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Abstract

All distributed storage systems replicate data objects, providing built-in redundancy that is

designed to help the system withstand failures. Such redundancy is unavoidable because

withstanding failures is a critical goal of distributed systems, and redundancy is the only

way to tolerate failures that cause loss of data access.

However, with the proliferation of data, it is becoming ever more paramount to reduce

the costs of distributed storage systems. To balance the need to reduce storage costs and the

need to withstand failures, this thesis explores two ways we can leverage the unavoidable

redundancy in distributed storage systems to eliminate additional storage overheads in other

parts of the storage stack.

The first system we present is Replex. The key end-to-end observation in this work

is that distributed secondary indices duplicate the work done by replication. Secondary

indices often store full copies of data objects, in addition to the replicas of data objects that

are created by default to handle failures. In Replex, we eliminate the additional storage

overhead of secondary indices by treating them as data replicas during replication time.

The second system we present is DIRECT. The key end-to-end observation here is that

the redundancy created by replication can and should be used to correct bit errors at the

hardware level. Traditionally, disks are expected to abstract bit errors from software, and

in fact flash devices are shipped with aggressive internal error correction mechanisms to

prevent errors from percolating to the user for the calculated lifetime of the device. In

DIRECT, we argue that the underlying premise that disks should not expose bit errors is in-

correct. In doing so, DIRECT enables the use of flash devices well beyond their advertised

lifetime, which is a huge cost savings for datacenter operators.

Therefore, by applying existing storage redundancy to enable two key properties in

datacenter storage systems– secondary indexing and flash reliability– this thesis shows that

distributed storage systems can be designed without burdensome storage overheads.
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Chapter 1

Introduction

1.1 Distributed Storage Systems

With data being created everywhere at every second, distributed storage systems are of

growing importance. For example, as of 2014, Facebook stored 300 PB of data in just one

of their storage systems, with data added at a daily rate of 600 TB [16]. This explosion

in data volume makes it ever more necessary to decrease the cost of storing data. But

to understand how to optimize storage overheads in distributed storage systems, it is first

important to understand how they have evolved.

Distributed storage systems were created when it became clear that databases needed

to store data beyond the capacity of a single disk on a single machine. For this thesis, we

focus in particular on distributed storage systems in the datacenter. By this we mean that

the following assumptions apply:

1. The storage systems are deployed at scale, which means failure events with small

probabilities become much more likely. This assumption forces us to focus efforts

on optimizing recovery performance throughout this thesis.

2. All machines on which the system runs are contained within a single datacenter. In

particular, this rules out geo-distribution, which is a separate consideration in and of

itself. This assumption also implies that communication between machines is on the

1
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Figure 1.1: We focus on distributed storage systems in the datacenter. This means that the system
stores data (colored blocks) across machines in a datacenter (the outlined box).

Property Definition
Durability Data stored in the system should not be lost despite hard-

ware (such as disk) failures.
Availability Data stored in the system should be accessible despite hard-

ware (such as network) failures.

Table 1.1: Some properties that distributed storage systems guarantee.

order of a few milliseconds or less instead of several hundreds of milliseconds. This

assumption is particularly helpful when reducing recovery costs during failure.

Figure 1.1 depicts how these systems generally store data in a datacenter.

Distributed storage systems make an implicit contract with users wherein they guaran-

tee certain properties, typically durability and availability, as summarized in Table 1.1.

Consider the scenario in Figure 1.2. If the specified disk fails, then naively, the green

data block would be lost forever. If a storage system guarantees durability, losing the green

data block is unacceptable. Therefore the system has to do something smarter in order to

prevent losing data when such failures occur.

1.2 Replication

The easiest way to guarantee both durability and availability is with a technique called data

replication. Replication relies on a simple but powerful concept: by creating redundant

2
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Figure 1.2: Durability is a property that guarantees that hardware failures do not result in data loss.
For example, if the indicated machine crashes, the distributed system should still be able to recover
the green data block.

.	.	.	

Figure 1.3: Replication ensures that data blocks are still preserved despite some number of failures.

copies (replicas) of a data block throughout the datacenter, systems can withstand some

number of machine failures because copies of the data reside on healthy machines. Fig-

ure 1.3 clearly shows how, because every data block is replicated three times within the

datacenter, a machine failure will not result in data loss.

It is clear how replication achieves durability and availability, but in doing so, it also

imposes several new overheads, as summarized in Table 1.2. Unfortunately, because redun-

dant information is the only way to withstand failures, the overheads inherent to replication

are unavoidable; every distributed storage system that intends to be used seriously in pro-

duction has some level of data replication. Because the storage and performance costs

3



Overhead Description
Storage If a data object is replicated r times, then the storage over-

head of replication is r×. This can be a huge overhead in
datacenter deployments, where the data itself can be on the
order of petabytes without replication.

Performance With replication, whenever an update is made to a data ob-
ject, all replicas of the data object must also be updated.

Table 1.2: While replication enables storage systems to withstand failures, it does so by introducing
a number of overheads.

of naive replication can be exorbitant, there is ample related work, which we will cover in

Chapter 2, that attempts to alleviate these overheads by introducing tradeoffs. However, the

limitation of these existing attempts is that they respect the abstraction of the replication

layer; existing research efforts only work to explore tradeoffs within the replication opera-

tion itself – for example, how different replication strategies (consistency models, Section

2.3) reduce the performance overheads of replication by shifting the burden to program-

mers. Instead of optimizing within the replication layer, this thesis looks to other layers of

the storage stack and asks how we can leverage the redundancy from replication to provide

beneficial, end-to-end properties across the entire stack.

1.3 Contributions

In this thesis we identify novel approaches to addressing replication overheads by opening

abstraction layers and co-designing replication with other layers of the storage stack. Lay-

ers of abstraction result in unnecessary storage redundancy across the entire stack. Armed

with the end-to-end argument, we realize that these abstractions, having served their pur-

pose by making rapid iterations of software engineering possible, should be removed in

order to redesign a stack with less redundancy; by opening the storage stack, many cases

of storage redundancy become unnecessary. In the two works of this thesis, we identify

two new applications of the redundancy in replication that can be used to reduce storage

overheads in other parts of the stack.

4



First, we present Replex, which shows that replication can be co-designed with the

indexing layer in storage systems. Replex treats distributed secondary indices as replicas

during replication time. In doing so, Replex explores the tradeoff of storage redundancy

vs. recovery overhead at the indexing layer, a flexibility that did not previously exist.

Traditionally, systems fall in favor of high storage redundancy and low recovery overhead,

but the datacenter presents new assumptions: storage is costly, and applications tolerate a

range of acceptable recovery times, which means datacenter storage systems benefit from

exploring the full tradeoff space.

Next, we present DIRECT, which co-designs replication with the error handling layer

in hardware. DIRECT shows that replication at the distributed storage layer can correct bit

errors at the hardware level. In this case, storage redundancy exists at the device and ap-

plication level because devices are traditionally assumed to mask all data corruptions from

software. DIRECT challenges the notion that disks must abstract all errors from software

layers by showing that bit errors can be fixed at the application layer with application-

level redundancy with little performance overhead. By co-designing hardware redundancy

with replication, we enable flash devices to be used for much longer than their currently

advertised lifetimes, which reduces the storage overhead of a system.

There is no previous work that attempts to leverage datacenter redundancy in these

ways, and we believe that the work in this thesis is a first step towards eliminating unnec-

essary storage overheads throughout the distributed storage stack.

5



Chapter 2

Background

As discussed in the previous chapter, replication has several overheads. Much of the exist-

ing work in this area has focussed on mitigating these overheads by introducing tradeoffs.

For example, to mitigate the storage overhead replication imposes, the entire field of era-

sure coding introduces a storage versus recovery time computation tradeoff. Similarly, to

mitigate the update overhead introduced by having to update multiple copies of the same

data object, a slew of NoSQL databases explores the tradeoff between scalable performance

and consistency model.

In this chapter, we introduce these tradeoffs by discussing these two bodies of related

work: erasure coding and NoSQL databases.

2.1 Erasure Coding

Traditional replication stores a data object r times, so if the data object is of size k, then the

storage overhead associated with the object becomes k · r. Instead, erasure codes provide a

way to protect a data object against failures with only a fraction of the storage overhead.

Erasure codes offset the storage overheads of distributed replication by introducing

a storage versus recovery tradeoff. Furthermore, by reducing storage overheads, erasure

codes can also reduce power and other operational overheads associated with datacen-

6



Parity	blocks	Data	blocks	

Figure 2.1: Generally, erasure coding computes n − k parity blocks from a set of k data blocks.
Then if there are fewer than n−k failures in the set of n blocks, any failed block can be recomputed
from the remaining blocks. In this case, k = 4 and n = 6. Then this setup can tolerate 2 failures.
In particular, the lost data block can be recomputed from the remaining four available blocks.

ters [58]. In particular, with erasure codes, a data object of size k can be represented

with k < n bits, where k < n < 2k. Therefore, the storage overhead imposed by the

erasure code is n− k, some fraction of k.

2.1.1 Basics of erasure coding

Generally, a data object of size k is extended into a data object of size n bits; the additional

n− k are termed parity bits, which are computed from the k data bits. Then the idea is that

any k of the n bits are enough to reconstruct the original data object.

Extending this idea to distributed storage systems, we replace bits with data objects,

and a data object with some aggregate set of data objects. Then if there are k data objects

in the set, we can calculate n− k parity objects, and the resulting set of n data objects are

successfully erasure coded. Then the guarantee we get is that if any one of the original

k data objects is unavailable, we can read from any k other available data objects and

recompute the missing object, as shown in Figure 2.1.

In general, a (n, k) erasure code can tolerate n− k “erasures”, in this case missing data

fragments. Recall that replicating r-ways is to tolerate r − 1 “erasures” of a data object.

Then, to ensure that all k data objects in our aggregate set can tolerate r − 1 erasures, we

simply set n− k = r − 1, in which case n = k + r − 1. Hence the storage overhead of an

erasure code that can tolerate r − 1 failures is n/k = (k + r − 1)/k << r · k, where the

right-hand value is the storage overhead of replication.

7



The tradeoff for this low storage overhead is an increase in update and reconstruction

cost. For the regular replication case, the update overhead is having to update all r copies

of the data block. For erasure coding, an update must update all data fragments that are

associated with the data block. As we calculated above, there are k + r − 1 such objects.

Generally, k > 1 (if k = 1, then we have simply degenerated to the replication case),

which means that the update overhead of erasure coding is strictly greater than the update

overhead of replication.

Furthermore, if a fragment in an erasure coding set experiences a failure, then k data

fragments must be accessed and the lost block must be recomputed from these k fragments.

Contrast this with replication, where there is no computational overhead: simply fetching

a remote replica is sufficient. This cost becomes particularly magnified when there is a

network cost involved in fetching the missing fragments.

There are many families of erasure codes, including Reed-Solomon codes [96] and

locally-recoverable codes [106], which improve on the recoverability of data at the expense

of additional storage overhead.

2.2 RAID

Redundant Array of Inexpensive Disks (RAID) is another construct that trades off avail-

ability for storage and performance overheads [94]. RAID refers to a collection of disks

that are attached to a single server and gives the abstraction of a single disk.

In particular, RAID usually assumes inexpensive and hence failure-prone disks, which

means RAID must be able to preserve data in the face of disk failures, as shown in Fig-

ure 2.2. As with erasure coding, RAID does so by introducing storage redundancy and

additional write overheads.

There are a variety of RAID techniques, called levels, each a different point in the trade-

off space between failure tolerance and storage and computational overhead. For example,

RAID 0 is the degenerate case where there is no redundancy, which means that the RAID

8
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RAID	abstraction	must	handle	disk	failures	
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A3	

B1	
B2	 B3	

Bparity	
C1	

C2	

Cparity	
C3	

Figure 2.2: Redundant array of Inexpensive Disks (RAID) is a technique for combining multiple
disks in a single disk abstraction. Depending on the RAID level, the setup must be able to tolerate
individual disk failures.

0 level cannot tolerate any disk failures.

RAID Level Description
RAID 0 No protection against failures

RAID 1
Every data block is replicated once, for a total of two full copies of a
data block in the RAID setup. This level can tolerate one disk failure,
but the storage overhead is 2x the size of the data. See Figure 2.3a.

RAID 5

This setup can tolerate one disk failure, but with parity blocks in-
stead of the full replication of RAID 1. This means that if there are
n disks in the setup, every n− 1 blocks has a parity block associated
with it, that resides on a separate physical disk. Every write, how-
ever, must then recalculate the parity block, which results in a higher
computational overhead than RAID 1. See Figure 2.3b.

RAID 6

This setup can tolerate two disk failures, which means if there are n
disks in the setup, every n − 2 blocks has two parity blocks associ-
ated with it. This level can tolerate more failures than the others, at
the expense of a larger storage overhead (two instead of one parity
block), as well as higher computational costs for each write.

Table 2.1: Summary of some standard RAID levels and their tradeoffs.

On the other hand, RAID 6 can tolerate two disk failures, because each data block has

two parity (and hence redundant) blocks associated with it. The overhead introduced by

these parity blocks is both a write overhead and a storage overhead. Table 2.1 summarizes

the standard RAID levels.

9
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(a) RAID 1, where the red disk is a full replica of the original, gray disk.

A1	 A2	

RAID	abstraction	must	handle	disk	failures	

Aparity	

A3	

B1	
B2	 B3	

Bparity	
C1	

C2	

Cparity	
C3	

(b) RAID 5, where n = 4, which means each specified set of n − 1 = 3 blocks has an associated
parity block. A, B, and C indicate the disjoint sets of data blocks.

Figure 2.3: Visualizations of two different RAID levels.

2.3 NoSQL Datastores

In addition to tackling the storage overhead tradeoff by implementing erasure coding,

NoSQL datastores can also tackle the update overhead of supporting multiple replicas of a

single data object. Simply, the update overhead of replication is having to update all repli-

cas of a data object when that object is updated. The requirement of updating all replicas

atomically exists so that distributed storage systems can give the illusion of running on a

single machine.

If we relax the condition– for example, if an update operation does not need to propa-

gate to all replicas– then some reads to a data object will see different values. The consis-

tency model chosen by a datastore specifies how far the datastore relaxes the condition that

all updates much propagate to all replicas. As expected, generally the stronger the consis-

tency model, the less performant the datastore is. Conversely, weaker consistency models

enable a datastore to advertise both lower latency and higher throughput operations. In this

section, we summarize a few salient consistency models that are commonly used in NoSQL

datastores.

