TF-M

+SIFT
+TF-M
+TF-R

+DDESC

+RSIFT 36.77%
35.44%
34.37%
34.29%
32.76%
32.64%
32.34%
31.65%
30.61%
28.05%
27.69%
27.22%
25.47%
24.92%
15.32%
14.77%
10.50%
7.16%
0.10%

Image Matching mAP [%]
0 20 40 60 80 100

MSTD

RESZ

BRIEF
ORB

BBOOST

SIFT
RSIFT

DC-S2S
DC-S
TF-R

+DC-S2S
TF-M

+DC-S
DDESC

+TF-M
+TF-R
+SIFT

+RSIFT
+DDESC 44.55%

43.84%
40.36%
40.23%
40.02%
39.83%
39.68%
39.40%
38.23%
37.69%
34.84%
34.76%
33.56%
31.98%
22.45%
18.85%
16.03%
13.12%
1.20%

Patch Retrieval mAP [%]

Figure 4. Verification, matching and retrieval results. Colour of the marker indicates EASY, HARD, and TOUGH noise. The type of the
marker corresponds to the variants of the experimental settings (see section 6.2). Bar is a mean of the 6 variants of each task. Dashed bar
borders and + indicate ZCA projected and normalised features.

difference in performance for EASY and TOUGH geometric
distortions, as well as for the illumination changes, is up to
30%, which shows there is still scope for improvement in
both areas.

The performance of deep descriptors and SIFT varies
across the tasks although +DDESC [30] is close to the top
scores in each category, however it is the slowest to cal-
culate. In matching and retrieval, ZCA and normalisation
bring the performance of SIFT to the top level. Compared
to some deep descriptors, SIFT seems less robust to high
degrees of geometric noise, with large spread for EASY and
TOUGH benchmarks. This is especially evident on the patch
verification task, where SIFT is outperformed by most of
the other descriptors for the TOUGH data.

The binary descriptors are outperformed by the origi-
nal SIFT by a large margin for the image matching and
patch retrieval task in particular, which may be due to its
discriminative power and better robustness to the geomet-
ric noise. The binary descriptors are competitive only for
the patch verification task. However, the binary descriptors
have other advantages, such as compactness and speed, so
they may still be the best choice in applications where ac-
curacy is less important than speed. Also +TF perform rel-
atively well, in particular when considering their efficiency.

Post-processing normalisation, in particular square root,
has a significant effect. For most of the descriptors, the nor-
malised features perform much better than the original ones.

Finally, patch verification achieves on average much
higher mAP score compared to the other tasks. This can
be seen mainly from the relatively good performance of the
trivial MSTD descriptor. This confirms that patch verifica-
tion task is insufficient on its own and other tasks are crucial

in descriptor evaluation.

7. Conclusions

With the advent of deep learning, the development of
novel and more powerful local descriptors has accelerated
tremendously. However, as we have shown in this paper, the
benchmarks commonly used for evaluating such descriptors
are inadequate, making comparisons unreliable. In the long
run, this is likely to be detrimental to further research. In or-
der to address this problem, we have introduced HPatches,
a new public benchmark for local descriptors. The new
benchmark is patch-based, removing many of the ambi-
guities that plagued the existing image-based benchmarks
and favouring rigorous, reproducible, and large scale exper-
imentation. This benchmark also improves on the limited
data and task diversity present in other datasets, by consid-
ering many different scene and visual effects types, as well
as three benchmark tasks close to practical applications of
descriptors.

Despite the multitask complexity of our benchmark
suite, using the evaluation is easy as we provide open-
source implementation of the protocols which can be used
with minimal effort. HPatches can supersede datasets such
as PhotoTourism and the older but still frequently used Ox-
ford matching dataset, addressing their shortcomings and
providing a valuable tool for researchers interested in local
descriptors.

Acknowledgements Karel Lenc is supported by ERC
677195-IDIU and Vassileios Balntas is supported by
FACER2VM EPSRC EP/N007743/1. We would like to
thank Giorgos Tolias for help with descriptor normalisation.

89.06%

88.43%

88.37%

85.30%

81.90%

79.51%

65.12%

58.53%RootSIFT

SIFT

DDesc

TFeat-M*

L2Net+

DOAP+

HardNet+

Ours+ 53.25%

52.76%

51.36%

43.98%

32.64%

28.05%

27.22%

25.47%SIFT

RootSIFT

DDesc

TFeat-M*

L2Net+

DOAP+

HardNet+

Ours+ 61.72%

60.65%

60.64%

53.73%

39.83%

39.40%

33.56%

31.98%SIFT

RootSIFT

TFeat-M*

DDesc

L2Net+

HardNet+

DOAP+

Ours+

87.11%

86.79%

84.88%

81.69%

66.86%

66.67%

60.15%

Patch Verification mAP [%]

ORB

BBoost

LDAHash

L2Net-b+

HardNet-b+

Ours+

DOAP-b+ 45.69%

43.51%

39.66%

31.95%

15.54%

15.33%

14.78%

Image Matching mAP [%]

BBoost

ORB

LDAHash

L2Net-b+

HardNet-b+

DOAP-b+

Ours+ 55.12%

53.73%

49.01%

42.89%

22.95%

22.45%

18.85%

Patch Retrieval mAP [%]

ORB

BBoost

LDAHash

L2Net-b+

HardNet-b+

DOAP-b+

Ours+

Figure 4.4: Evaluation on the HPatches dataset [9]. The evaluation is carried out on
the “full” split of HPatches. The patch retrieval task is evaluated with the maximum
amount of distractors (same setting used in the original HPatches paper). Top row:
real-valued descriptor comparison. Bottom row: binary descriptor comparison. While
both HardNet and DOAP perform well in easy cases, our descriptor is more robust
in tough cases, leading to state-of-the-art performance overall.

duced into the test image patches, which are then categorized as “Easy”, “Hard” or

“Tough”. HPatches evaluates a descriptor on three different tasks: patch verification,

image matching, and patch retrieval. For a more detailed description of the tasks, we

refer the readers to their paper.