10



2.3.1 Strong Consistency

Strong consistency is a model where all operations will see the result of all other finished

operations in the system. Generally, this means that the state of the system reflects some

global order of operations, which makes it very easy for users to reason about data. How-

ever, the tradeoff is poor performance, because operations cannot return until their slot in a

global ordering of operations can been determined. Usually, the easiest way of doing this is

to ensure the operation is executed on all nodes. Chain replication [116], CRAQ [109], an

optimization of chain replication, HyperDex [49], and Windows Azure Storage [39] are all

strongly consistent systems that achieve strong consistency by enforcing that writes visit

all nodes before returning to the user.

Another way to achieve strong consistency is to use a consensus engine to determine

the global ordering operations. Even though a write only has to visit some large subset of

all nodes (typically a quorum) instead of all the nodes, the consensus engine pays for this

tradeoff by introducing an additional layer of complexity because its nodes must come to an

agreement on how to order the operations. Systems like Spanner [43], CockroachDB [1],

and some configurations of Cassandra [111] and ScyllaDB [100] use consensus (quorum)-

based replication.

2.3.2 Causal Consistency

Causal consistency [23], as the name suggests, is a consistency model that guarantees that

operations that depend on each other will have the effect of being executed in a serial

order. In particular, writes that affect the same data object will be serialized. Therefore, the

difference between causal and strong consistency is that causal consistency does not impose

an ordering on operations that are independent of each other. This flexibility gives causal

consistency both a performance edge over strong consistency and is in fact the strongest

consistency possible in the presence of network partitions [83].

Eiger [79] is an example of a geo-distributed system that provides causal consistency,

11



while COPS is an example of a system that provides causal+ consistency, which is even

stronger than causal consistency. Also, Redis [12] can be configured to provide causal

consistency.

2.3.3 Eventual Consistency

Eventual consistency is the weakest of these three consistency models. Originally intro-

duced in the Bayou system [110], eventual consistency guarantees that eventually, every

write or update operation made against a node in a distributed system propagates to and

is hence replicated on all other nodes. Because there are no guarantees on the timing or

ordering of when these operations make it to all nodes, systems that wish to provide some

sense of coherency across nodes must use a higher protocol layer to resolve out-of-order

operations. In particular, the original Bayou system implemented a protocol layer above

the replication layer that ended up enforcing a model similar to causal+ consistency.

Obviously, the benefits of eventual consistency are great: writes can return as soon as

they contact a single node in the system, rather than returning after visiting all replicas.

This means that such systems can advertise very high write throughputs. The 2000s saw

a rise in systems advertising eventual consistency precisely as a reaction to the relatively

poor performance of strongly consistent databases. This rebirth in eventual consistency

led to systems such as Dynamo [45], MongoDB [41], CouchDB [28], Redis [12], and

Cassandra/ScyllaDB. All of these systems trade off consistency for high performance at

the replication layer.

2.4 Summary

To summarize, the research fronts to reduce the storage and performance overheads in-

troduced by replication are limited to the replication layer itself. Erasure coding explores

ways to replicate data to achieve optimal points in the storage overhead vs recovery per-

formance tradeoff. NoSQL datastores employ different replication strategies to explore the

performance overhead vs. ease of programming tradeoff.

12



In this thesis we address the same tradeoffs, but in contexts in which we look beyond

the replication layer to identify new ways to alleviate the burdens of replication. In the

first work, Replex, we show that replication can be co-designed with the indexing layer

in storage systems to reduce storage overheads. In the second work, DIRECT, we show

that replication can be co-designed with availability mechanisms at the hardware level, to

again reduce storage overheads. In both Replex and DIRECT, we explore the same storage

overhead vs. recovery performance tradeoff, but in new contexts.

13



Chapter 3

Replex

3.1 Introduction

Applications have traditionally stored data in SQL databases, which provide programmers

with an efficient and convenient query language to retrieve data. However, as storage

needs of applications grew, programmers began shifting towards NoSQL databases, which

achieve scalability by supporting a much simpler query model, typically by a single pri-

mary key. This simplification made scaling NoSQL datastores easy: by using the key to

divide the data into partitions or “shards”, the datastore could be efficiently mapped onto

multiple nodes. Unfortunately, this model is inconvenient for programmers, who often still

need to query data by a value other than the primary key.

Several NoSQL datastores [28, 40, 41, 63, 65, 111] have emerged that can support

queries on multiple keys through the use of secondary indices. Many of these datastores

simply query all partitions to search for an entry which matches a secondary key. In this

approach, performance quickly degrades as the number of partitions increases, defeating

the reason for partitioning for scalability. HyperDex [49], a NoSQL datastore which takes

another approach, generates and partitions an additional copy of the datastore for each

key. This design allows for quick, efficient queries on secondary keys, but at the expense

of storage and performance overhead: supporting just one secondary key doubles storage
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requirements and write latencies.

In this paper, we describe Replex, a scalable, highly available multi-key datastore. In

Replex, each full copy of the data may be partitioned by a different key, thereby retaining

the ability to support queries against multiple keys without incurring a performance penalty

or storage overhead beyond what is required to protect the database against failure. In

fact, since Replex does not make unnecessary copies of data, it outperforms other NoSQL

systems during both steady-state and recovery.

To address the challenge of determining when and where to replicate data, we explore,

develop, and parameterize a new replication scheme, which makes use of a novel replica-

tion unit we call a replex. The key insight of a replex is to combine the need to replicate for

fault-tolerance and the need to replicate for index availability. By merging these concerns,

our protocol avoids using extraneous copies as the means to enable queries by additional

keys. However, this introduces a tradeoff between recovery time and storage cost, which

we fully explore (§ 3.3). Replex actually recovers from failure faster than other NoSQL

systems because of storage savings during replication.

We implement (§ 3.4) and evaluate (§ 3.5) the performance of Replex using several

different parameters and consider both steady-state performance and performance under

multiple failure scenarios. We compare Replex to Hyperdex and Cassandra and show that

Replex’s steady-state performance is 76% better than Hyperdex and on-par with Cassandra

for writes. For reads, Replex outperforms Cassandra by as much as 2-9×while maintaining

performance equivalent with HyperDex. In addition, we show that Replex can recover from

one or two failures 2-3× faster than Hyperdex, all while using a fraction of the resources.

Our results contradict the popular belief that supporting multiple keys in a NoSQL

datastore is expensive. With replexes, NoSQL datastores can easily support multiple keys

with little overhead.
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3.2 System Design

We present Replex’s data model and replication design, which enables fast index reads and

updates while being parsimonious with storage usage.

3.2.1 Data Model and API

Replex stores data in the form of RDBMS-style tables: every table has a schema that

specifies a fixed set of columns, and data is inserted and replicated at the row-granularity.

Every table also specifies a single column to be the primary key, which becomes the default

index for the table.

As with traditional RDBMSs, the user can also specify any number of additional in-

dices. An index is defined by the set of columns that comprise the index’s sorting key. For

example, the sorting key for the primary index is the column of the primary key.

The client queries we focus on in this paper are insert(r), where r is a row of values,

and lookup(R), where R is a row of predicates. Predicates can be null, which matches

on anything. Then lookup(R) returns all rows r that match on all predicates in R. The

non-null predicates should correspond to the sorting key of an index in the table. Then that

index is used to find all matching rows.

Henceforth, we will refer to the data stored in Replex as the table. Then Replex is

concerned with maintaining the indices of and replicating the table.

3.2.2 Data Partitioning with Replexes

In order to enable fast queries by a particular index, a table must be partitioned by that

index. To solve this problem, Replex builds what we call a replex for every index. A

replex stores a table and shards the rows across multiple partitions. All replexes store the

same data (every row in the table), the only difference across replexes is the way data is

partitioned and sorted, which is by the sorting key of the index associated with the replex.

Each replex is associated with a sharding function, h, such that h(r) defines the partition
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insert(r)	   replex	  A	  

lookup(R)	  

hB(R)	  
Replex	  

replex	  B	   replex	  C	  

Figure 3.1: Every replex stores the table across of a number of partitions. This diagram shows the
system model for a table with 3 indices. When a row r is inserted, hA, hB , and hC determine which
partition (shaded) in the replex stores r. Similarly, a lookup on a replex is broadcast to a number of
partitions based on h.

number in the replex that stores row r. For predicateR, h(R) returns a set because the rows

of values that satisfy R may lie in multiple partitions. The only columns that affect h are

the columns in the sorting key of the index associated with the replex.

A novel contribution of Replex is to treat each partition of a replex as first-class replicas

in the system. Systems typically replicate a row for durability and availability by writing

it to a number of replicas. Similarly, Replex uses chain replication [116] to replicate a row

to a number of replex partitions, each of which sorts the row by the replex’s corresponding

index, as shown in Figure 3.1; in § 3.2.3 we explain why we choose chain replication. The

key observation is that after replication, Replex has both replicated and indexed a row.

There is no need for explicit indexing.

By treating replexes as true replicas, we eliminate the overheads associated with main-

taining and replicating individual index structures, which translates to reductions in net-

work traffic, operation latency, and storage inflation.

3.2.3 Replication Protocol

Replacing replicas with replexes requires a modified replication protocol. The difficulty

arises because individual replexes can have requirements, such as uniqueness constraints,

that cause the same operation to be both valid and invalid depending on the replex. Hence

before an operation can be replicated, a consensus decision must be made among the re-
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update(Y)	   update(Y)	   update(X)	   .	  .	  .	  
Y:6	   Y:7	   ?	  

Figure 3.2: Consider storing every log entry in a Replex table. For linearizability, a local timestamp
cannot appear to go backwards with respect to the global timestamp. For example, tagging in last
entry with local timestamp X:9 violates the semantics of the global timestamp.

plexes to agree on the validity of an operation.

As an example of an ordering constraint, consider a distributed log that totally orders

updates to a number of shared data structures, a la state machine replication. In addition to

the global ordering, each data structure requires a local ordering that must reflect the global

total ordering. For example, suppose there are two data structures X and Y, and a subset of

the log is shown in Figure 3.2. To store the updates in Replex, we can create a table with

two columns: a global timestamp and a local timestamp. Because consumers of the log

will want to look up entries both against the global timestamp and within the sublog of a

specific data structure, we also specify an index per column; examples of logs with such

requirements appear in systems such as Corfu [30], Hyder [33], and CalvinFS [112].

Then the validity requirement in this case is a dense prefix of timestamps: a timestamp

t cannot be written until all timestamps t′ < t have been inserted into the table; this is true

for both the local and global timestamps. For example, an attempt to insert the row (40,

X:9) would be valid by the index of the global timestamp, but invalid by the index of the

local timestamp, because the existence of X:10 in the index means X:9 must have already

been inserted. Then the row should not be inserted into the table; this is problematic if the

first replex has already processed the insert, which means lookups on the first index will

see row (40, X:9).

This example is implemented in the system vCorfu [118]. In vCorfu, Replex is used

to enable efficient materialization of data structures. As long as the local timestamps (all

timestamps associated with data structure X in Figure 3.2) maintain density, then to mate-
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to	  client	  
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Figure 3.3: Each node represents an index. This modified replication protocol has two phases: 1)
Top phase: propagates the operation to all relevant partitions and collects each partition’s decision.
2) Bottom phase: the last partition aggregates these decisions into the final valid boolean, which is
then propagated back up the chain. When a replex receives valid, it knows to commit or abort the
operation

rialize a data structure, a reader simply sequentially scans local timestamps based on the

secondary index provided by Replex.

Datastores without global secondary indices do not have this validity problem, because

a key is only sorted by a single index. Datastores with global secondary indices either

employ a distributed transaction for update operations, because an operation must be atom-

ically replicated as valid or invalid across all the indices [43], or do not support constraints

on secondary indices. Because replexes are similar to global secondary indices, a dis-

tributed transaction can do the job. But instead of running a distributed transaction in

addition to the standard replication protocol, Replex rolls the indexing and replication into

a single protocol.

To remove the need for a distributed transaction in our replication protocol, we modify

chain replication to include a consensus protocol. We choose chain replication instead of

quorum-based replication because all replexes must participate to determine validity. As in

chain replication, our protocol visits every replex in some fixed order. Figure 3.3 illustrates

the steps in this new replication protocol.

Our new protocol can be split into two phases: (1) consensus phase, where we prop-

agate the operation to all replexes, as in chain replication. The actual partition within the

replex that handles the operation is the partition that will eventually replicate the operation,
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as depicted in Figure 3.1. As the protocol leaves each partition, it collects that partition’s

validity decision. When this phase reaches the last partition in the chain, the last partition

aggregates each partition’s decision into a final decision, which is simply the logical AND

of all decisions: if there is a single abort decision, the operation is invalid. (2) replication

phase, where the last partition initiates the propagation of this final decision back up the

chain. As each partition receives this final decision, if the decision is to abort, then the

partition discards that operation. If the decision is to commit, then that partition commits

the operation to disk and continues propagating the decision.

It is guaranteed that when the client sees the result of the operation, all partitions will

agree on the outcome of the operation, and if the operation is valid, all partitions will have

made the decision durable. An intuitive proof of correctness for this consensus protocol is

simple. We can treat the first phase of our protocol as an instance of chain replication, which

is an instance of Vertical Paxos, which has existing correctness proofs [70]. The second

phase of our protocol is simply a discovery phase in Paxos protocols and is hence irrelevant

in the proof of correctness. This discovery phase is necessary for replexes to discover the

final decision so they may persist (replicate) necessary data, but has no bearings on the

consensus decision itself.

It is possible for a client to see committed operations at one replex before another. For

example, suppose client 1 is propagating an operation to replexes A and B. The operation

reaches B and commits successfully, writing the commit bit at B. Then this committed

operation is visible to client 2 that queries replex B, even though client 2 cannot see it

by querying replex A, if the commit bit is still in flight. Note that this does not violate the

consensus guarantee, because any operation viewed by one client is necessarily committed.

Our protocol is similar to the CRAQ protocol which adds dirty-read bits to objects

replicated with chain replication [109]. The difference between the two protocols is that

CRAQ operates on objects, rather than operations: our protocol determines whether or

not an operation may be committed to an object’s replicated state machine history, while
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CRAQ determines whether or not an object is dirty. In particular, operations can be aborted

through our protocol.

Finally, we observe that our replication protocol does not allow writes during failure. In

chain replication, writes to an object on a failed node cannot resume until its full persisted

history has been restored; similarly, writes may not be committed in Replex until the failed

node is fully recovered.

3.2.4 Failure Amplification

Indexing during replication enables Replex to achieve fast steady-state requests. But there

is a cost, which becomes evident when we consider partition failures.

Failed partitions bring up two concerns: how to reconstruct the failed partition and

how to respond to queries that would have been serviced by the failed partition. Both of

these problems can be solved as long as the system knows how to find data stored on the

failed partition. The problem is even though two replexes contain the same data, they have

different sharding functions, so replicated data is scattered differently.

We define failure amplification as the overhead of finding data when the desired parti-

tion is unavailable. We characterize failure amplification along two axes: 1) disk IOPS and

CPU: the overhead of searching through a partition that is sorted differently, 2) network

traffic: the overhead of broadcasting the read to all partitions in another replex. For the

remainder of the paper, we use failure amplification to compare recovery scenarios.

For example, suppose a user specifies two indices on a table, which would be imple-

mented as two replexes in Replex. If a partition fails, a simple recovery protocol would

redirect queries originally destined for the failed partition to the other replex. Then the

failure amplification is maximal: the read must now be broadcast to every partition in the

other replex, and at each partition, a read becomes a brute-force search that must iterate

through the entire local storage of a partition.

On the other hand, to avoid failure amplification within a failure threshold f , one could
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Replex A 

Replex B 

Replex A 

Figure 3.4: In graph depictions of replexes, nodes are partitions and edges indicate two partitions
might share data. For example, because replexes A and B have independent sharding functions, it is
possible for all combinations of nodes to share data. This graph shows a simple solution to reduce
the failure amplification experienced by replex A, which is to replicate A again.

introduce f replexes with the same sharding function, h; these are the exact replicas of tra-

ditional replication. There is no failure amplification within the failure threshold, because

sharding is identical across exact replicas; the cost is storage and network overhead in the

steady-state.

The goal is to capture the possible deployments in between these two extremes. Un-

fortunately, without additional machinery, this space can only be explored in a discrete

manner: by adding or removing exact replicas. In the next section, we introduce a con-

struct that allows fine-grained reasoning within this tradeoff space.

3.3 Hybrid Replexes

Suppose a user schema specifies a single table with two indices, A and B, so Replex builds

two replexes. As mentioned before, as soon as a partition in either replex fails, reads to that

partition must now visit all partitions in the other replex, the disjoint union of which is the

entire dataset.

One strategy is to add replexes that are exact replicas. For example, we can replicate

replex A, as shown in Figure 3.4. Then after one failure, reads to replex A do not see

any failure amplifcation. However, adding another copy of replex A does not improve

failure amplification for reads to B: if a partition fails in replex B, failure amplification

still becomes worst-case.
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To eliminate failure amplification of a single failure on both replexes, the user must

create exact replicas of both replexes, thereby doubling all storage and network overheads

previously mentioned.

Instead, we present hybrid replexes, which is a core contribution of Replex. The basic

idea behind hybrid replexes is to introduce a replex into the system that increases failure

resilience of any number of replexes; an exact replica only increases failure resilience of a

single replex. We call them hybrid replexes because they enable a middleground between

adding either one or zero exact-copy replexes.

A hybrid replex is shared by replex A if hhybrid is dependent on hA. In the next few

sections, we will explain how to define hhybrid given the shared replexes.

Hybrid replexes are a building block for constructing a system with more complex

failure amplification models per replex. To start with, we show how to construct a hybrid

replex that is shared across two replexes.

3.3.1 2-Sharing

Consider replexes A and B from before. The system constructs a new, hybrid replex that is

shared by A and B. Assume that all replexes have 4 partitions; in § 3.3.2 we will consider

p partitions.

To define the hybrid replex, we must define hhybrid. Assume that each partition in each

replex in Figure 3.5 is numbered from left to right from 0-3. Then:

hhybrid(r) = 2 · (hA(r) (mod 2)) + hB(r) (mod 2) (3.1)

The graph in Figure 3.5 visualizes hhybrid. The partition in the hybrid replex that stores

row r is the partition connecting the partition in A and the partition in B that store r. Edges

indicate which partitions in another replex share data with a given partition; in fact, if there

exists a path between any two partitions, then those two partitions share data. Then any

read that would have gone to a failed node can equally be serviced by visiting all partitions
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Replex A 

Replex B 
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P	  

Figure 3.5: Each node is connected to exactly 2 nodes in another replex. This means that partitions
in both replexes will see only 2x failure amplification after a single failure.

Index pri 

Hybrid Index 

Index idx P	  

Figure 3.6: Graceful degradation. Shaded nodes indicate the nodes that must be contacted to
satisfy queries that would have gone to partition P . As failures occur, Replex looks up replacement
partitions for the failed node and modifies reads accordingly. Instead of contacting an entire replex
after two failures, reads only need to contact a subset.

in an replex that are path-connected to the failed node.

For example, P shares data with exactly two partitions in the hybrid replex, and all

four partitions in replex A. This means that when P fails, reads can either go to these two

partitions in the hybrid replex or all four partitions in replex A, thereby experiencing 2x or

4x failure amplification, respectively. Then it is clear that reads should be redirected to the

hybrid replex. Furthermore, because the hybrid replex overlaps attributes with replex B,

any read redirected to the hybrid replex can be faster compared to a read that is redirected

to replex A, which shares no attributes with replex B.

Figure 3.5 helps visualize how a partition in any replex will only cause failure amplifi-

cation of two: each partition has an outcast of two to adjacent replexes. Hence by adding

a single replex, we have reduced the failure amplification for all replexes after one failure.

Contrast this with the extra replica approach: if we only add a single exact replica of replex
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A, replex B would still experience 4x failure amplification after a single failure.

This hybrid technique might evoke erasure coding in the reader. However, as we ex-

plain in § 3.7, erasure coding solves a different problem. In erasure coding, parity bits are

scattered across a cluster in known locations. The metric for the cost of a code is the re-

construction overhead after collecting all the parity bits. On the other hand, with replexes,

there is no reconstruction cost, because replexes store full rows. Instead, hybrid replexes

address the problem of finding data that is sharded by a different key in a different replex.

Hybrid replexes also smooth out the increase in failure amplification as failures occur.

The hybrid approach introduces a recursive property that enables graceful read degradation

as failures occur, as shown in Figure 3.6.

In Figure 3.6, reads to P are redirected as cascading failures happen. When P fails, the

next smallest set of partitions— those in the hybrid replex— are used. If a partition in this

replex fails, then the system replaces it in a similar manner. Then the full set of partitions

that must be accessed is the three shaded nodes in the rightmost panel. Three nodes must

fail concurrently before the worst set, all partitions in an replex, is used. The system is only

fully unavailable for a particular read if after recursively expanding out these partition sets

it cannot find a set without a failed node.

This recursion stops suddenly in the case of exact replicas. Suppose a user increases

the failure resilience of A by creating an exact replica. As the first failure in A occurs, the

system can simply point to the exact replica. When the second failure happens, however,

reads are necessarily redirected to all partitions in B.

3.3.2 Generalizing 2-sharing

In general, we can parametrize a hybrid replex by n1 and n2, where n1 ·n2 = p and p is the

number of partitions per replex. Then:

hhybrid(r) = n2 · (hA(r) (mod n1)) + hB(r) (mod n2) (3.2)
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Applying this to Figure 3.5, each partition in A would have an outcast of n2 instead of

two, and each partition in B would have an incast of n1. Then when partitions in replex

A fail, reads will experience n2-factor amplification, while reads to partitions in replex B

will experience n1-factor failure amplification. The intuition is to think of each partition

in the hybrid replex as a pair: (x, y), where 0 ≤ x < n1 and 0 ≤ y < n2. Then when a

partition in replex A fails, reads must visit all hybrid partitions (x, ∗) and when a partition

in replex B fails, reads must visit all hybrid partitions (∗, y). The crucial observation is that

n1 ·n2 = p, so the hybrid layer enables only n1, n2 = O(
√
p) amplification of reads during

failure, as opposed to O(p).

n1 and n2 become tuning knobs for a hybrid replex. A user can assign n1 and n2 to

different replexes based on importance. For example, if p = 30, then a user might assign

n1 = 5 and n2 = 6 to two replexes A and B that are equally important. Alternatively, if

the workload mostly hits A, which means failures in A will affect a larger percentage of

queries, a user might assign n1 = 3 and n2 = 10. Even more extreme, the user could assign

n1 = 1 and n2 = 30, which represents the case where the hybrid replex is an exact replica

of replex A.

3.3.3 More Extensions

In this section, we discuss intuition for further generalizing hybrid replexes. See § 3.6 for

explicit construction, which requires defining complex hhybrid.

Hybrid replexes can be shared across r replexes, not just two as presented in the previ-

ous sections. To decrease failure amplification across r replexes, we create a hybrid replex

that is shared across these r replexes. To parametrize this space, we use the same notation

used to generalize 2-sharing. In particular, think of each partition in the hybrid replex as

an r-tuple: (n1, . . . , nr). Then when some partition in the qth replex fails, reads must visit

all partitions (∗, . . . , ∗, xq, ∗, . . . , ∗). Then failure amplification after one failure becomes

O(p
r−1
r ). As expected, if more replexes share a hybrid replex, improvement over O(p)
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Figure 3.7: Inserting two hybrid replexes in between two replexes (in bold). Each node in the graph
has outcast 2, which means after any partition fails, failure amplification will be at most 2x. After
two failures, amplification will be 3x; after three, it will be 4x.

failure amplification becomes smaller.

For example, suppose a table requires 4 indices, which will be translated into 4 replexes.

Then a hybrid replex is not necessary for replication, but rather can be inserted at the

discretion of the user, who might want to increase read availability during recovery. Simply

paying the costs of an additional 4-shared hybrid replex can greatly increase failure read

availability.

We can also increase the number of hybrid replexes inserted between two replexes. For

example, we can insert two hybrid replexes between every two desired replexes, as shown in

Figure 3.7. Then two hybrid replexes enable O(p1/3) amplification of reads during failure,

at the expense of introducing yet another replex. If two replexes share k hybrid replexes,

then there will be O(p
1

k+1 ) amplification of reads during failure. As expected, if two re-

plexes share more hybrid replexes, the failure amplification becomes smaller. Furthermore,

Figure 3.7 shows that adding more hybrid replexes enables better cascading failure ampli-

fication. The power of hybrid replexes lies in tuning the system to expected failure models.

3.4 Implementation

We implemented Replex on top of HyperDex, which already has a framework for sup-

porting multi-indexed data. However, we could have implemented replexes and hybrid

replexes on any system that builds indices for its data, including another NoSQL system
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or an RDBMS such as MySQL Cluster. We added around 700 lines of code to HyperDex,

around 500 of which were devoted to make data transfers during recovery performant.

HyperDex implements copies of the datastore as subspaces. Each subspace in Hyper-

Dex is associated with a hash function that shards data across that subspace’s partitions.

We replaced these subspaces with replexes, which can take an arbitrary sharding function.

For example, in order to implement hybrid replexes, we initialize a generic replex and as-

sign h to any of the hhybrid discussed in § 3.3. HyperDex uses chain replication to replicate

across subspaces; we modify this replication protocol with upstream ACKs, as described

in § 3.2.3.

To satisfy a lookup query, Replex calculates which nodes are needed for lookup from

the system configuration that is fetched from a coordinator node. A lookup is executed

against any number of replexes, so Replex uses the sharding function of the respective

replex to identify relevant partitions. The configuration tells Replex the current storage

nodes and their status. We implemented the recursive lookup described in § 3.3.1 that uses

the configuration to find the smallest set that contains all available partitions. For example,

if there are no failures, then the smallest set is the original partitions. Replex implements

this lookup functionality in the client-side HyperDex library. The client then sends the

search query to all nodes in the final set and aggregates the responses; the client library

waits to hear from all nodes before returning.

This recursive construction is used again in Replex’s recovery code. In order to re-

construct a partition, Replex calculates a minimal set of partitions to contact and sends

each member a reconstruction request with a predicate. The predicate can be thought of

as matching on h(r), where h is the sharding function of the replex to which the receiving

partition belongs. When a node receives the reconstruction request, it maps the predicate

across its local rows and only sends back rows that satisfy the predicate.

Finally, to run Replex, we set HyperDex’s fault tolerance to f = 0.
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3.5 Evaluation

Our evaluation is driven by the following questions:

• How does Replex’s design affect steady-state index performance? (§ 3.5.1)

• How do hybrid replexes enable superior recovery performance? (§ 3.5.2)

• How can generalized 2-sharing allow a user to tune failure performance? (§ 3.5.3)

• How do hybrid replexes enable better resource tradeoffs with r-sharing? (§ 3.5.4)

Setup. All physical machines used had 8 CPUs and 16GB of RAM running Linux

(3.10.0-327). All machines ran in the same rack, connected via 1Gbit links to a 1Gbit

top-of-rack switch. 12 machines were designated as servers, 1 machine was a dedicated

coordinator, and 4 machines were 64-thread clients. For each experiment, 1 or 2 additional

machines were allocated as recovery servers.

System Failures Tolerated Replication Factor

Replex-2 1 2x
Replex-3 2 3x
HyperDex 2 6x

Table 3.1: Systems evaluated.

3.5.1 Steady-State Performance

To analyze the impact of replacing replicas with replexes, we report operation latencies in

Replex. We specify a table in Replex with two indices: the primary index and a secondary

index. We configure Replex to build a single hybrid replex, so Replex builds 3 full replexes

during the benchmark; we call this system Replex-3 in Table 3.1. Because Replex-3 builds

3 replexes, data is tolerant to 2 failures. Hence, we also set HyperDex to three-way replicate

data objects.

Read latency for Replex is identical to HyperDex’s, because reads are simply done on

the primary index of both systems; we report the read CDF in Figure 3.9. More importantly,

the insert latency for Replex is consistently 2x less than the latency of a HyperDex insert,
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Figure 3.8: Insert latency microbenchmark CDF
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Figure 3.9: Read latency microbenchmark CDF

as in Figure 3.8. This is because one Replex insert visits 3 partitions while one HyperDex

insert visits 2 · 3 = 6 partitions; these values are the replication factor denoted in Table 3.1.

In fact, the more indices a user builds, the larger the factor of difference in latency inserts.

This helps to demonstrate Replex’s scalability compared to HyperDex.

Figure 3.10 reports results from running a full YCSB benchmark on 3 systems: Cas-

sandra, HyperDex, and Replex-3; Yahoo Cloud-Serving Benchmark (YCSB) is a well es-

tablished benchmark for comparing NoSQL stores [42]. Cassandra is a widely-used dis-

tributed key-value store that is also backed by a log-structured merge tree, similar to Lev-

elDB [7], which backs HyperDex.
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Name Workload Total Operations

Load 100% Insert 10 M
A 50% Read/50% Update 500 K
B 95% Read/5% Update 1 M
C 100% Read 1 M
D 95% Read/5% Insert 1 M
E 95% Scan/5% Insert 10 K
F 50% Read/50% Read-Modify 500 K

Table 3.2: YCSB workloads.
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Figure 3.10: Mean throughput for full YCSB suite over 3 runs. Error bars indicate standard devia-
tion. Results grouped by workload, in the order they are executed in the benchmark.