Figure 4.4 compares descriptors trained with the proposed method and top-

performing real-valued and binary descriptors. As is common practice, learned

descriptors are evaluated using a model trained on the Liberty subset of the UBC

PhotoTourism dataset, with data augmentation. For all descriptors, we do not apply

the ZCA normalization that is originally used in HPatches. HardNet does not come

with a binary version and we simply take the sign to obtain HardNet-b+. It is not

surprising to see that both the real-valued and binary descriptors learned using our

loss function perform well on the patch verification task, which is consistent with

our observation on the UBC PhotoTourism dataset. On the more challenging image

matching and patch retrieval tasks that require the descriptor to be more distinctive,

our descriptors outperform all existing methods.

91

10

20

30

40

50

M
at

ch
in

g
Sc

or
e

graf
boat

bark

ubc

leuven

trees

bikes

wall

ORB
LDAHash
L2Net+b
DOAP+b
Ours+b

10

20

30

40

50

graf
boat

bark

ubc

leuven

trees

bikes

wall

SIFT
L2Net+
HardNet+
DOAP+
Ours+
HardNet++
Ours++

Figure 4.5: Evaluation on the Oxford Affine dataset, for binary (left) and real-
valued (right) descriptors. All are trained on the UBC Liberty subset with data
augmentation, except the models suffixed with “++”, which are trained on the union
of UBC PhotoTourism and HPatches.

4.5.4 Image Matching on the Oxford Dataset

In real image matching scenarios, images may undergo diverse distortions including

geometric transformations, blurring, illumination changes, and JPEG compression.

In order to verify whether the descriptors learned with our method are vulnerable

to a particular type of distortion, we further evaluate the image matching perfor-

mance using the Oxford Affine Dataset [57], which contains all the above-mentioned

transformations. In this dataset, homography matrices are provided to help verify cor-

respondences. We choose the Harris-Affine detector [55] to extract keypoints from the

images and crop image patches using a magnification factor of 6. We strictly follow the

public evaluation protocol [57]. The matching scores are reported in Figure 4.5. The

result shows that our descriptors can withstand various type of distortions presented

in this dataset and achieve state-of-the-art results. Also note that our descriptor

trained with the union of UBC PhotoTourism and HPatches outperforms HardNet

trained with the same data.

92

Table 4.2: Comparing existing alternatives to Static Hard Margin with our Dynamic
Soft Margin.

Method Dynamic Soft
UBC HPatches (mAP %)

FPR95(%) Verification Matching Retrieval

Real-valued Descriptors

softplus [30] 7 3 1.20 89.00 52.84 60.72
Wang [98] 3 7 1.18 88.88 52.63 60.36
Hardest 1/8 [83] 3 7 2.19 85.82 46.74 56.51
Ours 3 3 0.95 89.06 53.25 61.72

Binary Descriptors

softplus [30] 7 3 2.73 86.35 45.45 54.23
Wang [98] 3 7 2.76 86.37 45.60 54.19
Hardest 1/4 [83] 3 7 3.09 85.58 43.24 52.97
Ours 3 3 2.31 86.79 45.69 55.12

4.6 Ablation Studies

To be consistent, we again use the models trained on the Liberty subset of UBC

PhotoTourism in the following experiments. FPR95 is evaluated on the other two

subsets.

4.6.1 Existing Alternatives to Static Hard Margin

In Section 4.1, we have discussed three previous attempts to replace the sub-optimal

static hard margin. Recall that none of them is both dynamic and soft like ours. Since

these baselines are either originally proposed in a different context (e.g., person re-

identification [98, 30]) or with a different learning scheme (e.g., contrastive loss with

two-stage training [83]), we re-implement and adapt these methods into our pipeline

to ensure a fair comparison. Table 4.2 shows the results on both UBC PhotoTourism

and HPatches. Our dynamic and soft strategy outperforms all baseline methods.

Training the binary descriptor with the hardest 1/8 of triplets [83] did not converge

in our experiment, most likely because 1/8 is too selective; we therefore use 1/4

instead.

93

Table 4.3: Comparing different ways to construct the PDF.

PDF built from
UBC HPatches (mAP %)

FPR95 (%) Verification Matching Retrieval

Real-valued Descriptors

dpos 0.98 89.10 52.93 61.37
dneg 1.20 88.55 53.15 60.36
Gaussian 1.07 89.05 52.95 61.38
dpos − dneg 0.95 89.06 53.25 61.72

Binary Descriptors

dpos 2.30 86.93 45.81 55.19
dneg 3.02 85.58 45.21 53.27
Gaussian 2.33 86.72 45.68 54.86
dpos − dneg 2.31 86.79 45.69 55.12

4.6.2 Different Ways to Construct the PDF

In the approach described above, we weighted samples based on a moving PDF of

dpos−dneg, mainly because it is well-correlated with how “hard” a triplet is. In a more

general context, we believe that any variable that effectively reflects the “hardness”

of a triplet can be used to build the PDF. For example, we observe from Figure 4.1

that the variation of the visualized points mainly happens along the dpos axis, whereas

the variation along the dneg axis is smaller. This implies that instead of maintaining

the moving PDF of dpos − dneg, using a PDF of dpos could also work well, while we

would expect a PDF of dneg to be less effective. We also observe that Figure 4.3

suggests that the PDF is approximately Gaussian, and might be summarized by its

mean and variance. This indicates that we can potentially use a parametric PDF

to replace the histogram representation that we currently use, and save memory and

computation. We have therefore explored simply maintaining a running mean and

variance of dpos − dneg, and then weighting triplets based on the analytic Gaussian

CDF, which may be computed in terms of the standard error function (erf). The

comparisons are shown in Table 4.3, from which we observe that building the PDF

from dneg indeed leads to the worst performance. As expected, dpos is as good an

94

indicator as dpos−dneg. Approximating the PDF with a simple Gaussian distribution

is also feasible, but with a small sacrifice in performance, suggesting that the actual

distribution is non-Gaussian.