We present Cassandra results for baseline comparison because it is another high per-

forming, distributed key-value store. Because Replex-3 is tolerant to 2 failures, we also set

Cassandra and HyperDex to three-way replicate data objects. In the load phase, YCSB in-

serts 10 million 100 byte rows into the datastore. In the rest of the workloads, we measure
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throughput by running enough client threads to saturate throughput.

Replex-3’s lower latency insert operations enable higher throughput than HyperDex on

the load portion and Workloads A, F; these are the workloads with inserts/updates. Work-

load C has comparable performance to HyperDex, because these reads can be performed

on the index that HyperDex builds. Cassandra has comparable load throughput to Replex-3

because writes are replicated in the background; Cassandra writes return after visiting a

single replica while our writes return after visiting all 3 replexes for full durabilty. How-

ever, for the rest of the workloads, Cassandra performs poorly because reads in Cassandra

must visit 3 replicas in order to achieve consistency. HyperDex and Replex-3 do not pay

this read penalty because they visit all 3 replicas at insert time.

3.5.2 Failure Evaluation

In this section, we examine the throughput of three systems as failures occur: 1) Hyper-

Dex with two subspaces, 2) Replex with two replexes (Replex-2), and 3) Replex with two

replexes and a hybrid replex (Replex-3). Each system has 12 virtual partitions per sub-

space or replex. One machine is reserved for reconstructing the failed node. Each system

automatically assigns the 12 virtual partitions per replex across the 12 server machines.

For each system we specify a table with a primary and secondary index. We run two

experiments, one that loads 1 million rows of size 1KB bytes and one that loads 10 million

rows of size 100 bytes; the second experiment demonstrates recovery behavior when CPU

is the bottleneck. We then start a microbenchmark where clients read as fast as possible

against both indices. Reads are split 50:50 between the two indices. We kill a server after

25 seconds. Figure 3.11 shows the read throughput in the system as a function of time, and

Tables 3.3 and 3.4 report average recovery statistics.

Recovery time in each system depends on the size of the data loss, which depends on

how much data is stored on a physical node. The number of storage nodes is a constant

across all three systems, so the amount of data stored on each node is proportional to the
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Figure 3.11: We crash a server at 25s and report read throughput for Replex-2, Replex-3, and Hy-
perdex. Systems are loaded with 10 million, 100 byte rows. All three systems experience a dip in
throughput right before returning to full functionality due to the cost of reconfiguration synchro-
nization, which introduces the reconstructed node back into the system configuration.

total amount of data across all replicas; recovery times in Tables 3.3 and 3.4 are approxi-

mately proportional to the Replication Factor column in Table 3.1. By replacing replicas

with replexes, Replex can reduce recovery time by 2-3x, while also using a fraction of the

storage resources.

Interestingly, Replex-2 recovers the fastest out of all systems, which suggests the basic

Replex design has performance benefits even without adding hybrid replexes.

Recovery throughput shows one of the advantages of the hybrid replex design. In

Table 3.3, Replex-2 has minimal throughput during recovery, because each read to the

failed node must be sent to all 12 partitions in the other replex. These same 12 partitions

are also responsible for reconstructing the failed node; each of the partitions must iterate

through their local storage to find data that belongs on the failed node. Finally, these

12 partitions are still trying to respond to reads against the primary index, hence system

throughput is hijacked by reconstruction throughput and the amplified reads. Replex-2

throughput is not as bad in Table 3.4, because 1 million rows does not bottleneck the CPU

during recovery.

The Replex-3 alleviates the stress of recovery by introducing the hybrid replex. First,

each read is only amplified 3 times, because the grid constructed by the hybrid replex has
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System Recovery Time (s) Recovery Throughput (op/s)

Replex-2 50± 1 18,989± 1,883
Replex-3 60± 1 65,780± 3,839
HyperDex 105± 17 34,697± 19,003

Table 3.3: Recovery statistics of one machine failure after 25 seconds. 10 million, 100 byte records.
Results reported as average time ± standard deviation of 3 runs.

System Recovery Time (s) Recovery Throughput (op/s)

Replex-2 6.7± 0.57 70,084± 5,980
Replex-3 8.7± 0.56 110,280± 11,232
HyperDex 20.0± 2.65 127,232± 85,932

Table 3.4: Recovery statistics of one machine failure after 25 seconds. 1 million, 1KB records.
Results reported as average time ± standard deviation of 3 runs.

dimensions n1 = 3, n2 = 4. Second, only 3 partitions are responsible for reconstructing the

failed node. In fact, in both experiments, Replex-3 achieves recovery throughput compa-

rable to that of HyperDex, which has no failure amplification, whilst adding little recovery

time.

0 50 100 150

Test time (s)

O
pe

ra
tio

ns
/s

0
10

0K
20

0K
30

0K

Replex−3
HyperDex

Figure 3.12: Read throughput after two failures. We crash one server at 25s and then a second
at 30s. Request pile-up because throughput is used for recovery is responsible for the jumps in
HyperDex throughput.

Finally, we highlight the hybrid replex design by running an experiment that causes

two cascading failures. Replex-2 only tolerates two failures, so we do not include it in this
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System Recovery Time (s) Recovery Throughput (op/s)

Replex-3 37.6± 1.2 60,844± 27,492
HyperDex 98.0± 11 30,220± 8,104

Table 3.5: Recovery statistics of two machine failures at 25s and 30s. Results reported as average
time ± standard deviation of 3 runs. Recovery time is measured from the first failure.

experiment. Figure 3.15 shows the results when we run the same 50:50 read microbench-

mark and crash a node at 25s and 30s. We reserve an additional 2 machines as spares for

reconstruction. We run the experiment where each system is loaded with 1 million, 1K

rows.

Figure 3.15 stresses the advantages of graceful degradation, enabled by the hybrid re-

plex. We observe that experiencing two failures more than quadruples the recovery time in

HyperDex. This is because the two reconstructions occur sequentially and independently.

In Replex-3, failing a second partition causes reduced recovery throughput, because the

second failed partition must rebuild from partitions that are actively serving reads. How-

ever, recovery time is bounded because reconstruction of the failed nodes occurs in parallel.

When the second failed partition recovers, throughput nearly returns to normal.

3.5.3 Parametrization of the Hybrid Replex

As discussed in § 3.3.2, any hybrid replex H can be parametrized as (n1, n2). Consider

the Replex-3 setup, which replicates operations to replexes in the order A → H → B. If

H is parametrized by (n1, n2), then failure of a partition in B will result in n1-factor read

amplification, and a failure in A will result in n2-factor read amplification. In this section

we investigate the effect of hybrid replex parameterization on throughput under failure.

We load each parametrization of Replex-3 with 1 million 1KB entries and fail a machine

at 25s. Four separate client machines run an a : b read benchmark, where a percent of reads

go to replex A and b percent of reads go to replex B. Figure 3.13 shows the throughput

results when a machine in B is killed at 25s. We report the throughput results for all three

workloads to indicate that parametrization trends are independent of workload.
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As expected, parametrizingH with (1, 12) causes the least failure amplification, hence

throughput is relatively unaffected by the failure at 25s. As n1 grows larger, throughput

grows steadily worse during the failure, because failure amplification becomes greater.

We also point out that as the benchmark contains a larger percentage of reads in replex

A, steady-state throughput increases (note the different Y-axis scales in Figure 3.13). This

is because of the underlying LevelDB implementation of HyperDex. LevelDB is a simple

key-value store with no secondary index support; reads on replex A are simple LevelDB

gets, while reads to replex B become LevelDB scans. To achieve throughput as close to

native gets as possible, we optimized point scans to act as gets to replex B, but the differ-

ence is still apparent in the throughput. Fortunately, this absolute difference in throughput

does not affect the relative trends of parametrization.

The tradeoff from one parametrization to the next is throughput during failures in A.

As an example, Figure 14 shows the throughput results when a machine in replex A is

killed after 25s, with a 25:75 read workload. The performance of the parametrizations is

effectively reversed. For example, even though (1, 12) performed best during a failure in

B, it performs worst during a failure in A, in which failure amplification is 12x. Hence a

user would select a parametrization based on which replex’s failure performance is more

valued.

3.5.4 Evaluating 3-Sharing

In the previous sections, all systems evaluated assumed 3-way replication. In particular, in

Replex, if the number of indices i specified by a table is less than 3, then Replex can build

3− i hybrid replexes for free, by which we mean those resources must be used anyway to

achieve 3-way replication.

When i ≥ 3, resource consumption from additional hybrid replexes becomes more

interesting. No longer is a hybrid replex inserted to achieve a replication threshold; rather,

a hybrid replex is inserted to increase recovery throughput, at the expense of an additional
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Figure 3.13: We crash a machine at 25s. Each graph shows read throughput for Replex-3 with
five different hybrid parametrizations and the labelled workload. Although (12, 1) has the worst
throughput during failure, it recovers faster than the other parametrizations because recovery is
spread across more partitions.

storage replica. Consider i = 3 and suppose a user only wishes to add a single hybrid

replex, because of resource constraints. One way to maximize the utility of this hybrid

replex is through 3-sharing, as described in § 3.3.3. Of course, depending on the importance

of the three original indices, 2-sharing is also an option, but this is already explored in the

previous sections. For sake of evaluation, we consider 3-sharing in this section.

37



0 10 20 30 40 50 60

Test time (s)

O
pe

ra
tio

ns
/s

0
50

K
10

0K
15

0K

(1,12)
(2,6)
(3,4)
(6,2)
(12,1)

Figure 3.14: Replex-3 throughput with a 25:75 read benchmark. We crash a machine in replex A
at 25s.
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Figure 3.15: Read throughput after a failure at 25s with a 33:33:33 benchmark.

The system under evaluation has 3 replexes, A,B,C, and 1 hybrid replex that is 3-

shared across the original replexes. The hybrid replex is parametrized by n1 = 3, n2 = 2,

n3 = 2. Again, we load 1 million 1KB entries and fail a node at 25s. Four seperate client

machines run a read benchmark spread equally across the indices. Figure 15 shows the

throughput results, compared to a Replex system without a hybrid replex.

Again, if there is no hybrid index, then recovery throughput suffers because of failure

amplification. As long as a single hybrid index is added, the recovery throughput is more

than doubled, with little change to recovery time. This experiment shows in the power of

hybrid replexes in tables with more indices: as the number of indices grows, the fractional

cost of adding a hybrid replex decreases, but the hybrid replex can still provide enormous
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# Hybrids Recovery Time (s) Recovery Throughput (op/s)

0 14.7± 0.58 5,831± 678
1 13.0± 0 14,569± 6,087

Table 3.6: Recovery statistics for Replex systems with 3 replexes and different numbers of hybrid
replexes. One machine is failed after 25 seconds. Results reported as average time ± standard
deviation of 3 runs.

gains during recovery.

3.6 Discussion and Extensions

In this section, we discuss how to construct a variety of hybrid replexes explicitly by spec-

ifying hhybrid functions. We also show how these constructions can be used to design

systems with particular requirements.

Recall that in § 3.3.2 we generalize 2-sharing by showing how to parametrize hhybrid

based on factors of p, where p is the number of partitions per replex. Then we can sum-

marize the parametrization of 2-sharing (between replexes A and B) with the following

table:

hB(r) (mod n2)
hA(r) (mod n1) 0 1 2 . . . a− 1

0 0 1 2 . . . n1 − 1

1 a a+ 1 a+ 2 . . . 2a− 1
...

...
...

...
. . .

n2 − 1 n1(n2 − 1) n1(n2 − 1) + 1 n1n2 − 1

Table 3.7: Let n1 · n2 = p. The table cells specify hhybrid(r), given hB(r) (mod n2) and
hA(r) (mod n1). Recall that hhybrid(r) should define a partition number, out of p, that replicates
some data object.

Table 3.7 helps visualize how, given hhybrid, which partitions will be needed for the

recovery of any partition in the original replexes or in the hybrid replex. In particular,

column i in the grid is precisely the set of hybrid partitions that are needed to recover a

partition in replex A with label i (mod n1). Similarly, row j in the grid is precisely the set

of hybrid partitions needed to recover a partition in replex B with label j (mod n2).
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Each row has n1 entries and each column has n2 entries, hence when partitions inA fail,

reads will experience n2-factor amplification, while reads to partitions in A will experience

n1-factor amplification on failure. The crucial observation is that n1 · n2 = p, so the hybrid

layer enables only n1, n2 = O(p1/2) amplification of reads during failure, as opposed to p

in the strawman case.

3.6.1 m-sharing

Thus far, we have only discussed hybrid replexes that are shared across two replexes, which

leads to two-dimensional tables. Presenting hhybrid as a table shows that we can further

parametrize hybrid functions by extending the number of dimensions in the table. Namely,

we can construct a single hybrid index that combines m regular replexes, which would

result in a m-dimensional table. Because it’s not possible to depict a m-dimensional table,

here we just present the explicit characterization of hhybrid.

Suppose p =
m∏
i=1

ni, where i denotes one of the m replexes used to create the hybrid

replex. Then define:

hhybrid(r) =
m∑
i=1

(
(hi(r) (mod ni)) ·

i−1∏
j=1

nj

)
(3.3)

The reader can verify that lettingm = 2 yields Equation 3.2. Inspection of Equation 3.3

reveals that recovery of any partition in replex i requires visiting p
n1

partitions. Hence, read

amplification of the m original replexes during failure becomes O(p
m−1
m ).

3.6.2 Multi-dimensional Indexing

In order for an m-shared hybrid to achieve fast local access, we also observe that the local

indices built at a partition of an m-shared hybrid replex should be a multi-dimensional in-

dex. There are a variety of known multi-dimension indexing structures, such as Quadtrees [115],

R-trees [56, 101], and K-d trees [32, 51]. Briefly, all of these structures can query data sets

by an n-tuple, rather than by a single key, which is a limitation of the BTree.
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3.6.3 Constructing replexes given constraints

Hybrid replexes constructed fromm regular indices are particularly useful for the following

scenario. In theory, Replex can support an arbitrary number of secondary indices. However,

suppose a system operator wants to support i secondary indices but wants only r replicas

of each data object, where i > r. Keep in mind that each additional replex introduces both

a storage and update overhead. If i = r, then supporting indices does not impose overhead

beyond what traditional replication would have. If i < r, then the Replex system even has

additional resources to work with. In particular, these resources can be used to construct

any of the hybrid schemes discussed.