4.7 Conclusion

In this work, we observe that the triplet loss previously used in descriptor learning

requires manually setting the margin, which usually leads to sub-optimal results.

Setting a hard margin is equivalent to making a binary decision of whether a triplet

should be excluded from optimization. Also, a constant margin cannot account for

the continuous improvement in performance of the network during training.

We instead propose a “dynamic soft margin” strategy that automatically assigns

lower weights to datapoints that are too “easy” for improving the network, at each

stage of training. The key insight is that the relative “hardness” of a triplet can be

inferred from the moving Probability Distribution Function (PDF) of the difference

of distances. We demonstrate that using the CDF computed from this PDF as a

weighting function is an effective way to make the network focus on harder triplets.

Through extensive experiments we show that our method can be applied to both

real-valued and binary descriptor learning, and lead to state-of-the-art performance.

Future work includes generalizing the proposed method to other similar domains

where empirical margins are being used.

95

Chapter 5

Conclusion and Future Work

A central problem of computer vision is to establish correspondences across a col-

lection of images. This challenge is becoming increasingly important since a large

quantity of images are made available every day. Many computer vision applications

including image-based reconstruction, panorama stitching, and image retrieval are

traditionally based on local features.

In this thesis, we design a new texture-based high-precision localization system

named Micro-GPS, which utilizes handcrafted local features. The Micro-GPS system

is built based on the observation that seemingly random and homogeneous real-world

ground textures contain unique visual landmarks, which could be leveraged to achieve

fine global localization. To further address the limitation that a handcrafted keypoint

detector cannot work reliably across all types of textures, we propose a method to

learn the keypoint detector on a per-texture basis, which prominently improve the

robustness of Micro-GPS. The keypoint detector is learned with a novel peakedness

loss, which makes keypoint localization more precise, thus highly repeatable. Besides

keypoint detection, the quality of feature descriptors influences the matching of local

features, and we propose an easy-to-use loss function that can be applied to descriptor

learning and achieve state-of-the-art matching and retrieval performance.

96

As indicated by this thesis, the topic of local feature detection and matching is not

yet fully explored. Below we summarize a few potential future research directions.

Handcrafted vs. Data-driven

Local features are conventionally handcrafted based on a general understanding of

images containing common scenes. As cameras have become extremely ubiquitous

in many fields, the availability of images is no longer just limited to those related

to natural scenes, paintings, pictures of common objects, etc. There are increasingly

more domain-specific images that look drastically different from common images,

and oftentimes existing handcrafted features cannot work properly out of the box. A

variety of texture images we have demonstrated in Chapter 2 are exactly examples

of domain-specific images. We have a detailed analysis in Chapter 3 showing that

existing keypoint detectors perform poorly on a collection of challenging textures.

Given the broad range of applications that have started to embrace computer

vision, designing an effective local feature purely based on the empirical analysis of

each kind of image is not scalable. In the long run, we believe that data-driven

methods will become the mainstream. This is implied by the fact that many real-

world applications come with specific usage scenarios, or even use particular types

of camera. This prior knowledge makes data-driven approaches more advantageous;

with a sufficient amount of training data collected beforehand, learning a robust local

feature for a particular application is feasible.

Nevertheless, handcrafted methods have the advantage of explicitly enforcing var-

ious types of invariance. In contrast, data-driven approaches often acquire invariance

through data augmentation. For instance, in Chapter 3, we randomly rotate the train-

ing patches to let the neural network learn a rotation-invariant keypoint detector. A

handcrafted baseline such as SIFT [49], however, uses the Difference-of-Gaussian filter,

which is naturally (and guaranteed to be) rotation-invariant. Therefore, we believe

97

that a more promising direction of developing data-driven methods is to incorporate

domain knowledge we have accumulated for decades in designing handcrafted features.

In a more general context where we do not have any prior knowledge, handcrafted

methods could stay popular because of the simple and fast deployment.

Scale-Invariant Descriptor Learning: Recent learning based descriptors are con-

strained by the input resolution. The commonly used 32×32 resolution is determined

by the network architecture. Note that this can be insufficient to retain fine details

when the detected feature scale is large, but the cropped patch still has to be 32× 32.

While one could alter the network architecture to accommodate a larger resolution,

processing high resolution patches would lower the overall efficiency and increase the

memory footprint. As a result, an input image patch with a different resolution

needs to be re-sampled to this constant size before network inference. In contrast,

many handcrafted descriptors are able to take arbitrarily sized input. For example,

SIFT [49] uses a 4× 4 grid and aggregates the gradients into 8 bins within each cell,

which always results in a 128-dimensional feature descriptor. BRIEF [15] performs

intensity comparison, which does not depend on the resolution either. The ability to

fully leverage the original image patch without re-sampling is the major reason why

we still use a handcrafted descriptor like SIFT in Micro-GPS. A future direction could

be adapting the network architecture to take image patches with different resolutions

as input, and produce a fixed size output. One possible way to achieve this func-

tionality is via Spatial Pyramid Pooling (SPP) [27], which is originally designed for

object detection. Meanwhile, the network needs to be scale-invariant, which means

that resizing an image patch should not affect the output descriptor. This property

can possibly be obtained by randomly resizing the image patches used for training.

98

Synergy Between the Detector and Descriptor

There remain many more aspects to be improved in keypoint detection. The most im-

mediate direction could be strengthening the interactions between the keypoint detec-

tor and feature descriptor. Currently in most cases, the detector and descriptor work

as independent components, but the performance of feature matching depends on both.