If i > r, when we need a way to collapse multiple indices into a single replex. This is

precisely the mechanism provided by the m-sharing replex. For example, suppose i = 5

and r = 3. Then we can support all 5 indices on only 3 replexes by collapsing 3 indices

into a single 3-shared hybrid replex. Then the final system would have two replexes, each

of which corresponds to a unique index, and a third replex that is a 3-shared hybrid replex.

We can combine these hybrid schemes in any way in order to build the final system. For

example, another way to construct the final system is to have one replex which corresponds

to a unique index, and one replex each that corresponds to a 2-shared hybrid replex. Yet an-

other construction is to have one replex which corresponds to a unique index (for example,

the index that the system builder expects to be queried most often out of the indices), one

replex correspond to a 4-shared hybrid replex, and the last replex correspond to a hybrid

construction between the first two replexes.

Each of these examples, which we summarize in Table 3.8, shows how flexible the

hybrid scheme is: depending on the steady-state and failure-state performance requirements

of the system, the system builder can construct replexes accordingly.
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Construction Explanation

replex 1 index A
Index A is a popular index that
needs its own replex

replex 2 index B Index B is a popular index

replex 3
3-shared hybrid replex

across C, D, E

Indexes C,D,E are less frequently
used, so they are coalesced into a
single hybrid replex

(a)
Construction Explanation

replex 1 index A
Index A is a popular index that
needs its own replex

replex 2
2-shared hybrid replex
across indices B and C

IndexesB and C are less frequently
accessed, so they can share access
via a hybrid replex

replex 3
2-shared hybrid replex
across indices D and E

IndexesD andE are less frequently
accessed

(b)
Construction Explanation

replex 1 index A
Index A is a popular index that
needs its own replex

replex 2
4-shared hybrid replex

across indices B, C, D, E

Indexes B,C,D,E are less fre-
quently used, so they are coalesced
into a single hybrid replex

replex 3
a hybrid replex built from

replex 1 and 2

Suppose the recovery performance
of index A is also important. Then
this hybrid replex will enable better
recovery performance.

(c)

Table 3.8: Here we summarize three of the many ways we can construct a system where there are
i = 5 desired indices but only r = 3 replicas of each data object are requested.

3.7 Related Work

3.7.1 Erasure Coding

Erasure coding is a field of information theory which examines the tradeoffs of transform-

ing a short message to a longer message in order to tolerate a partial erasure (loss) of the

message. LDPC [113], LT [88], Online [84], Raptor [102], Reed-Solomon [96], and Tor-
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nado [81] are examples of well-known erasure codes which are used today. Hybrid replexes

also explore the tradeoff between adding storage and network overheads and recovery per-

formance. Recently, specific failure models have been applied to erasure coding to produce

even more compact erasure codes [58]. Similarly, hybrid replex construction allows fine

tuning given a workload and failure model.

3.7.2 Multi-Index Datastores

Several multi-index datastores have emerged as a response to the limitations of the NOSQL

model. These datastores can be broadly divided into two categories: those which must

contact every partition to query by secondary index, and those which support true, global

secondary indices. Cassandra [111], CouchDB [28], Hypertable [63], MongoDB [41],

Riak [65] and SimpleDB [40] are examples of of the former approach. While these NOSQL

stores are easy to scale since they only partition by a single “sharding” key, querying by

secondary index can be particularly expensive if there is a large number of partitions. Some

of these systems alleviate this overhead through the use of caching, but at the expense of

consistency and overhead of maintaining the cache.

Unlike the previous NOSQL stores, Hyperdex [49] builds a global secondary index for

each index, enabling efficent query of secondary indices. However, each index is also

replicated to maintain fault tolerance, which comes with a significant storage overhead. As

we saw in § 3.5, this leads to slower inserts and significant rebuild times on failure.

3.7.3 Relational (SQL) Databases

Traditional relational databases build multiple indices and auxillary data structures, which

are difficult to partition and scale. Sharded MySQL clusters [42, 97] are an example of

an attempt to scale a relational database. While it supports fully relational queries, it is

also plagued by performance and consistency issues [42, 114]. For example, a query which

involves a secondary index must contact each shard, just as with a multi-index datastore.

Yesquel [22] provides the features of SQL with the scalability of a NOSQL system. Like
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Hyperdex, however, Yesquel separately replicates every index.

3.7.4 Other Data stores

Corfu [30], Tango [31], and Hyder [33] are examples of data stores which use state machine

replication on top of a distributed shared log. While writes may be written to different

partitions, queries are made to in-memory state, which allows efficient strongly consistent

queries on multiple indices without contacting any partitions. However, such an approach

is limited to state which can fit in the memory of a single node. When state cannot fit in

memory, it must be partitioned, resulting in a query which must contact each partition.

3.8 Conclusion

Programmers need to be able to query data by more than just a single key. For many

NoSQL systems, supporting multiple indices is more of an afterthought: a reaction to pro-

grammer frustration with the weakness of the NoSQL model. As a result, these systems

pay unnecessary penalties in order to support querying by other indices.

Replex reconsiders multi-index data stores from the bottom-up, showing that imple-

menting secondary indices can be inexpensive if treated as a first-order concern. Cen-

tral to achieving negligible overhead is a novel replication scheme which considers fault-

tolerance, availability, and indexing simultaneously. We have described this scheme and

its parameters and have shown through our experimental results that we outperform Hy-

perDex and Cassandra, state-of-the-art NoSQL systems, by as much as 10×. We have

also carefully considered several failure scenarios that show Replex achieves considerable

improvement on the rebuild time during failure, and consequently availability of the sys-

tem. In short, we have demonstrated not only that a multi-index, scalable, high-availability

NoSQL datastore is possible, it is the better choice.
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Chapter 4

DIRECT

4.1 Introduction

Flash has become the dominant storage medium for hot data in datacenters [86, 99], since

it offers significantly lower latency and higher throughput than hard disks. Many storage

systems are built atop flash, including databases [7, 11, 17, 57], caches [6, 47, 74, 75, 108],

and file systems [61, 92].

However, a perennial problem of flash is its limited endurance, or how long it can

reliably correct raw bit errors. As device writes are the main contributor to flash wear, its

lifetime is measured in the number of writes or program-erase (P/E) cycles the device can

tolerate before exceeding an uncorrectable bit error threshold. Uncorrectable bit errors are

errors that are exposed externally and occur when there are too many raw bit errors for the

device to correct.

In hyper-scale datacenters, operators constantly seek to reduce flash wear by limiting

flash writes [25, 86]. At Facebook,1 for example, a dedicated team monitors application

writes to ensure they do not prematurely exceed manufacturer-defined device lifetimes. To

make matters worse, each subsequent flash generation tolerates a smaller number of writes

before reaching end-of-life (see Figure 4.1a) [54]. Further, given the scaling challenges of

1Facebook is a major web company. Name anonymized for submission.
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Figure 4.1: For each generation of flash bit density, the average number of P/E cycles after which
the uncorrectable bit error rate falls below the manufacturer specified level (10−15). Beyond MLC,
the number of flash writes the application can issue is limited [37]. With current hardware-based
error correction, with QLC technology and beyond, flash can only be used for applications that
are effectively read-only [26, 85, 89]. DIRECT enables the adoption of denser flash technologies
because errors can be handled by the distributed storage application. The uncorrectable bit error
rate that can be tolerated by DIRECT was computed using the model from § 4.3.1, while the uncor-
rectable bit error rate to P/E conversion was computed using data from a Google study [99].

DRAM [62, 73] and the increasing cost gap between DRAM and flash [2, 48, 50], many

operators are migrating services from DRAM to flash [8, 48], increasing the pressure on

flash lifetime.

There is a variety of work that attempts to extend flash lifetime by delaying the onset of

bit errors [7, 13, 38, 47, 60, 76, 78, 80, 82, 107, 120, 121]. This paper takes a contrarian ap-

proach. We observe that flash endurance can be extended by allowing devices to go beyond

their advertised uncorrectable bit error rate (UBER) and embracing the use of flash disks

that exhibit much higher error rates; Google recently released a whitepaper suggesting a

similar approach [36]. We can do so without sacrificing durability because (1) datacenter

storage systems replicate data on remote servers, and (2) this redundancy can correct bit

error rates orders of magnitude beyond the hardware error correction mechanisms imple-

mented on the device. However, the challenge with higher flash error rates is maintaining

availability and correctness.

We introduce Distributed error Isolation and RECovery Techniques (DIRECT), which

is a set of three simple general-purpose techniques that, when implemented, enable dis-

tributed storage systems to achieve high availability and correctness in the face of uncor-

rectable bit errors:
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1. Minimize error amplification. DIRECT detects errors using existing error detection

mechanisms (e.g., checksums) and recovers data from remote servers at the smallest

possible granularity.

2. Local metadata protection. A corruption in local metadata (e.g., database index),

often requires a large amount of data to be re-replicated. DIRECT avoids this by

adding redundancy locally to local metadata.

3. Safe recovery semantics. Any recovery operations on corrupted data must be se-

rialized against concurrent read and write operations with respect to the system’s

consistency guarantees.

The difficulty of implementing DIRECT techniques depends on two properties of the

underlying storage system. The first property affects the difficulty of minimizing error

amplification: whether the distributed storage system is physically-replicated or logically-

replicated. Physically-replicated systems replicate data blocks or objects between servers,

while logically-replicated systems replicate the commands issued concurrently to the stor-

age systems (e.g., write, update, delete). In physically-replicated systems, a certain object

is stored in the same block or file on another server, which makes it straightforward to min-

imize the amount of data needed to recover: just rereplicate the identical data block. This

assumption does not hold for most logically-replicated systems, however, where there is no

guarantee that physical blocks will be identical across different replicas.

The second property affects the difficulty of maintaining safe recovery: whether the

data store supports versioning. In systems without versioning, a corrupt data object can

simply be rewritten. In contrast, in systems with versioning, we need to guarantee the

recovered object does not override a more up-to-date version.

We demonstrate how to generalize DIRECT techniques by implementing them in two

popular systems that are representative of these different classes of storage systems: (1)

the Hadoop Distributed File System (HDFS), which is a physically-replicated storage sys-
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tems without versioning, and (2) ZippyDB,2 a distributed system that implements logical

replication on top of RocksDB, a popular key-value store that supports key versioning.

Objects in HDFS are stored in the same physical blocks across replicas, so it is relatively

straightforward for DIRECT to find the corrupt object in another replica and recovery it at

a high granularity (§ 4.4.1). On the other hand, recovery is challenging in ZippyDB since it

is difficult not only to find the corrupted region in one replica in another replica (different

servers store the same key-value pairs in different files), but also to ensure that the recovered

key-value pairs have consistent versions ZippyDB (§ 4.4.2).

Applying DIRECT results in significant end-to-end availability improvements: it en-

ables HDFS to tolerate bit error rates that are 10,000×-100,000× greater, reduces application-

visible error rates in ZippyDB by more than 100×, and speeds up recovery time in ZippyDB

by 10,000× over the existing system.

DIRECT leads to significant increases in device lifetime, because these performance

improvements not only maintain the same probability of application-visible errors (durability)—

for the computation, see § 4.3.1— but also minimize overhead of fixing corruption errors

(availability) at much higher device UBERs. An estimate of lifetime increase is shown in

Figure 4.1b; we estimate the number of P/E cycles gained by running at higher UBERs

from a Google study [99]. Depending on workload parameters and hardware specifica-

tions, DIRECT can increase the lifetime of devices by 10-100×. This allows datacenter

operators to replace flash devices less often and adopt lower cost-per-bit flash technologies

that have lower endurance. DIRECT also provides the opportunity to rethink the design

of existing flash-based storage systems, by removing the assumption that the device fixes

all corruption errors. Furthermore, while this paper focuses on flash, DIRECT’s principles

also apply in other storage mediums, including NVM and hard disks.

In summary, this paper makes several contributions:

1. We observe that flash lifetime can be extended by allowing devices to expose higher

2ZippyDB has been used at large-scale production at Facebook for 5 years.
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bit error rates.

2. We propose DIRECT, general-purpose software techniques that enable storage sys-

tems to maintain performance and high availability in the face of high hardware bit

error rates.

3. We design and implement DIRECT in two storage systems, HDFS and ZippyDB,

that are representative of physical and logical replication.

4. We demonstrate that DIRECT significantly speeds up recovery time due to flash cor-

ruptions and significantly lowers application-observable errors in the resulting sys-

tems, allowing them to tolerate much higher hardware bit error rates.

4.2 Motivation

What Limits Flash Endurance? Flash chips are composed of memory cells, each of

which stores an analog voltage value. The flash controller reads the value stored in a certain

memory cell by sensing the voltage level of the cell and applying quantization to determine

the discrete value in bits. The more bits stored in a cell, the narrower the voltage range that

maps to each discrete bit, so more precise voltage sensing is required to get a correct read.

Unfortunately, one of the primary ways to reduce cost per bit is to increase the number of

bits per cell, which means that even small voltage perturbations can result in a misread.

Multiple factors cause voltage drift in a flash cell. The dominant source, especially

in datacenter settings where most data is “hot,” is the program-erase (P/E) cycle, which

involves applying a large high voltage to the cell in order to drain its stored charge, thus

wearing the insulating layer in the flash cell [38]. This increases the voltage drift in subse-

quent values in the cell, which gradually leads to bit errors.

3D NAND is a recent technology that has been adopted for further increasing flash

density by stacking cells vertically. While 3D NAND relaxes physical limitations of 2D

NAND (traditional flash) by enabling vertical stacking, 3D NAND inherits the reliability

problems of 2D NAND and further exacerbates them, since a cell in 3D NAND has more
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adjacent (vertical) neighbors. For example, voltage retention is worse, because voltage

can now leak in three dimensions [71, 82, 87]. Similarly, disturb errors that occur when

adjacent cells are read or programmed are also exacerbated [64, 105].

Existing Hardware Reliability Mechanisms and Limitations. To correct bit errors, flash

devices use error correcting codes (ECC), which are implemented in hardware. After the

ECC pass, there could still be incorrect bits on the page. To address this, SSDs also employ

internal RAID across the dies of a flash device [18, 21]. After applying coding and RAID

within the device, there will remain a certain rate of uncorrectable bit errors (UBER).

Together, ECC and internal RAID mechanisms can drive the error rates of SSDs from

the raw bit error rate of around 10−6 down to the 10−17 to 10−20 UBER range typical of

enterprise SSDs [15]. “Commodity” SSD devices typically guarantee an UBER of 10−15.

While it is possible to create stronger ECC engines, the higher the corrective power

of the ECC, the more costly the device due to the complexity of the ECC circuit [5, 9].