First, using the repeatability as the key criterion to evaluate keypoint detectors is not

sufficient. Imagine that we have a “perfect” keypoint detector that achieves a perfect

repeatability (i.e., 100%), but keypoints are only (magically) localized in un-textured

regions. Matching descriptors computed from these un-textured regions could be

extremely ambiguous, and most likely we would not obtain useful correspondences.

Figure 5.1: A typical building with nearly

identical windows.

Another drawback to existing keypoint

detectors is that they do not take the

global context into consideration. This

can be better illustrated by Figure 5.1,

where each window could be treated as a

large blob and triggers the keypoint de-

tector. These windows, however, look al-

most identical and it is reasonable to ex-

pect the same output when applying any

feature descriptor, which again makes de-

scriptor matching highly ambiguous. Therefore a future direction could be making

the detector find keypoints that are globally unique within the input image. This

would require feedback from the feature descriptor; keypoints with similar descrip-

tors should be less preferred by the detector.

As for descriptor learning, one major bottleneck comes from the image patches

used for training. In Chapter 3, we obtain the training patches by randomly cropping

from the overlapping regions between images. In most other cases, however, image

99

patches are cropped around the keypoints produced by a particular detector. For

example, patches in the UBC PhotoTourism dataset [101] correspond to SIFT [49]

keypoints. It is inevitable that a descriptor learned on this dataset works best with

SIFT. This implies that the learning of detector and descriptor need to be performed

simultaneously.

The major practical difficulty of jointly learning the detector and descriptor is

to obtain the training data. For such end-to-end training, we would need pairs of

images with overlapping views, as well as dense depth maps for establishing ground-

truth correspondences. This is because the detector could make any location in the

image as a keypoint, which needs to be paired with the corresponding location in

the other image, for descriptor learning. Ono et al. have already demonstrate that

training the entire local feature pipeline end-to-end is feasible [64]. A sophisticated

public dataset could further benefit the research community.

Assuming that such a dataset is available, there are several directions one can

pursue. The most straightforward way to combine the detector and descriptor is to

mimic a traditional pipeline; image patches can be cropped and re-oriented using

the differentiable Spatial Transformer [33], around the keypoints produced by the

detector, and used for descriptor learning. This direct analogy, however, neglects

the fact the low-level features maps leveraged by the detector and descriptor could

be shared. Thus, one could crop feature patches instead of image patches to save

computation and memory. Note that if the feature maps are by nature rotation-

invariant (i.e., not through data augmentation), the cropped feature patches could be

directly treated as descriptors, which is an even more efficient option.

Improved Micro-GPS

With an improved keypoint detector and feature descriptor in mind, we envision

a more robust Micro-GPS system. By utilizing a keypoint detector that takes the

100

context into consideration and only looks for globally unique keypoints, it is feasible

to store just a few most distinctive features for each database image. This not only

further reduces the overall storage on top of the optimizations we have done, but also

makes the global feature matching less ambiguous. A learned descriptor that can be

directly applied to an arbitrarily-sized image patch can avoid downsampling and fully

utilize the fine details in the original image. This provides the learned descriptor an

opportunity to outperform the currently used SIFT descriptor.

101

Appendix A

Micro-GPS Datasets

The figures below show overviews and close-ups of the indoor and outdoor datasets

that we have gathered. In each figure, we show:

• Top left: An overview of the scene where the images are captured.

• Bottom left: An example of one captured image.

• Right: A portion of the reconstructed map, with the full stitched map shown

in the inset at bottom right.

102

Figure A.1: Indoor tiles. The map includes 1296 images covering approximately
1.5× 8.5 m.

103

Figure A.2: Indoor carpet. This dataset contains 2014 images covering approximately
1.5× 11.8 m.

104

Figure A.3: Indoor wood floor. This dataset contains 3826 images covering approxi-
mately 8.7× 4.8 m.

105

Figure A.4: Outdoor granite tiles. This dataset contains 1229 images covering ap-
proximately 8.6× 3.2 m.

106

Figure A.5: Outdoor asphalt with fine aggregate, captured under ambient illumina-
tion (sunlight). This dataset contains 2215 images covering approximately 2.6×7.6 m.

107

Figure A.6: Outdoor asphalt with fine aggregate captured at night under controlled
LED illumination. This dataset contains 2118 images covering approximately the
same area as above.

108

Figure A.7: Outdoor asphalt with coarse aggregate. This dataset contains 2061
images and the dimension is approximately 2.0× 10.6 m.

109

Figure A.8: Outdoor concrete. This dataset contains 3316 images and the dimension
is approximately 7.6× 4.3 m.

110

Bibliography

[1] Henrik Aanæs, Anders Lindbjerg Dahl, and Kim Steenstrup Pedersen. Inter-
esting interest points. International Journal of Computer Vision, 97(1):18–35,
2012.

[2] Sameer Agarwal, Keir Mierle, et al. Ceres solver. http://ceres-solver.org/,
2013.

[3] Sameer Agarwal, Noah Snavely, Ian Simon, Steven M Seitz, and Richard
Szeliski. Building rome in a day. In Proc. ICCV, pages 72–79. IEEE, 2009.

[4] Relja Arandjelović and Andrew Zisserman. Three things everyone should know
to improve object retrieval. In Proc. CVPR, pages 2911–2918. IEEE, 2012.

[5] Clemens Arth, Manfred Klopschitz, Gerhard Reitmayr, and Dieter Schmalstieg.
Real-time self-localization from panoramic images on mobile devices. In Proc.
ISMAR, pages 37–46, 2011.

[6] Yannis Avrithis and Giorgos Tolias. Hough pyramid matching: Speeded-up
geometry re-ranking for large scale image retrieval. International Journal of
Computer Vision, 107(1):1–19, March 2014.