Furthermore, the level of internal RAID striping is constant across generations, because

the number of dies inside a flash device remains constant. This means that the corrective

power of RAID is fixed.

Similarly, while RAID across devices [68, 94, 104] can add redundancy, a main design

goal of DIRECT is to avoid adding extra, unnecessary overhead. We avoid turning to

RAID because it imposes storage overheads, adds write overhead, and is inflexible because

its recovery power is fixed at deployment time. Instead, we seek to correct error using

existing redundancy in the storage stack.

Implications of Limited Flash Endurance. Flash technology has already reached the

point where its endurance is inhibiting its adoption and operation in various datacenter

use cases. For example, QLC was recently introduced as the next generation flash cell

technology. However, it can only tolerate 100-200 P/E cycles [26, 85, 89], so it can only be

used for read-heavy use cases, e.g., a 1 TB QLC drive with a lifetime of 100 P/E cycles can

only write at a rate of 1 MB/s or less in order to preserve its advertised lifetime of 3 years.
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But as datacenter applications like databases and analytics that deal with hot data typically

need to update objects frequently, the adoption of QLC has been more limited (and is the

reason that Facebook has avoided QLC flash). Subsequent cell technology generations will

suffer from even greater problems.

Operational issues also often dictate a device’s usage lifetime. Flash is typically only

used for its advertised lifetime to simplify operational complexity [99]. Further, in a hyper-

scale datacenter where it is common to source devices from multiple vendors, the most

conservative estimate of device lifetime across vendors is typically chosen as the lifetime

for a fleet of flash devices, so that the entire fleet can be installed and removed together. If

the distributed storage layer could tolerate much higher device error rates, then datacenter

operators would no longer have to make conservative and wasteful estimates about entire

fleets of flash devices.

Finally, because of the increase in DRAM prices due to its scaling challenges and tight

supply [2, 50, 62, 73], datacenter operators are migrating services from DRAM to flash [8,

48]. This means flash will be responsible for many more workloads, further exacerbating

its endurance problem.

4.3 DIRECT Design

DIRECT is a set of techniques that enables a distributed storage system to maintain high

availability and correctness in the face of high UBER. We define a distributed storage sys-

tem as a set of many local stores coupled with a distributed protocol layer that replicates

data and coordinates between the local stores. Figure 4.2a shows an ideal storage stack that

runs on unreliable flash (flash that exposes high UBERs). Note that there is existing work

on how to make local file systems tolerate corruption errors (we survey some of these sys-

tems in § 4.6), so our efforts in this paper focus on hardening the application-level storage

system, which is the layer above the file system in the storage stack.
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Figure 4.2: (a) DIRECT instruments cooperation between the local data stores and the distributed
coordination layer to fix errors in the local data store. (b) Within the local data store, bit errors can
affect either data objects or metadata. There must be precise semantics that define how recovery
operations fixing data objects interact with write operations.

4.3.1 High Availability

Within the local data store, bit errors affect either application data or application metadata,

as shown in Figure 4.2b. Maintaining multiple copies of each piece of data is the easiest

way for a system to recover from bit errors. Our observation is that this redundancy already

exists for application data.

Distributed Redundancy. Distributed storage systems typically use replication [35] or

erasure coding [58, 98, 117] to store redundant copies of data. Hot data, which is stored
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on flash storage, is typically replicated to avoid the higher bandwidth and CPU consump-

tion associated with reconstructing erasure coded blocks [58]. In addition, erasure coding

is not used for storage applications requiring fine-grained data access such as RocksDB.

Since distributed storage systems assume storage devices correct device-level errors, they

use replication primarily to correct entire server failures, not for correcting individual bit

errors [52], even though this redundancy can significantly boost resilience to bit errors.

Consider the following example of a physically replicated storage system, such as

HDFS. Suppose the minimum unit of recovery is a data block 3, which is replicated in

each of the three data stores shown in Figure 4.2b. If the block has size B, and the uncor-

rectable bit error rate (UBER) is E, then the expected number of errors in the block will

be B · E. Since the block is replicated across R different servers, the storage application

can recover the block from a remote server when an error occurs in at most R − 1 of its

replicas. In this case, the only way that the storage system would encounter an application-

observable read error is when at least one error exists in each of the copies of the block.

Therefore, the probability of an application-level read error can be expressed as:

P[error] = (1− (1− E)B)R ≈ (E ·B)R

where we assume E ·B << 1 and use a Taylor series approximation.

Then, for an UBER of E = 10−15, a block size of B = 128MB (typical of distributed

file systems), and a replication factor of R = 3, the probability of error is 10−18 (files are

measured in bytes, while UBER is in bits). This effectively is three orders of magnitude

lower than the UBER of each local device.

However, with relatively large blocks, the probability of encountering at least one error

in all block replicas quickly increases as UBER increases. For example, for an UBER of

E = 10−10, the expected number of errors in a single block will beB ·E = 0.1 for 128 MB

3Note that in HDFS while errors can be detected using checksums at a smaller granularity than the block
size, actual recovery and replication is conducted at the granularity of a block.
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Probability of Application-Observable Error
UBER Block Recovery Chunk Recovery

10−10 1 · 10−3 3 · 10−10
10−15 1 · 10−18 1 · 10−28

Table 4.1: Probability of application-observable error comparing block-by-block recovery to
chunk-by-chunk recovery, with an UBER of 10−10, and 10−15. Finer granularity recovery provides
significantly higher protection against corruptions.

blocks (Table 4.1). Then in this case P[error] ≈ 0.001. We make the observation that

reducing E ·B, by reducing B, will dramatically reduce the probability of error.

Minimizing Error Amplification. DIRECT captures this intuition with error amplifica-

tion (B in the previous example), or the number of bytes required to recover a bit error.

DIRECT observes that the lower the error amplification, the lower the probability of error

and the faster recovery can occur. This similarly implies a shorter period of time spent in

degraded durability and thus higher availability.

In the example above, suppose the system can recover data at a finer granularity, for

example, at chunk size C = 64 KB. Then a read error would occur if all three replicas of

the same chunk have at least one bit error. The revised probability of read error is:

P[error] = 1− (1− (1− (1− E)C)R)
B
C

Assuming E · C << 1, Taylor series approximation leads to (1 − (1 − E)C)R) ≈ (E ·

C)R, and assuming this value is much smaller than B
C

, the probability of an application-

observable error when correcting chunk-by-chunk is:

P[error] ≈ (E · C)R · B
C

When C = 64 KB and E = 10−10, this probability is 3 · 10−10, which is much lower than

the probability when recovering at the block level (see Table 4.1).

We can correctly recover even when all chunks have a bit error using bit-by-bit majority
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Figure 4.3: Even if the same chunk is corrupted on all replicas, bit-by-bit majority voting can
reconstruct the correct chunk, by taking the majority of each bit across all chunks.

voting across all replicas: i.e., the recovered value of a bit in the chunk is the majority

vote across the three chunk replicas (Figure 4.3). Bit-by-bit majority further reduces the

application-observable error beyond chunk-by-chunk recovery, because the only way an

application-observable error would occur is if an error occurs in the same bit across two

chunks or more.

In a physically-replicated system like HDFS, minimizing error amplification is straight-

forward because corrupted blocks (and even bits) can be directly recovered from remote

replicas. For a logically-replicated system like ZippyDB, however, blocks are not identical

across replicas. This makes minimizing error amplification difficult, since DIRECT cannot

simply recover from a remote physical chunk. For example, bit-by-bit majority voting is

not possible in ZippyDB, because the replicas do not store the same physical bits. For such

systems, DIRECT must instead first isolate the region where the error might have occurred

and then retrieve objects one-by-one from the other servers (see § 4.4.2).

Metadata Error Amplification. So far, we have discussed the effect of errors on data

blocks. However, error amplification can be even more severe if the error occurs in local

metadata. For example, a corrupt lookup table for a distributed file system or a corrupt

index in a key-value store can prevent a data store from starting up, which can mean re-

replication of hundreds of GBs of data. Even though the likelihood of errors in metadata is

statistically lower than in data blocks (metadata typically takes up less space than data), it

requires stronger local protection to minimize error amplification. To address this problem,

DIRECT either locally duplicates metadata or applies local software error correction.
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Maintaining Correctness. Minimizing error amplification of data blocks and correcting

data from remote replicas enables performant, live recovery of corrupted data blocks. How-

ever, DIRECT must also ensure recovery operations preserve the correctness of the dis-

tributed storage system, which might be dealing with concurrent write and read operations.

This is relatively straightforward in systems that do not support versioning or updates,

such as HDFS, since if an object is recovered from a remote replica it is up-to-date. Sys-

tems like RocksDB which support versioning are more challenging, however, because if

the system re-writes an object from a remote replica, it might overwrite a newer version

with a stale version. In particular, the versions of the corrupted key-value pairs are not

known, because (a) the corruption prevents the data from being read, yet (b) due to logi-

cal replication, the data’s location does not provide information on its version. Hence to

correctly recover corrupted key-value pairs, the system must locate some consistent (up-to-

date) version of each pair. To do this, DIRECT forces recovery operations to go through a

fault-tolerant log (for ZippyDB we use its existing Paxos log), which can provide correct

ordering (§ 4.4.2). After a recovery operation, the corrupted data block should be fixed and

“correct” with respect to consistency guarantees of the system.

4.3.2 DIRECT Techniques

To summarize, DIRECT includes the following techniques.

1. Systems must reduce error amplification of data objects and fix corruptions from

remote replicas.

2. Systems must perform local metadata duplication to avoid high recovery costs from

metadata corruption.

3. Systems must ensure safe recovery semantics.

Note that the first and second techniques apply exclusively to the local data store and

affect performance, while the third technique may require that the local data store interact

with the distributed coordination layer to ensure correctness during recovery.
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4.4 Implementing DIRECT

To demonstrate the use of the DIRECT approach, we integrate it into two systems: HDFS, a

popular distributed file system that represents physically-replicated systems, and ZippyDB,

a distributed key-value store backed by RocksDB, which represents logically-replicated and

versioned systems.

The techniques used to implement DIRECT in HDFS can be applied to other physically

replicated systems, such as GFS [53], Windows Azure Storage [39], and RAMCloud [91],

which write objects into large immutable blocks that are replicated across several servers. A

centralized server contains cluster information and maps the block to the server that stores

it. Similarly, the techniques used to implement DIRECT in ZippyDB and RocksDB can

be applied to other logically replicated systems, such as Cassandra [111], MongoDB [41],

CockroachDB [1], and HA PostgreSQL [10]. In these systems a distributed coordination

layer manages the replication of objects across different servers and uses versioning to

execute transactions.

4.4.1 HDFS-DIRECT

HDFS Overview.

HDFS is a distributed file system that is designed for storing large files that are sequentially

written and read. Files are divided into 128MB blocks, and HDFS replicates and reads at

the block level.

There are three types of HDFS servers: NameNode, JournalNode, and DataNode. The

NameNode and JournalNodes store cluster metadata such as the cluster directory structure

and mappings from block to DataNode. Together, the JournalNode and NameNode run

a protocol similar to MultiPaxos, because there is no need for leader election– the leader

node is the NameNode, and HA HDFS deployments run a ZooKeeper service that ensure

there is always one live NameNode [4]. They store two types of files: editLogs, which
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are update logs, and fsImages, which are periodic snapshots that prevent the logs from

growing indefinitely; most Paxos-like protocols implement snapshots [69, 90].

The fsImage is duplicated at the standby NameNode, which is part of the “high-

availability” (HA) HDFS deployment and acts as a hot backup, downloading fsImages

periodically from the active NameNode [4]. By default, HDFS computes a single md5 hash

across an entire fsImage file, which can be on the order of 10s of gigabytes for large

enough clusters. To prevent both the case where both fsImage copies have a corrupted

md5 hash, we calculate and store a CRC32 checksum for every 512 byte chunk of the

fsImage (just like with data blocks). Then when loading the fsImage, the NameNode

will fetch the corresponding chunk from the standby if it encounters a checksum error.

The editLogs are replicated across the JournalNodes, which implement the log repli-

cation part of a Paxos protocol. We recover the editLogs with a technique borrowed

from PAR [24], which enables Paxos protocols to recover from corruptions. In particu-

lar, we write a special record with every update to indicate that the update was written to

disk; this record enables the recovery process to distinguish machine crashes from corrup-

tions (for more details see the PAR paper [24]). Finally, each edit log entry is individually

checksummed, which means we can fix editLogs at the entry granularity.

In the steady-state, all cluster metadata resides in memory at the NameNode; corrup-

tions on the NameNode or JournalNode do not affect steady-state performance and only

affect correctness during the recovery/startup process.

DataNodes (the local data stores in Figure 4.2) store HDFS data blocks, and they re-

spond to client requests to read blocks. Our efforts are focused on making sure DataNodes

can efficiently correct corruption errors on the read path, because this is how corruptions

actively affect steady-state performance. If a client encounters errors while reading a block,

it will continue trying other DataNodes from the offset of the error until it can read the en-

tire block. Once it encounters an error on a DataNode, the client will not try that node

again. If there are no more DataNodes and the block is not fully read, the read fails and
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that block is considered missing.

Additionally, HDFS has a configurable background “block scanner” that periodically

scans data blocks and reports corrupted blocks for re-replication. But the default scan

interval is three weeks, and even if the periodic scan does catch bit errors before the next

read of a block, the NameNode can only recover at the 128 MB block granularity. If there

is a bit error in every replica of a block, then HDFS cannot recover the block.

Implementing DIRECT

Reducing Error Amplification of Data Blocks We leverage the observation that HDFS

checksums every 512 bytes in each 128 MB data block. Corruptions thus can be narrowed

down to a 512 byte chunk; verifying checksums adds no overhead, because by default

HDFS will verify checksums during every block read. For streaming performance, the

smallest-size buffer that is streamed during a data block read is 64 KB, so we actually repair

64 KB everytime there is a corruption. To mask corruption errors from clients, we repair

a data block synchronously during a read. Under DIRECT, the full read (and recovery)

protocol is the following.

Each 128 MB block in HDFS is replicated on three DataNodes, call them A,B,C. An

HDFS read of a 128 MB block is routed to one of these DataNodes, say A. A will stream

the block to the client in 64 KB chunks, verifying checksums before it sends a chunk. If

there is a checksum error in a 64 KB chunk, then A will attempt to repair the chunk by

requesting the 64 KB chunk from B. If the chunk sent by B also contains a corruption,

then the checksum will be incorrect, and A will request the chunk from C.

If C also sends a corrupted chunk, then A will attempt to construct a correct version

of the chunk through bit-by-bit majority voting: the value of the bit in the chunk is the

majority vote across the three versions provided by A, B, and C. The idea behind majority

voting is that the probability that the corruptions on A, B, and C affect the same byte is

very low, which means a majority vote across the three versions of the byte should end

up with the correct data. After reconstructing the chunk via majority voting (Figure 4.3),
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A will verify the checksums again; if the checksums fail, then the read fails. Majority

voting allows HDFS-DIRECT to tolerate on the order of 104 − 105 times more bit errors

than HDFS. In fact, as we show in § 4.5.1, UBERs can be as high as 10−5 before majority

voting failures are detectable in our experimental framework

Note that bit-by-bit majority voting is possible only if the device can return pages with

uncorrectable errors (see § 4.6); otherwise, our HDFS implementation simply uses chunk-

by-chunk recovery. Furthermore, for majority voting to add significant recovery power

over chunk-by-chunk recovery, the number of corrupt bits returned by the device should

be relatively small compared to the page size; the number of corrupt bits on a device page

after running hardware ECC is dependent on the ECC function and its implementation.

Safe Recovery Semantics. Safety is straightforward in HDFS because data blocks are

immutable once written, so there are never in-place updates or versions that will conflict

with chunk recovery. Before a client does a block read, it first contacts the NameNode to

get the DataNode IDs of all the DataNodes on which the block is replicated. When a client

sends a block read request to a DataNode, it also sends this set of IDs. Because blocks

are immutable and do not contain versions, these IDs are guaranteed to be correct replicas

of the block, if they exist. It could be that a concurrent operation has deleted the block.

In this case, if chunk recovery cannot find the block on another DataNode because it has

been deleted, then it cannot perform recovery, so it will return the original checksum error

to the client. This is correct, because there is no guarantee in HDFS that concurrent read

operations should see the instantaneous deletion of a block.

Local Metadata Duplication. Each server in HDFS has local metadata files that must be

correct, otherwise it cannot start. These files include a VERSION file, as well as special

files on the NameNode and JournalNode. Metadata files are not protected in HDFS, thus

a single corruption will prevent the server from starting. DIRECT adds a standard CRC32

checksum at the beginning of each file and replicates the file twice so that there are three

copies of the file on disk. If there is a checksum error when the file is read, the recovery
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protocol will check the copies to find one with a correct checksum.

4.4.2 ZippyDB-DIRECT

ZippyDB Overview

We also implemented DIRECT on a logically replicated system, ZippyDB, a distributed

key-value store used within Facebook that is backed by RocksDB (i.e., RocksDB is the

local data store in Figure 4.2a), which is a versioned key-value store.

ZippyDB runs on tens of thousands of flash provisioned servers at Facebook, which

makes it an ideal target for DIRECT. ZippyDB provides a replication layer on top of

RocksDB. ZippyDB is logically separated into shards, and each shard is fully replicated

at least three ways. Each shard has a primary replica as well as a number of secondary

replicas, wherein each replica is backed by a separate RocksDB instance residing on some

server. Each ZippyDB server contains hundreds of shards, including both primary and sec-

ondary replicas. Hence, each ZippyDB server actually contains a large number of separate

RocksDB instances.

ZippyDB runs a Paxos-based protocol for shard operations to ensure consistency. The

primary shard acts as the leader for the Paxos entry, and each shard also has a Paxos log

to persist each Paxos entry. Writes are considered durable when they are committed by a

quorum of shards, and write operations are applied to the local RocksDB store in the order

that they are committed. A separate service is responsible for monitoring the primary and

triggering Paxos role changes.

RocksDB Overview

RocksDB is a local key-value store based on a log-structured merge (LSM) tree [93].

RocksDB batches writes in-memory—each write receives a sequence number that enables

key versioning—and flushes them into immutable files of sorted key-value pairs called

sorted string table (SST) files. SST files are composed of individually checksummed

blocks, each of which can be a data block or a metadata block. The metadata blocks include
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Figure 4.4: RocksDB SST file format. Index blocks point to keys within data blocks. Therefore,
consecutive index blocks form a key range containing all keys in the sandwiched data block. DI-
RECT writes each metadata block at least twice in-line or uses an error correction code.

index blocks that point to the keys at the start of each data block (see Figure 4.4) [14].

SST files are organized into levels. A key feature of RocksDB and other LSM tree-

backed stores is background compaction, which periodically scans SST files and compacts

them into lower levels, as well as performs garbage collection on deleted and updated keys.

Implementing DIRECT

In ZippyDB, if a compaction encounters a corruption, an entire server, which typically has

hundreds of gigabytes to terabytes of data, will shutdown and attempt to drain its RocksDB

shards to another machine. Meanwhile, this sudden crash causes spikes in error rates and

increases the load on other replicas while the server is recovering. To make matters worse,

the new server could reside in a separate region, further delaying time to recovery. This

leads to unnecessarily high error amplification: a single bit error can cause the migration

of terabytes of data.

Reducing Error Amplification of Data Blocks. We observe that checksums in RocksDB

are applied at the data block level, so a data block is the highest recovery granularity.
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Data blocks are lists of key-value pairs, and key-value pairs are replicated at the ZippyDB

layer. So if the metadata on an SST file is correct (see below how we protect metadata), a

corrupted data block can be recovered by fetching the pairs in the data block from another

replica. However, this is challenging for two reasons.

First, compactions are non-deterministic in RocksDB and depend on a variety of fac-

tors, such as available disk space and how compaction threads are scheduled. Hence, two

replicas of the same RocksDB instance will have different SST files, making it impossible

to find an exact replica of the corrupted SST file and the corrupted data block. Constrast

this with HDFS where it is straightforward to find a replica of a corrupted block. Second,

because the block is corrupted, it is impossible to know the exact key-value pairs that were

stored in that block. Therefore, not only do we not know what data to look for on the other

replica, we also don’t know where to find it.

Instead of repairing the exact keys that are lost, we re-write a larger key range that

covers the keys in the corrupted block. The key range is determined from index blocks,

which are a type of metadata block that exist at the end of SST files and record a key in the

range between consecutive data blocks, as shown in Figure 4.4. Hence, consecutive index

block entries form a key range which is guaranteed to contain the lost keys.

Unfortunately, just knowing the key range is not enough: the existence of key versions

in RocksDB and quorum replication in ZippyDB compounds the problem. In particular, a

key must be recovered to a version greater than or equal to the lost key version, which could

mean deleting it as key versions in RocksDB can create deletion markers. Additionally, if

we naı̈vely fetch key versions from another replica, we may violate consistency.

Safe Recovery Semantics. To guide our recovery design, we introduce the following cor-

rectness requirement. Suppose we learn from the index blocks that we must re-replicate

key range [a, b]. This key range is requested from another replica, which assembles a set of

fresh key-value pairs in [a, b], which we call a patch.

Safety Requirement: Immediately after patch insertion, the database must be in a
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is serialized at point t, then it must reflect all entries t′ < t (shaded). Furthermore, the patch request
is not batched with any writes to ensure atomicity.

state that reflects some prefix of the Paxos log. Furthermore, this prefix must include the

Paxos entries that originally updated the corrupted data block.

In other words, patch insertion must bring ZippyDB to some consistent state after the

versions of the corrupted keys; otherwise, if the patch inserts prior versions of the keys,

then the database will appear to go backwards.

Because the Paxos log serializes updates to ZippyDB, the cleanest way to find a prefix

to recover up to is to serialize the patch insertion via the Paxos log. Then if patch insertion

gets serialized as entry t in the log, the log prefix the patch must reflect is all Paxos entries

t′ < t, as shown in Figure 4.5. Serializing a patch at index t tells us exactly how to populate

the patch. In particular, each key in the patch must be recovered to the largest s < t such

that s is the index of a Paxos entry that updates that key.

Furthermore, patch insertion must be atomic. Otherwise, it could be interleaved with

updates to keys in the patch, which would violate the safety requirement, because then the

version of the key in the patch would not reflect a prefix of t. This is actually a subtle point

because ZippyDB batches many writes into a single Paxos entry, as shown in Figure 4.5.

If patch insertion is batched with other writes, then the patch will not reflect the writes that

are in front of it in the batch. Hence, we force the patch insertion to be its own Paxos entry.

Local Metadata Duplication. There are two flavors of metadata in RocksDB: metadata

files and metadata blocks in SST files. Metadata files are only read during startup and

then cached in memory. We can easily protect them with local replication, which adds a
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the corrupted shard, then it waits for a patch from any replica. (6) Corrupted shard applies the fresh
patch to its local RocksDB store.

minimal space overhead (on the order of kilobytes per server). We protect metadata blocks

by writing them several times in-line in the same SST file. In our implementation, we write

each metadata block twice4. Protecting metadata enables us to isolate errors to a single data

block, rather than invalidating an entire SST file.

As with the HDFS JournalNode, we can protect against errors in the ZippyDB Paxos

log with an additional entry [24].

DIRECT Recovery in ZippyDB

ZippyDB-DIRECT triggers a recovery procedure when RocksDB encounters a corrup-

tion error during compaction. Hence ZippyDB does not synchronously recover corrupted

blocks encountered during user reads, unlike in HDFS. Instead, it returns the error to the

4For increased protection, metadata blocks can be locally replicated more than twice or protected with
software error correction.
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client, which will retry on a different replica, and ZippyDB will then trigger a manual

compaction involving the file of the corrupted data block.

Figure 4.6 depicts this process. Importantly, we do not release a compaction’s output

files until the recovery procedure finishes; otherwise, stale key versions may reappear in

the key ranges still undergoing recovery. Fortunately, because compaction is a background

process, we can wait for recovery without affecting client operations.

Step (1) is implemented entirely within RocksDB. A RocksDB compaction iterator will

record a corrupted key range when it’s encountered, and then skip it to continue scanning.

At the end of the iterator’s lifetime, ZippyDB is notified about the corrupted key range.

Multiple corrupt key ranges are batched into a single patch request.

In step (2), the patch is reported to the primary. Step (3) must go through the primary

because the primary is the only shard that can propose entries to the Paxos log. Note this

does not mean primaries cannot recover from corrupted data blocks. The patch request in

the Paxos log is simply a no-op that reserves a point of reference for the recovery procedure

and includes information necessary for recovery, such as the corrupted key ranges and the

ID of the corrupted shard. Any replica that encounters the patch request in the log is by

definition up-to-date to that point in the Paxos log, which means any replica that isn’t the

corrupted replica can send a patch to the corrupted replica.

In step (4), ZippyDB waits for the Paxos log to replicate the Paxos entry as well as for

other replicas to consume the log until they encounter the patch request.

In step (5), an uncorrupted replica assembles a patch on the specified key range with a

RocksDB iterator. Note that this replica might encounter a bit corruption while assembling

the patch. In practice the probability of this is very small because the number of keys cov-

ered by the patch is on the order of kilobytes (§ 4.5.2). However, if a replica does encounter

a corruption while assembling a patch, it simply does not send a patch. Therefore, for the

patch request to fail, both (or more, if the replication factor is more than 3) uncorrupted

replicas will have to encounter a bit corruption, and this probability is low (see Table 4.1).
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Step (6) is also implemented at the RocksDB level. When a replica applies a patch,

simply inserting all the key-value pairs present in the patch is insufficient because of deleted

keys. In particular, any key present in the requested key range and not present in the patch

is an implicit delete. Therefore, to apply a patch, the corrupted shard must also delete any

keys that it can see that aren’t present in the patch. This case is possible because RocksDB

deletes keys by inserting a tombstone value inline in SST files. Hence the corrupted data

block may contain tombstone operators that delete a key, and these must be preserved.

Invalidating Snapshots

In RocksDB, users can request snapshots, which are represented by a sequence number.

Then, for as long as the snapshot with sequence number s is active, RocksDB will not

delete any version, s′, of a key where s′ is the greatest version of the key such that s′ <

s. ZippyDB uses RocksDB snapshots to execute transactions. If RocksDB invalidates a

snapshot, then the transaction using that snapshot will abort and retry.

A subtle side-effect of a corrupted data block is snapshot corruption. For example,

suppose the RocksDB store has a snapshot at sequence number 100 and the corrupted data

block contains a key with sequence number 90. For safety, we need to invalidate any

snapshots that could have been affected by the corrupted key range. Because the data block

is corrupted, it cannot be read, so we do not know whether the corruption affects snapshot

100. For now, we take the obviously correct approach and invalidate all local snapshots of

the RocksDB shard affected by the corruption. In practice, this is reasonable because most

RocksDB snapshots have short lifetimes.

4.5 Evaluation

This section evaluates how successfully DIRECT maintains system availability in the face

of high error rates by answering the following questions:

1. By how much does DIRECT decrease application-level errors in both HDFS and

ZippyDB? In HDFS, how far can DIRECT drive UBER while avoiding application-
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level errors?

2. How much does DIRECT decrease time to recovery from compaction corruption

errors in ZippyDB?

Note we do not measure recovery time in HDFS because DIRECT handles bit er-

rors synchronously, which means read errors only propagate to the application-level if

DIRECT cannot fix them. On the other hand, in ZippyDB, DIRECT handles bit errors

asynchronously because recovery procedures must go through the coordination layer, as

described in § 4.4.2.

Experimental Setup. To evaluate ZippyDB, we set up a cluster of 60 Facebook servers

that capture and duplicate live traffic from a heavily loaded service used in computing user

feeds. To evaluate HDFS, we run experiments on a cluster of 10 machines each with 8

ARMv8 cores at 2.4 GHz, 96 GB of RAM, and 120 GB of flash. In the cluster, we allo-

cate one machine each for a NameNode, standby NameNode, and JournalNode, and three

machines run the DataNode role. Four machines act as HDFS clients. HDFS experiments

have a load and read phase: in the load phase, we load the cluster with 500, 128MB files

with random data. In the read phase, clients randomly select files to read. After the load

phase, we clear the page cache.

Error Injection. To simulate UBERs, we inject bit errors into the files of both systems. In

ZippyDB, we inject errors with a custom RocksDB environment that flips bits as they are

read from a file. In HDFS, we run a script in between the load and read phases that flips bits

in on-disk files and flushes them. For an UBER of µ, e.g. µ = 10−11, we inject errors at

the rate of 1 bit flip per 1/µ bits read. We tested with UBERs higher than the manufacturer

advertised 10−15 to test the system’s performance under high error rates, and so that we can

measure enough bit errors during an experiment time of 12 hours rather than several days

(or years)5.

5 Note that an UBER 10−11 is 10, 000× higher than 10−15.
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Figure 4.7: Read error rate for HDFS with varying UBER. HDFS-DIRECT Chunk is based on
chunk-by-chunk recovery, while HDFS-DIRECT Majority is computed on bit-by-bit majority. The
analyzed data is computed using the formulas in § 4.3.1.