[7] Georges Baatz, Kevin Köser, David Chen, Radek Grzeszczuk, and Marc Polle-
feys. Handling urban location recognition as a 2d homothetic problem. In Proc.
ECCV, pages 266–279, 2010.

[8] Soonmin Bae, Aseem Agarwala, and Frédo Durand. Computational re-
photography. ACM Trans. Graphics, 29(3):24:1–24:15, July 2010.

[9] Vassileios Balntas, Karel Lenc, Andrea Vedaldi, and Krystian Mikolajczyk.
Hpatches: A benchmark and evaluation of handcrafted and learned local de-
scriptors. In Proc. CVPR, volume 4, page 6, 2017.

[10] Vassileios Balntas, Edgar Riba, Daniel Ponsa, and Krystian Mikolajczyk. Learn-
ing local feature descriptors with triplets and shallow convolutional neural net-
works. In BMVC, volume 1, page 3, 2016.

[11] Vassileios Balntas, Lilian Tang, and Krystian Mikolajczyk. BOLD – binary
online learned descriptor for efficient image matching. In Proc. CVPR, 2015.

111

http://ceres-solver.org/

[12] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust
features. In Proc. ECCV, pages 404–417, 2006.

[13] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. SURF: speeded up robust
features. Proc. ECCV, pages 404–417, 2006.

[14] Matthew Brown and David G Lowe. Automatic panoramic image stitching
using invariant features. International Journal of Computer Vision, 74(1):59–
73, August 2007.

[15] Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua. Brief:
Binary robust independent elementary features. In Proc. ECCV, pages 778–792.
Springer, 2010.

[16] Song Cao and Noah Snavely. Minimal scene descriptions from structure from
motion models. In Proc. CVPR, pages 461–468, 2014.

[17] William Clarkson, Tim Weyrich, Adam Finkelstein, Nadia Heninger, J Alex
Halderman, and Edward W Felten. Fingerprinting blank paper using commod-
ity scanners. In Proc. IEEE Symposium on Security and Privacy, pages 301–314,
2009.

[18] Matthew Cornick, Jeffrey Koechling, Byron Stanley, and Beijia Zhang. Localiz-
ing ground penetrating radar: a step toward robust autonomous ground vehicle
localization. Journal of Field Robotics, 33(1):82–102, 2016.

[19] Kristin Dana, Bram van Ginneken, Shree Nayar, and Jan Koenderink. Re-
flectance and texture of real-world surfaces. ACM Trans. Graphics, 18(1):1–34,
January 1999.

[20] Alexei Efros and Thomas Leung. Texture synthesis by non-parametric sampling.
In Proc. ICCV, pages 1033–1038, 1999.

[21] Hui Fang, Ming Yang, Ruqing Yang, and Chunxiang Wang. Ground-texture-
based localization for intelligent vehicles. IEEE Trans. Intelligent Transporta-
tion Systems, 10(3):463–468, September 2009.

[22] Wolfgang Förstner, Timo Dickscheid, and Falko Schindler. Detecting inter-
pretable and accurate scale-invariant keypoints. In Proc. ICCV, pages 2256–
2263. IEEE, 2009.

[23] Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. Similarity search in high
dimensions via hashing. In Vldb, volume 99, pages 518–529, 1999.

[24] Xufeng Han, Thomas Leung, Yangqing Jia, Rahul Sukthankar, and Alexander C
Berg. MatchNet: unifying feature and metric learning for patch-based matching.
In Proc. CVPR, pages 3279–3286, 2015.

112

[25] Chris Harris and Mike Stephens. A combined corner and edge detector. In Proc.
Alvey Vision Conference, pages 147–151, 1988.

[26] Wilfried Hartmann, Michal Havlena, and Kaspar Schindler. Predicting match-
ability. In Proc. CVPR, pages 9–16, 2014.

[27] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial pyramid
pooling in deep convolutional networks for visual recognition. IEEE Trans.
PAMI, 37(9):1904–1916, 2015.

[28] Kun He, Yan Lu, and Stan Sclaroff. Local descriptors optimized for average
precision. In Proc. CVPR, pages 596–605, 2018.

[29] David Heeger and James Bergen. Pyramid-based texture analysis/synthesis. In
Proc. ACM SIGGRAPH, pages 229–238, 1995.

[30] Alexander Hermans, Lucas Beyer, and Bastian Leibe. In defense of the triplet
loss for person re-identification. arXiv preprint arXiv:1703.07737, 2017.

[31] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.

[32] Arnold Irschara, Christopher Zach, Jan-Michael Frahm, and Horst Bischof.
From structure-from-motion point clouds to fast location recognition. In Proc.
CVPR, pages 2599–2606, 2009.

[33] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial transformer
networks. In Proc. NeurIPS, pages 2017–2025, 2015.

[34] Herve Jegou, Matthijs Douze, and Cordelia Schmid. Hamming embedding and
weak geometric consistency for large scale image search. Proc. ECCV, pages
304–317, 2008.

[35] Hervé Jégou, Matthijs Douze, Cordelia Schmid, and Patrick Pérez. Aggregating
local descriptors into a compact image representation. In Proc. CVPR, pages
3304–3311. IEEE, 2010.

[36] Yan Ke and Rahul Sukthankar. Pca-sift: A more distinctive representation for
local image descriptors. In Proc. CVPR, volume 2, pages II–II. IEEE, 2004.

[37] Michel Keller, Zetao Chen, Fabiola Maffra, Patrik Schmuck, and Margarita Chli.
Learning deep descriptors with scale-aware triplet networks. In Proc. CVPR.
IEEE, 2018.

[38] Alonzo Kelly, Bryan Nagy, David Stager, and Ranjith Unnikrishnan. An
infrastructure-free automated guided vehicle based on computer vision. IEEE
Robotics & Automation Magazine, 14(3):24–34, September 2007.