Baselines. We compare against unmodified HDFS and ZippyDB, both systems used in

production for many years. Although unmodified HDFS does compute checksums for

chunks, it does not recover at that granularity. HDFS-DIRECT leverages these checksums

during recovery, which allows it to recover blocks synchronously within client reads. In

unmodified ZippyDB, when a RocksDB instance encounters a compaction error, the entire

ZippyDB server crashes so that the system can reuse recovery logic for recovery from

failed nodes. While this may seem like an overly aggressive baseline, it makes sense for a

production system like ZippyDB, in which bit errors are assumed to be rare. On the other

hand, DIRECT addresses a scenario where bit errors are common, which makes such a

solution inappropriate.

4.5.1 HDFS

UBER Tolerance. The main advantage of HDFS-DIRECT over HDFS is the ability to

tolerate much higher UBERs with chunk-level recovery and majority voting. Figure 4.7

reports block read error rates of HDFS with varying UBERs. In HDFS, read errors are also

considered data loss, because the data is unreadable (and hence unrecoverable) even after

trying all 3 replicas. The figure shows the measured read error on our HDFS experimental

setup, within the UBER range in which we could effectively measure errors, as well as the
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computed read error based on the computation presented in § 4.3.1. We compared unmod-

ified HDFS, with chunk-by-chunk recovery and bit-by-bit majority. The experimental read

error is collected by running thousands of file reads and measuring how many fail. The

measured results are relatively close to the analytical results, and in fact experience even

fewer errors than the analytical model. We believe the primary reason is that the Taylor’s

approximation used in the analytical model does not hold for high UBERs. As expected,

bit-by-bit majority (green lines) reduces the read error rate due to its lower error amplifi-

cation (it can recover bit-by-bit). Both our analysis and the experimental results show that

HDFS-DIRECT can tolerate a 10, 000×–100, 000× higher UBER and maintain the same

read error rate.

Overhead of DIRECT. Because DIRECT corrects bit errors synchronously in HDFS,

error correction poses an overhead on reads that encounter bit errors.

UBER HDFS throughput [GB/s] HDFS-DIRECT throughput [GB/s]

10−7 0.00± 0.00 2.09± 0.08
10−8 0.00± 0.00 2.56± 0.09
10−9 2.46± 0.08 2.55± 0.07
10−10 2.89± 0.10 2.84± 0.07

No errors 2.83± 0.07 2.88± 0.07

Table 4.2: Throughput of HDFS and HDFS-DIRECT. At UBER= 10−8, HDFS throughput col-
lapses due to bit errors.

Table 4.2 shows the throughput of both systems, measured by saturating the DataNodes

with four, 64-threaded clients that are continuously reading random files. The throughput

of HDFS goes to zero at an UBER of 10−8, because it cannot complete any reads due to

corruption errors. Such failures do not occur in HDFS-DIRECT, although its throughput

decreases modestly due to the overhead of synchronously repairing corrupt chunks during

read operations.

For HDFS-DIRECT, we are also interested in latency incurred by synchronous chunk

recovery. We compare the CDF of read latencies of 128 MB blocks for different UBERs in
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Figure 4.8: Read latencies (128 MB) of HDFS and HDFS-DIRECT. All reads fail in HDFS an
UBER of 10−8 and higher.

Figure 4.8. The higher the UBER, the more chunk recovery requests that need to be made

during a block read and the longer these requests will take. The results in Figure 4.8 (and

Table 4.2) highlight the fine-grained tradeoff between performance and recoverability that

is exposed by DIRECT. We also report HDFS read latencies, but there is little difference

across UBERs because only latency for successful block reads are included; again, we do

not report results for UBERs higher than 10−8, since at those error rates HDFS cannot

successfully read any blocks.

Interestingly, these overheads become minimal when we run an end-to-end benchmark.

We ran the TeraSort benchmark, a canonical Hadoop benchmark. We configured TeraSort

to generate and sort 20 GB of data. Table 4.3 shows the time it takes HDFS-DIRECT

to complete the TeraSort benchmark. Note that at an UBER of 10−8, the time it takes to

complete the benchmark is similar to when there are no errors (in fact, we do no report

results for UBERs lower than 10−8 because they are so similar to results when there are

no errors). Even at an UBER of 10−7, the performance overhead is relatively low, because

TeraSort is dominated by sort time in the mappers and reducers, rather than the time it
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UBER Time to Complete Benchmark (s)

10−7 177.4± 2.5
10−8 169.4± 2.1

No errors 166.2± 1.8

Table 4.3: Time in seconds for HDFS-DIRECT to complete the TeraSort benchmark.

takes to read the data into memory. These results suggest that even at very high UBERs,

DIRECT imposes a low recovery overhead in workloads that are not disk-bound.

4.5.2 ZippyDB

UBER Tolerance. One main difference between unmodified ZippyDB and ZippyDB–

DIRECT is that ZippyDB-DIRECT avoids crashing when encountering a bit error. To

characterize how many server crashes are mitigated with DIRECT, we measured the aver-

age rate of compaction errors per hour per server, over 12 hours. The results are shown in

Table 4.4. Figure 4.9 shows the read error rate over time of both systems, and Table 4.4

also shows the number of read errors as a percentage of all reads. Note that the error rate

patterns across UBERs are different because they are run during different time intervals,

so each UBER experiment sees different traffic. We did try to ensure read/write QPS and

query distribution remain steady throughout the experiments. Unfortunately, there is no

tracing system set up for ZippyDB, so we were unable to capture and replay traces.

The error rate is much higher for ZippyDB than ZippyDB-DIRECT because not only

do clients see errors from regular read operations, but also they experience the spike in

errors when a server shuts down due to a compaction corruption.

Time Spent in Reduced Durability. With DIRECT, we also seek to minimize the amount

of time spent in reduced durability to decrease the likelihood of simultaneous replica fail-

ures. Figure 4.10 shows a CDF of the time it takes to recover from compaction errors in

ZippyDB-DIRECT. The graph shows the amount of time it takes for replicas to process the

Paxos log up until the patch request, as well as the overhead of constructing and inserting

the patch. With DIRECT, this recovery time is on the order of milliseconds. In contrast,
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Figure 4.9: Read error rates over time in ZippyDB and ZippyDB-DIRECT, under varying UBERs.
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Figure 4.11: CDF of patch sizes generated during the ZippyDB-DIRECT recovery process. The
patch size is small, which means low error amplification.

the period of reduced durability in unmodified ZippyDB due to a compaction error is on

the order of minutes, depending on the amount of data stored in the crashed ZippyDB

server. This is due to the high error amplification of ZippyDB, which invalidates 100s of

RocksDB shards due to a single compaction bit error. With DIRECT, ZippyDB can reduce

its recovery time due to a bit error by around 10, 000×.

We also found that the recovery latency is dependent on the size of the patch required

Read Errors Compaction Errors
per Hour per Server

UBER ZippyDB ZippyDB-DIRECT ZippyDB

10−10 2.7308% 0.1865% 0.1991± 0.1077
10−11 1.9808% 0.0400% 0.0621± 0.0455
10−12 0.2650% 0.0008% 0.0038± 0.0035
10−13 0.0108% 0.0002% 0.0003± 0.0005

Table 4.4: Read and compaction errors with ZippyDB and ZippyDB-DIRECT. The read errors are
a percentage of the total number of reads, and the compaction errors are the number of errors per
hour per server. ZippyDB-DIRECT is able to fix all compaction errors in our experiment, while the
server crashes in ZippyDB.
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to correct the corrupted key range. Figure 4.11 presents a CDF of the size of the patches

generated during the recovery process. Patch size is also interesting because the recov-

ery mechanism described in § 4.4.2 recovers a range of keys, since the exact keys on the

corrupted data block are impossible to identify. As we see in Figure 4.11, even though

recovering a range can in theory increase error amplification, the number of keys required

for recovery is still low. Figure 4.11 also confirms that as the UBER increases, patch sizes

increase due to more key ranges getting corrupted during a single compaction operation.

4.6 Discussion

Local File System Error Tolerance. When devices exhibit higher UBERs, local file sys-

tems also experience higher UBERs. DIRECT protects application-level metadata and

data, which are just data blocks at the local file system level. Protecting local file system

metadata (such as inodes, the FS journal, etc.) is beyond the scope of this paper. Several

existing file systems protect metadata against bit corruptions [3, 19, 20, 55, 72, 95, 119].

The general approach is to add checksums to file system metadata and locally replicate it

for error correction. Another approach is to use more reliable hardware for metadata, and

less reliable hardware for data blocks [72]. Alternatively, instead of directly replicating

metadata, another approach is to harden local nodes using lightweight versioning [46].

Support for DIRECT. DIRECT does not require any hardware support. However, a cou-

ple of simple device-level mechanisms would help datacenter operators run devices past

their manufacturer defined UBER. First, it would be beneficial if devices have a less aggres-

sive “bad block policy”, which is a firmware protocol for retiring blocks once they reach

some heuristic-defined level of errors. Second, it would be beneficial if devices return the

content of pages, even if they have an error. This enables distributed storage applications to

minimize recovery amplification by recovering data at a granularity smaller than a device

page (e.g., using majority voting). This is not a hard requirement, since as we showed in

§ 4.3.1 even recovering at a device page level (e.g., 4-8 KB) provides significant benefits.
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In case corrupt pages cannot be read, copies of local metadata must be stored on separate

physical pages. Otherwise, a page error could invalidate all copies of the metadata.

4.7 Related Work

Related work is divided into two main parts: systems that deal with device errors using

software mechanisms or by applying more aggressive hardware mechanisms.

We also note that our work departs from existing work on data integrity in data storage

systems [29, 34, 68, 103] because we expose bit corruptions at the distributed layer, rather

than containing them completely in the storage layer. Furthermore, a key motivating factor

in DIRECT is that bit corruptions will be common-place, so DIRECT does not stop at

identifying corruptions but introduces a principled and performant way of fixing them to

achieve high availability.

Software-level Redundancy. DIRECT is related to PAR [24] and PASC [44], which demon-

strate how consensus-based protocols can be adapted to address bit-level errors. Unlike

both of these works, which only address consensus protocols, our work tackles bit-level

errors in general purpose storage systems. We also show how increasing the resiliency to

bit-level errors can significantly reduce storage costs and improve live recovery speed in

datacenter environments.

Other related work use different approaches. HARDFS [46] hardens local HDFS nodes

by augmenting each node with a lightweight version that verifies its behavior. HDFS-

DIRECT generalizes HARDFS, by only applying local protection to metadata and leverag-

ing distributed replicas to recover data. FlexECC [59] and Duracache [77] are flash-based

key-value caches that use less reliable disks by treating devices errors as cache misses. D-

GRAID is a RAID storage system that gracefully degrades by minimizing the amount of

data needed to recover from bit corruptions [104]. AHEAD and EDB-Tree apply software-

level error detection and correction to address DRAM corruption in databases [66, 67].

There is a large number of distributed storage systems that use inexpensive, unreliable
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hardware, while providing consistency and reliability guarantees [27, 45, 53]. However,

these systems treat bit corruptions similar to entire-node failures and suffer from high re-

covery amplification. DIRECT extends the idea of providing reliability via software on

unreliable storage, and demonstrates how distributed storage systems can conduct live re-

covery of disk corruptions with minimal performance cost.

There is a large body of work on finding errors in the way both local file systems and

distributed file systems handle disk corruptions [52]. These efforts are orthogonal to our

work, because they focus on correctness flaws of software that corrects disk corruptions.

Research on hardening local file systems to tolerate disk errors supports our vision of less

reliable disks, because it shows it is possible to protect a local file system from disk bit

errors [3, 19, 20, 55, 72, 95, 119].

Hardware-level Redundancy. Several studies explore extending SSD lifetime via more

aggressive or adaptive hardware error correction. Tanakamuru et al. [107] propose adapt-

ing codeword size based on the device’s wear level to improve SSD lifetime. Cai et al. [38]

and Liu et al. [78] introduce techniques to dynamically learn and adjust the cell voltage

levels based on retention age. Zhao et al. [121] propose using the soft information with

LDPC error correction to increase lifetime. Our approach is different: instead of improv-

ing hardware-based error correction, we leverage existing software-based redundancy to

address bit-level errors.

4.8 Conclusion and Future Work

This paper presents DIRECT, which shifts the responsibility of error correction from the

hardware layer to the distributed application layer. In doing so, DIRECT is able to har-

ness the inherent redundancy that exists in distributed storage applications to recover bit

corruptions in a live system.

We can extend the approach of handling error correction in the distributed storage layer

in several directions. First, distributed storage systems can control the level of error cor-
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rection depending on data type. For example, some data types may be more sensitive to

bit corruptions (e.g., critical metadata), while others may not. Second, distributed storage

system can control hardware mechanisms that influence the performance of the device. For

example, storing fewer bits per cell generally reduces the latency of the device (at the ex-

pense of its capacity). Certain applications may prefer for to use a hybrid of low latency

and low capacity devices for hot data, while reserving the high capacity devices for colder

data.
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Chapter 5

Conclusion and Future Vision

Because the rate of data creation is growing exponentially, it is now critical to reduce the

storage costs of distributed storage systems. This is particularly important in the datacenter,

where the scale of data being stored is large enough where storage cost reductions are worth

the software engineering overhead that they introduce.

This thesis has showed two ways that we can use existing redundancy in distributed

storage systems to reduce storage costs throughout the storage stack. First, Replex shows

how replication can be repurposed to provide secondary indices, eliminating the need for

indexing to take up additional storage space. Second, DIRECT shows how replication for

availability can be repurposed to correct bit errors in flash devices. By correcting hardware

errors at the application layer, we can greatly extend the lifetime of flash devices. In the

datacenter, where there can be thousands to millions of devices deployed, such an lifetime

increase would alleviate not only the monetary burdens associated with disk churn but also

the operational overheads of swapping out expired devices.

Ultimately, we believe that fault tolerance in the distributed storage stack should be

redesigned in an end-to-end manner. This vision begins with a storage medium that is

allowed to expose some level of corruption errors to the software layer. Immediately on

top of that, file systems would need to be redesigned to tolerate these bit errors. As we have
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summarized in this thesis, there is already some work on file systems that can tolerate bit

errors in their metadata. File systems would not have to protect their data because this will

be done at the application layer, which can use techniques such as DIRECT or Replex to

provide enough redundancy to correct bit errors.

With both of these techniques, datacenters can reduce the storage costs of distributed

storage systems and begin to consider how to redesign the storage stack, thereby making

persistent data more sustainable in the age of Big Data.
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