113

[39] Alex Kendall, Matthew Grimes, and Roberto Cipolla. Posenet: A convolutional
network for real-time 6-dof camera relocalization. In Proc. ICCV, pages 2938–
2946, 2015.

[40] BG Kumar, Gustavo Carneiro, Ian Reid, et al. Learning local image descriptors
with deep siamese and triplet convolutional networks by minimising global loss
functions. In Proc. CVPR, pages 5385–5394, 2016.

[41] Bastian Leibe, Ales Leonardis, and Bernt Schiele. Combined object categoriza-
tion and segmentation with an implicit shape model. In ECCV Workshop on
Statistical Learning in Computer Vision, 2004.

[42] Karel Lenc and Andrea Vedaldi. Learning covariant feature detectors. In Com-
puter Vision – ECCV Workshops, pages 100–117. Springer, 2016.

[43] Thomas Leung and Jitendra Malik. Representing and recognizing the visual
appearance of materials using three-dimensional textons. International Journal
of Computer Vision, 43(1):29–44, June 2001.

[44] Yunpeng Li, Noah Snavely, Dan Huttenlocher, and Pascal Fua. Worldwide pose
estimation using 3d point clouds. In Proc. ECCV, pages 15–29, 2012.

[45] Yunpeng Li, Noah Snavely, and Daniel Huttenlocher. Location recognition
using prioritized feature matching. In Proc. ECCV, pages 791–804, 2010.

[46] Hyon Lim, Sudipta N Sinha, Michael F Cohen, Matt Uyttendaele, and H Jin
Kim. Real-time monocular image-based 6-dof localization. International Jour-
nal of Robotics Research, 34(4-5):476–492, April 2015.

[47] Kevin Lin, Jiwen Lu, Chu-Song Chen, and Jie Zhou. Learning compact binary
descriptors with unsupervised deep neural networks. In Proc. CVPR, pages
1183–1192, 2016.

[48] Siyu Liu. Localization using feature matching in near-random textures. Master’s
thesis, Princeton University, 2013.

[49] David G Lowe. Distinctive image features from scale-invariant keypoints. In-
ternational Journal of Computer Vision, 60(2):91–110, November 2004.

[50] David G Lowe. Distinctive image features from scale-invariant keypoints. In-
ternational Journal of Computer Vision, 60(2):91–110, 2004.

[51] Zixin Luo, Tianwei Shen, Lei Zhou, Siyu Zhu, Runze Zhang, Yao Yao, Tian
Fang, and Long Quan. Geodesc: Learning local descriptors by integrating
geometry constraints. 2018.

[52] Simon Lynen, Torsten Sattler, Michael Bosse, Joel A Hesch, Marc Pollefeys,
and Roland Siegwart. Get out of my lab: Large-scale, real-time visual-inertial
localization. In Robotics: Science and Systems XI, 2015.

114

[53] Jiri Matas, Ondrej Chum, Martin Urban, and Tomás Pajdla. Robust wide-
baseline stereo from maximally stable extremal regions. Image and Vision
Computing, 22(10):761–767, 2004.

[54] Sven Middelberg, Torsten Sattler, Ole Untzelmann, and Leif Kobbelt. Scalable
6-dof localization on mobile devices. In Proc. ECCV, pages 268–283, 2014.

[55] Krystian Mikolajczyk and Cordelia Schmid. An affine invariant interest point
detector. In Proc. ECCV, pages 128–142. Springer, 2002.

[56] Krystian Mikolajczyk and Cordelia Schmid. Scale & affine invariant interest
point detectors. International Journal of Computer Vision, 60(1):63–86, 2004.

[57] Krystian Mikolajczyk and Cordelia Schmid. A performance evaluation of local
descriptors. IEEE Trans. PAMI, 27(10):1615–1630, 2005.

[58] Andrej Mikuĺık, Michal Perdoch, Ondřej Chum, and Jǐŕı Matas. Learning a
fine vocabulary. In Proc. ECCV, pages 1–14, 2010.

[59] Anastasiia Mishchuk, Dmytro Mishkin, Filip Radenovic, and Jiri Matas. Work-
ing hard to know your neighbor’s margins: Local descriptor learning loss. In
Proc. NeurIPS, pages 4829–4840, 2017.

[60] Marius Muja and David G Lowe. Fast approximate nearest neighbors with
automatic algorithm configuration. In Proc. VISAPP, pages 331–340, 2009.

[61] Arun Mukundan, Giorgos Tolias, and Ondrej Chum. Multiple-kernel local-patch
descriptor. arXiv preprint arXiv:1707.07825, 2017.

[62] Rafael Munoz-Salinas. Aruco: A minimal library
for augmented reality applications based on opencv.
https://www.uco.es/investiga/grupos/ava/node/26, 2012.

[63] Raul Mur-Artal, JMM Montiel, and Juan D Tardós. Orb-slam: A versatile
and accurate monocular slam system. IEEE Trans. Robotics, 31(5):1147–1163,
October 2015.

[64] Yuki Ono, Eduard Trulls, Pascal Fua, and Kwang Moo Yi. Lf-net: learning
local features from images. In Proc. NeurIPS, pages 6237–6247, 2018.

[65] Adam Paszke, Soumith Chintala, Ronan Collobert, Koray Kavukcuoglu,
Clement Farabet, Samy Bengio, Iain Melvin, Jason Weston, and Johnny Mari-
ethoz. Pytorch: Tensors and dynamic neural networks in python with strong
gpu acceleration. http://pytorch.org/, 2017.

[66] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
Automatic differentiation in pytorch. 2017.

115

https://www.uco.es/investiga/grupos/ava/node/26
http://pytorch.org/

[67] James Philbin, Michael Isard, Josef Sivic, and Andrew Zisserman. Descriptor
learning for efficient retrieval. In Proc. ECCV, pages 677–691, 2010.

[68] Srikumar Ramalingam, Sofien Bouaziz, Peter Sturm, and Matthew Brand. Ge-
olocalization using skylines from omni-images. pages 23–30, 2009.

[69] Andrew Richardson and Edwin Olson. Learning convolutional filters for interest
point detection. In Proc. ICRA, pages 631–637, 2013.

[70] Edward Rosten and Tom Drummond. Machine learning for high-speed corner
detection. Proc. ECCV, pages 430–443, 2006.

[71] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: An
efficient alternative to sift or surf. In Proc. ICCV, pages 2564–2571. IEEE, 2011.

[72] Yong Rui, Thomas S Huang, and Shih-Fu Chang. Image retrieval: Current
techniques, promising directions, and open issues. Journal of Visual Commu-
nication and Image Representation, 10(1):39–62, 1999.

[73] Samuele Salti, Alessandro Lanza, and Luigi Di Stefano. Keypoints from sym-
metries by wave propagation. In Proc. CVPR, pages 2898–2905, 2013.

[74] Torsten Sattler. Out with the old? convolutional neural networks for feature
matching and visual localization. In 56th Photogrammetric Week: Advancement
in Photogrammetry, Remote Sensing and Geoinformatics, 2017.

[75] Torsten Sattler, Michal Havlena, Filip Radenovic, Konrad Schindler, and Marc
Pollefeys. Hyperpoints and fine vocabularies for large-scale location recognition.
In Proc. ICCV, pages 2102–2110, 2015.

[76] Torsten Sattler, Bastian Leibe, and Leif Kobbelt. Fast image-based localization
using direct 2d-to-3d matching. In Proc. ICCV, pages 667–674, 2011.

[77] Nikolay Savinov, Akihito Seki, Lubor Ladicky, Torsten Sattler, and Marc Polle-
feys. Quad-networks: Unsupervised learning to rank for interest point detection.
In Proc. CVPR, 2017.

[78] Miriam Schönbein and Andreas Geiger. Omnidirectional 3d reconstruction in
augmented manhattan worlds. In Proc. IROS, pages 716–723, 2014.

[79] Johannes L Schönberger. Colmap, 2016.

[80] Johannes L Schönberger, True Price, Torsten Sattler, Jan-Michael Frahm, and
Marc Pollefeys. A vote-and-verify strategy for fast spatial verification in image
retrieval. In Proc. ACCV, 2016.

[81] Johannes Lutz Schönberger, Hans Hardmeier, Torsten Sattler, and Marc Polle-
feys. Comparative evaluation of hand-crafted and learned local features. In
Proc. CVPR, 2017.

116

[82] Edgar Simo-Serra, Eduard Trulls, Luis Ferraz, Iasonas Kokkinos, Pascal Fua,
and Francesc Moreno-Noguer. Discriminative learning of deep convolutional
feature point descriptors. In Proc. ICCV, 2015.

[83] Edgar Simo-Serra, Eduard Trulls, Luis Ferraz, Iasonas Kokkinos, Pascal Fua,
and Francesc Moreno-Noguer. Discriminative learning of deep convolutional
feature point descriptors. In Proc. ICCV, pages 118–126, 2015.

[84] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Learning local fea-
ture descriptors using convex optimisation. IEEE Trans. PAMI, 36(8):1573–
1585, 2014.

[85] Noah Snavely, Steven M. Seitz, and Richard Szeliski. Photo tourism: Exploring
photo collections in 3d. ACM Trans. Graphics, 25(3):835–846, July 2006.

[86] Noah Snavely, Steven M Seitz, and Richard Szeliski. Photo tourism: Exploring
photo collections in 3D. ACM Trans. Graphics, 25(3):835–846, 2006.

[87] Noah Snavely, Steven M Seitz, and Richard Szeliski. Modeling the world from in-
ternet photo collections. International Journal of Computer Vision, 80(2):189–
210, 2008.

[88] Christoph Strecha, Alex Bronstein, Michael Bronstein, and Pascal Fua. Lda-
hash: Improved matching with smaller descriptors. IEEE Trans. PAMI,
34(1):66–78, 2012.

[89] Linus Svarm, Olof Enqvist, Fredrik Kahl, and Magnus Oskarsson. City-scale
localization for cameras with known vertical direction. IEEE Trans. PAMI,
2016.

[90] Yurun Tian, Bin Fan, Fuchao Wu, et al. L2-net: Deep learning of discriminative
patch descriptor in euclidean space. In Proc. CVPR, volume 2, 2017.

[91] Engin Tola, Vincent Lepetit, and Pascal Fua. Daisy: An efficient dense descrip-
tor applied to wide-baseline stereo. IEEE Trans. PAMI, 32(5):815–830, May
2010.

[92] Giorgos Tolias, Yannis Avrithis, and Hervé Jégou. To aggregate or not to
aggregate: Selective match kernels for image search. In Proc. ICCV, pages
1401–1408, 2013.

[93] Tomasz Trzcinski, Mario Christoudias, Pascal Fua, and Vincent Lepetit. Boost-
ing binary keypoint descriptors. In Proc. CVPR, pages 2874–2881. IEEE, 2013.

[94] Tomasz Trzcinski and Vincent Lepetit. Efficient discriminative projections for
compact binary descriptors. In Proc. ECCV, pages 228–242. Springer, 2012.

[95] Tinne Tuytelaars and Cordelia Schmid. Vector quantizing feature space with a
regular lattice. In Proc. ICCV, pages 1–8. IEEE, 2007.

117

[96] Yannick Verdie, Kwang Yi, Pascal Fua, and Vincent Lepetit. Tilde: A tempo-
rally invariant learned detector. In Proc. CVPR, pages 5279–5288, 2015.

[97] Felix Von Hundelshausen and Rahul Sukthankar. D-nets: Beyond patch-based
image descriptors. In Proc. CVPR, 2012.

[98] Jiayun Wang, Sanping Zhou, Jinjun Wang, and Qiqi Hou. Deep ranking model
by large adaptive margin learning for person re-identification. Pattern Recogni-
tion, 74:241–252, 2018.

[99] Andreas Wendel, Arnold Irschara, and Horst Bischof. Natural landmark-based
monocular localization for mavs. In Proc. ICRA, pages 5792–5799, 2011.

[100] Simon Winder, Gang Hua, and Matthew Brown. Picking the best daisy. In
Proc. CVPR, pages 178–185. IEEE, 2009.

[101] Simon AJ Winder and Matthew Brown. Learning local image descriptors. In
Proc. CVPR, pages 1–8. IEEE, 2007.

[102] Changchang Wu. Siftgpu: A gpu implementation of scale invariant feature
transform (sift). http://cs.unc.edu/~ccwu/siftgpu/, 2011.

[103] Changchang Wu. Visualsfm: A visual structure from motion system.
http://ccwu.me/vsfm/, 2011.

[104] Changchang Wu, Sameer Agarwal, Brian Curless, and Steven M Seitz. Multi-
core bundle adjustment. In Computer Vision and Pattern Recognition (CVPR),
2011 IEEE Conference on, pages 3057–3064. IEEE, 2011.

[105] Xiaomeng Wu and Kunio Kashino. Adaptive dither voting for robust spatial
verification. In Proc. ICCV, pages 1877–1885, 2015.

[106] Kwang Moo Yi, Eduard Trulls, Vincent Lepetit, and Pascal Fua. Lift: Learned
invariant feature transform. Proc. ECCV, pages 467–483, 2016.

[107] Sergey Zagoruyko and Nikos Komodakis. Learning to compare image patches
via convolutional neural networks. In Proc. CVPR, pages 4353–4361. IEEE,
2015.

[108] Matthew D Zeiler. Adadelta: An adaptive learning rate method. arXiv preprint
arXiv:1212.5701, 2012.

[109] Bernhard Zeisl, Torsten Sattler, and Marc Pollefeys. Camera pose voting for
large-scale image-based localization. In Proc. ICCV, pages 2704–2712, 2015.

[110] Andy Zeng, Shuran Song, Matthias Nießner, Matthew Fisher, Jianxiong Xiao,
and Thomas Funkhouser. 3DMatch: learning local geometric descriptors from
RGB-D reconstructions. In Proc. CVPR, pages 1802–1811, 2017.

118

http://cs.unc.edu/~ccwu/siftgpu/
http://ccwu.me/vsfm/

[111] Linguang Zhang, Adam Finkelstein, and Szymon Rusinkiewicz. High-precision
localization using ground texture. CoRR, abs/1710.10687, 2017.

[112] Linguang Zhang and Szymon Rusinkiewicz. Learning to detect features in tex-
ture images. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) spotlight presentation, June 2018.

[113] Xu Zhang, Felix X Yu, Svebor Karaman, and Shih-Fu Chang. Learning discrim-
inative and transformation covariant local feature detectors. In Proc. CVPR,
pages 6818–6826, 2017.

[114] Xu Zhang, Felix X. Yu, Sanjiv Kumar, and Shih-Fu Chang. Learning spread-out
local feature descriptors. In Proc. ICCV, Oct 2017.

[115] Barbara Zitova and Jan Flusser. Image registration methods: A survey. Image
and Vision Computing, 21(11):977–1000, 2003.

119

	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Contributions

	2 High-Precision Localization Using Ground Texture
	2.1 Introduction
	2.2 Related Work
	2.3 Mapping
	2.3.1 Hardware Setup and Data Collection
	2.3.2 Image Stitching
	2.3.3 Scaling to Larger Areas
	2.3.4 Database Construction

	2.4 Localization
	2.5 Datasets
	2.5.1 Indoor Datasets
	2.5.2 Outdoor Datasets

	2.6 Evaluation
	2.6.1 Impact of Design Decisions
	2.6.2 Comparison with Image Retrieval
	2.6.3 Downward- vs. Outward-Facing Cameras
	2.6.4 Robustness
	2.6.5 Efficiency

	2.7 Application: Automatic Path Following
	2.8 Application: Capture of Foot Placement
	2.9 Discussion, Limitations, and Future Work

	3 Learning to Detect Features in Texture Images
	3.1 Introduction
	3.2 Related Work
	3.2.1 Hand-Crafted Feature Detectors
	3.2.2 Learned Feature Detectors

	3.3 Approach
	3.3.1 Feature Detection by Ranking
	3.3.2 Optimizing Peakedness of the Response
	3.3.3 Implementation
	3.3.4 Datasets
	3.3.5 Training
	3.3.6 Feature Detection in a Test Image
	3.3.7 Computational Efficiency

	3.4 Results
	3.4.1 Evaluation Protocol
	3.4.2 Performance
	3.4.3 Impact of Parameters
	3.4.4 Cross Evaluation
	3.4.5 Effectiveness in Micro-GPS

	3.5 Conclusion and Future Work

	4 Learning Local Descriptors with Dynamic Soft Margin
	4.1 Introduction
	4.2 Related Work
	4.3 Learning Local Descriptors
	4.3.1 Real-Valued Descriptors
	4.3.2 Binary Descriptors

	4.4 Dynamic Soft Margin
	4.4.1 Behavior of the Triplet Margin Loss
	4.4.2 Dynamic Triplet Weighting

	4.5 Experiments
	4.5.1 Implementation
	4.5.2 UBC PhotoTourism
	4.5.3 HPatches
	4.5.4 Image Matching on the Oxford Dataset

	4.6 Ablation Studies
	4.6.1 Existing Alternatives to Static Hard Margin
	4.6.2 Different Ways to Construct the PDF

	4.7 Conclusion

	5 Conclusion and Future Work
	A Micro-GPS Datasets
	Bibliography

